2021
pdf
abs
Combining Context-Free and Contextualized Representations for Arabic Sarcasm Detection and Sentiment Identification
Amey Hengle
|
Atharva Kshirsagar
|
Shaily Desai
|
Manisha Marathe
Proceedings of the Sixth Arabic Natural Language Processing Workshop
Since their inception, transformer-based language models have led to impressive performance gains across multiple natural language processing tasks. For Arabic, the current state-of-the-art results on most datasets are achieved by the AraBERT language model. Notwithstanding these recent advancements, sarcasm and sentiment detection persist to be challenging tasks in Arabic, given the language’s rich morphology, linguistic disparity and dialectal variations. This paper proffers team SPPU-AASM’s submission for the WANLP ArSarcasm shared-task 2021, which centers around the sarcasm and sentiment polarity detection of Arabic tweets. The study proposes a hybrid model, combining sentence representations from AraBERT with static word vectors trained on Arabic social media corpora. The proposed system achieves a F1-sarcastic score of 0.62 and a F-PN score of 0.715 for the sarcasm and sentiment detection tasks, respectively. Simulation results show that the proposed system outperforms multiple existing approaches for both the tasks, suggesting that the amalgamation of context-free and context-dependent text representations can help capture complementary facets of word meaning in Arabic. The system ranked second and tenth in the respective sub-tasks of sarcasm detection and sentiment identification.
pdf
abs
Cluster Analysis of Online Mental Health Discourse using Topic-Infused Deep Contextualized Representations
Atharva Kulkarni
|
Amey Hengle
|
Pradnya Kulkarni
|
Manisha Marathe
Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis
With mental health as a problem domain in NLP, the bulk of contemporary literature revolves around building better mental illness prediction models. The research focusing on the identification of discussion clusters in online mental health communities has been relatively limited. Moreover, as the underlying methodologies used in these studies mainly conform to the traditional machine learning models and statistical methods, the scope for introducing contextualized word representations for topic and theme extraction from online mental health communities remains open. Thus, in this research, we propose topic-infused deep contextualized representations, a novel data representation technique that uses autoencoders to combine deep contextual embeddings with topical information, generating robust representations for text clustering. Investigating the Reddit discourse on Post-Traumatic Stress Disorder (PTSD) and Complex Post-Traumatic Stress Disorder (C-PTSD), we elicit the thematic clusters representing the latent topics and themes discussed in the r/ptsd and r/CPTSD subreddits. Furthermore, we also present a qualitative analysis and characterization of each cluster, unraveling the prevalent discourse themes.
2020
pdf
abs
An Attention Ensemble Approach for Efficient Text Classification of Indian Languages
Atharva Kulkarni
|
Amey Hengle
|
Rutuja Udyawar
Proceedings of the 17th International Conference on Natural Language Processing (ICON): TechDOfication 2020 Shared Task
The recent surge of complex attention-based deep learning architectures has led to extraordinary results in various downstream NLP tasks in the English language. However, such research for resource-constrained and morphologically rich Indian vernacular languages has been relatively limited. This paper proffers a solution for the TechDOfication 2020 subtask-1f: which focuses on the coarse-grained technical domain identification of short text documents in Marathi, a Devanagari script-based Indian language. Availing the large dataset at hand, a hybrid CNN-BiLSTM attention ensemble model is proposed that competently combines the intermediate sentence representations generated by the convolutional neural network and the bidirectional long short-term memory, leading to efficient text classification. Experimental results show that the proposed model outperforms various baseline machine learning and deep learning models in the given task, giving the best validation accuracy of 89.57% and f1-score of 0.8875. Furthermore, the solution resulted in the best system submission for this subtask, giving a test accuracy of 64.26% and f1-score of 0.6157, transcending the performances of other teams as well as the baseline system given by the organizers of the shared task.