Douglas Teodoro


2023

pdf
DS4DH at MEDIQA-Chat 2023: Leveraging SVM and GPT-3 Prompt Engineering for Medical Dialogue Classification and Summarization
Boya Zhang | Rahul Mishra | Douglas Teodoro
Proceedings of the 5th Clinical Natural Language Processing Workshop

This paper presents the results of the Data Science for Digital Health (DS4DH) group in the MEDIQA-Chat Tasks at ACL-ClinicalNLP 2023. Our study combines the power of a classical machine learning method, Support Vector Machine, for classifying medical dialogues, along with the implementation of one-shot prompts using GPT-3.5. We employ dialogues and summaries from the same category as prompts to generate summaries for novel dialogues. Our findings exceed the average benchmark score, offering a robust reference for assessing performance in this field.

2022

pdf
Efficient Joint Learning for Clinical Named Entity Recognition and Relation Extraction Using Fourier Networks:A Use Case in Adverse Drug Events
Anthony Yazdani | Dimitrios Proios | Hossein Rouhizadeh | Douglas Teodoro
Proceedings of the 19th International Conference on Natural Language Processing (ICON)

Current approaches for clinical information extraction are inefficient in terms of computational costs and memory consumption, hindering their application to process large-scale electronic health records (EHRs). We propose an efficient end-to-end model, the Joint-NER-RE-Fourier (JNRF), to jointly learn the tasks of named entity recognition and relation extraction for documents of variable length. The architecture uses positional encoding and unitary batch sizes to process variable length documents and uses a weight-shared Fourier network layer for low-complexity token mixing. Finally, we reach the theoretical computational complexity lower bound for relation extraction using a selective pooling strategy and distance-aware attention weights with trainable polynomial distance functions. We evaluated the JNRF architecture using the 2018 N2C2 ADE benchmark to jointly extract medication-related entities and relations in variable-length EHR summaries. JNRF outperforms rolling window BERT with selective pooling by 0.42%, while being twice as fast to train. Compared to state-of-the-art BiLSTM-CRF architectures on the N2C2 ADE benchmark, results show that the proposed approach trains 22 times faster and reduces GPU memory consumption by 1.75 folds, with a reasonable performance tradeoff of 90%, without the use of external tools, hand-crafted rules or post-processing. Given the significant carbon footprint of deep learning models and the current energy crises, these methods could support efficient and cleaner information extraction in EHRs and other types of large-scale document databases.

pdf
DS4DH at SemEval-2022 Task 11: Multilingual Named Entity Recognition Using an Ensemble of Transformer-based Language Models
Hossein Rouhizadeh | Douglas Teodoro
Proceedings of the 16th International Workshop on Semantic Evaluation (SemEval-2022)

In this paper, we describe our proposed method for the SemEval 2022 Task 11: Multilingual Complex Named Entity Recognition (MultiCoNER). The goal of this task is to locate and classify named entities in unstructured short complex texts in 11 different languages.After training a variety of contextual language models on the NER dataset, we used an ensemble strategy based on a majority vote to finalize our model. We evaluated our proposed approach on the multilingual NER dataset at SemEval-2022. The ensemble model provided consistent improvements against the individual models on the multilingual track, achieving a macro F1 performance of 65.2%. However, our results were significantly outperformed by the top ranking systems, achieving thus a baseline performance.

2021

pdf
Classification of hierarchical text using geometric deep learning: the case of clinical trials corpus
Sohrab Ferdowsi | Nikolay Borissov | Julien Knafou | Poorya Amini | Douglas Teodoro
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing

We consider the hierarchical representation of documents as graphs and use geometric deep learning to classify them into different categories. While graph neural networks can efficiently handle the variable structure of hierarchical documents using the permutation invariant message passing operations, we show that we can gain extra performance improvements using our proposed selective graph pooling operation that arises from the fact that some parts of the hierarchy are invariable across different documents. We applied our model to classify clinical trial (CT) protocols into completed and terminated categories. We use bag-of-words based, as well as pre-trained transformer-based embeddings to featurize the graph nodes, achieving f1-scoresaround 0.85 on a publicly available large scale CT registry of around 360K protocols. We further demonstrate how the selective pooling can add insights into the CT termination status prediction. We make the source code and dataset splits accessible.

2020

pdf
BioBERTpt - A Portuguese Neural Language Model for Clinical Named Entity Recognition
Elisa Terumi Rubel Schneider | João Vitor Andrioli de Souza | Julien Knafou | Lucas Emanuel Silva e Oliveira | Jenny Copara | Yohan Bonescki Gumiel | Lucas Ferro Antunes de Oliveira | Emerson Cabrera Paraiso | Douglas Teodoro | Cláudia Maria Cabral Moro Barra
Proceedings of the 3rd Clinical Natural Language Processing Workshop

With the growing number of electronic health record data, clinical NLP tasks have become increasingly relevant to unlock valuable information from unstructured clinical text. Although the performance of downstream NLP tasks, such as named-entity recognition (NER), in English corpus has recently improved by contextualised language models, less research is available for clinical texts in low resource languages. Our goal is to assess a deep contextual embedding model for Portuguese, so called BioBERTpt, to support clinical and biomedical NER. We transfer learned information encoded in a multilingual-BERT model to a corpora of clinical narratives and biomedical-scientific papers in Brazilian Portuguese. To evaluate the performance of BioBERTpt, we ran NER experiments on two annotated corpora containing clinical narratives and compared the results with existing BERT models. Our in-domain model outperformed the baseline model in F1-score by 2.72%, achieving higher performance in 11 out of 13 assessed entities. We demonstrate that enriching contextual embedding models with domain literature can play an important role in improving performance for specific NLP tasks. The transfer learning process enhanced the Portuguese biomedical NER model by reducing the necessity of labeled data and the demand for retraining a whole new model.

pdf
Contextualized French Language Models for Biomedical Named Entity Recognition
Jenny Copara | Julien Knafou | Nona Naderi | Claudia Moro | Patrick Ruch | Douglas Teodoro
Actes de la 6e conférence conjointe Journées d'Études sur la Parole (JEP, 33e édition), Traitement Automatique des Langues Naturelles (TALN, 27e édition), Rencontre des Étudiants Chercheurs en Informatique pour le Traitement Automatique des Langues (RÉCITAL, 22e édition). Atelier DÉfi Fouille de Textes

Named entity recognition (NER) is key for biomedical applications as it allows knowledge discovery in free text data. As entities are semantic phrases, their meaning is conditioned to the context to avoid ambiguity. In this work, we explore contextualized language models for NER in French biomedical text as part of the Défi Fouille de Textes challenge. Our best approach achieved an F1 -measure of 66% for symptoms and signs, and pathology categories, being top 1 for subtask 1. For anatomy, dose, exam, mode, moment, substance, treatment, and value categories, it achieved an F1 -measure of 75% (subtask 2). If considered all categories, our model achieved the best result in the challenge, with an F1 -measure of 72%. The use of an ensemble of neural language models proved to be very effective, improving a CRF baseline by up to 28% and a single specialised language model by 4%.

pdf
BiTeM at WNUT 2020 Shared Task-1: Named Entity Recognition over Wet Lab Protocols using an Ensemble of Contextual Language Models
Julien Knafou | Nona Naderi | Jenny Copara | Douglas Teodoro | Patrick Ruch
Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)

Recent improvements in machine-reading technologies attracted much attention to automation problems and their possibilities. In this context, WNUT 2020 introduces a Name Entity Recognition (NER) task based on wet laboratory procedures. In this paper, we present a 3-step method based on deep neural language models that reported the best overall exact match F1-score (77.99%) of the competition. By fine-tuning 10 times, 10 different pretrained language models, this work shows the advantage of having more models in an ensemble based on a majority of votes strategy. On top of that, having 100 different models allowed us to analyse the combinations of ensemble that demonstrated the impact of having multiple pretrained models versus fine-tuning a pretrained model multiple times.