Despite the surprising few-shot performance of in-context learning (ICL), it is still a common practice to randomly sample examples to serve as context. This paper advocates a new principle for ICL: self-adaptive in-context learning. The self-adaption mechanism is introduced to help each sample find an in-context example organization (i.e., selection and permutation) that can derive the correct prediction, thus maximizing performance. To validate the effectiveness of self-adaptive ICL, we propose a general select-then-rank framework and instantiate it with new selection and ranking algorithms. Upon extensive evaluation on eight different NLP datasets, our self-adaptive ICL method achieves a 40% relative improvement over the common practice setting. Further analysis reveals the enormous potential of self-adaptive ICL that it might be able to close the gap between ICL and finetuning given more advanced algorithms. Our code will be released to facilitate future research.
When communicating with elders with cognitive impairment, cognitive stimulation (CS) help to maintain the cognitive health of elders. Data sparsity is the main challenge in building CS-based dialogue systems, particularly in the Chinese language. To fill this gap, we construct a Chinese CS conversation (CSConv) dataset, which contains about 2.6K groups of dialogues with therapy principles and emotional support strategy labels. Making chit chat while providing emotional support is overlooked by the majority of existing cognitive dialogue systems. In this paper, we propose a multi-source knowledge fusion method for CS dialogue (CSD), to generate open-ended responses guided by the therapy principle and emotional support strategy. We first use a progressive mask method based on external knowledge to learn encoders as effective classifiers, which is the prerequisite to predict the therapy principle and emotional support strategy of the target response. Then a decoder interacts with the perceived therapy principle and emotional support strategy to generate responses. Extensive experiments conducted on the CSConv dataset demonstrate the effectiveness of the proposed method, while there is still a large space for improvement compared to human performance.
Neural machine translation has achieved promising results on many translation tasks. However, previous studies have shown that neural models induce a non-smooth representation space, which harms its generalization results. Recently, kNN-MT has provided an effective paradigm to smooth the prediction based on neighbor representations during inference. Despite promising results, kNN-MT usually requires large inference overhead. We propose an effective training framework INK to directly smooth the representation space via adjusting representations of kNN neighbors with a small number of new parameters. The new parameters are then used to refresh the whole representation datastore to get new kNN knowledge asynchronously. This loop keeps running until convergence. Experiments on four benchmark datasets show that INK achieves average gains of 1.99 COMET and 1.0 BLEU, outperforming the state-of-the-art kNN-MT system with 0.02x memory space and 1.9x inference speedup.
Logical data-to-text generation is a representative task in measuring the capabilities of both language generation and complex reasoning. Despite the introduction of reasoning skills in generation, existing works still rely on neural language models to output the final table description. However, due to the inefficacy of neural language models in complex reasoning, these methods inevitably have difficulty working out key entities in the description and might produce unfaithful descriptions. To alleviate these issues, we propose a dependency-aware symbolic reasoning framework that reasons out each entity in the table description with our designed table-compatible programming language. To figure out the dependency relationship among entities, we devise an entity scheduling mechanism to determine the order of programme synthesis such that the reasoning of an entity only relies on other “resolved” entities. Experiments on three datasets and three backbones show that ours outperforms previous methods not only in surface-level fidelity but also in logical fidelity. Notably, the proposed framework enhances GPT-2, BART and T5 with an absolute improvement of 5.7%~11.5% on SP-Acc.
Multilingual neural machine translation (MNMT) aims to build a unified model for many language directions. Existing monolithic models for MNMT encounter two challenges: parameter interference among languages and inefficient inference for large models.In this paper, we revisit the classic multi-way structures and develop a detachable model by assigning each language (or group of languages) to an individual branch that supports plug-and-play training and inference. To address the needs of learning representations for all languages in a unified space, we propose a novel efficient training recipe, upon which we build an effective detachable model, Lego-MT.For a fair comparison, we collect data from OPUS and build a translation benchmark covering 433 languages and 1.3B parallel data. Experiments show that Lego-MT with 1.2B parameters brings an average gain of 3.2 spBLEU. It even outperforms M2M-100 with 12B parameters. The proposed training recipe brings a 28.2× speedup over the conventional multi-way training method.code and data repo: https://github.com/CONE-MT/Lego-MT.git.
Explaining the black-box predictions of NLP models naturally and accurately is an important open problem in natural language generation. These free-text explanations are expected to contain sufficient and carefully-selected evidence to form supportive arguments for predictions. Thanks to the superior generative capacity of large pretrained language models (PLM), recent work built on prompt engineering enables explanations generated without specific training. However, explanations generated through single-pass prompting often lack sufficiency and conciseness, due to the prompt complexity and hallucination issues. To discard the dross and take the essence of current PLM’s results, we propose to produce sufficient and concise explanations via the information bottleneck (EIB) theory. EIB regenerates explanations by polishing the single-pass output of PLM but retaining the information that supports the contents being explained by balancing two information bottleneck objectives. Experiments on two different tasks verify the effectiveness of EIB through automatic evaluation and thoroughly-conducted human evaluation.
We examine the extent to which, in principle, different syntactic and semantic graph representations can complement and improve neural language modeling. Specifically, by conditioning on a subgraph encapsulating the locally relevant sentence history, can a model make better next-word predictions than a pretrained sequential language model alone? With an ensemble setup consisting of GPT-2 and ground-truth graphs from one of 7 different formalisms, we find that the graph information indeed improves perplexity and other metrics. Moreover, this architecture provides a new way to compare different frameworks of linguistic representation. In our oracle graph setup, training and evaluating on English WSJ, semantic constituency structures prove most useful to language modeling performance—outpacing syntactic constituency structures as well as syntactic and semantic dependency structures.
Open-ended text generation tasks, such as dialogue generation and story completion, require models to generate a coherent continuation given limited preceding context. The open-ended nature of these tasks brings new challenges to the neural auto-regressive text generators nowadays. Despite these neural models are good at producing human-like text, it is difficult for them to arrange causalities and relations between given facts and possible ensuing events. To bridge this gap, we propose a novel two-stage method which explicitly arranges the ensuing events in open-ended text generation. Our approach can be understood as a specially-trained coarse-to-fine algorithm, where an event transition planner provides a “coarse” plot skeleton and a text generator in the second stage refines the skeleton. Experiments on two open-ended text generation tasks demonstrate that our proposed method effectively improves the quality of the generated text, especially in coherence and diversity. We will release the codes to the community for further exploration.
Recently, dataset-generation-based zero-shot learning has shown promising results by training a task-specific model with a dataset synthesized from large pre-trained language models (PLMs). The final task-specific model often achieves compatible or even better performance than PLMs under the zero-shot setting, with orders of magnitude fewer parameters.However, synthetic datasets have their drawbacks. They have long being suffering from the low-quality issue (e.g., low informativeness, redundancy). This explains why the massive synthetic data does not lead to better performance – a scenario we would expect in the human-labeled data. To improve the quality in dataset synthesis, we propose a progressive zero-shot dataset generation framework, ProGen, which leverages the feedback from the task-specific model to guide the generation of new training data via in-context examples.Extensive experiments on five text classification datasets demonstrate the effectiveness of the proposed approach. We also show ProGen achieves on-par or superior performance with only 1% synthetic dataset size, when comparing to baseline methods without in-context feedback.
Transformer architectures have achieved state- of-the-art results on a variety of natural language processing (NLP) tasks. However, their attention mechanism comes with a quadratic complexity in sequence lengths, making the computational overhead prohibitive, especially for long sequences. Attention context can be seen as a random-access memory with each token taking a slot. Under this perspective, the memory size grows linearly with the sequence length, and so does the overhead of reading from it. One way to improve the efficiency is to bound the memory size. We show that disparate approaches can be subsumed into one abstraction, attention with bounded-memory control (ABC), and they vary in their organization of the memory. ABC reveals new, unexplored possibilities. First, it connects several efficient attention variants that would otherwise seem apart. Second, this abstraction gives new insights—an established approach (Wang et al., 2020b) previously thought to not be applicable in causal attention, actually is. Last, we present a new instance of ABC, which draws inspiration from existing ABC approaches, but replaces their heuristic memory-organizing functions with a learned, contextualized one. Our experiments on language modeling, machine translation, and masked language model finetuning show that our approach outperforms previous efficient attention models; compared to the strong transformer baselines, it significantly improves the inference time and space efficiency with no or negligible accuracy loss.
We propose knowledge internalization (KI), which aims to complement the lexical knowledge into neural dialog models. Instead of further conditioning the knowledge-grounded dialog (KGD) models on externally retrieved knowledge, we seek to integrate knowledge about each input token internally into the model’s parameters. To tackle the challenge due to the large scale of lexical knowledge, we adopt the contrastive learning approach and create an effective token-level lexical knowledge retriever that requires only weak supervision mined from Wikipedia. We demonstrate the effectiveness and general applicability of our approach on various datasets and diversified model structures.
Structured knowledge grounding (SKG) leverages structured knowledge to complete user requests, such as semantic parsing over databases and question answering over knowledge bases. Since the inputs and outputs of SKG tasks are heterogeneous, they have been studied separately by different communities, which limits systematic and compatible research on SKG. In this paper, we overcome this limitation by proposing the UnifiedSKG framework, which unifies 21 SKG tasks into a text-to-text format, aiming to promote systematic SKG research, instead of being exclusive to a single task, domain, or dataset. We use UnifiedSKG to benchmark T5 with different sizes and show that T5, with simple modifications when necessary, achieves state-of-the-art performance on almost all of the 21 tasks. We further demonstrate that multi-task prefix-tuning improves the performance on most tasks, largely improving the overall performance. UnifiedSKG also facilitates the investigation of zero-shot and few-shot learning, and we show that T0, GPT-3, and Codex struggle in zero-shot and few-shot learning for SKG. We also use UnifiedSKG to conduct a series of controlled experiments on structured knowledge encoding variants across SKG tasks. UnifiedSKG is easily extensible to more tasks, and it is open-sourced at https://github.com/hkunlp/unifiedskg.
Linear transformers aim to reduce the quadratic space-time complexity of vanilla transformers. However, they usually suffer from degraded performances on various tasks and corpus. In this paper, we examine existing kernel-based linear transformers and identify two key issues that lead to such performance gaps: 1) unbounded gradients in the attention computation adversely impact the convergence of linear transformer models; 2) attention dilution which trivially distributes attention scores over long sequences while neglecting neighbouring structures. To address these issues, we first identify that the scaling of attention matrices is the devil in unbounded gradients, which turns out unnecessary in linear attention as we show theoretically and empirically. To this end, we propose a new linear attention that replaces the scaling operation with a normalization to stabilize gradients. For the issue of attention dilution, we leverage a diagonal attention to confine attention to only neighbouring tokens in early layers. Benefiting from the stable gradients and improved attention, our new linear transformer model, transNormer, demonstrates superior performance on text classification and language modeling tasks, as well as on the challenging Long-Range Arena benchmark, surpassing vanilla transformer and existing linear variants by a clear margin while being significantly more space-time efficient. The code is available at https://github.com/OpenNLPLab/Transnormer .
Though linguistic knowledge emerges during large-scale language model pretraining, recent work attempt to explicitly incorporate human-defined linguistic priors into task-specific fine-tuning. Infusing language models with syntactic or semantic knowledge from parsers has shown improvements on many language understanding tasks. To further investigate the effectiveness of structural linguistic priors, we conduct empirical study of replacing parsed graphs or trees with trivial ones (rarely carrying linguistic knowledge e.g., balanced tree) for tasks in the GLUE benchmark. Encoding with trivial graphs achieves competitive or even better performance in fully-supervised and few-shot settings. It reveals that the gains might not be significantly attributed to explicit linguistic priors but rather to more feature interactions brought by fusion layers. Hence we call for attention to using trivial graphs as necessary baselines to design advanced knowledge fusion methods in the future.
There is a growing interest in dataset generation recently due to the superior generative capacity of large pre-trained language models (PLMs). In this paper, we study a flexible and efficient zero-short learning method, ZeroGen.Given a zero-shot task, we first generate a dataset from scratch using PLMs in an unsupervised manner. Then, we train a tiny task model (e.g., LSTM) under the supervision of the synthesized dataset. This approach allows highly efficient inference as the final task model only has orders of magnitude fewer parameters comparing to PLMs (e.g., GPT2-XL).Apart from being annotation-free and efficient, we argue that ZeroGen can also provide useful insights from the perspective of data-free model-agnostic knowledge distillation, and unreferenced text generation evaluation. Experiments and analysis on different NLP tasks, namely, text classification, question answering, and natural language inference, show the effectiveness of ZeroGen.
Transformers have advanced the field of natural language processing (NLP) on a variety of important tasks. At the cornerstone of the Transformer architecture is the multi-head attention (MHA) mechanism which models pairwise interactions between the elements of the sequence. Despite its massive success, the current framework ignores interactions among different heads, leading to the problem that many of the heads are redundant in practice, which greatly wastes the capacity of the model. To improve parameter efficiency, we re-formulate the MHA as a latent variable model from a probabilistic perspective. We present cascaded head-colliding attention (CODA) which explicitly models the interactions between attention heads through a hierarchical variational distribution. We conduct extensive experiments and demonstrate that CODA outperforms the transformer baseline, by 0.6 perplexity on Wikitext-103 in language modeling, and by 0.6 BLEU on WMT14 EN-DE in machine translation, due to its improvements on the parameter efficiency.
A neural multimodal machine translation (MMT) system is one that aims to perform better translation by extending conventional text-only translation models with multimodal information. Many recent studies report improvements when equipping their models with the multimodal module, despite the controversy of whether such improvements indeed come from the multimodal part. We revisit the contribution of multimodal information in MMT by devising two interpretable MMT models. To our surprise, although our models replicate similar gains as recently developed multimodal-integrated systems achieved, our models learn to ignore the multimodal information. Upon further investigation, we discover that the improvements achieved by the multimodal models over text-only counterparts are in fact results of the regularization effect. We report empirical findings that highlight the importance of MMT models’ interpretability, and discuss how our findings will benefit future research.
We present a language model that combines a large parametric neural network (i.e., a transformer) with a non-parametric episodic memory component in an integrated architecture. Our model uses extended short-term context by caching local hidden states—similar to transformer-XL—and global long-term memory by retrieving a set of nearest neighbor tokens at each timestep. We design a gating function to adaptively combine multiple information sources to make a prediction. This mechanism allows the model to use either local context, short-term memory, or long-term memory (or any combination of them) on an ad hoc basis depending on the context. Experiments on word-based and character-based language modeling datasets demonstrate the efficacy of our proposed method compared to strong baselines.
We show that Bayes’ rule provides an effective mechanism for creating document translation models that can be learned from only parallel sentences and monolingual documents a compelling benefit because parallel documents are not always available. In our formulation, the posterior probability of a candidate translation is the product of the unconditional (prior) probability of the candidate output document and the “reverse translation probability” of translating the candidate output back into the source language. Our proposed model uses a powerful autoregressive language model as the prior on target language documents, but it assumes that each sentence is translated independently from the target to the source language. Crucially, at test time, when a source document is observed, the document language model prior induces dependencies between the translations of the source sentences in the posterior. The model’s independence assumption not only enables efficient use of available data, but it additionally admits a practical left-to-right beam-search algorithm for carrying out inference. Experiments show that our model benefits from using cross-sentence context in the language model, and it outperforms existing document translation approaches.
Textual representation learners trained on large amounts of data have achieved notable success on downstream tasks; intriguingly, they have also performed well on challenging tests of syntactic competence. Hence, it remains an open question whether scalable learners like BERT can become fully proficient in the syntax of natural language by virtue of data scale alone, or whether they still benefit from more explicit syntactic biases. To answer this question, we introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining, by distilling the syntactically informative predictions of a hierarchical—albeit harder to scale—syntactic language model. Since BERT models masked words in bidirectional context, we propose to distill the approximate marginal distribution over words in context from the syntactic LM. Our approach reduces relative error by 2–21% on a diverse set of structured prediction tasks, although we obtain mixed results on the GLUE benchmark. Our findings demonstrate the benefits of syntactic biases, even for representation learners that exploit large amounts of data, and contribute to a better understanding of where syntactic biases are helpful in benchmarks of natural language understanding.
Recurrent neural network grammars (RNNG) are a recently proposed probablistic generative modeling family for natural language. They show state-of-the-art language modeling and parsing performance. We investigate what information they learn, from a linguistic perspective, through various ablations to the model and the data, and by augmenting the model with an attention mechanism (GA-RNNG) to enable closer inspection. We find that explicit modeling of composition is crucial for achieving the best performance. Through the attention mechanism, we find that headedness plays a central role in phrasal representation (with the model’s latent attention largely agreeing with predictions made by hand-crafted head rules, albeit with some important differences). By training grammars without nonterminal labels, we find that phrasal representations depend minimally on nonterminals, providing support for the endocentricity hypothesis.