The task of web information extraction is to extract target fields of an object from web pages, such as extracting the name, genre and actor from a movie page. Recent sequential modeling approaches have achieved state-of-the-art results on web information extraction. However, most of these methods only focus on extracting information from textual sources while ignoring the rich information from other modalities such as image and web layout. In this work, we propose a novel MUltimodal Structural Transformer (MUST) that incorporates multiple modalities for web information extraction. Concretely, we develop a structural encoder that jointly encodes the multimodal information based on the HTML structure of the web layout, where high-level DOM nodes, and low-level text and image tokens are introduced to represent the entire page. Structural attention patterns are designed to learn effective cross-modal embeddings for all DOM nodes and low-level tokens. An extensive set of experiments are conducted on WebSRC and Common Crawl benchmarks. Experimental results demonstrate the superior performance of MUST over several state-of-the-art baselines.
The task of product attribute value extraction is to identify values of an attribute from product information. Product attributes are important features, which help improve online shopping experience of customers, such as product search, recommendation and comparison. Most existing works only focus on extracting values for a set of known attributes with sufficient training data. However, with the emerging nature of e-commerce, new products with their unique set of new attributes are constantly generated from different retailers and merchants. Collecting a large number of annotations for every new attribute is costly and time consuming. Therefore, it is an important research problem for product attribute value extraction with limited data. In this work, we propose a novel prompt tuning approach with Mixed Prompts for few-shot Attribute Value Extraction, namely MixPAVE. Specifically, MixPAVE introduces only a small amount (< 1%) of trainable parameters, i.e., a mixture of two learnable prompts, while keeping the existing extraction model frozen. In this way, MixPAVE not only benefits from parameter-efficient training, but also avoids model overfitting on limited training examples. Experimental results on two product benchmarks demonstrate the superior performance of the proposed approach over several state-of-the-art baselines. A comprehensive set of ablation studies validate the effectiveness of the prompt design, as well as the efficiency of our approach.
Automatic question generation (AQG) is the task of generating a question from a given passage and an answer. Most existing AQG methods aim at encoding the passage and the answer to generate the question. However, limited work has focused on modeling the correlation between the target answer and the generated question. Moreover, unseen or rare word generation has not been studied in previous works. In this paper, we propose a novel approach which incorporates question generation with its dual problem, question answering, into a unified primal-dual framework. Specifically, the question generation component consists of an encoder that jointly encodes the answer with the passage, and a decoder that produces the question. The question answering component then re-asks the generated question on the passage to ensure that the target answer is obtained. We further introduce a knowledge distillation module to improve the model generalization ability. We conduct an extensive set of experiments on SQuAD and HotpotQA benchmarks. Experimental results demonstrate the superior performance of the proposed approach over several state-of-the-art methods.