Keith Diedrick


2020

pdf
Improving Text-to-Text Pre-trained Models for the Graph-to-Text Task
Zixiaofan Yang | Arash Einolghozati | Hakan Inan | Keith Diedrick | Angela Fan | Pinar Donmez | Sonal Gupta
Proceedings of the 3rd International Workshop on Natural Language Generation from the Semantic Web (WebNLG+)

Converting a knowledge graph or sub-graph to natural text is useful when answering questions based on a knowledge base. High-capacity language models pre-trained on large-scale text corpora have recently been shown to be powerful when fine-tuned for the knowledge-graph-to-text (KG-to-text) task. In this paper, we propose two classes of methods to improve such pre-trained models for this task. First, we improve the structure awareness of the model by organizing the input as well as learning optimal ordering via multitask learning. Second, we bridge the domain gap between text-to-text and KG-to-text tasks via a second-phase KG-to-text pre-training on similar datasets and extra lexicalization supervision to make the input more similar to natural text. We demonstrate the efficacy of our methods on the popular WebNLG dataset. Our best model achieves an almost 3 point BLEU improvement on a strong baseline while lowering the relative slot-error-rate by around 35%. We also validate our results via human evaluation.

pdf
Conversational Semantic Parsing
Armen Aghajanyan | Jean Maillard | Akshat Shrivastava | Keith Diedrick | Michael Haeger | Haoran Li | Yashar Mehdad | Veselin Stoyanov | Anuj Kumar | Mike Lewis | Sonal Gupta
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

The structured representation for semantic parsing in task-oriented assistant systems is geared towards simple understanding of one-turn queries. Due to the limitations of the representation, the session-based properties such as co-reference resolution and context carryover are processed downstream in a pipelined system. In this paper, we propose a semantic representation for such task-oriented conversational systems that can represent concepts such as co-reference and context carryover, enabling comprehensive understanding of queries in a session. We release a new session-based, compositional task-oriented parsing dataset of 20k sessions consisting of 60k utterances. Unlike Dialog State Tracking Challenges, the queries in the dataset have compositional forms. We propose a new family of Seq2Seq models for the session-based parsing above, which also set state-of-the-art in ATIS, SNIPS, TOP and DSTC2. Notably, we improve the best known results on DSTC2 by up to 5 points for slot-carryover.

pdf
Sound Natural: Content Rephrasing in Dialog Systems
Arash Einolghozati | Anchit Gupta | Keith Diedrick | Sonal Gupta
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

We introduce a new task of rephrasing for a more natural virtual assistant. Currently, virtual assistants work in the paradigm of intent-slot tagging and the slot values are directly passed as-is to the execution engine. However, this setup fails in some scenarios such as messaging when the query given by the user needs to be changed before repeating it or sending it to another user. For example, for queries like ‘ask my wife if she can pick up the kids’ or ‘remind me to take my pills’, we need to rephrase the content to ‘can you pick up the kids’ and ‘take your pills’. In this paper, we study the problem of rephrasing with messaging as a use case and release a dataset of 3000 pairs of original query and rephrased query. We show that BART, a pre-trained transformers-based masked language model, is a strong baseline for the task, and show improvements by adding a copy-pointer and copy loss to it. We analyze different trade-offs of BART-based and LSTM-based seq2seq models, and propose a distilled LSTM-based seq2seq as the best practical model