This paper explores the effectiveness of model-generated signals in improving zero-shot generalization of text-to-text Transformers such as T5. We study various designs to pretrain T5 using an auxiliary model to construct more challenging token replacements for the main model to denoise. Key aspects under study include the decoding target, the location of the RTD head, and the masking pattern. Based on these studies, we develop a new model, METRO-T0, which is pretrained using the redesigned ELECTRA-Style pretraining strategies and then prompt-finetuned on a mixture of NLP tasks. METRO-T0 outperforms all similar-sized baselines on prompted NLP benchmarks, such as _T0 Eval_ and MMLU, and rivals the state-of-the-art T0-11B model with only **8%** of its parameters. Our analysis on model’s neural activation and parameter sensitivity reveals that the effectiveness of METRO-T0 stems from more balanced contribution of parameters and better utilization of their capacity. The code and model checkpoints are available at [https://github.com/gonglinyuan/metro_t0](https://github.com/gonglinyuan/metro_t0).
The task of completing knowledge triplets has broad downstream applications. Both structural and semantic information plays an important role in knowledge graph completion. Unlike previous approaches that rely on either the structures or semantics of the knowledge graphs, we propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information. Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models with respect to a probabilistic structured loss, where the forward pass of the language models captures semantics and the loss reconstructs structures. Our extensive experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method. We also show that our method can significantly improve the performance in a low-resource regime, thanks to the better use of semantics. The code and datasets are available at https://github.com/pkusjh/LASS.
Creating effective visualization is an important part of data analytics. While there are many libraries for creating visualization, writing such code remains difficult given the myriad of parameters that users need to provide. In this paper, we propose the new task of synthesizing visualization programs from a combination of natural language utterances and code context. To tackle the learning problem, we introduce PlotCoder, a new hierarchical encoder-decoder architecture that models both the code context and the input utterance. We use PlotCoder to first determine the template of the visualization code, followed by predicting the data to be plotted. We use Jupyter notebooks containing visualization programs crawled from GitHub to train PlotCoder. On a comprehensive set of test samples from those notebooks, we show that PlotCoder correctly predicts the plot type of about 70% samples, and synthesizes the correct programs for 35% samples, performing 3-4.5% better than the baselines.
We Microsoft Research Asia made submissions to 11 language directions in the WMT19 news translation tasks. We won the first place for 8 of the 11 directions and the second place for the other three. Our basic systems are built on Transformer, back translation and knowledge distillation. We integrate several of our rececent techniques to enhance the baseline systems: multi-agent dual learning (MADL), masked sequence-to-sequence pre-training (MASS), neural architecture optimization (NAO), and soft contextual data augmentation (SCA).