
A Further Discussion of Significance
Testing, Power Analysis, and Post-Hoc
Analysis

Null hypothesis significance testing: In this pa-
per, we work within the framework of null hy-
pothesis significance testing (NHST). NHST is not
free from problems, in that certain systematic pro-
cesses within the practice of scientific research and
publishing can undermine its advantages, many of
which have been explored in the literature (Gelman
and Loken, 2013; Ioannidis, 2019; McShane et al.,
2019). Nevertheless, it would be premature to dis-
card the entire paradigm, and we believe there is
still some value in considering power within NHST
for several reasons.

First, despite its flaws, NHST remains a com-
monly used experimental framework in NLP re-
search. Whether implicit of explicit, most experi-
mental comparisons in the NLP literature have the
structure of an experiment in the NHST framework,
where having equivalent performance to an exist-
ing baseline is treated as a null hypothesis and the
new model is argued to be significantly better (the
typical case) or significantly worse (far rarer). But,
whereas many fields that run experiments have stan-
dardized procedures for assessing statistical signif-
icance, NLP papers vary as to how formally they
use a hypothesis testing framework to evaluate their
results (Berg-Kirkpatrick et al., 2012; van der Lee
et al., 2019; Azer et al., 2020).

Second, when done properly, NHST does pro-
vide a convenient way of summarizing results. Im-
provements in overall methdology, such as sharing
code and data, sensitivity analyses, greater inter-
est in null findings, and even pre-registration can
vastly improve the validity of this paradigm, and
we are seeing adoption of some of these practices
within NLP.

Finally, there is also a great need for additional
clarity with respect to precisely what claims are
being made by NLP papers. In this work, we are
primarily focused on claims made about trained
models (i.e. in testing whether one particular in-
stantiation of a model is significantly better than a
particular instantiation of another model). It is, of
course, also important to consider broader claims
that might be made, such as about expected per-
formance or computational budget (Dodge et al.,
2019; Schwartz et al., 2019), and everything we
have to say can be extended to incorporate such
considerations. For the purpose of clarity, how-

ever, we restrict ourselves to the simplest sort of
statistical claim.

Power and power analyses: The probability
that a statistical test will reject the null hypothesis
in an experiment is a function of several parameters,
some of which are typically known or controllable,
such as the sample size and significance threshold,
and some of which are unknown, such as the details
about exactly how models differ. Power tells us
what this probability would be, if we knew the true
values for these unknown parameters. Conditional
on a particular difference existing (e.g. an expected
difference in accuracy between two models for a
particular data distribution), along with a statistical
test, a significance threshold, power is the proba-
bility that the test will reject the null hypothesis
and find the observed difference to be significant.
In common statistical terminology, power is one
minus the probability of false negatives in rejecting
the null hypothesis or type II error.

While we will not, in general, know what the
true power of an experiment is, by making reason-
able assumptions, we can try to choose appropriate
values for those parameters that we can control. By
making assumptions about what we expect to ob-
serve, we can obtain estimates of how much power
a test is likely to have, which may lead us to modify
our experimental design, such as by increasing the
sample size.

Importantly, proper experiment design requires
specifying these parameters in advance of data col-
lection, or otherwise using a valid stopping rule.
One can always obtain a significant result by pro-
gressively collecting data until a significant result
is found (“sampling to a foregone conclusion”),
but this is not a valid procedure (Anscombe, 1954;
Wagenmakers, 2007). Similarly, post-hoc power
analysis, using estimates derived from the exper-
iment itself, provides no additional information
beyond a transformation of the observed p-value,
and is thus not recommended (though see below).

Expanding on the algorithm in Figure 2, a
simulation-based power analysis involves the fol-
lowing:

1. First, determine the statistical test, T , which
will be used. For the example of comparing
models depicted in Figure 1, we will use the
binomial test to compare the systems (Dror
et al., 2018).

2. Come up with a generative process which



could be used to generate data like that which
we will collect. In this step, we need to
make assumptions about the comparison of
interest. Since the binomial test requires
only the counts of how many people prefer
each system, we need to specify a prior on
generating those counts. For example, we
might assume that 60% of people will prefer
system B, so the generative process will be
cB ⇠ Binomial(p = 0.6, n), where n is the
total number of people to be sampled.

3. Choose a value of n for which we want to cal-
culate power. Repeatedly (e.g., 10,000 times)
draw many samples from our assumed gener-
ative process for that size of n .

4. For each simulated dataset of size n, run the
chosen statistical test to check if difference
between the observed counts is significant,
and compute the proportion that are found to
be significant. This is our estimate of power.

Note that more direct solutions for power analy-
sis do exist for some settings, such as this one (see
Appendix E.5 below).

Post-Hoc Power Analysis: Post-hoc power anal-
ysis is an issue when the true population effect has
variance to it (O’Keefe, 2007; Hoenig and Heisey,
2001; Gelman, 2019). In the case of NLP models,
there are several perspectives on the comparisons
which can lead to differences regarding how we
perceive post-hoc power analysis: (1) we are com-
paring one model vs. another on a particular test
set, the effect we see is the true population effect,
post-hoc power analysis is okay because it is de-
terministic; (2) we are comparing one model vs.
another on a data distribution from which the test
and dev set are drawn, post-hoc power is not okay;
(3) we are comparing one training algorithm vs.
another (including variance from both training pro-
cedures and test/dev set draws), post-hoc power
analysis is still not okay. We specifically look at
the case of (2). While (3) is interesting on its own,
this is not the typical comparison done (yet) in NLP
research and thus we do not have enough informa-
tion on reported training variance to investigate this
thoroughly here. The case of (1) is also atypical
as the authors of a study typically wish to draw
inferences about how well a model does on the true
data distribution (hence, why a dev and test set are
used).

B Type-M and Type-S errors

Although the most obvious risk of using underpow-
ered experiments is that there is a greater chance of
failing to detect a true effect, there is an additional
harm of using an underpowered design, which has
emerged in light of the replication crisis in science.
This can be most easily understood through the idea
of Type-M and Type-S error (Gelman and Carlin,
2014).

Type-M error is the extent to which an observed
difference exaggerates the true effect, conditional
on a finding being significant. Type-S error is
the probability that an observed difference has the
opposite sign of the true difference, again condi-
tional on a finding being significant. Even in a
low-powered experiment, there is some probability
of finding an effect to be significant; the lower the
power, however, the more likely it is that the ob-
served significant difference has the opposite sign
of the true effect, and the larger the degree to which
the magnitude of the observed effect will tend to
exaggerate the true effect.

Intuitively, if power is low, this means that the
sample size is small relative to the effect size. As
such, the difference will only be significant if an
atypically large effect is observed. Assuming the
use of a two-sided test, many of these significant
findings will also have the wrong sign, as they will
be nearly as likely to fall on either side of zero for
a symmetric distribution.

Type-M and Type-S error rates can be estimated
using the exact same process for power analysis
as described in Figure 2. To do so, we need only
augment the algorithm with these two additional
steps:

3. Type-S error ⇡
P

i:pi↵
I[sign(ei) 6=sign(e⇤)]

|j:pj↵|

4. Type-M error ⇡
P

i:pi↵
abs(ei)/abs(e⇤)

|j:pj↵|

Figures 7 and 8 show scenarios for comparing
classifiers on accuracy, corresponding to Figure 3
in the main text, but showing expected Type-M
and Type-S error instead of power. As can be seen,
Type-M and Type-S error increase with smaller
sample sizes, smaller differences between models,
and lower agreement rates, all corresponding to
lower power.



Figure 7: Type-M error (the factor by which observed
significant effects are likely to exaggerate the true ef-
fect) for comparing classifiers on accuracy increases
with smaller test sets (n), smaller differences between
models (�acc), and smaller agreement rates (Pa). Se-
vere exaggerations of differences between models are
likely with underpowered designs.

Figure 8: Type-S error (the probability that significant
differences observed between models will have the op-
posite sign of the true difference) for comparing classi-
fiers increases with smaller test sets (n), smaller differ-
ences between models (�acc), and smaller agreement
rates (Pa). Sign errors become resaonably likely with
underpowered experiments.

C Numerical Example of a McNemar’s
Test Simulation

To provide a concrete example of comparing clas-
sifiers on accuracy, imagine that a test set for a
benchmark task has 500 instances. Based on prior
knowledge (see main paper), we might assume that
our proposed model will achieve, at most, an ab-
solute improvement of 2 percentage points over
the state of the art (�acc = 0.02), and that the
models are likely to agree on 90% of examples
(Pa = 0.9). We can convert these assumptions into
a distribution over outcomes which will define our
generative process. In particular, for a random un-
seen instance, these assumptions imply that there
is a 10% chance of a disagreement; the probability
that our model is correct and the old model is in-
correct is therefore 6%, and the opposite outcome
has a probability of 4% (giving us the assumed net
difference of 2%). Note that, because McNemar’s
test does not consider the on-diagonal elements, it
is not necessary that we explicitly define the base-
line accuracy. Thus, a valid probability distribution

M1 correct M1 incorrect
M2 correct 0.6 0.06
M2 incorrect 0.04 0.3

Table 4: A possible distribution corresponding to the
case where models M1 and M2 will agree on 90% of ex-
amples (Pa) and M2 achieves a 2% improvement over
M1 (�acc). Note that the on-diagonal terms here will
be dictated by the accuracy of M1 (or equivalently, by
M2), but for our purposes, only need to be non-negative
and sum to Pa for the sake of McNemar’s test, which
only looks at the off-diagonal elements.

for use in this simulations could be that shown in
Table 4.

By drawing many samples from this distribution
of size n = 500 and computing a p-value using
McNemar’s test for each, we obtain an estimate
that the power of this test is approximately 0.25
for a significance threshold of ↵ = 0.05, which is
severely underpowered. This would also imply a
Type-M error factor of 1.9; we would expect that
a typical experiment that found the observed dif-
ference between models to be significant would
exaggerate the true difference of 0.02 by a factor
of 1.9, producing observed significant differences
between models on the order of 0.04, on average.
(See supplementary notebooks for calculations and
interactive demonstration). As such, we conclude
that this test set is too small to be able to reliably
evaluate whether or not our model is significantly
different from the state of the art, and should dis-
trust any observed differences that are significant,
unless we have poorly estimated the relevant pa-
rameters.

By contrast, if the test set contained 2000 exam-
ples, we would estimate the test to have nearly 80%
power, with a Type-M factor of only 1.1, and would
feel comfortable proceeding with and reporting on
this evaluation. Similarly, if we had reason to think
that our model represented a game-changing ad-
vance, and would achieve an improvement of 4
percentage points, or if we had reason to believe
that the models would agree on 97.5% of examples,
then we would have the power to evaluate this, even
with only 500 examples.

D SQuAD 2.0 Analysis and Results

From the authors of SQuAD 2.0, we obtained pair-
wise agreement statistics on the SQuAD 2.0 de-
velopment and test sets for all models that were
submitted to the SQuAD 2.0 leaderboard and had



publicly visible development set predictions on the
CodaLab platform. We removed six submissions
whose exact match (EM) scores on test data were
less than 50%; EM scores below 50% suggest a bug
or misconfiguration of the model for predicting on
the test set, as the majority baseline gets roughly
50% accuracy (by always predicting no-answer).
We also removed one submission whose develop-
ment set EM score was more than 20 points higher
than its test EM score, as it seemed likely that the
model had been trained on the development set.
After this filtering, we were left with 144 models.

Figure 9 shows the correlation between valida-
tion and test data for both pairwise accuracy dif-
ferences (�acc) and agreement rates (Pa) on the
SQuAD 2.0 leaderboard. As can be seen, these
correlate well, suggesting that measuring these
quantities on validation data can serve as a rea-
sonable guide when doing a power analysis for a
new model, though lower agreement rates on dev
data to tend to slightly underestimate agreement on
test. If the validation results are available for both
models, these can be used to compute estimates of
Pa and �acc, and these can be used to compute the
approximate power of the test set.

Figure 9: Correlation between validation and test data
among all models submitted to the SQuAD 2.0 leader-
board for both pairwise accuracy differences (�acc us-
ing exact match (EM); left), and agreement rates (Pa;
right). In both cases, Pearson correlation (r) is over
0.99. Dashed lines show y = x.

To verify that using these estimates provide a
reliable guide to power, we make use the predic-
tions made by SQuAD 2.0 submissions on both
validation and test data. In particular, if we as-
sume that each submission is being compared to
the previous model to demonstrate a significant
and well-powered improvement over the previous
baseline, we find that 19 out of 143 submissions
showed sufficient improvement on the validation
set to have at least 80% power (see Figure 10). Of
these, 14 (74%) attain a significant improvement
over the baseline on the test data (consistent with

the expected value of 80%). Of the remaining 124
submissions, 3 (2.5%) would show a significant
improvement over the baseline, but did not have
sufficient power based on validation performance.
Interestingly, while all other significant improve-
ments were generally well-spaced over time, these
three underpowered submissions were all beaten
by a new submissions within 5 days. As an aside,
we also note that the vast majority of submissions
are significantly worse than the current SOTA, rein-
forcing the notion that real improvements are rare,
and most improvements will be small.

Figure 10: SQuAD 2.0 leaderboard submissions com-
pared to previous SOTA, where we require for SOTA
that submissions have 80% power (based on valida-
tion improvement and agreement), and a significant im-
provement on test data.

Caveats: Correlation between the effect size on
the validation and test sets may not always be so
high. Overconfidence in the power of your experi-
ment may thus occur if the validation performance
is greater than the test performance (as would be
the case if no regularization was used and extensive
hyperparameter tuning caused a model to overfit to
the validation set). Alternatively, if comparing to
a baseline with inflated performance on validation
data (for the same reasons as above), running power
analyses based purely on estimates from validation
data would underestimate power. As such, combin-
ing validation estimates with reasonable priors is
recommended.

E Accuracy

E.1 Data Collection
E.1.1 Model Predictions on Test Set and

Model Prediction Agreement
From the authors of the GLUE benchmark – as
well as authors of individual models – we obtain



the model test-set predictions on all tasks from a
set of 10 high-performing models, which allows
us to measure the extent to which their predictions
overlap with each other. We select GLUE tasks
which use accuracy as an evaluation metric. The
relevant tasks are MNLI (Williams et al., 2018),
MRPC (Dolan and Brockett, 2005), RTE (Dagan
et al., 2005; Bar-Haim et al., 2006; Giampiccolo
et al., 2007; Bentivogli et al., 2009), SST-2 (Socher
et al., 2013), QQP (Iyer et al., 2017), QNLI (Ra-
jpurkar et al., 2016), and WNLI (Levesque et al.,
2012). For consideration of other metrics, see Ap-
pendix F.

We use model predictions for: ELECTRA
(small, base, large, large with tricks) (Clark et al.,
2019b), XLNet (large) (Yang et al., 2019), T5 (Raf-
fel et al., 2019), ALBERT (large) (Lan et al.,
2020), BAM(large) (Clark et al., 2019a), RoBERTa
(large) (Liu et al., 2019), and BERT (Devlin et al.,
2019). We only had the model predictions available
and extrapolated overlap from that, we did not have
access to the models themselves, ground truth test
set labels, nor dev set predictions for the models.

E.1.2 Comparisons and Claims
We gather data from GLUE papers regarding the ac-
curacy tasks and manually label 119 comparisons
and 57 claims of improvement (as denoted within
a work by bolding of a new model’s number and
a claim of SOTA in the main text) across 14 pa-
pers (selected as being at or above the BERT score
on the GLUE leaderboard with an accompanying
publication). For each paper we examine if a spe-
cific comparison is made against a baseline that
isn’t claiming state of the art performance. For
example, the STILTs approach (Phang et al., 2018)
makes comparisons against non-SOTA baselines,
which we add to our labeling scheme but filter out
when fitting regressions to likely SOTA improve-
ments. We mark this as SOTA Comparison = N.
For claims of SOTA improvement, we examine
this as some textual basis for the claim (e.g., “we
drive state of the art performance on GLUE”) cou-
pled with bolding of values in a table reporting
baselines against the model under test. We mark
datapoints as Claim of Improvement = Y if they
are an improvement claim. We mark effect size as
the improvement from the best previous baseline
(the current SOTA) on the test set on a per-dataset
basis. We note that in several cases, worse results
on the new model were bolded. We treated this
as no claim of improvement. If results were not

bolded but still higher for the new model we also
treated this as no claim for improvement.

E.2 Regression-based approach to modeling
power and MDEs

E.2.1 Predicting overlap
There are several versions of McNemar’s test,
each with their own unique method for calculating
power, sample size, or minimum effect size. See,
for example, discussions in Schlesselman (1982),
Duffy (1984) Suissa and Shuster (1991), Connett
et al. (1987), Fagerland et al. (2013), and Lachen-
bruch (1992).

The methods for calculating sample size or
power by Connett et al. (1987); Schlesselman
(1982); Suissa and Shuster (1991) require making
an assumption about the odds ratio � = p10/p01

as well as an estimate of the fraction of discordant
pairs (disagreements between two models).

Fagerland et al. (2013) suggest that the exact
unconditional version of the test by Suissa and
Shuster (1991) has desirable properties. Thus,
we use the implementation of the power calcula-
tions for this test from the https://github.com/

ekstroem/MESS package.
How do we make an assumption about the odds

ratio and fraction of discordant pairs? We first
fit an OLS regression to the existing models on
the GLUE leaderboard for all binary choice ac-
curacy tasks using the aforementioned predictions
provided by the leaderboard creators and individual
authors of models,

overlapi = �0 + �1min acci + �2acc diffi, (1)

for all i that are a pairwise comparison between any
two models, min acci is the minimum accuracy be-
tween the two models under comparison, acc diffi
is the gap between the two models, and overlapi is
the fraction of overlapping predictions. We end up
with the model shown in Table 5.

We note that outcomes are biased toward a
higher range of accuracy values and may not be a
perfect prior. However, this does give us a fairly
good linear fit for top-of-the-leaderboard results.
We then can predict the expected overlap for a
given model as:

exp overlap =0.41 + 0.58 · min acc
� 0.47 · exp acc dif

(2)

Note now we can make an assumption on the
expected fraction of discordant values and the odds

https://github.com/ekstroem/MESS
https://github.com/ekstroem/MESS


Dep. Variable: y R-squared: 0.966
Model: OLS Adj. R-squared: 0.966
Method: Least Squares F-statistic: 3820.
Date: Thu, 14 May 2020 Prob (F-statistic): 3.62e-197
Time: 07:03:28 Log-Likelihood: 818.14
No. Observations: 270 AIC: -1630.
Df Residuals: 267 BIC: -1619.
Df Model: 2

coef std err t P> |t| [0.025 0.975]

const 0.4142 0.019 21.694 0.000 0.377 0.452
min acc 0.5819 0.021 27.999 0.000 0.541 0.623
acc diff -0.4662 0.028 -16.625 0.000 -0.521 -0.411

Omnibus: 6.121 Durbin-Watson: 1.040
Prob(Omnibus): 0.047 Jarque-Bera (JB): 8.647
Skew: -0.108 Prob(JB): 0.0133
Kurtosis: 3.850 Cond. No. 71.5

Table 5: OLS Regression Results for predicting GLUE model overlap from baseline accuracy and effect size.

Dep. Variable: y R-squared: 0.944
Model: OLS Adj. R-squared: 0.933
Method: Least Squares F-statistic: 91.87
Date: Tue, 26 May 2020 Prob (F-statistic): 1.37e-07
Time: 06:05:23 Log-Likelihood: 36.368
No. Observations: 14 AIC: -66.74
Df Residuals: 11 BIC: -64.82
Df Model: 2

coef std err t P> |t| [0.025 0.975]

const 0.4339 0.091 4.786 0.001 0.234 0.633
min acc 0.5932 0.101 5.874 0.000 0.371 0.816
acc diff -1.2849 0.588 -2.186 0.051 -2.578 0.009

Omnibus: 0.299 Durbin-Watson: 2.022
Prob(Omnibus): 0.861 Jarque-Bera (JB): 0.163
Skew: 0.214 Prob(JB): 0.922
Kurtosis: 2.691 Cond. No. 140.

Table 6: OLS Regression Results for predicting SQuAD 2.0 model overlap.



Figure 11: SQuAD 2.0 (top) and GLUE (bottom) %
agreement of new model vs. the accuracy of the base-
line in the comparison (assuming improvement in the
new model).

ratio, the latter being:

� =
1� exp overlap + exp acc diff
1� exp overlap � exp acc diff

(3)

This is all that is necessary for McNemar’s test
and thus we can then simply solve for the minimum
expect treatment effect for the given sample size of
the dataset and a power of 80%. Note that for QQP
we use the normal approximation rather than exact
unconditional test as the large sample size makes
the exact test intractable. See Duffy (1984).

We fit such a regression to GLUE tasks and
achieve an R

2 of 0.97. Repeating this for SQuAD
2.0, we get an R

2 of 0.94, with fit shown in Table
6. See Figure 11 for a plot indicating the level of
agreement plotted against baseline accuracy. See
also additional model comparisons for overlap in
Appendix I.

E.2.2 Predicting Effect Size
A similar regression can be run to predict the ex-
pected effect size given the baseline accuracy: how
much do models typically improve given the cur-
rent SOTA. To fit an OLS regression predicting this

value, we gather data from GLUE papers regarding
the accuracy tasks and manually label 119 compar-
isons and 57 claims of improvement (as denoted
within a work by bolding of a new model’s number
and a claim of SOTA in the main text) across 14 pa-
pers (selected as being at or above the BERT score
on the GLUE leaderboard with an accompanying
publication). We fit the regression:

b�i = �0 + �1baselinei + �̂2taski, (4)

to see how predictable the expected effect size is,
where b�i is the predicted effect size, baselinei is
the baseline model’s accuracy, and taski is a cat-
egorical variable (in the regression this ends up
being a set of dummy variables for each category
so we denote �̂ to emphasize this). Note that for
SQuAD 2.0, we use a separate regression without
the task variable since it is a single-task leader-
board.

We achieve an R
2 = 0.69 which is not a perfect

fit, but still provides a prior on likely effect size.
Similarly, we achieve an R

2 = .67 when fitting a
regression to SOTA improvements on the SQuAD
2.0 leaderboard (selected as being a significant im-
provement in time-ordered submissions).

See Table 7 and Table 8 for regression coeffi-
cients and model fits. Figure 13 shows the per-task
distribution of effect sizes against baseline accu-
racies in GLUE papers for SOTA improvements.
Figure 12 shows the effect size distribution as a
histogram.

E.2.3 Caveats for Regression-based
Approach

Fitting a regression to predict overlap between a
baseline and a new model has a good linear fit.
However, this may not be the case for every dataset.
Additionally, predicting effect sizes via a linear fit
is not a perfect prior. The measurements of power
in this case are meant to simulate estimating power
before running evaluation on a test set, as running
power analysis using only the observed effect may
lead to the issues of post-hoc power estimation.

E.3 No Prior Approach (Lachenbruch, 1992)
What do you do if there is no prior data avail-
able (as in a new task) and so you cannot make
assumptions about discordant pairs or odds ra-
tio? Lachenbruch (1992) discusses this exact
problem in the context of clinical trials, and pro-
poses an alternative method based on the work of
(Connett et al., 1987) which allows you to make



Dependent variable:

effect.size
Previous.Best �0.264⇤⇤⇤

(0.032)

TaskMNLI-mm 0.150
(0.621)

TaskMRPC 0.023
(0.622)

TaskQNLI 2.139⇤⇤⇤

(0.639)

TaskQQP �0.195
(0.719)

TaskRTE 1.018
(0.628)

TaskSST-2 1.536⇤⇤

(0.686)

TaskWNLI �0.520
(0.789)

Constant 24.342⇤⇤⇤

(2.837)

Observations 61
R2 0.690
Adjusted R2 0.642
Residual Std. Error 1.309 (df = 52)
F Statistic 14.455⇤⇤⇤ (df = 8; 52)

Note:
⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01

Table 7: OLS regression for predicting effect size for
GLUE tasks.
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Figure 12: The reported difference from the best per-
forming new model to the best performing baseline
in accuracy across all accuracy datasets in the GLUE
Benchmark. Note: unlike Table 10, we do not limit
these to claims of improvement, but only to papers
which introduce a new model and compare against
some baseline. Mean: +0.959 Std.Err.: 0.23
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Figure 13: The effect size given the baseline model ac-
curacy observed across GLUE tasks. As the baseline
model moves toward the range of current GLUE sub-
missions, reported model gains decrease toward 0. Fit-
ting a regression yields an R

2 = 0.69.

assumptions about potential marginal probabili-
ties, providing a midpoint value, as well as an
upper and lower bound. We use an implemen-
tation of this from: https://rdrr.io/rforge/

biostatUZH/man/sampleSizeMcNemar.html and
solve for the expected accuracy minimum given
a fixed dataset sample size and baseline accuracy
for each of the lower bound, midpoint, and upper
bound. In practice, we find the Lachenbruch (1992)
prior to be very close to the values we obtain from
the above regression (see Table 9). Importantly
this method requires no assumptions and is meant
to give an idea for whether it is worth pursuing a
study for the given size of the test set.

E.4 Extended Results
Table 9 contains additional MDE estimates using
a two-sample proportion test as in Appendix E.5,
the Lachenbruch (1992) methodology. We also
provide the standard errors and n for each average
effect size, the OLS regression predicting the next
effect size for a new SOTA b�, and the current
difference from SOTA and next on the leaderboard.
We note that MDE calculations are roughly similar
except for the upper and lower bounds provided
in the Lachenbruch (1992) calculation. We also
note that predicted SOTA results are far lower than
past averages since the average includes early large
results like those of Devlin et al. (2019). We can
see that in some cases the predicted effect size

https://rdrr.io/rforge/biostatUZH/man/sampleSizeMcNemar.html
https://rdrr.io/rforge/biostatUZH/man/sampleSizeMcNemar.html


Dep. Variable: y R-squared: 0.672
Model: OLS Adj. R-squared: 0.644
Method: Least Squares F-statistic: 24.55
Date: Tue, 26 May 2020 Prob (F-statistic): 0.000334
Time: 06:05:23 Log-Likelihood: 45.711
No. Observations: 14 AIC: -87.42
Df Residuals: 12 BIC: -86.14
Df Model: 1

coef std err t P> |t| [0.025 0.975]

const 0.1331 0.023 5.910 0.000 0.084 0.182
x1 -0.1408 0.028 -4.955 0.000 -0.203 -0.079

Omnibus: 19.911 Durbin-Watson: 2.643
Prob(Omnibus): 0.000 Jarque-Bera (JB): 18.487
Skew: 1.995 Prob(JB): 9.68e-05
Kurtosis: 6.971 Cond. No. 17.3

Table 8: OLS Regression Results for predicting effect size from baseline accuracy for SQuAD 2.0 improvements.

is even smaller than the lowest bound MDE and
we may wish to consider the usefulness of further
comparisons on individual datasets in such cases.

E.5 Calculating Power or Sample Size with
Binomial Test

If we assume that samples are unpaired – the new
model and baseline evaluation samples are drawn
from the same data distribution but aren’t necessar-
ily the same samples – we can use a binomial test
for significance.

In this case, we assume that we have two models
and each draw brings a 1 if the model is correct or
0 if incorrect. We would like to use the two-sample
proportion test, and have two binomial distributions
with p1 and p2 as the mean probabilities. Our null
hypothesis is H0 : p1 = p2. We have an alternative
hypothesis (two sided) is H1 : p1 6= p2. Note,
in R we can use the function power.prop.test() to
calculate power, the MDE, or the sample size of the
tests. See also a tutorial here: https://imai.fas.
harvard.edu/teaching/files/Handout9.pdf.

F Additional Metrics

In this appendix, we provide guidance on how we
might apply power analysis to metrics beyond what
is covered in the main paper.

Recall, Precision, F1, Matthew’s correlation:
While accuracy is the most commonly used metric
in the GLUE benchmark, other tasks make use of
other metrics such as F1 and Matthew’s correla-

tion. F1 is particularly relevant in cases of binary
classification where there is strong class imbalance,
such that even the baseline of predicting the most
common class will achieve high accuracy.

If we have good prior information, we can use an
approach akin to that recommended for accuracy,
but replacing McNemar’s test with a randomization
test (as used for machine translation, see §4 in main
paper). In particular, given an evaluation on paired
data (as is the case for all benchmark datasets), one
can test for a significant difference between models
in terms of F1 (or any other metric) using a random-
ization test. That is, on each iteration, we random-
ize the assignment of which model each prediction
came from for every instance with probability 0.5,
and compute the resulting overall difference in F1.
Repeating this thousands of times gives us the null
distribution, and we can then check to see whether
the observe difference in F1 is in the tails of this
distribution, which can thereby be converted into a
p-value (see Dror et al. (2018) for more details).

Because F1 (and related metrics) cannot be rep-
resented as a simple sum over individual instances,
in order to completely specify a hypothetical data
generating process, we need to assume values for
all cells in the confusion matrix, per class. That
is for each class we would need to assume values
for the cells as shown in Table 11, where the rele-
vant distribution of predictions are for the instances
with the corresponding label, and the values for
each class sum to one.

https://imai.fas.harvard.edu/teaching/files/Handout9.pdf
https://imai.fas.harvard.edu/teaching/files/Handout9.pdf


Dataset Size SOTA MDE Binomial MDE (Lachenbruch, 1992) MDE regression b� |�| (std.err.,n) �SOTA

WNLI 147 94.5% +5.38% +5.42%(5.36%, 5.45%) +5.26% -1.17% 1.72 (0.917, 4) 0.0%
MRPC 1725 92.0% +2.40% +1.91% (0.45%, 2.48%) +1.62% +0.03% +0.625 (0.234, 8) +0.6%
SST-2 1821 97.2% +1.34% +1.10% (0.43%,1.35%) +1.02% +0.18% +0.571 (0.197, 7) -0.3%
RTE 3000 91.7% +1.89% +1.48% (0.26%, 1.96%) +1.23% +1.11% +3.89 (1.23, 10) +0.8%

QNLI 5463 97.5% +0.77% +0.60% (0.14%, 0.78%) +0.55% + 0.69% +1.31 (0.552, 9) +0.9%
MNLI-m 9796 91.6% +1.08% +0.82% ( 0.08%, 1.12%) +0.67% +0.12% + 0.97 (0.442, 10) +0.2%

MNLI-mm 9847 91.3% +1.09% +0.84% ( 0.08%, 1.14%) +0.68% +0.34% + 1.29 (0.550, 8) +0.3%
QQP 390965 91.0% +0.18% + 0.13% (8.45⇥ 10�5%, 0.19%) +0.11% +0.08% 0.36 (0.121, 5) +0.1%

SQuAD 2.0 8862 90.724% +1.18% +0.91% (0.09%, 1.23%) +0.556% +0.528% +2.23% (0.431,14) † +0.146%

Table 9: The minimum detectable effect (MDE) for various datasets given the current top accuracy on the leader-
board on May 6th, 2020. See Appendix E for expanded details. How to use this table? Suppose you are building
a model to get SOTA on any of these datasets. If you don’t have a reasonable expectation that your model will
exceed the MDE, then it is not worth proceeding with the study on a dataset of this size and instead either more
data should be collected or a different (larger) dataset used. MDE (Lachenbruch, 1992) provides a mid-point and
upper/lower bound assumptions using the most conservative and generous estimates of model agreement. MDE
Binomial uses the binomial test as the assumed statistical test and calculates the MDE using the exact mechanism
from Appendix E.5. See also discussion by Arend and Schäfer (2019). b� is the expected effect by fitting a regres-
sion to all SOTA improvement claims found in reviewed papers. |�| (std.err., n) is the average improvement in
surveyed papers that claimed SOTA and had a positive effect size reported for the dataset (with standard error and
the number of papers in parentheses). † indicates that the SQuAD 2.0 average improvement was based on improve-
ments to the SQuAD leaderboard, but weren’t necessarily reported as improvements in a publication. �SOTA is
the gap between the SOTA model (ALBERT + DAAF + NAS) on GLUE and the next best model (ERNIE) – this
was not included in the regression.

Statistic N Mean St. Dev. Min Pctl(25) Pctl(75) Max

Power 57 0.698 0.352 0.034 0.407 1.000 1.000
P 57 0.220 0.283 0.000 0.00000 0.348 1.000
Statistic N Percentage -
% Powered 57 0.456% � � � � �
% Significant 57 0.509% � � � � �
% significant and Powered 57 0.368% � � � � �

Table 10: We examine the claims of SOTA improvement in surveyed GLUE papers and use a leave-one-out
regression-based estimate of effect size and overlap to simulate how many authors would have found their study
to be well-powered. We also examine how many of the observed effects were likely significant based on predicted
model overlap. We note that if we use the observed effect in a post-hoc analysis, the proportion of studies falling
below the MDE is even higher.
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Figure 14: Of the claims of improvement over a given
baseline (indicated in text and via bolded values in ta-
bles) across 14 papers on the GLUE leaderboard (also
seen in Table 10). We find only 26.7% of observed ef-
fects met the MDE to the binomial power calculation,
30% met the MDE according to the midpoint calcu-
lation of (Lachenbruch, 1992), 26.7% met the MDE
when using the upper bound from the (Lachenbruch,
1992) calculation, 78.3% met the MDE when using
the most generous (unlikely) assumptions for power ac-
cording to the MDE (Lachenbruch, 1992) calculation,
and 36.7% met the MDE when using the regression-
fitted prior of model overlap. Note: this assumes the
true population effect is the test set effect size. While
this is post-hoc power analysis, we felt it may be useful
to consider in the context that for a given model com-
parison on a given test set there is no variance and thus
post-hoc power analysis is acceptable. However, for
claims that include the entire data distribution this no
longer holds and we refer back to the main text.

M1 negative M1 positive
M2 negative p(both neg.) p(only M1 pos.)
M2 positive p(only M2 pos.) p(both pos.)

Table 11: A contingency table representing the distribu-
tion of possible outcomes for two models (M1 and M2)
on the instances of a single class of labels. The cells of
this table should sum to 1.0 for each class

In addition, we need to assume the true distribu-
tion of labels in the data distribution of interest, p(c)
for c in {1, . . . , C}. Given these assumptions, we
could then simulate an arbitrary number of datasets
from this process. For each instance, we would first
sample a true label (c), and then sample the model
predictions from the corresponding contingency
table. For each simulated dataset, we could then
apply the randomization test (using thousands of
randomizations). By repeating this process many
times, we can directly estimate power for the corre-
sponding assumptions and sample size n.

This process is not particularly efficient, but can
still be run relatively quickly on a laptop. The more
difficult part is choosing good values for the nec-
essary probabilities. However, such an approach
can still be used to test for how sensitive power
is to variations in assumptions. It is also possible
to make simplifying assumptions, such as that the
rate of false positives and false negatives will be
the same across classes, or to estimate some pa-
rameters from training data, such as the underlying
distribution of labels. The same technique can eas-
ily be extended to other metrics that depend on the
contingency table, such as Matthew’s correlation.

G Additional Details for the BLEU
Scores Power Analysis

In this section, we provide further details for the
machine translation (MT) data generation proce-
dure as well as an analysis of how power varies
for a range of values of P0 and b0, the parameters
estimated from the empirical observations.

G.1 Data Generation Procedure
Recall that using the randomization test to deter-
mine whether two MT systems are statistically dif-
ferent gives rise to the null distribution of differ-
ences in BLEU.14 If we had access to large amounts

14The bootstrap is another valid approach to testing for
differences between models (Koehn, 2004; Graham et al.,
2014; Dror et al., 2018), though note the concerns highlighted
by Riezler and Maxwell (2005).



of parallel text, we could instead sample many sub-
sets of real sentences and evaluate the difference
between models on those subsets, which allow us
to characterize the mean and variance of the differ-
ence in model performance. Such estimates could
then be used to estimate power directly. Because
we do not have access to such data, however, we in-
stead rely on the randomization approach, in which
we run several thousand trials where the paired out-
put translations for a subset of the test set samples
are swapped. In order to estimate power, we would
like to be able to generate many datasets from a
data generating procedure, which we can parame-
terize by various parameters, such as the difference
between models. Rather than generating raw text,
however, and computing BLEU scores on that, we
instead attempt to generate only the data necessary
for the randomization test. How can we do this?

In our case, the answer to this question lies in
establishing a relationship between individual sam-
ples and the permuted set within each trial of the
randomization test. This relationship is as follows:
the sum of individual changes to the difference in

BLEU, from swapping single samples at a time,

closely approximates the net change to the differ-

ence in BLEU, from swapping those samples all

at once.
15 Let S be the set of test set samples

swapped during a single trial of the randomization
test and RB(S) be the difference in BLEU between
the paired outputs after swapping the examples in
S. �B is the original difference in BLEU and �i is
the change to the difference in BLEU from swap-
ping test sample i and leaving all other samples
unswapped. Then, we find that,

X

i2S
�i ⇡ RB(S)��B

This relationship is illustrated in Figure 15: Fig-
ure 15a shows the difference between two mod-
els evaluated on the 2019 test set, and Figure 15b
shows the difference between a different pair of
models evaluated on the 2018 test set. We found
the same relationship is true for the 2017 and 2016
test sets, as well.

Now that we have established a relationship to
closely approximate the outcome of each random-
ization trial, all that remains is to define a distri-
bution from which the individual changes to the

15Note that this does not directly solve the problem of com-
puting BLEU at the sentence level (Chen and Cherry, 2014),
as it still mimicking the process of evaluating BLEU on a
corpus.

difference in BLEU can be sampled. This distri-
bution is a mixture of a Delta distribution at zero
and a Laplace distribution. The Delta distribution
accounts for the proportion of samples (P0) such
that swapping any of them individually results in
no change to the difference in BLEU, i.e. the ef-
fect is zero. For the remaining samples, we fit a
Laplace distribution, as shown in Figure 16. This
Laplace is parametrized by two parameters: loca-
tion (µ) and scale (b). By fitting this mixture to the
individual effects computed from evaluating BLEU
differences on many pairs of models, we discover
that the variance parameter scales inversely propor-
tional to the size of the dataset. Thus, we report
an overall b0 value for each dataset, such that b0 =
bk ⇤ nk, where bk is the Laplace scale parameter
obtained from dataset k containing nk samples.

For generating synthetic data, we need to specify
µ and b, as well as P0. However, because we want
the effect of swapping half the non-zero samples
from this distribution to equal the difference in
BLEU between models, we only use the above fits
to estimate b0. We thus complete the generative
process by assuming values for �B , n, P0, b0, and
setting µ = �2 ·�B/(n · (1� P0)) such that the
average effect of a random subset of n/2 instances
is equal to ��B . Table 3 in the main paper shows
a range of observed values for P0 and b0.

G.2 Variation in Power Estimates for a
Range of Parameter Values

Now that we have defined the data generation pro-
cedure, and have estimates for the two parameters,
P0 and b0, that are needed to simulate datasets, we
can estimate power for a range of values for sam-
ple size n and difference in BLEU �B , and see
how these estimates vary as P0 and b0 change. To
provide a concrete example, suppose that we have
two machine translation models that we expect will
differ by �B = 1 BLEU point. For a dataset of
n = 2,000 sentences, we assume that the models
will perform equally for P0 = 0.2, i.e. 20% of
sentences, and will assume a base scale parameter
of b0 = 26. To compute power, we would fol-
low the process in Algorithm 1, with the following
modifications. On each iteration, we would draw
individual changes to the difference in BLEU from
the distribution specified above, with P0 = 0.2,
�B = 1, b0 = 26, and n = 2000. For each such
draw, we would apply the randomization test to
compute a null distribution, using the sum of in-



(a) Model trained on WMT19 data versus model trained on
WMT18 data, evaluated on the 2019 test set.

(b) Model trained on WMT18 data versus model trained on
WMT16 data, evaluated on the 2018 test set.

Figure 15: Correlation between individual changes to �B and the net effect.

(a) Model trained on WMT19 data versus model trained on
WMT18 data, evaluated on the 2019 test set.

(b) Model trained on WMT18 data versus model trained on
WMT16 data, evaluated on the 2018 test set.

Figure 16: Fitting a Laplace distribution to individual non-zero effects.

dividual amounts as the total effect of flipping a
random subset of pairs. Based on the null distri-
bution, we compute if the difference is significant
for this trial. Repeating this many times and ob-
serving the proportion of trials that are found to be
significant gives us the approximate power.

Figure 17 shows power for a range of values for
�B , n, P0 and b0. When P0 is low, as is true for the
observed data in Table 3, effect sizes and sample
sizes need to be larger in order for an experiment
to be well-powered. But as P0 gets higher, a given
effect size can be detected by a smaller sample size.
On the other hand, as b0 increases and consequently
the scale parameter b for the Laplace grows, even
large effect sizes cannot be detected by test sets
containing 5,000 samples.

H Details of Human Evaluation Section

H.1 Meta-analysis of human ratings for
EMNLP 2019

To assess the state of statistical power in a typical
NLP study using human evaluation, we sampled
papers from the mean EMNLP 2019 workshop that

contained the phrase “human eval”. This first pass
returned 117 papers, of which 86 had relevant hu-
man evaluations (in which models were compared),
with the remainder either referencing human evalu-
ation, or containing some other type of evaluation,
such as comparing the agreement between auto-
mated metrics and human performance. Because
some papers had more than one such evaluation, we
had 97 experiments for analysis. Of these 51 were
Likert experiments (as discussed in the main text),
38 were some form of direct model comparison,
and 8 were other.

Significance testing was rare and was reported,
in some form, in only 24% of experiments. Bold-
ing or starring the best results in a table was more
common, occurring in 63% of human rating experi-
ments in our set. Whether bold results implies that
the author is claiming a meaningful difference is
not always clear. We did find one single case of au-
thors performing a power analysis to estimate sam-
ple size among the papers we surveyed (Garbacea
et al., 2019). However, because that paper did not
involve a comparison of models to a baseline, it



Figure 17: Power Analysis for BLEU scores: Variation in estimates of power for different values of P0 (top) and
b0 (bottom). For the top row, b0 = 25.8, and for the bottom row, P0 = 0.13.

was not included in our analysis. In addition, we
note that few details were provided, such that we
were unable to ascertain precisely how the power
analysis was done.

Because we chose to focus on ordinal ratings, we
further annotated those in order to record the mean
ratings and experimental characteristics (number
of annotators, number of items, number of anno-
tators per item), as well as all differences for all
metrics between the model being proposed and the
best performing baseline evaluated in the paper, as
discussed in the main text.

H.2 Human evaluation datasets
For our analyses, we make use of the following
datasets:

• From Hashimoto et al. (2019) we
use the evaluation data for Reddit,
language modeling, and summariza-
tion. The data is available at https:

//worksheets.codalab.org/worksheets/

0x88644b5ee189402eb19d39d721d1005c

• From Dathathri et al. (2020) we use the avail-
able ratings. The data is available at https:
//github.com/uber-research/PPLM

• For WMT19 (http://statmt.org/wmt19/

translation-task.html), the data is avail-
able at https://www.computing.dcu.ie/

˜ygraham/newstest2019-humaneval.tar.

gz

• For Holtzman et al. (2020), we obtain the hu-
man evaluation data directly from the authors.

H.3 Linear Mixed Effect Models

To assess power in the human ratings framework,
we used linear mixed effect models with random in-
tercepts and slopes for worker and item, as in Barr
et al. (2013). Following best practices, we use the
following structure, where w is a particular worker
and i is a particular item. There are seven param-
eters, corresponding to the parameters needed for
running a power analysis: fixed effects �0 (the in-
tercept) and �1 (the model effect), and variance
parameters for the worker intercept (�0w), the item
intercept (�0i) and their respective slope variance
parameters (�1w and �1i). There is also a variance
parameter for the overall error (�wi). We transform
the Likert ratings to be on a [0, 1] scale and treat
them as normally distributed (which we note is an
imperfect assumption). We give fit parameters for
these values, on a few datasets, in Tables 13, 14,
and 15.

https://worksheets.codalab.org/worksheets/0x88644b5ee189402eb19d39d721d1005c
https://worksheets.codalab.org/worksheets/0x88644b5ee189402eb19d39d721d1005c
https://worksheets.codalab.org/worksheets/0x88644b5ee189402eb19d39d721d1005c
https://github.com/uber-research/PPLM
https://github.com/uber-research/PPLM
http://statmt.org/wmt19/translation-task.html
http://statmt.org/wmt19/translation-task.html
https://www.computing.dcu.ie/~ygraham/newstest2019-humaneval.tar.gz
https://www.computing.dcu.ie/~ygraham/newstest2019-humaneval.tar.gz
https://www.computing.dcu.ie/~ygraham/newstest2019-humaneval.tar.gz


Ywi = �0 +W0w + I0i

+ (�1 +W1w + I1i)Xi + ewi
(5)

I0i ⇠ N(0,�0i) (6)
W0i ⇠ N(0,�0w) (7)
I1i ⇠ N(0,�1i) (8)

W1i ⇠ N(0,�1w) (9)
ewi ⇠ N(0,�wi) (10)

For simplicity and convergence issues, we do
not include a correlation parameter in the random
effect structure.

To assess power, we use two possible variance
settings derived from the model fits (“high variance”
and “low variance” settings, in the main text) and
show these in Table 16. We systematically vary
the number of annotators (always assuming each
annotator annotates each item, which is not always
true in typical experiments), the number of items,
and the effect size. We note that simulations can
be customized to the planned analysis, including
aspects such as how many items will be annotated
by each annotator.

To compute power, we use each setting of the pa-
rameters to simulate 200 experiments and compute
the proportion that detect a significant positive ef-
fect (t > 1.96). Significant effects in the opposite
direction (t < �1.96) do not count as detections.
Code for these model fits and simulations is in-
cluded with the online materials. However, we
note that these should be used as a starting point,
rather than being blindly copied, as details may
differ in each experimental setting.

H.4 Head to head human evaluations
Another commonly used form of human evalua-
tion is head to head comparison, where raters are
shown a pair of outputs (one from each model),
and asked to choose which they prefer, sometimes
with “neither” as a third option. Head to head
comparisons offer some advantages over ratings-
basd approaches (Yannakakis and Martı́nez, 2015;
van der Lee et al., 2019), but do not scale as well
when comparing many models.

As with ordinal judgements, there are multiple
ways of analyzing such data. If we treat anno-
tator judgements as independent and identically
distributed (such as if we only collect one judge-
ment from each annotator), we could model this
simply in terms of the underlying probabilities that

a random annotator will prefer each model (as in
the opening example in the main paper). In that
case, running a power analysis would be a simple
as assuming values for the underlying probabilities
of each category (win, lose, draw), as usual based
on pilot data or prior assumptions, and simulat-
ing many draws from that prior, checking in each
sample to see if there is a statistically significant
difference between win and lose.

On the other hand, if multiple judgements will be
collected from each annotator and/or for each pair
of outputs, then it makes sense to use a richer model
to account for all sources of variation, as described
above (see §H.3). In particular, the mixed effects
framework can be adopted, potentially by modeling
the outcome as a logistic model (in the case of win
or lose), with ties either excluded or split.



Dataset Number of Workers Number of Items
Hashimoto et al. (2019) (LM) 124 50
Hashimoto et al. (2019) (summarization) 96 99
Hashimoto et al. (2019) (Reddit) 123 99
WMT19 176 1997
Dathathri et al. (2020) 15 1358
Holtzman et al. (2020) 140 1399

Table 12: Number of workers and items in each of our convenience sampled datasets.

Dataset ˆ̂�0 �̂1 �̂2 �̂3 �̂4 �̂5 �̂6 �̂wi

Hashimoto et al. (2019) (LM) 0.55 -0.03 0.25
Hashimoto et al. (2019) (summarization) 0.58 0.06 0.26
Hashimoto et al. (2019) (Reddit) 0.55 0.05 0.03 0.01 0.23
WMT19 0.86 0.04 0.12
Dathathri et al. (2020) 0.62 0.04 -0.05 -0.03 0.16
Holtzman et al. (2020) 0.59 0.02 0.04 0.02 0.01 0 -0.04 0.16

Table 13: Fit fixed effect coefficients for each model along with the residual model variance. If only one model
is compared to a baseline, there is a value for intercept and �1. If more than one model, there is an additional
parameter for each model. Because we use contrast coding, each coefficient can be interpreted as the difference
from the grand mean.

Dataset �̂0w �̂1w �̂2w �̂3w �̂4w �̂5w �̂6w

Hashimoto et al. (2019) (LM) 0 0.11 0.11
Hashimoto et al. (2019) (summarization) 0 0.13 0.11
Hashimoto et al. (2019) (Reddit) 0.11 0.04 0.08 0.06 0.17
WMT19 0.07 0.04 0.13
Dathathri et al. (2020) 0 0.04 0.05 0.05 0.05
Holtzman et al. (2020) 0.09 0.05 0.03 0.04 0.04 0.02 0.04

Table 14: Fit random effects standard deviations for worker. As in the equations above, �̂0w is the worker intercept
and the rest of the parameters are worker slopes for each model.

Dataset �̂0i �̂1i �̂2i �̂3i �̂4i �̂5i �̂6i

Hashimoto et al. (2019) (LM) 0.04 0.14 0.1
Hashimoto et al. (2019) (summarization) 0.07 0 0.18
Hashimoto et al. (2019) (Reddit) 0 0.13 0.11 0.14 0.14
WMT19 0.05 0.03 0.15
Dathathri et al. (2020) 0 0.16 0.19 0.16 0.16
Holtzman et al. (2020) 0 0.13 0.1 0.12 0.11 0.13 0.13

Table 15: Fit random effects standard deviations for item. As in the equations above, �̂0i is the item intercept and
the rest of the parameters are item slopes for each model.

Scenario �w0 �w1 �i0 �i1 �wi

Low variance 0.01 0.04 0.01 0.13 0.16
High variance 0.01 0.11 0.04 0.14 0.26

Table 16: An example of high variance and low variance settings. The standard deviations correspond to the
variance parameters for worker intercept, worker slope, item intercept, item slope, and sigma, respectively.
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