The 2017 Fake News Challenge Stage 1 (FNC-1) shared task addressed a stance classification task as a crucial first step towards detecting fake news. To date, there is no in-depth analysis paper to critically discuss FNC-1’s experimental setup, reproduce the results, and draw conclusions for next-generation stance classification methods. In this paper, we provide such an in-depth analysis for the three top-performing systems. We first find that FNC-1’s proposed evaluation metric favors the majority class, which can be easily classified, and thus overestimates the true discriminative power of the methods. Therefore, we propose a new F1-based metric yielding a changed system ranking. Next, we compare the features and architectures used, which leads to a novel feature-rich stacked LSTM model that performs on par with the best systems, but is superior in predicting minority classes. To understand the methods’ ability to generalize, we derive a new dataset and perform both in-domain and cross-domain experiments. Our qualitative and quantitative study helps interpreting the original FNC-1 scores and understand which features help improving performance and why. Our new dataset and all source code used during the reproduction study are publicly available for future research.
For many languages there are no large, general-language corpora available. Until the web, all but the institutions could do little but shake their heads in dismay as corpus-building was long, slow and expensive. But with the advent of the Web it can be highly automated and thereby fast and inexpensive. We have developed a corpus factory where we build large corpora. In this paper we describe the method we use, and how it has worked, and how various problems were solved, for eight languages: Dutch, Hindi, Indonesian, Norwegian, Swedish, Telugu, Thai and Vietnamese. We use the BootCaT method: we take a set of 'seed words' for the language from Wikipedia. Then, several hundred times over, we * randomly select three or four of the seed words * send as a query to Google or Yahoo or Bing, which returns a 'search hits' page * gather the pages that Google or Yahoo point to and save the text. This forms the corpus, which we then * 'clean' (to remove navigation bars, advertisements etc) * remove duplicates * tokenise and (if tools are available) lemmatise and part-of-speech tag * load into our corpus query tool, the Sketch Engine The corpora we have developed are available for use in the Sketch Engine corpus query tool.