
A Appendix

A.1 Coverage and multi-turn sampling

When we build an empirical distribution over tem-
plates on the training set of Spider, we observe a
85% coverage of dev set templates. That is, 85%
of dev set examples have a query whose template
occurs in the training set. In other words, while this
simple template-filling sampling scheme doesn’t
provide full coverage over the dev set as a com-
plex grammar would, it covers a large portion of
examples.

For Sparc and CoSQL, the sampling procedure
is similar to Algorithm 1. However, because there
are two queries (one previous, one current), we
first sample a previous query z

0
1 from Ptemp(z),

then sample the current query z
0
2 from Ptemp(z|z01).

As before, the empirical template distributions are
obtained by counting templates in the training set.

A.2 Hyperparameters

Dropout location Forward parser

Spider Sparc CoSQL

post-BERT 0.1 0.1 0.1
post-enc LSTMs 0.1 0.3 0.1
pre-dec scorer 0.1 0.1 0.3

Table 4: Dropout rates for the forward parser.

Dropout location Backward generator

Spider Sparc CoSQL

post-BERT 0.1 0.3 0.1
post-enc LSTMs 0.1 0.1 0.1
pre-dec scorer 0.1 0.1 0.3

Table 5: Dropout rates for the backward generator.

We use 300-dimensional LSTMs throughout
the model. The BERT model we use is Distil-
BERT (Sanh et al., 2020), which we optimize with
Adam (Kingma and Ba, 2015) with an initial learn-
ing rate of 5e � 5. We train for 50 epochs with a
batch size of 10 and gradient clipping with a norm
of 20. We use dropout after BERT, after encoder
LSTMs, and before the pointer scorer. The values
for these dropouts used by our leaderboard sub-
missions are shown in Table 4 and Table 5. For
each task, these rates are tuned using 3-fold cross-

validation with a coarse grid-search over values
{0.1, 0.3} for each dropout with a fixed seed.

A single training run of the forward parser took
approximately 16 hours to run on a single NVIDIA
Titan X GPU. Each task required 3 folds in addi-
tion to the final official train/dev run. For each
fold, we grid-searched over dropout rates, which
amounts to 8 runs. In total, we conducted 27 runs
on a Slurm cluster. Including pretrained BERT
parameters, the final forward parser contains 142
million parameters. The final backward utterance
generator contains 73 million parameters.

list all the last name of owners
in alphabetical order .

select last name from Owners order by last name

how many friend are there ? select count (*) from Friend

what is the id of the votes that
has been most distinct contes-
tants ?

"select T2.vote id from CONTESTANTS as T1 join VOTES as

T2 on T1.contestant number = T2.contestant number group

by (T2.vote id) order by count (T1.contestant number

) desc limit 1

what are the name of higher ? select name from Highschooler

how many car makers has the
horsepower of 81 ?

select count (*) from cars data as T1 join car names

as T2 on T1.Id = T2.MakeId join model list as T3 on

T2.Model = T3.Model join car makers as T4 on T3.Maker =

T4.Id where T1.Horsepower = ’81’

what are the starts of hiring who
are located in the city of Bristol
?

select T2.Start from from employee as T1 join hiring as

T2 on T1.Employee ID = T2.Employee ID where T1.City =

’Bristol’

find the name and district of the
employee that has the highest
evaluation bonus .

select T2.Name , T4.District from evaluation as T1

join employee as T2 on T1.Employee ID = T2.Employee ID

join hiring as T3 on T2.Employee ID = T3.Employee ID

join shop as T4 on T3.Shop ID = T4.Shop ID order by

T1.Bonus desc limit 1

what is the cell number of the
owners with the largest charges
amount ?

select T1.cell number from Owners as T1 join Charges as

T2 order by T2.charge amount desc limit 1

what is the minimum , average ,
and maximum grade of all high
schooler ?

select min (grade) , avg (grade) , max (grade)

from Highschooler

what is the age of the teacher
who has the most course ?

select T1.Age from teacher as T1 join course arrange

as T2 on T1.Teacher ID = T2.Teacher ID group by

T2.Teacher ID order by sum (T2.Grade) desc limit

1

Table 6: Examples of synthesized queries

A.3 Synthesized examples

In order to quantify the distribution of synthe-
sized examples, we classify synthesized queries
according to the difficulty criteria from Spider (Yu
et al., 2018b). Compared to the Spider develop-
ment set, GAZP-synthesized data has an average
of 0.60 vs. 0.47 joins, 1.21 vs. 1.37 conditions,
0.20 vs. 0.26 group by’s, 0.23 vs. 0.25 order
by’s, 0.07 vs. 0.04 intersections, and 1.25 vs.
1.32 selection columns per query. This suggests
that GAZP queries are similar to real data.

Moreover, we example a random sample of 60
synthesized examples. Out of the 60, 51 are cor-
rect. Mistakes come from aggregation over wrong
columns (e.g. “has the most course” becomes
order by sum T2.grade) and underspecification
(e.g. “lowest of the stadium who has the lowest
age”). There are grammatical errors (e.g. “that has
the most” becomes “that has been most”), but most
questions are fluent and sensible (e.g. “find the
name and district of the employee that has the high-
est evaluation bonus”). A subset of these queries
are shown in Table 6.

A.4 Performance breakdown

easy medium hard extra all

count 470 857 463 357 2147

baseline EM 75.3 54.9 45.0 24.8 52.1
EX 60.3 52.7 47.5 32.6 49.8
FX 73.6 52.9 44.8 26.4 51.1

GAZP EM 73.1 58.7 47.2 23.3 53.3

EX 59.6 59.2 52.3 33.3 53.5

FX 71.9 55.3 46.1 24.5 51.7

Table 7: Difficulty breakdown for Spider test set.

easy medium hard extra all

count 993 845 399 261 2498

baseline EM 68.9 36.9 31.2 11.1 45.9
EX 61.9 35.6 30.6 18.8 43.5
FX 65.9 32.5 28.1 10.7 42.8

GAZP EM 66.5 39.6 38.4 14.2 45.9
EX 60.1 39.5 31.1 20.3 44.6

FX 65.3 36.8 26.3 12.6 43.9

Table 8: Difficulty breakdown for Sparc test set.

easy medium hard extra all

count 730 607 358 209 1904

baseline EM 58.2 28.0 20.6 18.8 37.2
EX 47.1 27.2 26.8 28.2 34.9
FX 51.9 24.1 21.2 20.6 33.8

GAZP EM 60.0 33.8 23.1 13.9 39.7

EX 48.1 28.3 41.0 23.9 35.9

FX 55.1 26.9 25.7 16.7 36.3

Table 9: Difficulty breakdown for CoSQL test set.

turn 1 turn 2 turn 3 turn 4+

count 842 841 613 202

baseline EM 69.9 41.8 28.9 16.4
EX 67.8 36.9 28.1 16.9
FX 70.2 35.7 24.8 13.4

GAZP EM 67.8 41.9 29.7 19.6

EX 66.3 40.1 29.0 19.8

FX 68.8 38.3 25.9 18.3

Table 10: Turn breakdown for Sparc test set

In addition to the main experiment results in
Table 2 of Section 3.1, we also examine the perfor-
mance breakdown across query classes and turns.

GAZP improves performance on harder

queries. First, we divide queries into difficulty
classes following the classification in Yu et al.
(2018b). These difficulty classes are based on
the number of SQL components, selections, and
conditions. For example, queries that contain
more SQL keywords such as GROUP BY, ORDER BY,
INTERSECT, nested subqueries, column selections,
and aggregators, etc are considered to be harder.
Yu et al. (2018b) shows examples of SQL queries
in the four hardness categories. Note that extra

is a catch-all category for queries that exceed
qualifications of hard, as a result it includes
artifacts (e.g. set exclusion operations) that may
introduce other confounding factors. Tables 7, 8,
and 9 respectively break down the performance
of models on Spider, Sparc, and CoSQL. We
observe that the gains in GAZP are generally more
pronounced in more difficult queries. This finding
is consistent across tasks (with some variance) and
across three evaluation metrics.

One potential explanation for this gain is that
the generalization problem is exacerbated in more

turn 1 turn 2 turn 3 turn 4+

count 548 533 372 351

baseline EM 47.3 36.5 32.3 28.5
EX 43.8 34.3 30.3 27.9
FX 46.2 31.9 29.4 23.4

GAZP EM 50.0 36.7 35.7 30.3

EX 46.4 32.3 32.2 30.2

FX 50.0 32.8 31.4 27.1

Table 11: Turn breakdown for CoSQL test set.

difficult queries. Consider the example of language-
to-SQL parsing, in which we have trained a parser
on an university database and are now evaluating
it on a sales database. While it is difficult to pro-
duce simple queries in the sales database due to ta
lack of training data, it is likely even more diffi-
cult to produce nested queries, queries with group-
ings, queries with multiple conditions, etc. Be-
cause GAZP synthesizes queries — including dif-
ficult ones — in the sales database, the adapted
parser learns to handle these cases. In contrast,
simpler queries are likely easier to learn, hence
adaptation does not help as much.

GAZP improves performance in longer inter-

actions. For Sparc and CoSQL, which include
multi-turn interactions between the user and the
system, we divide queries into how many turns into
the interaction they occur. This classification in
described in Yu et al. (2019b) and Yu et al. (2019a).
Tables 10 and 11 respectively break down the per-
formance of models on Sparc and CoSQL. We ob-
serve that the gains in GAZP are more pronounced
in turns later in the interaction. Against, this find-
ing is consistent not only across tasks, but across
the three evaluation metrics.

A possible reason for this gain is that the
conditional sampling procedure shown in Algo-
rithm 1 improves multi-turn parsing by synthesiz-
ing multi-turn examples. How much additional
variation should we expect in a multi-turn setting?
Suppose we discover T coarse-grain templates by
counting the training data, where each coarse-grain
template has S slots on average. For simplicity,
let us ignore value slots and only consider column
slots. Given a new database with N columns, the
number of possible filled queries is on the order of
O

⇣
T ⇥

�S
N

�⌘
. For K turns, the number of possi-

ble queries sequences is then O

✓⇣
T ⇥

�S
N

�⌘K
◆

.

This exponential increase in query variety may im-
prove parser performance on later-turn queries (e.g.
those with a previous interaction), which in turn
reduce cascading errors throughout the interaction.

