Andrea Pierleoni


2023

pdf
WebIE: Faithful and Robust Information Extraction on the Web
Chenxi Whitehouse | Clara Vania | Alham Fikri Aji | Christos Christodoulopoulos | Andrea Pierleoni
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Extracting structured and grounded fact triples from raw text is a fundamental task in Information Extraction (IE). Existing IE datasets are typically collected from Wikipedia articles, using hyperlinks to link entities to the Wikidata knowledge base. However, models trained only on Wikipedia have limitations when applied to web domains, which often contain noisy text or text that does not have any factual information. We present WebIE, the first large-scale, entity-linked closed IE dataset consisting of 1.6M sentences automatically collected from the English Common Crawl corpus. WebIE also includes negative examples, i.e. sentences without fact triples, to better reflect the data on the web. We annotate ~25K triples from WebIE through crowdsourcing and introduce mWebIE, a translation of the annotated set in four other languages: French, Spanish, Portuguese, and Hindi. We evaluate the in-domain, out-of-domain, and zero-shot cross-lingual performance of generative IE models and find models trained on WebIE show better generalisability. We also propose three training strategies that use entity linking as an auxiliary task. Our experiments show that adding Entity-Linking objectives improves the faithfulness of our generative IE models.

2022

pdf
Improving Entity Disambiguation by Reasoning over a Knowledge Base
Tom Ayoola | Joseph Fisher | Andrea Pierleoni
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies

Recent work in entity disambiguation (ED) has typically neglected structured knowledge base (KB) facts, and instead relied on a limited subset of KB information, such as entity descriptions or types. This limits the range of contexts in which entities can be disambiguated. To allow the use of all KB facts, as well as descriptions and types, we introduce an ED model which links entities by reasoning over a symbolic knowledge base in a fully differentiable fashion. Our model surpasses state-of-the-art baselines on six well-established ED datasets by 1.3 F1 on average. By allowing access to all KB information, our model is less reliant on popularity-based entity priors, and improves performance on the challenging ShadowLink dataset (which emphasises infrequent and ambiguous entities) by 12.7 F1.

pdf
ReFinED: An Efficient Zero-shot-capable Approach to End-to-End Entity Linking
Tom Ayoola | Shubhi Tyagi | Joseph Fisher | Christos Christodoulopoulos | Andrea Pierleoni
Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Industry Track

We introduce ReFinED, an efficient end-to-end entity linking model which uses fine-grained entity types and entity descriptions to perform linking. The model performs mention detection, fine-grained entity typing, and entity disambiguation for all mentions within a document in a single forward pass, making it more than 60 times faster than competitive existing approaches. ReFinED also surpasses state-of-the-art performance on standard entity linking datasets by an average of 3.7 F1. The model is capable of generalising to large-scale knowledge bases such as Wikidata (which has 15 times more entities than Wikipedia) and of zero-shot entity linking. The combination of speed, accuracy and scale makes ReFinED an effective and cost-efficient system for extracting entities from web-scale datasets, for which the model has been successfully deployed.

pdf bib
Improving Distantly Supervised Document-Level Relation Extraction Through Natural Language Inference
Clara Vania | Grace Lee | Andrea Pierleoni
Proceedings of the Third Workshop on Deep Learning for Low-Resource Natural Language Processing

The distant supervision (DS) paradigm has been widely used for relation extraction (RE) to alleviate the need for expensive annotations. However, it suffers from noisy labels, which leads to worse performance than models trained on human-annotated data, even when trained using hundreds of times more data. We present a systematic study on the use of natural language inference (NLI) to improve distantly supervised document-level RE. We apply NLI in three scenarios: (i) as a filter for denoising DS labels, (ii) as a filter for model prediction, and (iii) as a standalone RE model. Our results show that NLI filtering consistently improves performance, reducing the performance gap with a model trained on human-annotated data by 2.3 F1.

2019

pdf
Reasoning Over Paths via Knowledge Base Completion
Saatviga Sudhahar | Andrea Pierleoni | Ian Roberts
Proceedings of the Thirteenth Workshop on Graph-Based Methods for Natural Language Processing (TextGraphs-13)

Reasoning over paths in large scale knowledge graphs is an important problem for many applications. In this paper we discuss a simple approach to automatically build and rank paths between a source and target entity pair with learned embeddings using a knowledge base completion model (KBC). We assembled a knowledge graph by mining the available biomedical scientific literature and extracted a set of high frequency paths to use for validation. We demonstrate that our method is able to effectively rank a list of known paths between a pair of entities and also come up with plausible paths that are not present in the knowledge graph. For a given entity pair we are able to reconstruct the highest ranking path 60% of the time within the top 10 ranked paths and achieve 49% mean average precision. Our approach is compositional since any KBC model that can produce vector representations of entities can be used.

pdf
Deep Bidirectional Transformers for Relation Extraction without Supervision
Yannis Papanikolaou | Ian Roberts | Andrea Pierleoni
Proceedings of the 2nd Workshop on Deep Learning Approaches for Low-Resource NLP (DeepLo 2019)

We present a novel framework to deal with relation extraction tasks in cases where there is complete lack of supervision, either in the form of gold annotations, or relations from a knowledge base. Our approach leverages syntactic parsing and pre-trained word embeddings to extract few but precise relations, which are then used to annotate a larger corpus, in a manner identical to distant supervision. The resulting data set is employed to fine tune a pre-trained BERT model in order to perform relation extraction. Empirical evaluation on four data sets from the biomedical domain shows that our method significantly outperforms two simple baselines for unsupervised relation extraction and, even if not using any supervision at all, achieves slightly worse results than the state-of-the-art in three out of four data sets. Importantly, we show that it is possible to successfully fine tune a large pretrained language model with noisy data, as opposed to previous works that rely on gold data for fine tuning.