Jun Quan


2020

pdf
Modeling Long Context for Task-Oriented Dialogue State Generation
Jun Quan | Deyi Xiong
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics

Based on the recently proposed transferable dialogue state generator (TRADE) that predicts dialogue states from utterance-concatenated dialogue context, we propose a multi-task learning model with a simple yet effective utterance tagging technique and a bidirectional language model as an auxiliary task for task-oriented dialogue state generation. By enabling the model to learn a better representation of the long dialogue context, our approaches attempt to solve the problem that the performance of the baseline significantly drops when the input dialogue context sequence is long. In our experiments, our proposed model achieves a 7.03% relative improvement over the baseline, establishing a new state-of-the-art joint goal accuracy of 52.04% on the MultiWOZ 2.0 dataset.

pdf
RiSAWOZ: A Large-Scale Multi-Domain Wizard-of-Oz Dataset with Rich Semantic Annotations for Task-Oriented Dialogue Modeling
Jun Quan | Shian Zhang | Qian Cao | Zizhong Li | Deyi Xiong
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

In order to alleviate the shortage of multi-domain data and to capture discourse phenomena for task-oriented dialogue modeling, we propose RiSAWOZ, a large-scale multi-domain Chinese Wizard-of-Oz dataset with Rich Semantic Annotations. RiSAWOZ contains 11.2K human-to-human (H2H) multi-turn semantically annotated dialogues, with more than 150K utterances spanning over 12 domains, which is larger than all previous annotated H2H conversational datasets. Both single- and multi-domain dialogues are constructed, accounting for 65% and 35%, respectively. Each dialogue is labeled with comprehensive dialogue annotations, including dialogue goal in the form of natural language description, domain, dialogue states and acts at both the user and system side. In addition to traditional dialogue annotations, we especially provide linguistic annotations on discourse phenomena, e.g., ellipsis and coreference, in dialogues, which are useful for dialogue coreference and ellipsis resolution tasks. Apart from the fully annotated dataset, we also present a detailed description of the data collection procedure, statistics and analysis of the dataset. A series of benchmark models and results are reported, including natural language understanding (intent detection & slot filling), dialogue state tracking and dialogue context-to-text generation, as well as coreference and ellipsis resolution, which facilitate the baseline comparison for future research on this corpus.

2019

pdf
GECOR: An End-to-End Generative Ellipsis and Co-reference Resolution Model for Task-Oriented Dialogue
Jun Quan | Deyi Xiong | Bonnie Webber | Changjian Hu
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Ellipsis and co-reference are common and ubiquitous especially in multi-turn dialogues. In this paper, we treat the resolution of ellipsis and co-reference in dialogue as a problem of generating omitted or referred expressions from the dialogue context. We therefore propose a unified end-to-end Generative Ellipsis and CO-reference Resolution model (GECOR) in the context of dialogue. The model can generate a new pragmatically complete user utterance by alternating the generation and copy mode for each user utterance. A multi-task learning framework is further proposed to integrate the GECOR into an end-to-end task-oriented dialogue. In order to train both the GECOR and the multi-task learning framework, we manually construct a new dataset on the basis of the public dataset CamRest676 with both ellipsis and co-reference annotation. On this dataset, intrinsic evaluations on the resolution of ellipsis and co-reference show that the GECOR model significantly outperforms the sequence-to-sequence (seq2seq) baseline model in terms of EM, BLEU and F1 while extrinsic evaluations on the downstream dialogue task demonstrate that our multi-task learning framework with GECOR achieves a higher success rate of task completion than TSCP, a state-of-the-art end-to-end task-oriented dialogue model.