
Supplemental Material: A Joint Many-Task Model:
Growing a Neural Network for Multiple NLP Tasks

Kazuma Hashimoto∗, Caiming Xiong†, Yoshimasa Tsuruoka, and Richard Socher
The University of Tokyo

{hassy, tsuruoka}@logos.t.u-tokyo.ac.jp
Salesforce Research

{cxiong, rsocher}@salesforce.com

A Training Details

Pre-training embeddings We used the
word2vec toolkit to pre-train the word em-
beddings. We created our training corpus by
selecting lowercased English Wikipedia text
and obtained 100-dimensional Skip-gram word
embeddings trained with the context window size
1, the negative sampling method (15 negative
samples), and the sub-sampling method (10−5 of
the sub-sampling coefficient). We also pre-trained
the character n-gram embeddings using the
same parameter settings with the case-sensitive
Wikipedia text. We trained the character n-gram
embeddings for n = 1, 2, 3, 4 in the pre-training
step.

Embedding initialization We used the pre-
trained word embeddings to initialize the word
embeddings, and the word vocabulary was built
based on the training data of the five tasks.
All words in the training data were included
in the word vocabulary, and we employed the
word-dropout method (Kiperwasser and Gold-
berg, 2016) to train the word embedding for
the unknown words. We also built the charac-
ter n-gram vocabulary for n = 2, 3, 4, follow-
ing Wieting et al. (2016), and the character n-
gram embeddings were initialized with the pre-
trained embeddings. All of the label embed-
dings were initialized with uniform random values
in [−

√
6/(dim+ C),

√
6/(dim+ C)], where

dim = 100 is the dimensionality of the label em-
beddings and C is the number of labels.

Weight initialization The dimensionality of the
hidden layers in the bi-LSTMs was set to 100. We
initialized all of the softmax parameters and bias

∗Work was done while the first author was an intern at
Salesforce Research.

†Corresponding author.

vectors, except for the forget biases in the LSTMs,
with zeros, and the weight matrix Wd and the root
node vector r for dependency parsing were also
initialized with zeros. All of the forget biases
were initialized with ones. The other weight ma-
trices were initialized with uniform random values
in [−

√
6/(row + col),

√
6/(row + col)], where

row and col are the number of rows and columns
of the matrices, respectively.

Optimization At each epoch, we trained our
model in the order of POS tagging, chunking, de-
pendency parsing, semantic relatedness, and tex-
tual entailment. We used mini-batch stochastic
gradient decent to train our model. The mini-
batch size was set to 25 for POS tagging, chunk-
ing, and the SICK tasks, and 15 for dependency
parsing. We used a gradient clipping strategy
with growing clipping values for the different
tasks; concretely, we employed the simple func-
tion: min(3.0, depth), where depth is the number
of bi-LSTM layers involved in each task, and 3.0
is the maximum value. The learning rate at the
k-th epoch was set to ε

1.0+ρ(k−1) , where ε is the
initial learning rate, and ρ is the hyperparameter
to decrease the learning rate. We set ε to 1.0 and ρ
to 0.3. At each epoch, the same learning rate was
shared across all of the tasks.

Regularization We set the regularization coeffi-
cient to 10−6 for the LSTM weight matrices, 10−5

for the weight matrices in the classifiers, and 10−3

for the successive regularization term excluding
the classifier parameters of the lower-level tasks,
respectively. The successive regularization coeffi-
cient for the classifier parameters was set to 10−2.
We also used dropout (Hinton et al., 2012). The
dropout rate was set to 0.2 for the vertical con-
nections in the multi-layer bi-LSTMs (Pham et al.,
2014), the word representations and the label em-
beddings of the entailment layer, and the classifier



of the POS tagging, chunking, dependency pars-
ing, and entailment. A different dropout rate of
0.4 was used for the word representations and the
label embeddings of the POS, chunking, and de-
pendency layers, and the classifier of the related-
ness layer.

B Details of Character N -Gram
Embeddings

Here we first describe the pre-training process of
the character n-gram embeddings in detail and
then show further analysis on the results in Ta-
ble 12.

B.1 Pre-Training with Skip-Gram Objective

We pre-train the character n-gram embeddings us-
ing the objective function of the Skip-gram model
with negative sampling (Mikolov et al., 2013).
We build the vocabulary of the character n-grams
based on the training corpus, the case-sensitive
English Wikipedia text. This is because such
case-sensitive information is important in han-
dling some types of words like named entities.
Assuming that a word w has its corresponding
K character n-grams {cn1, cn2, . . . , cnK}, where
any overlaps and unknown ones are removed.
Then the word w is represented with an embed-
ding vc(w) computed as follows:

vc(w) =
1

K

K∑
i=1

v(cni), (1)

where v(cni) is the parameterized embedding of
the character n-gram cni, and the computation of
vc(w) is exactly the same as the one used in our
JMT model explained in Section 2.1.

The remaining part of the pre-training process
is the same as the original Skip-gram model. For
each word-context pair (w,w) in the training cor-
pus, N negative context words are sampled, and
the objective function is defined as follows:

∑
(w,w)

(
− log σ(vc(w) · ṽ(w))

−
N∑
i=1

log σ(−vc(w) · ṽ(wi))
)
,

(2)

where σ(·) is the logistic sigmoid function, ṽ(w)
is the weight vector for the context word w, and
wi is a negative sample. It should be noted that

the weight vectors for the context words are pa-
rameterized for the words without any character
information.

B.2 Effectiveness on Unknown Words

One expectation from the use of the character
n-gram embeddings is to better handle unknown
words. We verified this assumption in the single
task setting for POS tagging, based on the results
reported in Table 12. Table 13 shows that the joint
use of the word and character n-gram embeddings
improves the score by about 19% in terms of the
accuracy for unknown words.

We also show the results of the single task set-
ting for dependency parsing in Table 14. Again,
we can see that using the character-level informa-
tion is effective, and in particular, the improve-
ment of the LAS score is large. These results sug-
gest that it is better to use not only the word em-
beddings, but also the character n-gram embed-
dings by default. Recently, the joint use of word
and character information has proven to be effec-
tive in language modeling (Miyamoto and Cho,
2016), but just using the simple character n-gram
embeddings is fast and also effective.

C Analysis on Dependency Parsing

Our dependency parser is based on the idea of
predicting a head (or parent) for each word, and
thus the parsing results do not always lead to cor-
rect trees. To inspect this aspect, we checked the
parsing results on the development set (1,700 sen-
tences), using the “JMTABC” setting.

In the dependency annotations used in this
work, each sentence has only one root node, and
we have found 11 sentences with multiple root
nodes and 11 sentences with no root nodes in our
parsing results. We show two examples below:

(a) Underneath the headline “ Diversification ,
” it counsels , “ Based on the events of the
past week , all investors need to know their
portfolios are balanced to help protect them
against the market ’s volatility . ”

(b) Mr. Eskandarian , who resigned his
Della Femina post in September , becomes
chairman and chief executive of Arnold .

In the example (a), the two boldfaced words
“counsels” and “need” are predicted as child nodes



Single (POS) Overall Acc. Acc. for unknown words
W&C 97.52 90.68 (3,502/3,862)
Only W 96.26 71.44 (2,759/3,862)

Table 13: POS tagging scores on the development set with and without the character n-gram embeddings,
focusing on accuracy for unknown words. The overall accuracy scores are taken from Table 12. There
are 3,862 unknown words in the sentences of the development set.

Overall scores Scores for unknown words
Single (Dependency) UAS LAS UAS LAS
W&C 93.38 91.37 92.21 (900/976) 87.81 (857/976)
Only W 92.90 90.44 91.39 (892/976) 81.05 (791/976)

Table 14: Dependency parsing scores on the development set with and without the character n-gram
embeddings, focusing on UAS and LAS for unknown words. The overall scores are taken from Table 12.
There are 976 unknown words in the sentences of the development set.

of the root node, and the underlined word “coun-
sels” is the correct one based on the gold annota-
tions. This example sentence (a) consists of mul-
tiple internal sentences, and our parser misunder-
stood that both of the two verbs are the heads of
the sentence.

In the example (b), none of the words is con-
nected to the root node, and the correct child node
of the root is the underlined word “chairman”.
Without the internal phrase “who resigned... in
September”, the example sentence (b) is very sim-
ple, but we have found that such a simplified sen-
tence is still not parsed correctly. In many cases,
verbs are linked to the root nodes, but some-
times other types of words like nouns can be the
candidates. In our model, the single parameter-
ized vector r is used to represent the root node
for each sentence. Therefore, the results of the
examples (a) and (b) suggest that it would be
needed to capture various types of root nodes,
and using sentence-dependent root representations
would lead to better results in future work.

D Analysis on Semantic Tasks

We inspected the development set results on the
semantic tasks using the “JMTall” setting. In
our model, the highest-level task is the textual
entailment task. We show an example premise-
hypothesis pair which is misclassified in our re-
sults:

Premise: “A surfer is riding a big wave across
dark green water”, and

Hypothesis: “The surfer is riding a small

wave”.

The predicted label is entailment, but the gold
label is contradiction. This example is very
easy by focusing on the difference between the
two words “big” and “small”. However, our model
fails to correctly classify this example because
there are few opportunities to learn the differ-
ence. Our model relies on the pre-trained word
embeddings based on word co-occurrence statis-
tics (Mikolov et al., 2013), and it is widely known
that such co-occurrence-based embeddings can
rarely discriminate between antonyms and syn-
onyms (Ono et al., 2015). Moreover, the other four
tasks in our JMT model do not explicitly provide
the opportunities to learn such semantic aspects.
Even in the training data of the textual entailment
task, we can find only one example to learn the
difference between the two words, which is not
enough to obtain generalization capacities. There-
fore, it is worth investigating the explicit use of ex-
ternal dictionaries or the use of pre-trained word
embeddings learned with such dictionaries (Ono
et al., 2015), to see whether our JMT model is fur-
ther improved not only for the semantic tasks, but
also for the low-level tasks.

E How Do Shared Embeddings Change

In our JMT model, the word and character n-gram
embedding matrices are shared across all of the
five different tasks. To better qualitatively ex-
plain the importance of the shortcut connections
shown in Table 7, we inspected how the shared
embeddings change when fed into the different bi-



LSTM layers. More concretely, we checked clos-
est neighbors in terms of the cosine similarity for
the word representations before and after fed into
the forward LSTM layers. In particular, we used
the corresponding part ofWu in Eq. (1) to perform
linear transformation of the input embeddings, be-
cause ut directly affects the hidden states of the
LSTMs. Thus, this is a context-independent anal-
ysis.

Table 15 shows the examples of the word
“standing”. The row of “Embedding” shows
the cases of using the shared embeddings, and
the others show the results of using the linear-
transformed embeddings. In the column of “Only
word”, the results of using only the word embed-
dings are shown. The closest neighbors in the case
of “Embedding” capture the semantic similarity,
but after fed into the POS layer, the semantic sim-
ilarity is almost washed out. This is not surpris-
ing because it is sufficient to cluster the words of
the same POS tags: here, NN, VBG, etc. In the
chunking layer, the similarity in terms of verbs is
captured, and this is because it is sufficient to iden-
tify the coarse chunking tags: here, VP. In the de-
pendency layer, the closest neighbors are adverbs,
gerunds of verbs, and nouns, and all of them can
be child nodes of verbs in dependency trees. How-
ever, this information is not sufficient in further
classifying the dependency labels. Then we can
see that in the column of “Word and char”, jointly
using the character n-gram embeddings adds the
morphological information, and as shown in Ta-
ble 12, the LAS score is substantially improved.

In the case of semantic tasks, the projected em-
beddings capture not only syntactic, but also se-
mantic similarities. These results show that dif-
ferent tasks need different aspects of the word
similarities, and our JMT model efficiently trans-
forms the shared embeddings for the different
tasks by the simple linear transformation. There-
fore, without the shortcut connections, the infor-
mation about the word representations are fed into
the semantic tasks after transformed in the lower
layers where the semantic similarities are not al-
ways important. Indeed, the results of the seman-
tic tasks are very poor without the shortcut con-
nections.

References
Geoffrey E. Hinton, Nitish Srivastava, Alex

Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

Word and char Only word
leaning stood
kneeling stands

Embedding saluting sit
clinging pillar
railing cross-legged
warning ladder
waxing rc6280

POS dunking bethle
proving warning
tipping f-a-18
applauding fight
disdaining favor

Chunking pickin pick
readjusting rejoin
reclaiming answer
guaranteeing patiently
resting hugging

Dependency grounding anxiously
hanging resting
hugging disappointment
stood stood
stands unchallenged

Relatedness unchallenged stands
notwithstanding beside
judging exists
nudging beside
skirting stands

Entailment straddling pillar
contesting swung
footing ovation

Table 15: Closest neighbors of the word “stand-
ing” in the embedding space and the projected
space in each forward LSTM.

dinov. 2012. Improving neural networks by
preventing co-adaptation of feature detectors.
CoRR, abs/1207.0580.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Easy-
First Dependency Parsing with Hierarchical Tree
LSTMs. Transactions of the Association for Com-
putational Linguistics, 4:445–461.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Cor-
rado, and Jeff Dean. 2013. Distributed Representa-
tions of Words and Phrases and their Composition-
ality. In Advances in Neural Information Processing
Systems 26, pages 3111–3119.

Yasumasa Miyamoto and Kyunghyun Cho. 2016.
Gated Word-Character Recurrent Language Model.
In Proceedings of the 2016 Conference on Empiri-



cal Methods in Natural Language Processing, pages
1992–1997.

Masataka Ono, Makoto Miwa, and Yutaka Sasaki.
2015. Word Embedding-based Antonym Detection
using Thesauri and Distributional Information. In
Proceedings of the 2015 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 984–989.

Vu Pham, Theodore Bluche, Christopher Kermorvant,
and Jerome Louradour. 2014. Dropout improves Re-
current Neural Networks for Handwriting Recogni-
tion. CoRR, abs/1312.4569.

John Wieting, Mohit Bansal, Kevin Gimpel, and Karen
Livescu. 2016. CHARAGRAM: Embedding Words
and Sentences via Character n-grams. In Proceed-
ings of the 2016 Conference on Empirical Methods
in Natural Language Processing, pages 1504–1515.


