This paper describes the SemEval-2020 shared task “Assessing Humor in Edited News Headlines.” The task’s dataset contains news headlines in which short edits were applied to make them funny, and the funniness of these edited headlines was rated using crowdsourcing. This task includes two subtasks, the first of which is to estimate the funniness of headlines on a humor scale in the interval 0-3. The second subtask is to predict, for a pair of edited versions of the same original headline, which is the funnier version. To date, this task is the most popular shared computational humor task, attracting 48 teams for the first subtask and 31 teams for the second.
Building datasets of creative text, such as humor, is quite challenging. We introduce FunLines, a competitive game where players edit news headlines to make them funny, and where they rate the funniness of headlines edited by others. FunLines makes the humor generation process fun, interactive, collaborative, rewarding and educational, keeping players engaged and providing humor data at a very low cost compared to traditional crowdsourcing approaches. FunLines offers useful performance feedback, assisting players in getting better over time at generating and assessing humor, as our analysis shows. This helps to further increase the quality of the generated dataset. We show the effectiveness of this data by training humor classification models that outperform a previous benchmark, and we release this dataset to the public.
Computerized generation of humor is a notoriously difficult AI problem. We develop an algorithm called Libitum that helps humans generate humor in a Mad Lib, which is a popular fill-in-the-blank game. The algorithm is based on a machine learned classifier that determines whether a potential fill-in word is funny in the context of the Mad Lib story. We use Amazon Mechanical Turk to create ground truth data and to judge humor for our classifier to mimic, and we make this data freely available. Our testing shows that Libitum successfully aids humans in filling in Mad Libs that are usually judged funnier than those filled in by humans with no computerized help. We go on to analyze why some words are better than others at making a Mad Lib funny.