Jing Ma


2022

pdf
A Coarse-to-fine Cascaded Evidence-Distillation Neural Network for Explainable Fake News Detection
Zhiwei Yang | Jing Ma | Hechang Chen | Hongzhan Lin | Ziyang Luo | Yi Chang
Proceedings of the 29th International Conference on Computational Linguistics

Existing fake news detection methods aim to classify a piece of news as true or false and provide veracity explanations, achieving remarkable performances. However, they often tailor automated solutions on manual fact-checked reports, suffering from limited news coverage and debunking delays. When a piece of news has not yet been fact-checked or debunked, certain amounts of relevant raw reports are usually disseminated on various media outlets, containing the wisdom of crowds to verify the news claim and explain its verdict. In this paper, we propose a novel Coarse-to-fine Cascaded Evidence-Distillation (CofCED) neural network for explainable fake news detection based on such raw reports, alleviating the dependency on fact-checked ones. Specifically, we first utilize a hierarchical encoder for web text representation, and then develop two cascaded selectors to select the most explainable sentences for verdicts on top of the selected top-K reports in a coarse-to-fine manner. Besides, we construct two explainable fake news datasets, which is publicly available. Experimental results demonstrate that our model significantly outperforms state-of-the-art detection baselines and generates high-quality explanations from diverse evaluation perspectives.

pdf
DecBERT: Enhancing the Language Understanding of BERT with Causal Attention Masks
Ziyang Luo | Yadong Xi | Jing Ma | Zhiwei Yang | Xiaoxi Mao | Changjie Fan | Rongsheng Zhang
Findings of the Association for Computational Linguistics: NAACL 2022

Since 2017, the Transformer-based models play critical roles in various downstream Natural Language Processing tasks. However, a common limitation of the attention mechanism utilized in Transformer Encoder is that it cannot automatically capture the information of word order, so explicit position embeddings are generally required to be fed into the target model. In contrast, Transformer Decoder with the causal attention masks is naturally sensitive to the word order. In this work, we focus on improving the position encoding ability of BERT with the causal attention masks. Furthermore, we propose a new pre-trained language model DecBERT and evaluate it on the GLUE benchmark. Experimental results show that (1) the causal attention mask is effective for BERT on the language understanding tasks; (2) our DecBERT model without position embeddings achieve comparable performance on the GLUE benchmark; and (3) our modification accelerates the pre-training process and DecBERT w/ PE achieves better overall performance than the baseline systems when pre-training with the same amount of computational resources.

pdf
Detect Rumors in Microblog Posts for Low-Resource Domains via Adversarial Contrastive Learning
Hongzhan Lin | Jing Ma | Liangliang Chen | Zhiwei Yang | Mingfei Cheng | Chen Guang
Findings of the Association for Computational Linguistics: NAACL 2022

Massive false rumors emerging along with breaking news or trending topics severely hinder the truth. Existing rumor detection approaches achieve promising performance on the yesterday’s news, since there is enough corpus collected from the same domain for model training. However, they are poor at detecting rumors about unforeseen events especially those propagated in minority languages due to the lack of training data and prior knowledge (i.e., low-resource regimes). In this paper, we propose an adversarial contrastive learning framework to detect rumors by adapting the features learned from well-resourced rumor data to that of the low-resourced. Our model explicitly overcomes the restriction of domain and/or language usage via language alignment and a novel supervised contrastive training paradigm. Moreover, we develop an adversarial augmentation mechanism to further enhance the robustness of low-resource rumor representation. Extensive experiments conducted on two low-resource datasets collected from real-world microblog platforms demonstrate that our framework achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

pdf
Conditioned Masked Language and Image Modeling for Image-Text Dense Retrieval
Ziyang Luo | Yadong Xi | Rongsheng Zhang | GongZheng Li | Zeng Zhao | Jing Ma
Findings of the Association for Computational Linguistics: EMNLP 2022

Image-text retrieval is a fundamental cross-modal task that takes image/text as a query to retrieve relevant data of another type. The large-scale two-stream pre-trained models like CLIP have achieved tremendous success in this area. They embed the images and texts into instance representations with two separate encoders, aligning them on the instance-level with contrastive learning. Beyond this, the following works adopt the fine-grained token-level interaction (Masked Language and Image Modeling) to boost performance further. However, the vanilla token-level objectives are not designed to aggregate the image-text alignment information into the instance representations, but the token representations, causing a gap between pre-training and application. To address this issue, we carefully design two novel conditioned token-level pre-training objectives, Conditioned Masked Language and Image Modeling (ConMLM and ConMIM), forcing models to aggregate the token-level alignment information into the instance representations. Combing with the instance-level contrastive learning, we propose our cross-modal dense retrieval framework, Conditioned Language-Image Pre-training (ConLIP). Experimental results on two popular cross-modal retrieval benchmarks (MSCOCO and Flickr30k) reveal the effectiveness of our methods.

2021

pdf
HiTRANS: A Hierarchical Transformer Network for Nested Named Entity Recognition
Zhiwei Yang | Jing Ma | Hechang Chen | Yunke Zhang | Yi Chang
Findings of the Association for Computational Linguistics: EMNLP 2021

Nested Named Entity Recognition (NNER) has been extensively studied, aiming to identify all nested entities from potential spans (i.e., one or more continuous tokens). However, recent studies for NNER either focus on tedious tagging schemas or utilize complex structures, which fail to learn effective span representations from the input sentence with highly nested entities. Intuitively, explicit span representations will contribute to NNER due to the rich context information they contain. In this study, we propose a Hierarchical Transformer (HiTRANS) network for the NNER task, which decomposes the input sentence into multi-grained spans and enhances the representation learning in a hierarchical manner. Specifically, we first utilize a two-phase module to generate span representations by aggregating context information based on a bottom-up and top-down transformer network. Then a label prediction layer is designed to recognize nested entities hierarchically, which naturally explores semantic dependencies among different spans. Experiments on GENIA, ACE-2004, ACE-2005 and NNE datasets demonstrate that our proposed method achieves much better performance than the state-of-the-art approaches.

pdf
Rumor Detection on Twitter with Claim-Guided Hierarchical Graph Attention Networks
Hongzhan Lin | Jing Ma | Mingfei Cheng | Zhiwei Yang | Liangliang Chen | Guang Chen
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

Rumors are rampant in the era of social media. Conversation structures provide valuable clues to differentiate between real and fake claims. However, existing rumor detection methods are either limited to the strict relation of user responses or oversimplify the conversation structure. In this study, to substantially reinforces the interaction of user opinions while alleviating the negative impact imposed by irrelevant posts, we first represent the conversation thread as an undirected interaction graph. We then present a Claim-guided Hierarchical Graph Attention Network for rumor classification, which enhances the representation learning for responsive posts considering the entire social contexts and attends over the posts that can semantically infer the target claim. Extensive experiments on three Twitter datasets demonstrate that our rumor detection method achieves much better performance than state-of-the-art methods and exhibits a superior capacity for detecting rumors at early stages.

2020

pdf
NUAA-QMUL at SemEval-2020 Task 8: Utilizing BERT and DenseNet for Internet Meme Emotion Analysis
Xiaoyu Guo | Jing Ma | Arkaitz Zubiaga
Proceedings of the Fourteenth Workshop on Semantic Evaluation

This paper describes our contribution to SemEval 2020 Task 8: Memotion Analysis. Our system learns multi-modal embeddings from text and images in order to classify Internet memes by sentiment. Our model learns text embeddings using BERT and extracts features from images with DenseNet, subsequently combining both features through concatenation. We also compare our results with those produced by DenseNet, ResNet, BERT, and BERT-ResNet. Our results show that image classification models have the potential to help classifying memes, with DenseNet outperforming ResNet. Adding text features is however not always helpful for Memotion Analysis.

pdf
Debunking Rumors on Twitter with Tree Transformer
Jing Ma | Wei Gao
Proceedings of the 28th International Conference on Computational Linguistics

Rumors are manufactured with no respect for accuracy, but can circulate quickly and widely by “word-of-post” through social media conversations. Conversation tree encodes important information indicative of the credibility of rumor. Existing conversation-based techniques for rumor detection either just strictly follow tree edges or treat all the posts fully-connected during feature learning. In this paper, we propose a novel detection model based on tree transformer to better utilize user interactions in the dialogue where post-level self-attention plays the key role for aggregating the intra-/inter-subtree stances. Experimental results on the TWITTER and PHEME datasets show that the proposed approach consistently improves rumor detection performance.

pdf
AnswerFact: Fact Checking in Product Question Answering
Wenxuan Zhang | Yang Deng | Jing Ma | Wai Lam
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)

Product-related question answering platforms nowadays are widely employed in many E-commerce sites, providing a convenient way for potential customers to address their concerns during online shopping. However, the misinformation in the answers on those platforms poses unprecedented challenges for users to obtain reliable and truthful product information, which may even cause a commercial loss in E-commerce business. To tackle this issue, we investigate to predict the veracity of answers in this paper and introduce AnswerFact, a large scale fact checking dataset from product question answering forums. Each answer is accompanied by its veracity label and associated evidence sentences, providing a valuable testbed for evidence-based fact checking tasks in QA settings. We further propose a novel neural model with tailored evidence ranking components to handle the concerned answer veracity prediction problem. Extensive experiments are conducted with our proposed model and various existing fact checking methods, showing that our method outperforms all baselines on this task.

2019

pdf
Sentence-Level Evidence Embedding for Claim Verification with Hierarchical Attention Networks
Jing Ma | Wei Gao | Shafiq Joty | Kam-Fai Wong
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

Claim verification is generally a task of verifying the veracity of a given claim, which is critical to many downstream applications. It is cumbersome and inefficient for human fact-checkers to find consistent pieces of evidence, from which solid verdict could be inferred against the claim. In this paper, we propose a novel end-to-end hierarchical attention network focusing on learning to represent coherent evidence as well as their semantic relatedness with the claim. Our model consists of three main components: 1) A coherence-based attention layer embeds coherent evidence considering the claim and sentences from relevant articles; 2) An entailment-based attention layer attends on sentences that can semantically infer the claim on top of the first attention; and 3) An output layer predicts the verdict based on the embedded evidence. Experimental results on three public benchmark datasets show that our proposed model outperforms a set of state-of-the-art baselines.

2018

pdf
Rumor Detection on Twitter with Tree-structured Recursive Neural Networks
Jing Ma | Wei Gao | Kam-Fai Wong
Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Automatic rumor detection is technically very challenging. In this work, we try to learn discriminative features from tweets content by following their non-sequential propagation structure and generate more powerful representations for identifying different type of rumors. We propose two recursive neural models based on a bottom-up and a top-down tree-structured neural networks for rumor representation learning and classification, which naturally conform to the propagation layout of tweets. Results on two public Twitter datasets demonstrate that our recursive neural models 1) achieve much better performance than state-of-the-art approaches; 2) demonstrate superior capacity on detecting rumors at very early stage.

2017

pdf
Detect Rumors in Microblog Posts Using Propagation Structure via Kernel Learning
Jing Ma | Wei Gao | Kam-Fai Wong
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

How fake news goes viral via social media? How does its propagation pattern differ from real stories? In this paper, we attempt to address the problem of identifying rumors, i.e., fake information, out of microblog posts based on their propagation structure. We firstly model microblog posts diffusion with propagation trees, which provide valuable clues on how an original message is transmitted and developed over time. We then propose a kernel-based method called Propagation Tree Kernel, which captures high-order patterns differentiating different types of rumors by evaluating the similarities between their propagation tree structures. Experimental results on two real-world datasets demonstrate that the proposed kernel-based approach can detect rumors more quickly and accurately than state-of-the-art rumor detection models.

pdf
EICA Team at SemEval-2017 Task 3: Semantic and Metadata-based Features for Community Question Answering
Yufei Xie | Maoquan Wang | Jing Ma | Jian Jiang | Zhao Lu
Proceedings of the 11th International Workshop on Semantic Evaluation (SemEval-2017)

We describe our system for participating in SemEval-2017 Task 3 on Community Question Answering. Our approach relies on combining a rich set of various types of features: semantic and metadata. The most important group turned out to be the metadata feature and the semantic vectors trained on QatarLiving data. In the main Subtask C, our primary submission was ranked fourth, with a MAP of 13.48 and accuracy of 97.08. In Subtask A, our primary submission get into the top 50%.

2015

pdf
UIR-PKU: Twitter-OpinMiner System for Sentiment Analysis in Twitter at SemEval 2015
Xu Han | Binyang Li | Jing Ma | Yuxiao Zhang | Gaoyan Ou | Tengjiao Wang | Kam-fai Wong
Proceedings of the 9th International Workshop on Semantic Evaluation (SemEval 2015)