Recent research on argumentative dialogues has focused on persuading people to take some action, changing their stance on the topic of discussion, or winning debates. In this work, we focus on argumentative dialogues that aim to open up (rather than change) people’s minds to help them become more understanding to views that are unfamiliar or in opposition to their own convictions. To this end, we present a dataset of 183 argumentative dialogues about 3 controversial topics: veganism, Brexit and COVID-19 vaccination. The dialogues were collected using the Wizard of Oz approach, where wizards leverage a knowledge-base of arguments to converse with participants. Open-mindedness is measured before and after engaging in the dialogue using a questionnaire from the psychology literature, and success of the dialogue is measured as the change in the participant’s stance towards those who hold opinions different to theirs. We evaluate two dialogue models: a Wikipedia-based and an argument-based model. We show that while both models perform closely in terms of opening up minds, the argument-based model is significantly better on other dialogue properties such as engagement and clarity.
A basic step in any annotation effort is the measurement of the Inter Annotator Agreement (IAA). An important factor that can affect the IAA is the presence of annotator bias. In this paper we introduce a new interpretation and application of the Item Response Theory (IRT) to detect annotators’ bias. Our interpretation of IRT offers an original bias identification method that can be used to compare annotators’ bias and characterise annotation disagreement. Our method can be used to spot outlier annotators, improve annotation guidelines and provide a better picture of the annotation reliability. Additionally, because scales for IAA interpretation are not generally agreed upon, our bias identification method is valuable as a complement to the IAA value which can help with understanding the annotation disagreement.
We take a close look at a recent dataset of TED-talks annotated with the questions they implicitly evoke, TED-Q (Westera et al., 2020). We test to what extent the relation between a discourse and the questions it evokes is merely one of similarity or association, as opposed to deeper semantic/pragmatic interpretation. We do so by turning the TED-Q dataset into a binary classification task, constructing an analogous task from explicit questions we extract from the BookCorpus (Zhu et al., 2015), and fitting a BERT-based classifier alongside models based on different notions of similarity. The BERT-based classifier, achieving close to human performance, outperforms all similarity-based models, suggesting that there is more to identifying true evoked questions than plain similarity.
Inter-Annotator Agreement (IAA) is used as a means of assessing the quality of NLG evaluation data, in particular, its reliability. According to existing scales of IAA interpretation – see, for example, Lommel et al. (2014), Liu et al. (2016), Sedoc et al. (2018) and Amidei et al. (2018a) – most data collected for NLG evaluation fail the reliability test. We confirmed this trend by analysing papers published over the last 10 years in NLG-specific conferences (in total 135 papers that included some sort of human evaluation study). Following Sampson and Babarczy (2008), Lommel et al. (2014), Joshi et al. (2016) and Amidei et al. (2018b), such phenomena can be explained in terms of irreducible human language variability. Using three case studies, we show the limits of considering IAA as the only criterion for checking evaluation reliability. Given human language variability, we propose that for human evaluation of NLG, correlation coefficients and agreement coefficients should be used together to obtain a better assessment of the evaluation data reliability. This is illustrated using the three case studies.
Rating and Likert scales are widely used in evaluation experiments to measure the quality of Natural Language Generation (NLG) systems. We review the use of rating and Likert scales for NLG evaluation tasks published in NLG specialized conferences over the last ten years (135 papers in total). Our analysis brings to light a number of deviations from good practice in their use. We conclude with some recommendations about the use of such scales. Our aim is to encourage the appropriate use of evaluation methodologies in the NLG community.
In the last few years Automatic Question Generation (AQG) has attracted increasing interest. In this paper we survey the evaluation methodologies used in AQG. Based on a sample of 37 papers, our research shows that the systems’ development has not been accompanied by similar developments in the methodologies used for the systems’ evaluation. Indeed, in the papers we examine here, we find a wide variety of both intrinsic and extrinsic evaluation methodologies. Such diverse evaluation practices make it difficult to reliably compare the quality of different generation systems. Our study suggests that, given the rapidly increasing level of research in the area, a common framework is urgently needed to compare the performance of AQG systems and NLG systems more generally.
Human evaluations are broadly thought to be more valuable the higher the inter-annotator agreement. In this paper we examine this idea. We will describe our experiments and analysis within the area of Automatic Question Generation. Our experiments show how annotators diverge in language annotation tasks due to a range of ineliminable factors. For this reason, we believe that annotation schemes for natural language generation tasks that are aimed at evaluating language quality need to be treated with great care. In particular, an unchecked focus on reduction of disagreement among annotators runs the danger of creating generation goals that reward output that is more distant from, rather than closer to, natural human-like language. We conclude the paper by suggesting a new approach to the use of the agreement metrics in natural language generation evaluation tasks.