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Introduction

The 2008 Conference on Computational Natural Language Learning is the twelfth in the series of yearly
meetings organized by SIGNLL, the ACL special interest group on natural language learning. CoNLL
2008 will be held in Manchester, UK, August 16-17, 2008, in conjunction with Coling 2008.

We are delighted to report that CoNLL’s main session received a large number of submissions. A total
of 85 papers were under consideration for the main session after several withdrawals, and of them
only 20 were accepted. This makes this year’s CoNLL especially competitive and contributes to an
interesting program. We are grateful to the program committee members for their service in evaluating
the submissions. Special thanks to the program committee members who joined on a short notice to
help with the larger than expected number of submissions.

This year CoNLL had two special themes of interest, both of which solicited papers on models that
explain natural phenomena relating to human language. The first concerned the central scientific
problem addressed by CoNLL: the study of first language acquisition. The second theme was the central
engineering problem: how to build systems that do something useful, especially complete systems that
solve real problems.

The first theme contributed to an increased number of high-quality submissions in the first language
acquisition area. Two sessions of the conference will be devoted to papers on this topic. The second
theme led to submissions in diverse traditional NLP application areas.

As in previous years, CoNLL 2008 has a shared task. This year, the conference shared task proposed
to merge the shared task topics from the last four years (2004-2007) into a unique task called ”Joint
Learning of Syntactic and Semantic Dependencies”. Both syntactic dependencies (extracted from the
Penn Treebank ) and semantic dependencies (extracted from PropBank and NomBank) were jointly
addressed under a unique unified representation.

The shared task was organized by Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluı́s Màrquez,
and Joakim Nivre.

The call was very successful attracting the interest of more than 50 teams from all over the world,
which represented a wide variety of universities, research institutions, and companies. At the end of
the evaluation period, 22 teams submitted results (with 19 and 5 contributions to the closed and open
challenges, respectively). All this work will be presented in the conference in the form of 5 selected
oral talks and 14 posters.

In our opinion, the current shared task constitutes a qualitative step ahead and we hope that the resources
created and the body of work presented will both serve as a benchmark and have a substantial impact
on future research on syntactic-semantic parsing.

We are excited that the invited speakers at CoNLL 2008 will be Regina Barzilay and Nick Chater.

Finally, we would like to thank the SIGNLL board members for useful discussion, Erik Tjong Kim
Sang, who acted as the information officer, and especially Lluı́s Màrquez and Joakim Nivre, who helped
us greatly with advice around the conference organization, as well as to the organizers of COLING
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2008, Harold Somers, Mark Stevenson and Roger Evans. Many thanks also to Microsoft Research for
sponsoring CoNLL this year and to Priscilla Rasmussen for help with the finances.

Enjoy this year’s conference!

Alex Clark and Kristina Toutanova

CoNLL 2008 Conference Chairs
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Yvonne Samuelsson, Oscar Täckström, Sumithra Velupillai, Johan Eklund, Mark Fishel and Markus

Saers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

Dependency Tree-based SRL with Proper Pruning and Extensive Feature Engineering
Hongling Wang, Honglin Wang, Guodong Zhou and Qiaoming Zhu . . . . . . . . . . . . . . . . . . . . . . . . 253

DeSRL: A Linear-Time Semantic Role Labeling System
Massimiliano Ciaramita, Giuseppe Attardi, Felice Dell’Orletta and Mihai Surdeanu . . . . . . . . . . 258

Probabilistic Model for Syntactic and Semantic Dependency Parsing
Enhong Chen, Liu Shi and Dawei Hu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

Applying Sentence Simplification to the CoNLL-2008 Shared Task
David Vickrey and Daphne Koller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

ix





Conference Programme

Saturday, August 16, 2008

8:30–8:50 Opening Remarks

Session 1: Parsing

8:50–9:15 Semantic Parsing for High-Precision Semantic Role Labelling
Paola Merlo and Gabriele Musillo

9:15–9:40 TAG, Dynamic Programming, and the Perceptron for Efficient, Feature-Rich Parsing
Xavier Carreras, Michael Collins and Terry Koo

9:40–10:05 A Fast Boosting-based Learner for Feature-Rich Tagging and Chunking
Tomoya Iwakura and Seishi Okamoto

10:05–10:30 Linguistic features in data-driven dependency parsing
Lilja Øvrelid

10:30-11:00 Coffee break

Session 2: Semantics

11:00–11:25 Transforming Meaning Representation Grammars to Improve Semantic Parsing
Rohit Kate

11:25–11:50 Using LDA to detect semantically incoherent documents
Hemant Misra, Olivier Cappe and Francois Yvon

11:50–12:40 Invited talk by Regina Barzilay

12:40–14:00 Lunch

xi



Saturday, August 16, 2008 (continued)

Shared Task

14:00–14:30 The CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic Dependen-
cies
Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluı́s Màrquez and Joakim Nivre
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1211 Genève 4 Switzerland

merlo@lettres.unige.ch

Gabriele Musillo
Depts of Linguistics and Computer Science

University of Geneva
5 Rue de Candolle
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Abstract

In this paper, we report experiments that
explore learning of syntactic and seman-
tic representations. First, we extend a
state-of-the-art statistical parser to pro-
duce a richly annotated tree that identi-
fies and labels nodes with semantic role la-
bels as well as syntactic labels. Secondly,
we explore rule-based and learning tech-
niques to extract predicate-argument struc-
tures from this enriched output. The learn-
ing method is competitive with previous
single-system proposals for semantic role
labelling, yields the best reported preci-
sion, and produces a rich output. In com-
bination with other high recall systems it
yields an F-measure of 81%.

1 Introduction

In statistical natural language processing, consid-
erable ingenuity and insight have been devoted to
developing models of syntactic information, such
as statistical parsers and taggers. Successes in
these syntactic tasks have recently paved the way
to applying novel statistical learning techniques
to levels of semantic representation, such as re-
covering the logical form of a sentence for in-
formation extraction and question-answering ap-
plications (Miller et al., 2000; Ge and Mooney,
2005; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007).

In this paper, we also focus our interest on learn-
ing semantic information. Differently from other
work that has focussed on logical form, however,
we explore the problem of recovering the syn-
tactic structure of the sentence, the propositional

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

argument-structure of its main predicates, and the
substantive labels assigned to the arguments in the
propositional structure, the semantic roles. This
rich output can be useful for information extrac-
tion and question-answering, but also for anaphora
resolution and other tasks for which the structural
information provided by full syntactic parsing is
necessary.

The task of semantic role labelling (SRL), as has
been defined by previous researchers (Gildea and
Jurafsky, 2002), requires collecting all the argu-
ments that together with a verb form a predicate-
argument structure. In most previous work, the
task has been decomposed into the argument iden-
tification and argument labelling subtasks: first the
arguments of each specific verb in the sentence are
identified by classifying constituents in the sen-
tence as arguments or not arguments. The argu-
ments are then labelled in a second step.

We propose to produce the rich syntactic-
semantic output in two steps, which are different
from the argument identification and argument la-
belling subtasks. First, we generate trees that bear
both syntactic and semantic annotation, such as
those in Figure 1. The parse tree, however, does
not explicitly encode information about predicate-
argument structure, because it does not explicitly
associate each semantic role to the verb that gov-
erns it. So, our second step consists in recovering
the predicate-argument structure of each verb by
gleaning this information in an already richly dec-
orated tree.

There are linguistic and computational reasons
to think that we can solve the joint problem of
recovering the constituent structure of a sentence
and its lexical semantics. From a linguistic point
of view, the assumption that syntactic distributions
will be predictive of semantic role assignments is
based on linking theory (Levin, 1986). Linking
theory assumes the existence of a hierarchy of se-
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mantic roles which are mapped by default on a
hierarchy of grammatical functions and syntactic
positions, and it attempts to predict the mapping
of the underlying semantic component of a predi-
cate’s meaning onto the syntactic structure. For ex-
ample, Agents are always mapped in syntactically
higher positions than Themes. From a computa-
tional point of view, if the internal semantics of a
predicate determines the syntactic expressions of
constituents bearing a semantic role, it is then rea-
sonable to expect that knowledge about semantic
roles in a sentence will be informative of its syn-
tactic structure. It follows rather naturally that se-
mantic and syntactic parsing can be integrated into
a single complex task.

Our proposal also addresses the problem of se-
mantic role labelling from a slightly different per-
spective. We identify and label argument nodes
first, while parsing, and we group them in a
predicate-argument structure in a second step. Our
experiments investigate some of the effects that re-
sult from organising the task of semantic role la-
belling in this way, and the usefulness of some
novel features defined on syntactic trees.

In the remainder of the paper, we first illustrate
the data and the graphical model that formalise the
architecture used and its extension for semantic
parsing. We then report on two kinds of exper-
iments: we first evaluate the architecture on the
joint task of syntactic and semantic parsing and
then evaluate the joint approach on the task of se-
mantic role labelling. We conclude with a discus-
sion which highlights the practical and theoretical
contribution of this work.

2 The Data

Our experiments on joint syntactic and semantic
parsing use data that is produced automatically by
merging the Penn Treebank (PTB) with PropBank
(PRBK) (Marcus et al., 1993; Palmer et al., 2005),
as shown in Figure 1. PropBank encodes proposi-
tional information by adding a layer of argument
structure annotation to the syntactic structures of
the Penn Treebank.1 Verbal predicates in the Penn
Treebank (PTB) receive a label REL and their ar-
guments are annotated with abstract semantic role
labels, such as A0, A1, or AA for those comple-
ments of the predicative verb that are considered
arguments. Those complements of the verb la-

1We use PRBK data as they appear in the CONLL 2005
shared task.
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PP-TMP
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TO(DIR)

to

NP

QP
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Figure 1: A sample syntactic structure with seman-
tic role labels.

belled with a semantic functional label in the orig-
inal PTB receive the composite semantic role label
AM-X , where X stands for labels such as LOC,
TMP or ADV, for locative, temporal and adverbial
modifiers respectively. A tree structure with Prop-
Bank labels is shown in Figure 1. (The bold labels
are not relevant for the moment and they will be
explained later.)

3 The Syntactic and Semantic Parser
Architecture

To achieve the complex task of joint syntactic and
semantic parsing, we extend a current state-of-the-
art statistical parser (Titov and Henderson, 2007)
to learn semantic role annotation as well as syntac-
tic structure. The parser uses a form of left-corner
parsing strategy to map parse trees to sequences of
derivation steps.

We choose this parser because it exhibits the
best performance for a single generative parser,
and does not impose hard independence assump-
tions. It is therefore promising for extensions
to new tasks. Following (Titov and Henderson,
2007), we describe the original parsing architec-
ture and our modifications to it as a Dynamic
Bayesian network. Our description is brief and
limited to the few aspects of interest here. For
more detail, explanations and experiments see
(Titov and Henderson, 2007). A Bayesian network
is a directed acyclic graph that illustrates the statis-
tical dependencies between the random variables
describing a set of events (Jensen, 2001). Dy-
namic networks are Bayesian networks applied to
unboundedly long sequences. They are an appro-
priate model for sequences of derivation steps in
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Figure 2: The pattern on connectivity and the latent
vectors of variables in an Incremental Bayesian
Network.

parsing (Titov and Henderson, 2007).
Figure 2 illustrates visually the main properties

that are of relevance for us in this parsing architec-
ture. Let T be a parse tree and D1, . . . , Dm be the
sequence of parsing decisions that has led to the
building of this parse tree. Let also each parsing
decision be composed of smaller parsing decisions
d1

1, . . . , d
1
k, and let all these decisions be indepen-

dent. Then,

P (T ) = P (D1, . . . , Dm)
=
∏

t P (Dt|D1, . . . , Dt−1)
=
∏

t

∏
k P (dt

k|h(t, k))
(1)

where h(t, k) denotes the parse history for sub-
decision dt

k.
The figure represents a small portion of the ob-

served sequence of decisions that constitute the re-
covery of a parse tree, indicated by the observed
states Di. Specifically, it illustrates the pattern of
connectivity for decision dt

k. As can be seen the re-
lationship between different probabilistic parsing
decisions are not Markovian, nor do the decisions
influence each other directly. Past decisions can in-
fluence the current decision through state vectors
of independent latent variables, referred to as Si.
These state vectors encode the probability distri-
butions of features of the history of parsing steps
(the features are indicated by st

i in Figure 2).
As can be seen from the picture, the pattern

of inter-connectivity allows previous non-adjacent
states to influence future states. Not all states
in the history are relevant, however. The inter-
connectivity is defined dynamically based on the
topological structure and the labels of the tree that
is being developed. This inter-connectivity de-
pends on a notion of structural locality (Hender-
son, 2003; Musillo and Merlo, 2006).2

2Specifically, the conditioning states are based on the

In order to extend this model to learn decisions
concerning a joint syntactic-semantic representa-
tion, the semantic information needs to be high-
lighted in the model in several ways. We modify
the network connectivity, and bias the learner.

First, we take advantage of the network’s dy-
namic connectivity to highlight the portion of the
tree that bears semantic information. We augment
the nodes that can influence parsing decisions at
the current state by explicitly adding the vectors
of latent variables related to the most recent child
bearing a semantic role label of either type (REL,
A0 to A5 or AM-X) to the connectivity of the
current decision. These additions yield a model
that is sensitive to regularities in structurally de-
fined sequences of nodes bearing semantic role la-
bels, within and across constituents. These exten-
sions enlarge the locality domain over which de-
pendencies between predicates bearing the REL
label, arguments bearing an A0-A5 label, and ad-
juncts bearing an AM-X role can be specified, and
capture both linear and hierarchical constraints be-
tween predicates, arguments and adjuncts. Enlarg-
ing the locality domain this way ensures for in-
stance that the derivation of the role DIR in Figure
1 is not independent of the derivations of the roles
TMP, REL (the predicate) and A0.

Second, this version of the Bayesian network
tags its sentences internally. Following (Musillo
and Merlo, 2005), we split some part-of-speech
tags into tags marked with semantic role labels.
The semantic role labels attached to a non-terminal
directly projected by a preterminal and belonging
to a few selected categories (DIR, EXT, LOC, MNR,
PRP, CAUS or TMP) are propagated down to the
pre-terminal part-of-speech tag of its head.3 This
third extension biases the parser to learn the rela-
tionship between lexical items, semantic roles and
the constituents in which they occur. This tech-
nique is illustrated by the bold labels in Figure 1.

We compare this augmented model to a sim-
ple baseline parser, that does not present any of
the task-specific enhancements described above,

stack configuration of the left-corner parser and the derivation
tree built so far. The nodes in the partially built tree and stack
configuration that are selected to determine the relevant states
are the following: top, the node on top of the pushdown stack
before the current derivation move; the left-corner ancestor of
top (that is, the second top-most node on the parser stack);
the leftmost child of top; and the most recent child of top, if
any.

3Exploratory data analysis indicates that these tags are the
most useful to disambiguate parsing decisions.
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PTB/PRBK 24
P R F

Baseline 79.6 78.6 79.1
ST 80.5 79.4 79.9
ST+ EC 81.6 80.3 81.0

Table 1: Percentage F-measure (F), recall (R), and
precision (P) of our joint syntactic and semantic
parser on merged development PTB/PRBK data
(section 24). Legend of models: ST=Split Tags;
EC=enhanced connectivity.

other than being able to use the complex syntactic-
semantic labels. Our augmented model has a to-
tal of 613 non-terminals to represent both the PTB
and PropBank labels of constituents, instead of the
33 of the original syntactic parser. The 580 newly
introduced labels consist of a standard PTB label
followed by a set of one or more PropBank seman-
tic role such as PP-AM-TMP or NP-A0-A1. As a
result of lowering the six AM-X semantic role la-
bels, 240 new part-of-speech tags were introduced
to partition the original tag set which consisted
of 45 tags. As already mentioned, argumental la-
bels A0-A5 are specific to a given verb or a given
verb sense, thus their distribution is highly vari-
able. To reduce variability, we add the tag-verb
pairs licensing these argumental labels to the vo-
cabulary of our model. We reach a total of 4970
tag-word pairs. These pairs include, among oth-
ers, all the tag-verb pairs occuring at least 10 times
in the training data. In this very limited form of
lexicalisation, all other words are considered un-
known.

4 Parsing Experiments

Our extended joint syntactic and semantic parser
was trained on sections 2-21 and validated on sec-
tion 24 from the merged PTB/PropBank. To eval-
uate the joint syntactic and semantic parsing task,
we compute the standard Parseval measures of la-
belled recall and precision of constituents, taking
into account not only the original PTB labels, but
also the newly introduced PropBank labels. This
evaluation gives us an indication of how accurately
and exhaustively we can recover this richer set of
syntactic and semantic labels. The results, com-
puted on the development data set from section 24
of the PTB with added PropBank annotation, are
shown in Table 1. As the table indicates, both the
enhancements based on semantic roles yield an im-

provement on the baseline.

This task enables us to compare, albeit indi-
rectly, our integrated method to other methods
where semantic role labels are learnt separately
from syntactic structure. (Musillo and Merlo,
2006) report results of a merging technique where
the output of the semantic role annotation pro-
duced by the best semantic role labellers in the
2005 CONLL shared task is merged with the out-
put of Charniak’s parser. Results range between
between 82.7% and 83.4% F-measure. Our inte-
grated method almost reaches this level of perfor-
mance.

The performance of the parser on the syntactic
labels only (note reported in Table 1) is slightly de-
graded in comparison to the original syntax-only
architecture (Henderson, 2003), which reported
an F-measure of 89.1% since we reach 88.4% F-
measure for the best syntactic-semantic model (last
line of Table 1). This level of performance is still
comparable to other syntactic parsers often used
for extraction of semantic role features (88.2% F-
measure) (Collins, 1999).

These results indicate that the extended parser is
able to recover both syntactic and semantic labels
in a fully connected parse tree. While it is true that
the full fine-grained interpretation of the semantic
label is verb-specific, the PropBank labels (A0,A1,
etc) do respect some general trends. A0 labels are
assigned to the most agentive of the arguments,
while A1 labels tend to be assigned to arguments
bearing a Theme role, and A2, A3, A4 and A5 la-
bels are assigned to indirect object roles, while all
the AM-X labels tend to be assigned to adjuncts.
The fact that the parser learns these labels with-
out explicit annotation of the link between the ar-
guments and the predicate to which they are as-
signed, but based on the smoothed representation
of the derivation of the parse tree and only very
limited lexicalisation, appears to confirm linking
theory, which assumes a correlation between the
syntactic configuration of a sentence and the lexi-
cal semantic labels.

We need to show now that the quality of the
output produced by the joint syntactic and seman-
tic parsing is such that it can be used to perform
other tasks where semantic role information is cru-
cial. The most directly related task is semantic role
labelling (SRL) as defined in the shared task of
CoNLL 2005.
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5 Extraction of Predicate-Argument
Structures

Although there is reason to think that the good
performance reported in the previous section is
due to implicit learning of the relationship of the
syntactic representation and the semantic role as-
signments, the output produced by the parser does
not explicitly encode the predicate-argument struc-
tures. Collecting these associations is required to
solve the semantic role labelling task as usually de-
fined. We experimented with two methods: a sim-
ple rule-based method and a more complex learn-
ing method.

5.1 The rule-based method

The rule-based extraction method is the natural
second step to solve the complete semantic role
labelling task, after we identify and label seman-
tic roles while parsing. Since in our proposal, we
solve most of the problem in the first step, then we
should be able to collect the predicate-argument
pairs by simple, deterministic rules. The simplic-
ity of the method also provides a useful compari-
son for more complex learning methods, which can
be justified only if they perform better than simple
rule-based predicate-argument extraction.

Our rule-based method automatically compiles
finite-state automatata defining the paths that con-
nect the first node dominating a predicate to its
semantic roles from parse trees enriched with se-
mantic role labels.4 Such paths can then be used to
traverse parse trees returned by the parsing model
and collect argument structures. More specifically,
a sample of sentences are randomly selected from
the training section of the PTB/PRBK. For each
predicate, then, all the arguments left and right of
the predicate and all the adjuncts left and right
respectively are collected and filtered by simple
global constraints, thereby guaranteeing that only
one type of obligatory argument label (A0 to A5)
is assigned in each proposition.

When evaluated on gold data, this rule-based ex-
traction method reaches 94.9% precision, 96.9%
recall, for an F-measure of 95.9%. These results
provide an upper bound as well as indicating that,
while not perfect, the simple extraction rules reach
a very good level of correctness if the input from
the first step, syntactic and semantic parsing, is
correct. The performance is much lower when

4It uses VanNoord’s finite-state-toolkit
http://www.let.rug.nl/ vannoord/Fsa/.

parses are not entirely correct, and semantic role
labels are missing, as indicated by the results of
72.9% precision, 66.7% (F-measure 69.7%), ob-
tained when using the best automatic parse tree.
The fact that performance depends on the qual-
ity of the output of the first step, indicates that
the extraction rules are sensitive to errors in the
parse trees, as well as errors in the labelling. This
indicates that a learning method might be more
adapted to recover from these mistakes.

5.2 The SVM learning method
In a different approach to extract predicate argu-
ment structures from the parsing output, the sec-
ond step learns to associate the right verb to each
semantically annotated node (srn) in the tree pro-
duced in the first step. Each individual (verb, srn)
pair in the tree is either a positive example (the srn
is a member of the verb’s argument structure) or a
negative example (the argument either should not
have been labelled as an argument or it is not as-
sociated to the verb). The training examples are
produced by parsing section 2-21 of the merged
PTB/PRBK data with the joint syntactic-semantic
parser and producing the training examples by
comparison with the CONLL 2005 gold proposi-
tions. There are approximately 800’000 training
examples in total. These examples are used by
an SVM classifier (Joachims, 1999).5. Once the
predicate-argument structures are built, they are
evaluated with the CONLL 2005 shared task cri-
teria.

5.3 The learning features
The features used for the extraction of the
predicate-argument structure reflect the syntactic
properties that are useful to identify the arguments
of a given verb. We use syntactic and semantic
node label, the path between the verb and the argu-
ment, and the part-of-speech tag of the verb, which
provides useful information about the tense of the
verb. We also use novel features that encode min-
imality conditions and locality constraints (Rizzi,
1990). Minimality is a typical property of natu-
ral languages that is attested in several domains.
In recovering predicate-argument structures, mini-
mality guarantees that the arguments are related to
the closest verb in a predicate domain, which is not
always the verb to which they are connected by the

5We use a radial basis function kernel, where parameters
c and γ were determined by a grid search on a small subset of
2000 training examples. They are set at c=8 and γ = 0.03125.
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shortest path. For example, the subject of an em-
bedded clause can be closer to the verb of the main
clause than to the predicate to which it should be
attached. Minimality is encoded as a binary feature
that indicates whether a verb w intervenes between
the verb v and the candidate argument srn. Mini-
mality is defined both in terms of linear precedence
(indicated below as ≺) and of dominance within
the same VP group. A VP group is a stack of VPs
covering the same compound verb group, such as
[V P should [V P have [V P [V come ]]]]. Formal
definitions are given below:

minimal(v, srn, w) =df8<: false if (v ≺ w ≺ srn or srn ≺ w ≺ v) and
VPG-dominates(v, srn, w)

true otherwise

VPG-dominates(v, srn, w) =df8<: true if VP ∈ path(v, srn) and
VP ∈ VP-group directly dominating w

false otherwise

In addition to the minimality conditions, which
resolve ambiguity when two predicates compete to
govern an argument, we use locality constraints to
capture distinct local relationships between a verb
and the syntactic position occupied by a candidate
argument. In particular, we distinguish between in-
ternal arguments occupying a position dominated
by a VP node, external arguments occupying a
position dominated by an S node, and extracted
arguments occupying a position dominated by an
SBAR node. To approximate such structural dis-
tinctions, we introduce two binary features indicat-
ing, respectively, whether there is a a node labelled
S or SBAR on the path connecting the verb and the
candidate argument.

6 Results and Discussion

Table 2 illustrates our results on semantic role la-
belling. Notice how much more precise the learn-
ing method is than the rule-based method, when
the minimality constraint is added. The second and
third line indicate that this contribution is mostly
due to the minimality feature. The fifth and sixth
line however illustrate that these features together
are more useful than the widely used feature path.
Recall however, suffers in the learnt method. Over-
all, the learnt method is better than a rule-based
method only if path and either minimality or lo-
cality constraints are added, thus suggesting that

Prec Rec F
Learning all features 87.4 63.6 73.7
Learning all −min 75.4 66.2 70.5
Learning all −loc 87.4 63.6 73.6
Rule-based 72.9 66.7 69.7
Learning all −path 80.6 60.9 69.4
Learning all −min −loc 74.3 63.8 68.6
Baseline 57.4 53.9 55.6

Table 2: Results on the development section (24),
rule-based, and learning, (with all features, and
without path, minimality and locality constraints)
compared to a closest verb baseline.

the choice of features is crucial to reach a level
of performance that justifies the added complex-
ity of a learning method. Both methods are much
better than a baseline that attaches each role to
a verb by the shortest path.6 Notice that both
these approaches are not lexicalised, they apply to
all verbs. Learning experiments where the actual
verbs were used showed a little degradation as well
as a very considerable increase in training times
(precision: 87.0%; recall: 61.0%; F: 71.7%).7

Some comments are in order to compare prop-
erly our best results – the learning method with
all features – to other methods. Most of the best
performing SRL systems are ensemble learners or
rerankers, or they use external sources of infor-
mation such as the PropBank frames files. While
these techniques are effective to improve classifi-
cation accuracy, we might want to compare the sin-
gle systems, thus teasing apart the contribution of
the features and the model from the contribution
of the ensemble technique. Table 3 reports the sin-
gle systems’ performance on the test set. These re-
sults seem to indicate that methods like ours, based
on a first step of PropBank parsing, are compara-
ble to other methods when learning regimes are
factored out, contrary to pessimistic conclusions
in previous work (Yi and Palmer, 2005). (Yi and
Palmer, 2005) share the motivation of our work.
They observe that the distributions of semantic la-

6In case of tie, the following verb is chosen for an A0 label
and the preceding verb is chosen for all the other labels.

7We should notice that all these models encode the feature
path as syntactic path, because in exploratory data analysis we
found that this feature performed quite a bit better than path
encoded taking into account the semantic roles assigned to the
nodes on the path. Concerning the learning model, we notice
that a simpler, and much faster to train, linear SVM classifier
performs almost as well as the more complex RBF classifier.
It is therefore preferable if speed is important.

6



Model CONLL 23 Comments
P R F

(Surdeanu and Turmo, 2005) 80.3 73.0 76.5 Propbank frames to filter output, boosting
(Liu et al., 2005) 80.5 72.8 76.4 Single system + simple post-processing
(Moschitti et al., 2005) 76.6 75.2 75.9 Specialised kernels for each kind of role
This paper 87.6 65.8 75.1 Single system and model, locality features
(Ozgencil and McCracken, 2005) 74.7 74.2 74.4 Simple system, no external knowledge
(Johansson and Nugues, 2005) 75.5 73.2 74.3 Uses only 3 sections for training

Table 3: Final Semantic Role Labelling results on test section 23 of Propbank as encoded in the CONLL
shared task for those CONLL 2005 participants not using ensemble learning or external resources.

bels could potentially interact with the distribu-
tions of syntactic labels and redefine the bound-
aries of constituents, thus yielding trees that reflect
generalisations over both these sources of infor-
mation. They also attempt to assign SRL while
parsing, by merging only the first two steps of
the standard pipeline architecture, pruning and ar-
gument identification. Their parser outputs a bi-
nary argument-nonargument distinction. The ac-
tual fine-grained labelling is performed, as in other
methods, by an ensemble classifier. Results are
not among the best and Yi and Palmer conclude
that PropBank parsing is too difficult and suffers
from differences between chunk annotation and
tree structure. We think instead that the method is
promising, as shown by the results reported here,
once the different factors that affect performance
are teased apart.

Some qualitative observations on the errors are
useful. On the one hand, as can be noticed in Table
3, our learning method yields the best precision,
but often the worse recall and it has the most ex-
treme difference between these two scores.8 This
is very likely to be a consequence of the method.
Since the assignment of the semantic role labels
proper is performed during parsing, the number
of nodes that require a semantic role is only 20%
of the total. Therefore the parser develops a bias
against assigning these roles in general, and recall
suffers.9 On the other hand, precision is very good,
thanks to the rich context in which the roles are as-
signed.

This property of our method suggests that com-
bining our results with those of other existing se-

8This observation applies also in a comparison to the other
systems that participated in the CONLL shared task.

9The SVM classifier, on the other hand, exceeds 94% in
accuracy and its F measures are situated around 87–88% de-
pending on the feature sets.

mantic role labellers might be beneficial, since the
errors it performs are quite different. We tested
this hypothesis by combining our outputs, which
are the most precise, with the outputs of the sys-
tem that reported the best recall (Haghighi et al.,
2005). The combination, performed on sections
24 and 23, gives priority to our system when it
outputs a non-null label (because of its high pre-
cision) and uses the other system’s label when our
system outputs a null label. This combination pro-
duces a result of 79.0% precision, 80.4% recall,
and 79.7% F-measure for section 24, and 80.5%
precision, 81.4% recall, and 81.0% F-measure for
section 23. We conclude that the combination is in-
deed able to exploit the positive aspects of both ap-
proaches, as the F-measure of the combined result
is better than each individual result. It is also the
best compared to the other systems of the CoNLL
shared task. Comparatively, we find that applying
the same combination technique to the output of
the system by (Haghighi et al., 2005) with the out-
put of the best system in the CoNLL 2005 shared
task (Punyakanok et al., 2005) yields combined
outputs that are not as good as the better of the
two systems (P:76.3%; R:78.6%; F:77.4% for sec-
tion 24; P:78.5%; R:80.0%; F:79.3% for section
23). This result confirms our initial hypothesis,
that combination of systems with different perfor-
mance characteristics yields greater improvement.

Another direct consequence of assigning roles
in a rich context is that in collecting arguments for
a given verb we hardly need to verify global con-
straints. Differently from previous work that had
found that global coherence constraints consider-
ably improved performance (Punyakanok et al.,
2005), using global filtering contraints showed no
improvement in our learning model. Thus, these
results confirm the observations that a verb does
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not assign its semantic roles independently of each
other (Haghighi et al., 2005). Our method too can
be seen as a way of formulating the SRL problem
in a way that is not simply classification of each in-
stance independently. Because identification of ar-
guments and their labelling is done while parsing,
the parsing history, both syntactic and semantic,
is taken into account in identifying and labelling
an argument. Semantic role labelling is integrated
in structured sequence prediction. Further integra-
tion of semantic role labelling in structured prob-
abilistic models related to the one described here
has recently been shown to result in accurate syn-
chronous parsers that derive both syntactic and se-
mantic dependency representations (Henderson et
al., 2008).

7 Conclusion

Overall our experiments indicate that an inte-
grated approach to identification and labelling fol-
lowed by predicate-argument recovery can solve
the problem of semantic role labelling at a level
of performance comparable to other approaches,
as well as yielding a richly decorated syntactic-
semantic parse tree. The high precision of our
method yields very good results in combination
with other high-recall systems. Its shortcomings
indicates that future work lies in improving recall.
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Abstract

We describe a parsing approach that makes use
of the perceptron algorithm, in conjunction with
dynamic programming methods, to recover full
constituent-based parse trees. The formalism allows
a rich set of parse-tree features, including PCFG-
based features, bigram and trigram dependency fea-
tures, and surface features. A severe challenge in
applying such an approach to full syntactic pars-
ing is the efficiency of the parsing algorithms in-
volved. We show that efficient training is feasi-
ble, using a Tree Adjoining Grammar (TAG) based
parsing formalism. A lower-order dependency pars-
ing model is used to restrict the search space of the
full model, thereby making it efficient. Experiments
on the Penn WSJ treebank show that the model
achieves state-of-the-art performance, for both con-
stituent and dependency accuracy.

1 Introduction

In global linear models (GLMs) for structured pre-
diction, (e.g., (Johnson et al., 1999; Lafferty et al.,
2001; Collins, 2002; Altun et al., 2003; Taskar et
al., 2004)), the optimal labely∗ for an inputx is

y∗ = arg max
y∈Y(x)

w · f(x, y) (1)

whereY(x) is the set of possible labels for the in-
put x; f(x, y) ∈ Rd is a feature vector that rep-
resents the pair(x, y); andw is a parameter vec-
tor. This paper describes a GLM for natural lan-
guage parsing, trained using the averaged percep-
tron. The parser we describe recovers full syntac-
tic representations, similar to those derived by a
probabilistic context-free grammar (PCFG). A key
motivation for the use of GLMs in parsing is that
they allow a great deal of flexibility in the features
which can be included in the definition off(x, y).

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

A critical problem when training a GLM for
parsing is the computational complexity of the
inference problem. The averaged perceptron re-
quires the training set to be repeatedly decoded
under the model; under even a simple PCFG rep-
resentation, finding thearg max in Eq. 1 requires
O(n3G) time, wheren is the length of the sen-
tence, andG is a grammar constant. The average
sentence length in the data set we use (the Penn
WSJ treebank) is over 23 words; the grammar con-
stantG can easily take a value of1000 or greater.
These factors make exact inference algorithms vir-
tually intractable for training or decoding GLMs
for full syntactic parsing.

As a result, in spite of the potential advantages
of these methods, there has been very little previ-
ous work on applying GLMs for full parsing with-
out the use of fairly severe restrictions or approxi-
mations. For example, the model in (Taskar et al.,
2004) is trained on only sentences of 15 words or
less; reranking models (Collins, 2000; Charniak
and Johnson, 2005) restrictY(x) to be a small set
of parses from a first-pass parser; see section 1.1
for discussion of other related work.

The following ideas are central to our approach:
(1) A TAG-based, splittable grammar. We

describe a novel, TAG-based parsing formalism
that allows full constituent-based trees to be recov-
ered. A driving motivation for our approach comes
from the flexibility of the feature-vector represen-
tationsf(x, y) that can be used in the model. The
formalism that we describe allows the incorpora-
tion of: (1) basic PCFG-style features; (2) the
use of features that are sensitive tobigramdepen-
dencies between pairs of words; and (3) features
that are sensitive totrigram dependencies. Any
of these feature types can be combined withsur-
face featuresof the sentencex, in a similar way
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to the use of surface features in conditional ran-
dom fields (Lafferty et al., 2001). Crucially, in
spite of these relatively rich representations, the
formalism can be parsed efficiently (inO(n4G)
time) using dynamic-programming algorithms de-
scribed by Eisner (2000) (unlike many other TAG-
related approaches, our formalism is “splittable”
in the sense described by Eisner, leading to more
efficient parsing algorithms).

(2) Use of a lower-order model for pruning.
The O(n4G) running time of the TAG parser is
still too expensive for efficient training with the
perceptron. We describe a method that leverages
a simple, first-order dependency parser to restrict
the search space of the TAG parser in training and
testing. The lower-order parser runs inO(n3H)
time whereH ≪ G; experiments show that it is
remarkably effective in pruning the search space
of the full TAG parser.

Experiments on the Penn WSJ treebank show
that the model recovers constituent structures with
higher accuracy than the approaches of (Charniak,
2000; Collins, 2000; Petrov and Klein, 2007),
and with a similar level of performance to the
reranking parser of (Charniak and Johnson, 2005).
The model also recovers dependencies with sig-
nificantly higher accuracy than state-of-the-art de-
pendency parsers such as (Koo et al., 2008; Mc-
Donald and Pereira, 2006).

1.1 Related Work
Previous work has made use of various restrictions
or approximations that allow efficient training of
GLMs for parsing. This section describes the rela-
tionship between our work and this previous work.

In reranking approaches, a first-pass parser
is used to enumerate a small set of candidate
parses for an input sentence; the reranking model,
which is a GLM, is used to select between these
parses (e.g., (Ratnaparkhi et al., 1994; Johnson et
al., 1999; Collins, 2000; Charniak and Johnson,
2005)). A crucial advantage of our approach is that
it considers a very large set of alternatives inY(x),
and can thereby avoid search errors that may be
made in the first-pass parser.1

Another approach that allows efficient training
of GLMs is to usesimpler syntactic representa-
tions, in particular dependency structures (McDon-

1Some features used within reranking approaches may be
difficult to incorporate within dynamic programming, but it
is nevertheless useful to make use of GLMs in the dynamic-
programming stage of parsing. Our parser could, of course,
be used as the first-stage parser in a reranking approach.

ald et al., 2005). Dependency parsing can be
implemented inO(n3) time using the algorithms
of Eisner (2000). In this case there is no gram-
mar constant, and parsing is therefore efficient. A
disadvantage of these approaches is that they do
not recover full, constituent-based syntactic struc-
tures; the increased linguistic detail in full syntac-
tic structures may be useful in NLP applications,
or may improve dependency parsing accuracy, as
is the case in our experiments.2

There has been some previous work on GLM
approaches for full syntactic parsing that make use
of dynamic programming. Taskar et al. (2004)
describe a max-margin approach; however, in this
work training sentences were limited to be of 15
words or less. Clark and Curran (2004) describe
a log-linear GLM for CCG parsing, trained on the
Penn treebank. This method makes use of paral-
lelization across an 18 node cluster, together with
up to 25GB of memory used for storage of dy-
namic programming structures for training data.
Clark and Curran (2007) describe a perceptron-
based approach for CCG parsing which is consid-
erably more efficient, and makes use of a super-
tagging model to prune the search space of the full
parsing model. Recent work (Petrov et al., 2007;
Finkel et al., 2008) describes log-linear GLMs ap-
plied to PCFG representations, but does not make
use of dependency features.

2 The TAG-Based Parsing Model

2.1 Derivations

This section describes the idea ofderivationsin
our parsing formalism. As in context-free gram-
mars or TAGs, a derivation in our approach is a
data structure that specifies the sequence of opera-
tions used in combining basic (elementary) struc-
tures in a grammar, to form a full parse tree. The
parsing formalism we use is related to the tree ad-
joining grammar (TAG) formalisms described in
(Chiang, 2003; Shen and Joshi, 2005). However,
an important difference of our work from this pre-
vious work is that our formalism is defined to be
“splittable”, allowing use of the efficient parsing
algorithms of Eisner (2000).

A derivation in our model is a pair〈E, D〉where
E is a set ofspines, andD is a set ofdependencies

2Note however that the lower-order parser that we use to
restrict the search space of the TAG-based parser is based on
the work of McDonald et al. (2005). See also (Sagae et al.,
2007) for a method that uses a dependency parser to restrict
the search space of a more complex HPSG parser.
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Figure 1: Two example trees.

specifying how the spines are combined to form
a parse tree. The spines are similar to elementary
trees in TAG. Some examples are as follows:

NP

NNP

John

S

VP

VBD

ate

NP

NN

cake

ADVP

RB

quickly

ADVP

RB

luckily

These structures do not have substitution nodes, as
is common in TAGs.3 Instead, the spines consist
of a lexical anchor together with a series of unary
projections, which usually correspond to different
X-bar levels associated with the anchor.

The operations used to combine spines are sim-
ilar to the TAG operations of adjunction and sis-
ter adjunction. We will call these operationsregu-
lar adjunction(r-adjunction) andsister adjunction
(s-adjunction). As one example, thecakespine
shown above can be s-adjoined into theVP node of
theatespine, to form the tree shown in figure 1(a).
In contrast, if we use the r-adjunction operation to
adjoin thecaketree into theVP node, we get a dif-
ferent structure, which has an additionalVP level
created by the r-adjunction operation: the resulting
tree is shown in figure 1(b). The r-adjunction op-
eration is similar to the usual adjunction operation
in TAGs, but has some differences that allow our
grammars to be splittable; see section 2.3 for more
discussion.

We now give formal definitions of the setsE and
D. Takex to be a sentence consisting ofn + 1
words,x0 . . . xn, wherex0 is a specialroot sym-
bol, which we will denote as∗. A derivation for the
input sentencex consists of a pair〈E, D〉, where:
• E is a set of(n + 1) tuples of the form〈i, η〉,

wherei ∈ {0 . . . n} is an index of a word in the
sentence, andη is the spine associated with the
word xi. The setE specifies one spine for each
of the (n + 1) words in the sentence. Where it is

3It would be straightforward to extend the approach to in-
clude substitution nodes, and a substitution operation.

clear from context, we will useηi to refer to the
spine inE corresponding to thei’th word.
• D is a set ofn dependencies. Each depen-

dency is a tuple〈h, m, l〉. Hereh is the index of
the head-wordof the dependency, corresponding
to the spineηh which contains a node that is being
adjoined into.m is the index of themodifier-word
of the dependency, corresponding to the spineηm

which is being adjoined intoηh. l is a label.
The labell is a tuple〈POS, A, ηh, ηm, L〉. ηh and

ηm are the head and modifier spines that are be-
ing combined.POS specifies which node inηh is
being adjoined into.A is a binary flag specifying
whether the combination operation being used is s-
adjunction or r-adjunction.L is a binary flag spec-
ifying whether or not any “previous” modifier has
been r-adjoined into the positionPOS in ηh. By a
previous modifier, we mean a modifierm′ that was
adjoined from the same direction asm (i.e., such
thath < m′ < m or m < m′ < h).

It would be sufficient to definel to be the pair
〈POS, A〉—the inclusion ofηh, ηm andL adds re-
dundant information that can be recovered from
the setE, and other dependencies inD—but it
will be convenient to include this information in
the label. In particular, it is important that given
this definition ofl, it is possible to define a func-
tion GRM(l) that maps a labell to a triple of non-
terminals that represents the grammatical relation
betweenm andh in the dependency structure. For
example, in the tree shown in figure 1(a), the gram-
matical relation betweencakeandate is the triple
GRM(l) = 〈VP VBD NP〉. In the tree shown in
figure 1(b), the grammatical relation betweencake
andate is the tripleGRM(l) = 〈VP VP NP〉.

The conditions under which a pair〈E, D〉 forms
a valid derivation for a sentencex are similar to
those in conventional LTAGs. Each〈i, η〉 ∈ E
must be such thatη is an elementary tree whose
anchor is the wordxi. The dependenciesD must
form a directed, projective tree spanning words
0 . . . n, with ∗ at the root of this tree, as is also
the case in previous work on discriminative ap-
proches to dependency parsing (McDonald et al.,
2005). We allow any modifier treeηm to adjoin
into any position in any head treeηh, but the de-
pendenciesD must nevertheless be coherent—for
example they must be consistent with the spines in
E, and they must be nested correctly.4 We will al-

4For example, closer modifiers to a particular head must
adjoin in at the same or a lower spine position than modifiers
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low multiple modifier spines to s-adjoin or r-adjoin
into the same node in a head spine; see section 2.3
for more details.

2.2 A Global Linear Model

The model used for parsing with this approach is
a global linear model. For a given sentencex, we
defineY(x) to be the set of valid derivations forx,
where eachy ∈ Y(x) is a pair〈E, D〉 as described
in the previous section. A functionf maps(x, y)
pairs to feature-vectorsf(x, y) ∈ Rd. The param-
eter vectorw is also a vector inRd. Given these
definitions, the optimal derivation for an input sen-
tencex is y∗ = arg maxy∈Y(x) w · f(x, y).

We now come to how the feature-vectorf(x, y)
is defined in our approach. A simple “first-order”
model would define

f(x, y) =
∑

〈i,η〉∈E(y)

e(x, 〈i, η〉) +

∑
〈h,m,l〉∈D(y)

d(x, 〈h, m, l〉) (2)

Here we useE(y) andD(y) to respectively refer
to the set of spines and dependencies iny. The
functione maps a sentencex paired with a spine
〈i, η〉 to a feature vector. The functiond maps de-
pendencies withiny to feature vectors. This de-
composition is similar to the first-order model of
McDonald et al. (2005), but with the addition of
thee features.

We will extend our model to include higher-
order features, in particular features based onsib-
ling dependencies (McDonald and Pereira, 2006),
and grandparentdependencies, as in (Carreras,
2007). Ify = 〈E, D〉 is a derivation, then:
• S(y) is a set of sibling dependencies. Each

sibling dependency is a tuple〈h, m, l, s〉. For each
〈h, m, l, s〉 ∈ S the tuple〈h, m, l〉 is an element of
D; there is one member ofS for each member of
D. The indexs is the index of the word that was
adjoined to the spine forh immediately beforem
(or theNULL symbol if no previous adjunction has
taken place).
• G(y) is a set of grandparent dependencies of

type 1. Each type 1 grandparent dependency is a
tuple 〈h, m, l, g〉. There is one member ofG for
every member ofD. The additional information,
the indexg, is the index of the word that is the first
modifier to theright of the spine form.

that are further from the head.
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Figure 2: Two Example Trees
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Figure 3: An example tree, formed by a combina-
tion of the two structures in figure 2.

• Q(y) is an additional set of grandparent de-
pendencies, of type 2. Each of these dependencies
is a tuple〈h, m, l, q〉. Again, there is one member
of Q for every member ofD. The additional infor-
mation, the indexq, is the index of the word that is
the first modifier to theleft of the spine form.

The feature-vector definition then becomes:

f(x, y) =
X

〈i,η〉∈E(y)

e(x, 〈i, η〉) +

X
〈h,m,l〉∈D(y)

d(x, 〈h, m, l〉) +
X

〈h,m,l,s〉∈S(y)

s(x, 〈h, m, l, s〉) +

X
〈h,m,l,g〉∈G(y)

g(x, 〈h, m, l, g〉) +
X

〈h,m,l,q〉∈Q(y)

q(x, 〈h, m, l, q〉)

(3)

wheres, g andq are feature vectors corresponding
to the new, higher-order elements.5

2.3 Recovering Parse Trees from Derivations

As in TAG approaches, there is a mapping from
derivations〈E, D〉 to parse trees (i.e., the type of
trees generated by a context-free grammar). In our
case, we map a spine and its dependencies to a con-
stituent structure by first handling the dependen-

5We also added constituent-boundary features to the
model, which is a simple change that led to small improve-
ments on validation data; for brevity we omit the details.
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cies on each side separately and then combining
the left and right sides.

First, it is straightforward to build the con-
stituent structure resulting from multiple adjunc-
tions on the same side of a spine. As one exam-
ple, the structure in figure 2(a) is formed by first
s-adjoining the spine with anchorcakeinto theVP
node of the spine forate, then r-adjoining spines
anchored bytodayandquickly into the same node,
where all three modifier words are to the right of
the head word. Notice that each r-adjunction op-
eration creates a newVP level in the tree, whereas
s-adjunctions do not create a new level. Now con-
sider a tree formed by first r-adjoining a spine for
luckily into the VP node forate, followed by s-
adjoining the spine forJohn into theS node, in
both cases where the modifiers are to the left of
the head. In this case the structure that would be
formed is shown in figure 2(b).

Next, consider combining the left and right
structures of a spine. The main issue is how to
handle multiple r-adjunctions or s-adjunctions on
both sides of a node in a spine, because our deriva-
tions do not specify how adjunctions from different
sides embed with each other. In our approach, the
combination operation preserves the height of the
different modifiers from the left and right direc-
tions. To illustrate this, figure 3 shows the result
of combining the two structures in figure 2. The
combination of the left and right modifier struc-
tures has led to flat structures, for example the rule
VP→ ADVP VP NP in the above tree.

Note that our r-adjunction operation is different
from the usual adjunction operation in TAGs, in
that “wrapping” adjunctions are not possible, and
r-adjunctions from the left and right directions are
independent from each other; because of this our
grammars are splittable.

3 Parsing Algorithms

3.1 Use of Eisner’s Algorithms

This section describes the algorithm for finding
y∗ = arg maxy∈Y(x) w · f(x, y) wheref(x, y) is
defined through either the first-order model (Eq. 2)
or the second-order model (Eq. 3).

For the first-order model, the methods described
in (Eisner, 2000) can be used for the parsing algo-
rithm. In Eisner’s algorithms for dependency pars-
ing each word in the input has left and right finite-
state (weighted) automata, which generate the left
and right modifiers of the word in question. We

make use of this idea of automata, and also make
direct use of the method described in section 4.2 of
(Eisner, 2000) that allows a set of possible senses
for each word in the input string. In our use of
the algorithm, each possible sense for a word cor-
responds to a different possible spine that can be
associated with that word. The left and right au-
tomata are used to keep track of the last position
in the spine that was adjoined into on the left/right
of the head respectively. We can make use of sep-
arate left and right automata—i.e., the grammar is
splittable—because left and right modifiers are ad-
joined independently of each other in the tree. The
extension of Eisner’s algorithm to the second-order
model is similar to the algorithm described in (Car-
reras, 2007), but again with explicit use of word
senses and left/right automata. The resulting algo-
rithms run inO(Gn3) andO(Hn4) time for the
first-order and second-order models respectively,
whereG andH are grammar constants.

3.2 Efficient Parsing

The efficiency of the parsing algorithm is impor-
tant in applying the parsing model to test sen-
tences, and also when training the model using dis-
criminative methods. The grammar constantsG
andH introduced in the previous section are poly-
nomial in factors such as the number of possible
spines in the model, and the number of possible
states in the finite-state automata implicit in the
parsing algorithm. These constants are large, mak-
ing exhaustive parsing very expensive.

To deal with this problem, we use a simple ini-
tial model to prune the search space of the more
complex model. The first-stage model we use
is a first-order dependency model, with labeled
dependencies, as described in (McDonald et al.,
2005). As described shortly, we will use this model
to computemarginal scores for dependencies in
both training and test sentences. A marginal score
µ(x, h, m, l) is a value between0 and 1 that re-
flects the plausibility of a dependency for sentence
x with head-wordxh, modifier wordxm, and la-
bel l. In the first-stage pruning model the labelsl
are triples of non-terminals representing grammat-
ical relations, as described in section 2.1 of this
paper—for example, one possible label would be
〈VP VBD NP〉, and in general any triple of non-
terminals is possible.

Given a sentencex, and an indexm of a word
in that sentence, we defineDMAX(x, m) to be the
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highest scoring dependency withm as a modifier:

DMAX(x, m) = max
h,l

µ(x, h, m, l)

For a sentencex, we then define the set of allow-
able dependencies to be

π(x) = {〈h, m, l〉 : µ(x, h, m, l) ≥ αDMAX(x, m)}
whereα is a constant dictating the beam size that
is used (in our experiments we usedα = 10−6).

The setπ(x) is used to restrict the set of pos-
sible parses under the full TAG-based model. In
section 2.1 we described how the TAG model has
dependency labels of the form〈POS, A, ηh, ηm, L〉,
and that there is a functionGRM that maps labels
of this form to triples of non-terminals. The ba-
sic idea of the pruned search is to only allow de-
pendencies of the form〈h, m, 〈POS, A, ηh, ηm, L〉〉
if the tuple 〈h, m, GRM(〈POS, A, ηh, ηm, L〉)〉 is a
member ofπ(x), thus reducing the search space
for the parser.

We now turn to how the marginalsµ(x, h, m, l)
are defined and computed. A simple approach
would be to use a conditional log-linear model
(Lafferty et al., 2001), with features as defined by
McDonald et al. (2005), to define a distribution
P (y|x) where the parse structuresy are depen-
dency structures with labels that are triples of non-
terminals. In this case we could define

µ(x, h, m, l) =
∑

y:(h,m,l)∈y

P (y|x)

which can be computed with inside-outside style
algorithms, applied to the data structures from
(Eisner, 2000). The complexity of training and ap-
plying such a model is againO(Gn3), whereG is
the number of possible labels, and the number of
possible labels (triples of non-terminals) is around
G = 1000 in the case of treebank parsing; this
value forG is still too large for the method to be ef-
ficient. Instead, we train three separate modelsµ1,
µ2, andµ3 for the three different positions in the
non-terminal triples. We then takeµ(x, h, m, l) to
be a product of these three models, for example we
would calculate

µ(x, h, m, 〈VP VBD NP〉) =
µ1(x, h, m, 〈VP〉)× µ2(x, h, m, 〈VBD〉)
×µ3(x, h, m, 〈NP〉)

Training the three models, and calculating the
marginals, now has a grammar constant equal

to the number of non-terminals in the grammar,
which is far more manageable. We use the algo-
rithm described in (Globerson et al., 2007) to train
the conditional log-linear model; this method was
found to converge to a good model after 10 itera-
tions over the training data.

4 Implementation Details

4.1 Features

Section 2.2 described the use of feature vectors
associated with spines used in a derivation, to-
gether with first-order, sibling, and grandparent
dependencies. The dependency features used in
our experiments are closely related to the features
described in (Carreras, 2007), which are an ex-
tension of the McDonald and Pereira (2006) fea-
tures to cover grandparent dependencies in addi-
tion to first-order and sibling dependencies. The
features take into account the identity of the la-
bels l used in the derivations. The features could
potentially look at any information in the la-
bels, which are of the form〈POS, A, ηh, ηm, L〉,
but in our experiments, we map labels to a pair
(GRM(〈POS, A, ηh, ηm, L〉), A). Thus the label fea-
tures are sensitive only to the triple of non-
terminals corresponding to the grammatical rela-
tion involved in an adjunction, and a binary flag
specifiying whether the operation is s-adjunction
or r-adjunction.

For the spine featurese(x, 〈i, η〉), we use fea-
ture templates that are sensitive to the identity of
the spineη, together with contextual features of
the stringx. These features consider the iden-
tity of the words and part-of-speech tags in a win-
dow that is centered onxi and spans the range
x(i−2) . . . x(i+2).

4.2 Extracting Derivations from Parse Trees

In the experiments in this paper, the following
three-step process was used: (1) derivations were
extracted from a training set drawn from the Penn
WSJ treebank, and then used to train a parsing
model; (2) the test data was parsed using the re-
sulting model, giving a derivation for each test
data sentence; (3) the resulting test-data deriva-
tions were mapped back to Penn-treebank style
trees, using the method described in section 2.1.
To achieve step (1), we first apply a set of head-
finding rules which are similar to those described
in (Collins, 1997). Once the head-finding rules
have been applied, it is straightforward to extract
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precision recall F1
PPK07 – – 88.3
FKM08 88.2 87.8 88.0
CH2000 89.5 89.6 89.6
CO2000 89.9 89.6 89.8
PK07 90.2 89.9 90.1

this paper 91.4 90.7 91.1
CJ05 – – 91.4
H08 – – 91.7

CO2000(s24) 89.6 88.6 89.1
this paper (s24) 91.1 89.9 90.5

Table 1: Results for different methods. PPK07, FKM08,
CH2000, CO2000, PK07, CJ05 and H08 are results on section
23 of the Penn WSJ treebank, for the models of Petrov et al.
(2007), Finkel et al. (2008), Charniak (2000), Collins (2000),
Petrov and Klein (2007), Charniak and Johnson (2005), and
Huang (2008). (CJ05 is the performance of an updated
model at http://www.cog.brown.edu/mj/software.htm.) “s24”
denotes results on section 24 of the treebank.

s23 s24
KCC08 unlabeled 92.0 91.0
KCC08 labeled 92.5 91.7

this paper 93.5 92.5

Table 2:Table showing unlabeled dependency accuracy for
sections 23 and 24 of the treebank, using the method of (Ya-
mada and Matsumoto, 2003) to extract dependencies from
parse trees from our model. KCC08 unlabeled is from (Koo
et al., 2008), a model that has previously been shown to have
higher accuracy than (McDonald and Pereira, 2006). KCC08
labeled is the labeled dependency parser from (Koo et al.,
2008); here we only evaluate the unlabeled accuracy.

derivations from the Penn treebank trees.
Note that the mapping from parse trees to

derivations is many-to-one: for example, the ex-
ample trees in section 2.3 have structures that are
as “flat” (have as few levels) as is possible, given
the setD that is involved. Other similar trees,
but with more VP levels, will give the same set
D. However, this issue appears to be benign in the
Penn WSJ treebank. For example, on section 22 of
the treebank, if derivations are first extracted using
the method described in this section, then mapped
back to parse trees using the method described in
section 2.3, the resulting parse trees score 100%
precision and 99.81% recall in labeled constituent
accuracy, indicating that very little information is
lost in this process.

4.3 Part-of-Speech Tags, and Spines

Sentences in training, test, and development data
are assumed to have part-of-speech (POS) tags.
POS tags are used for two purposes: (1) in the
features described above; and (2) to limit the set
of allowable spines for each word during parsing.
Specifically, for each POS tag we create a separate

1st stage 2nd stage
α active coverage oracle F1 speed F1

10−4 0.07 97.7 97.0 5:15 91.1
10−5 0.16 98.5 97.9 11:45 91.6
10−6 0.34 99.0 98.5 21:50 92.0

Table 3: Effect of the beam size, controlled byα, on the
performance of the parser on the development set (1,699 sen-
tences). In each caseα refers to the beam size used in both
training and testing the model. “active”: percentage of de-
pendencies that remain in the beam out of the total number of
labeled dependencies (1,000 triple labels times 1,138,167 un-
labeled dependencies); “coverage”: percentage of correct de-
pendencies in the beam out of the total number of correct de-
pendencies. “oracle F1”: maximum achievable score of con-
stituents, given the beam. “speed”: parsing time inmin:sec
for the TAG-based model (this figure does not include the time
taken to calculate the marginals using the lower-order model);
“F1”: score of predicted constituents.

dictionary listing the spines that have been seen
with this POS tag in training data; during parsing
we only allow spines that are compatible with this
dictionary. (For test or development data, we used
the part-of-speech tags generated by the parser of
(Collins, 1997). Future work should consider in-
corporating the tagging step within the model; it is
not challenging to extend the model in this way.)

5 Experiments

Sections 2-21 of the Penn Wall Street Journal tree-
bank were used as training data in our experiments,
and section 22 was used as a development set. Sec-
tions 23 and 24 were used as test sets. The model
was trained for 20 epochs with the averaged per-
ceptron algorithm, with the development data per-
formance being used to choose the best epoch. Ta-
ble 1 shows the results for the method.

Our experiments show an improvement in per-
formance over the results in (Collins, 2000; Char-
niak, 2000). We would argue that the Collins
(2000) method is considerably more complex than
ours, requiring a first-stage generative model, to-
gether with a reranking approach. The Char-
niak (2000) model is also arguably more com-
plex, again using a carefully constructed genera-
tive model. The accuracy of our approach also
shows some improvement over results in (Petrov
and Klein, 2007). This work makes use of a
PCFG with latent variables that is trained using
a split/merge procedure together with the EM al-
gorithm. This work is in many ways comple-
mentary to ours—for example, it does not make
use of GLMs, dependency features, or of repre-
sentations that go beyond PCFG productions—and
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some combination of the two methods may give
further gains.

Charniak and Johnson (2005), and Huang
(2008), describe approaches that make use of non-
local features in conjunction with the Charniak
(2000) model; future work may consider extend-
ing our approach to include non-local features.
Finally, other recent work (Petrov et al., 2007;
Finkel et al., 2008) has had a similar goal of scal-
ing GLMs to full syntactic parsing. These mod-
els make use of PCFG representations, but do not
explicitly model bigram or trigram dependencies.
The results in this work (88.3%/88.0% F1) are
lower than our F1 score of 91.1%; this is evidence
of the benefits of the richer representations enabled
by our approach.

Table 2 shows the accuracy of the model in
recovering unlabeled dependencies. The method
shows improvements over the method described
in (Koo et al., 2008), which is a state-of-the-art
second-order dependency parser similar to that of
(McDonald and Pereira, 2006), suggesting that the
incorporation of constituent structure can improve
dependency accuracy.

Table 3 shows the effect of the beam-size on the
accuracy and speed of the parser on the develop-
ment set. With the beam setting used in our exper-
iments (α = 10−6), only 0.34% of possible depen-
dencies are considered by the TAG-based model,
but 99% of all correct dependencies are included.
At this beam size the best possible F1 constituent
score is 98.5. Tighter beams lead to faster parsing
times, with slight drops in accuracy.

6 Conclusions
We have described an efficient and accurate parser
for constituent parsing. A key to the approach has
been to use a splittable grammar that allows effi-
cient dynamic programming algorithms, in com-
bination with pruning using a lower-order model.
The method allows relatively easy incorporation of
features; future work should leverage this in pro-
ducing more accurate parsers, and in applying the
parser to different languages or domains.
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Abstract

Combination of features contributes to a
significant improvement in accuracy on
tasks such as part-of-speech (POS) tag-
ging and text chunking, compared with us-
ing atomic features. However, selecting
combination of features on learning with
large-scale and feature-rich training data
requires long training time. We propose a
fast boosting-based algorithm for learning
rules represented by combination of fea-
tures. Our algorithm constructs a set of
rules by repeating the process to select sev-
eral rules from a small proportion of can-
didate rules. The candidate rules are gen-
erated from a subset of all the features with
a technique similar to beam search. Then
we propose POS tagging and text chunk-
ing based on our learning algorithm. Our
tagger and chunker use candidate POS tags
or chunk tags of each word collected from
automatically tagged data. We evaluate
our methods with English POS tagging and
text chunking. The experimental results
show that the training time of our algo-
rithm are about 50 times faster than Sup-
port Vector Machines with polynomial ker-
nel on the average while maintaining state-
of-the-art accuracy and faster classification
speed.

1 Introduction

Several boosting-based learning algorithms have
been applied to Natural Language Processing
problems successfully. These include text catego-
rization (Schapire and Singer, 2000), Natural Lan-
guage Parsing (Collins and Koo, 2005), English
syntactic chunking (Kudo et al., 2005) and so on.

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

Furthermore, classifiers based on boosting-
based learners have shown fast classification speed
(Kudo et al., 2005).

However, boosting-based learning algorithms
require long training time. One of the reasons is
that boosting is a method to create a final hypoth-
esis by repeatedly generating a weak hypothesis in
each training iteration with a given weak learner.
These weak hypotheses are combined as the fi-
nal hypothesis. Furthermore, the training speed
of boosting-based algorithms becomes more of a
problem when considering combination of features
that contributes to improvement in accuracy.

This paper proposes a fast boosting-based algo-
rithm for learning rules represented by combina-
tion of features. Our learning algorithm uses the
following methods to learn rules from large-scale
training samples in a short time while maintaining
accuracy; 1) Using a rule learner that learns sev-
eral rules as our weak learner while ensuring a re-
duction in the theoretical upper bound of the train-
ing error of a boosting algorithm, 2) Repeating to
learn rules from a small proportion of candidate
rules that are generated from a subset of all the fea-
tures with a technique similar to beam search, 3)
Changing subsets of features used by weak learner
dynamically for alleviating overfitting.

We also propose feature-rich POS tagging and
text chunking based on our learning algorithm.
Our POS tagger and text chunker use candidate
tags of each word obtained from automatically
tagged data as features.

The experimental results with English POS tag-
ging and text chunking show drastically improve-
ment of training speeds while maintaining compet-
itive accuracy compared with previous best results
and fast classification speeds.

2 Boosting-based Learner
2.1 Preliminaries
We describe the problem treated by our boosting-
based learner as follows. Let X be the set of ex-
amples and Y be a set of labels {−1,+1}. Let
F = {f1, f2, ..., fM} be M types of features rep-
resented by strings. Let S be a set of training sam-
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## S = {(xi, yi)}mi=1 : xi ⊆ X ,yi ∈ {±1}
## a smoothing value ε =1
## rule number r: the initial value is 1.
Initialize: For i=1,...,m: w1,i = exp( 1

2
log(

W+1
W−1

));
While (r ≤ R)
## Train weak-learner using (S, {wr,i}mi=1)
## Get ν types of rules: {fj}νj=1

{fj}νj=1 ← weak-learner(S,{wr,i}mi=1);
## Update weights with confidence value
Foreach f ∈ {fj}νj=1

c = 1
2
log(

Wr,+1(f)+ε

Wr,−1(f)+ε
)

For i=1,...,m: wr+1,i = wr,i exp(−yih〈f ,c〉)
fr = f ; cr = c; r++;

endForeach
endWhile
Output: F (x) = sign(log(

W+1
W−1

) +
PR
r=1h〈fr,cr〉(x))

Figure 1: A generalized version of our learner

ples {(x1, y1), ..., (xm, ym)}, where each example
xi ∈ X consists of features in F , which we call a
feature-set, and yi ∈ Y is a class label. The goal is
to induce a mapping

F : X → Y
from S.

Let |xi| (0 < |xi| ≤ M) be the number of fea-
tures included in a feature-set xi, which we call
the size of xi, and xi,j ∈ F (1 ≤ j ≤ |xi| ) be a
feature included in xi. 1 We call a feature-set of
size k a k-feature-set. Then we define subsets of
feature-sets as follows.

Definition 1 Subsets of feature-sets
If a feature-set xj contains all the features in a

feature-set xi, then we call xi is a subset of xj and
denote it as

xi ⊆ xj.

Then we define weak hypothesis based on the
idea of the real-valued predictions and abstaining
(RVPA, for short) (Schapire and Singer, 2000). 2

Definition 2 Weak hypothesis for feature-sets
Let f be a feature-set, called a rule, x be a

feature-set, and c be a real number, called a con-
fidence value, then a weak-hypothesis for feature-
sets is defined as

h〈f ,c〉(x) =
{
c f ⊆ x
0 otherwise

.

1Our learner can handle binary vectors as in (Morishita,
2002). When our learner treats binary vectors forM attributes
{X1,...,Xm}, the learner converts each vector to the corre-
sponding feature-set as xi ← {fi|Xi,j ∈ Xi ∧ Xi,j = 1}
(1 ≤ i ≤ m, 1 ≤ j ≤M ).

2We use the RVPA because training with RVPA is faster
than training with Real-valued-predictions (RVP) while main-
taining competitive accuracy (Schapire and Singer, 2000).
The idea of RVP is to output a confidence value for samples
which do not satisfy the given condition too.

2.2 Boosting-based Rule Learning
Our boosting-based learner selectsR types of rules
for creating a final hypothesisF on several training
iterations. The F is defined as

F (x) = sign(
PR
r=1h〈fr,cr〉(x)).

We use a learning algorithm that generates
several rules from a given training samples
S = {(xi, yi)}mi=1 and weights over samples
{wr,1, ..., wr,m} as input of our weak learner. wr,i
is the weight of sample number i after selecting
r−1 types of rules, where 0<wr,i, 1 ≤ i ≤ m and
1 ≤ r ≤ R.

Given such input, the weak learner selects ν
types of rules {fj}νj=1 (fj ⊆ F) with gain:

gain(f)
def
= |pWr,+1(f)−pWr,−1(f)|,

where f is a feature-set, and Wr,y(f) is
Wr,y(f) =

Pm
i=1 wr,i[[f ⊆ xi ∧ yi = y]],

and [[π]] is 1 if a proposition π holds and 0 other-
wise.

The weak learner selects a feature-set having the
highest gain as the first rule, and the weak learner
finally selects ν types of feature-sets having gain
in top ν as {fj}νj=1 at each boosting iteration.

Then the boosting-based learner calculates the
confidence value of each f in {fj}νj=1 and updates
the weight of each sample. The confidence value
cj for fj is defined as

cj = 1
2
log(

Wr,+1(fj)

Wr,−1(fj)
).

After the calculation of cj for fj , the learner up-
dates the weight of each sample with

wr+1,i = wr,iexp(−yih〈fj ,cj〉). (1)

Then the learner adds (fj, cj) to F as the r-
th rule and its confidence value. 3 When we
calculate the confidence value cj+1 for fj+1, we
use {wr+1,1, ..., wr+1,m}. The learner adds (fj+1,
cj+1) to F as the r+1-th rule and confidence value.

After the updates of weights with {fj}νj=1, the
learner starts the next boosting iteration. The
learner continues training until obtaining R rules.

Our boosting-based algorithm differs from the
other boosting algorithms in the number of rules
learned at each iteration. The other boosting-based
algorithms usually learn a rule at each iteration

3Eq. (1) is the update of the AdaBoost used in ADTrees
learning algorithm (Freund and Mason, 1999). We use
this AdaBoost by the following two reasons. 1) The pa-
per (Iwakura and Okamoto, 2007) showed that the accuracy
of text chunking with the AdaBoost of ADTrees is slightly
higher than text chunking with the AdaBoost of BoosTexter
for RVPA (Schapire and Singer, 2000), 2) We expect the Ad-
aBoost of ADTrees can realize faster training because this Ad-
aBoost does not normalize weights at each update compared
with the AdaBoost of BoosTexter normalizes weights at each
iteration.
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## sortByW (F ,fq): Sort features (f ∈ F )
## in ascending order based on weights of features
## (a % b): Return the reminder of (a÷ b)
## |B|-buckets: B = {B[0], ..., B[|B| − 1]}
procedure distFT(S, |B|)
##Calculate the weight of each feature
Foreach (f∈F) Wr(f) =

Pm
i=1 wr,i[[{f} ⊆ xi]]

##Sort features based on thier weights and
## store the results in Fs
Fs← sortByW (F ,Wr)
## Distribute features to buckets
For i=0...M : B[(i % |B|)] = (B[(i % |B|)] ∪ Fs[i])
return B

Figure 2: Distribute features to buckets based on weights

(Schapire and Singer, 2000; Freund and Mason,
1999). Despite the difference, our boosting-based
algorithm ensures a reduction in the theoretical up-
per bound of training error of the AdaBoost. We
list the detailed explanation in Appendix.A.

Figure 1 shows an overview of our boosting-
based rule learner. To avoid to happen that
Wr,+1(f) or Wr,−1(f) is very small or even zero,
we use the smoothed values ε (Schapire and
Singer, 1999). Furthermore, to reflect imbalance
class distribution, we use the default rule (Freund
and Mason, 1999), defined as 1

2 log(W+1

W−1
), where

Wy =
∑m

i=1[[yi = y]] for y ∈ {±1}. The initial
weights are defined with the default rule.

3 Fast Rule Learner
3.1 Generating Candidate Rules
We use a method to generate candidate rules with-
out duplication (Iwakura and Okamoto, 2007).
We denote f ′ = f + f as the generation of k + 1-
feature-set f ′ consisting of a feature f and a k-
feature-set f . Let ID(f) be the integer corre-
sponding to f , called id, and φ be 0-feature-set.
Then we define gen generating a feature-set as

gen(f , f) =

(
f + f if ID(f) > max

f ′∈f
ID(f ′)

φ otherwise
.

We assign smaller integer to more infrequent fea-
tures as id. If there are features having the same
frequency, we assign id to each feature with lexi-
cographic order of features. Training based on this
candidate generation showed faster training speed
than generating candidates by an arbitrary order
(Iwakura and Okamoto, 2007).

3.2 Training with Redistributed Features
We propose a method for learning rules by repeat-
ing to select a rule from a small portion of can-
didate rules. We evaluated the effectiveness of
four types of methods to learn a rule from a sub-
set of features on boosting-based learners with a
text chunking task (Iwakura and Okamoto, 2007).
The results showed that Frequency-based distribu-
tion (F-dist) has shown the best accuracy. F-dist

## Fk : A set of k-feature-sets
##Ro : ν optimal rules (feature-sets)
## Rk,ω : ω k-feature-sets for generating candidates
## selectNBest(R, n, S, Wr): n best rules fromR
## with gain on {wi,r}mi=1 and training samples S
procedure weak-learner(Fk, S, Wr)
## ν best feature-sets as rules
Ro = selectNBest(Ro ∪ Fk, ν, S, Wr);
if (ζ ≤ k) returnRo; ## Size constraint
## ω best feature-sets in Fk for generating candidates
Rk,ω = selectNBest(Fk, ω, S, Wr);
τ = min

f∈Ro
gain(f); ## The gain of ν-th optimal rule

Foreach ( fk ∈ Rk,ω)
if ( u(fk) < τ) continue; ## Upper bound of gain
Foreach (f ∈ F ) ## Generate candidates
fk+1 = gen(fk, f);
if (ξ ≤Pm

i=1[[fk+1 ⊆ xi]]) Fk+1 = (Fk+1 ∪ fk+1);
end Foreach

end Foreach
return weak-learner(Fk+1, S,W );

Figure 3: Find optimal feature-sets with given weights

distributes features to subsets of features, called
buckets, based on frequencies of features.

However, we guess training using a subset of
features depends on how to distribute features to
buckets like online learning algorithms that gener-
ally depend on the order of the training examples
(Kazama and Torisawa, 2007).

To alleviate the dependency on selected buck-
ets, we propose a method that redistributes fea-
tures, called Weight-based distribution (W-dist).
W-dist redistributes features to buckets based on
the weight of feature defined as

Wr(f) =
Pm
i=1 wr,i[[{f} ⊆ xi]]

for each f ∈ F after examining all buckets. Fig-
ure 2 describes an overview of W-dist.

3.3 Weak Learner for Learning Several Rules
We propose a weak learner that learns several rules
from a small portion of candidate rules.

Figure 3 describes an overview of the weak
learner. At each iteration, one of the |B|-buckets
is given as an initial 1-feature-sets F1. The weak
learner finds ν best feature-sets as rules from can-
didates consisting of F1 and feature-sets generated
from F1. The weak learner generates candidates k-
feature-sets (1 < k) from ω best (k-1)-feature-sets
in Fk−1 with gain.

We also use the following pruning techniques
(Morishita, 2002; Kudo et al., 2005).
• Frequency constraint: We examine candidates
seen on at least ξ different examples.
• Size constraint: We examine candidates whose
size is no greater than a size threshold ζ.
• Upper bound of gain: We use the upper bound
of gain defined as

u(f)
def
= max(

p
Wr,+1(f),

p
Wr,−1(f)).

For any feature-set f ′⊆F , which contains f (i.e.
f ⊆ f ′), the gain(f ′) is bounded under u(f), since
0 ≤ Wr,y(f ′) ≤ Wr,y(f) for y ∈ {±1}. Thus, if u(f)
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## S = {(xi, yi)}mi=1 : xi⊆X , yi ∈ {+1}
## Wr = {wr,i}mi=1: Weights of samples after learning
## r types of rules. w1,i = 1 (1 ≤ i ≤ m)
## |B| : The size of bucket B = {B[0], ..., B[|B| − 1]}
## b, r : The current bucket and rule number
procedure AdaBoost.SDF()
B = distFT(S, |B|); ## Distributing features into B
## Initialize values and weights:
r = 1; b = 0; c0 = 1

2
log(

W+1
W−1

);
For i = 1,...,m: w1,i = exp(c0);
While (r ≤ R) ## Learning R types of rules
##Select ν rules and increment bucket id b
R = weak-learner(B[b], S,Wr); b++;
Foreach (f ∈ R) ##Update weights with each rule
c = 1

2
log(

Wr,+1(f)+1

Wr,−1(f)+1
);

For i=1,..,m wr+1,i = wr,i exp(−yih〈f ,c〉);
fr = f ; cr = c; r++;

end Foreach
if (b == |B|) ## Redistribution
B = distFT(S, |B|); b=0;

end if
end While
return F (x) = sign(c0 +

PR
r=1 h〈fr,cr〉(x))

Figure 4: An overview of AdaBoost.SDF
· words, words that are turned into all capitalized,
prefixes and suffixes (up to 4) in a 7-word window.
· labels assigned to three words on the right.
· whether the current word has a hyphen,

a number, a capital letter
· whether the current word is all capital, all small
· candidate POS tags of words in a 7-word window

Figure 5: Feature types for POS tagging

is less than the gain of the current optimal rule τ ,
candidates containing f are safely pruned.

Figure 4 describes an overview of our algorithm,
which we call AdaBoost for a weak learner learn-
ing Several rules from Distributed Features (Ad-
aBoost.SDF, for short).

The training of AdaBoost.SDF with (ν =
1, ω = ∞, 1 < |B| ) is equivalent to the approach
of AdaBoost.DF (Iwakura and Okamoto, 2007). If
we use (|B| = 1,ν = 1), AdaBoost.SDF examines
all features on every iteration like (Freund and Ma-
son, 1999; Schapire and Singer, 2000).

4 POS tagging and Text Chunking
4.1 English POS Tagging
We used the Penn Wall Street Journal treebank
(Marcus et al., 1994). We split the treebank into
training (sections 0-18), development (sections 19-
21) and test (sections 22-24) as in (Collins, 2002).
We used the following candidate POS tags, called
candidate feature, in addition to commonly used
features (Giménez and Màrquez, 2003; Toutanova
et al., 2003) shown in Figure 5.

We collect candidate POS tags of each word
from the automatically tagged corpus provided for
the shared task of English Named Entity recog-
nition in CoNLL 2003. 4 The corpus includes
17,003,926 words with POS tags and chunk tags

4http://www.cnts.ua.ac.be/conll2003 /ner/

· words and POS tags in a 5-word window.
· labels assigned to two words on the right.
· candidate chunk tags of words in a 5-word window

Figure 6: Feature types for text chunking

annotated by a POS tagger and a text chunker.
Thus, the corpus includes wrong POS tags and
chunk tags.

We collected candidate POS tags of words that
appear more than 9 times in the corpus. We express
these candidates with one of the following ranges
decided by their frequency fq; 10 ≤ fq < 100,
100 ≤ fq < 1000 and 1000 ≤ fq.

For example, we express ’work’ annotated as
NN 2000 times like “1000≤NN”. If ’work’ is cur-
rent word, we add 1000≤NN as a candidate POS
tag feature of the current word. If ’work’ appears
the next of the current word, we add 1000≤NN as
a candidate POS tag of the next word.

4.2 Text Chunking
We used the data prepared for CoNLL-2000 shared
tasks. 5 This task aims to identify 10 types of
chunks, such as, NP, VP and PP, and so on.

The data consists of subsets of Penn Wall Street
Journal treebank; training (sections 15-18) and test
(section 20). We prepared the development set
from section 21 of the treebank as in (Tsuruoka
and Tsujii, 2005). 6

Each base phrase consists of one word or more.
To identify word chunks, we use IOE2 representa-
tion. The chunks are represented by the following
tags: E-X is used for end word of a chunk of class
X. I-X is used for non-end word in an X chunk. O
is used for word outside of any chunk.

For instance, “[He] (NP) [reckons] (VP) [the
current account deficit] (NP)...” is represented by
IOE2 as follows; “He/E-NP reckons/E-VP the/I-
NP current/I-NP account/I-NP deficit/E-NP”.

We used features shown in Figure 6. We col-
lected the followings as candidate chunk tags from
the same automatically tagged corpus used in POS
tagging.
• Candidate tags expressed with frequency infor-
mation as in POS tagging
• The ranking of each candidate decided by fre-
quencies in the automatically tagged data
• Candidate tags of each word
For example, if we collect “work” anno-
tated as I-NP 2000 times and as E-VP 100
time, we generate the following candidate fea-
tures for “work”; 1000≤I-NP, 100≤E-VP<1000,
rank:I-NP=1 rank:E-NP=2, candidate=I-NP and
candidate=E-VP.

5http://lcg-www.uia.ac.be/conll2000/chunking/
6We used http://ilk.uvt.nl/˜sabine/chunklink/chunklink 2-2-2000 for conll.pl

for creating development data.
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Table 1: Training data for experiments: ] of S, M , ] of
cl and av. ] of ft indicate the number samples, the distinct
number of feature types, the number of class in each data set,
and the average number of features, respectively. POS and
ETC indicate POS-tagging and text chunking. The “-c” in-
dicates using candidate features collected from parsed unla-
beled data.

data ] of S M ] of cl av. ] of ft
POS 912,344 579,052 45 22.09
POS-c 912,344 579,793 45 35.39
ETC 211,727 92,825 22 11.37
ETC-c 211,727 93,333 22 45.49

We converted the chunk representation of the
automatically tagged corpus to IOE2 and we col-
lected chunk tags of each word appearing more
than nine times.

4.3 Applying AdaBoost.SDF
AdaBoost.SDF treats the binary classification
problem. To extend AdaBoost.SDF to multi-class,
we used the one-vs-the-rest method.

To identify proper tag sequences, we use Viterbi
search. We map the confidence value of each clas-
sifier into the range of 0 to 1 with sigmoid function
7, and select a tag sequence which maximizes the
sum of those log values by Viterbi search.

5 Experiments
5.1 Experimental Settings
We compared AdaBoost.SDF with Support Vec-
tor Machines (SVM). SVM has shown good per-
formance on POS tagging (Giménez and Màrquez,
2003) and Text Chunking (Kudo and Matsumoto,
2001). Furthermore, SVM with polynomial kernel
implicitly expands all feature combinations with-
out increasing the computational costs. Thus, we
compared AdaBoost.SDF with SVM. 8

To evaluate the effectiveness of candidate fea-
tures, we examined two types of experiments with
candidate features and without them. We list the
statics of training sets in Table 1.

We tested R=100,000, |B|=1,000, ν =
{1,10,100}, ω={1,10,100,∞}, ζ={1,2,3}, and
ξ={1,5} for AdaBoost.SDF. We tested the soft
margin parameter C={0.1,1,10} and the kernel
degree d={1,2,3} for SVM. 9

We used the followings for comparison; Train-
ing time is time to learn 100,000 rules. Best train-
ing time is time for generating rules to show the
best F-measure (Fβ=1) on development data. Ac-
curacy is Fβ=1 on a test data with the rules at best
training time.

7s(X) = 1/(1 + exp(−βX)), where X = F (x) is a
output of a classifier. We used β=5 in this experiment.

8We used TinySVM (http://chasen.org/˜taku/software/TinySVM/).
9We used machines with 2.66 GHz QuadCore Intel Xeon

and 10 GB of memory for all the experiments.

Table 2: Experimental results of POS tagging and Text
Chunking (TC) with candidate features. F and time indicate
the average Fβ=1 of test data and time (hour) to learn 100,000
rules for all classes with F-dist. These results are listed sepa-
rately with respect to each ξ = {1, 5}.
ν POS(ξ = 1) POS (ξ = 5) TC (ξ = 1) TC (ξ = 5)

F time F time F time F time
1 97.27 196.3 97.23 195.7 93.98 145.3 93.95 155.8

10 97.23 23.05 97.17 22.35 93.96 2.69 93.88 2.70
100 96.82 2.99 96.83 2.91 93.16 0.74 93.14 0.56
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Figure 7: Accuracy on development data of Text Chunk-
ing (ζ = 3) obtained with parsers based on F-dist. We mea-
sured accuracy obtained with rules at each training time. The
widest line is AdaBoost.SDF (ν=1,ω=∞). The others are Ad-
aBoost.SDF ( ν=10 (◦), ν=100(•), ν=1&ω={1,10,100} ).

5.2 Effectiveness of Several Rule Learning

Table 2 shows average accuracy and training time.
We used F-dist as the distribution method. These
average accuracy obtained with rules learned by
AdaBoost.SDF (ν=10) on both tasks are competi-
tive with the average accuracy obtained with rules
learned by AdaBoost.SDF (ν=1). These results
have shown that learning several rules at each iter-
ation contributes significant improvement of train-
ing time. These results have also shown that the
learning several rule at each iteration methods are
more efficient than training by just using the fre-
quency constraint ξ.

Figure 7 shows a snapshot for accuracy ob-
tained with chunkers using different number of
rules. This graph shows that chunkers based
on AdaBoost.SDF (ν=10,100) and AdaBoost.SDF
(ν=1,ω={1,10,100}) have shown better accuracy than
chunkers based on AdaBoost.SDF (ν=1,ω=∞) at
each training time. These result have shown that
learning several rules at each iteration and learning
combination of features as rules with a technique
similar to beam search are effective in improving
training time while giving a better convergence.

Figure 7 also implies that taggers and chunkers
based on AdaBoost.SDF (ν=100) will show better
or competitive accuracy than accuracy of the oth-
ers by increasing numbers of rules to be learned
while maintaining faster convergence speed.
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Table 3: Experimental results on POS tagging and Text
Chunking. Accuracies (Fβ=1) on test data and training time
(hour) of AdaBoost.SDF are averages of ω={1,10,100,∞} for
each ζ with F-dist and ξ = 1. Fβ=1 and time (hour) of SVMs
are averages of C={0.1,1,10} for each kernel parameter d.

POS tagging without candidate features
Alg. / 1 2 3
ζ (d) Fβ=1 time Fβ=1 time Fβ=1 time

ν=1 96.96 5.09 97.10 27.90 97.10 30.92
ν=10 96.89 0.79 97.12 4.56 97.07 4.74
ν=100 96.57 0.10 96.82 0.81 96.73 0.81
SVMs 96.60 101.63 97.15 166.76 96.93 625.32

POS tagging with candidate features
Alg. / 1 2 3
ζ (d) Fβ=1 time Fβ=1 time Fβ=1 time

ν=1 97.06 6.65 97.30 109.20 97.29 330.82
ν=10 96.98 1.27 97.29 13.26 97.23 38.27
ν=100 96.61 0.14 96.93 1.64 96.76 5.05
SVMs 96.76 170.24 97.31 206.39 97.23 1346.04

Text Chunking without candidate features
Alg. / 1 2 3
ζ (d) Fβ=1 time Fβ=1 time Fβ=1 time

ν=1 92.50 0.12 93.60 0.26 93.47 0.41
ν=10 92.34 0.02 93.50 0.05 93.39 0.07
ν=100 89.70 0.008 92.31 0.02 92.03 0.02
SVMs 92.14 8.55 93.91 7.38 93.49 9.82

Text Chunking with candidate features
Alg. / 1 2 3
ζ (d) Fβ=1 time Fβ=1 time Fβ=1 time

ν=1 92.89 0.25 94.19 26.10 94.04 300.77
ν=10 92.85 0.04 94.11 2.97 94.08 3.06
ν=100 91.99 0.01 93.37 0.32 93.24 0.34
SVMs 92.77 12.74 94.31 9.63 94.20 49.27

5.3 Comparison with SVM
Table 3 lists average accuracy and training time
on POS tagging and text chunking with respect
to each (ν, ζ) for AdaBoost.SDF and d for SVM.
AdaBoost.SDF with ν=10 and ν=100 have shown
much faster training speeds than SVM and Ad-
aBoost.SDF ( ν=1,ω=∞) that is equivalent to the
AdaBoost.DF (Iwakura and Okamoto, 2007).

Furthermore, the accuracy of taggers and chun-
kers based on AdaBoost.SDF (ν=10) have shown
competitive accuracy with those of SVM-based
and AdaBoost.DF-based taggers and chunkers.
AdaBoost.SDF (ν=10) showed about 6 and 54
times faster training speeds than those of Ad-
aBoost.DF on the average in POS tagging and text
chunking. AdaBoost.SDF (ν=10) showed about
147 and 9 times faster training speeds than the
training speeds of SVM on the average of POS
tagging and text chunking. On the average of the
both tasks, AdaBoost.SDF (ν=10) showed about
25 and 50 times faster training speed than Ad-
aBoost.DF and SVM. These results have shown
that AdaBoost.SDF with a moderate parameter ν
can improve training time drastically while main-
taining accuracy.

These results in Table 3 have also shown that
rules represented by combination of features and
the candidate features collected from automati-
cally tagged data contribute to improved accuracy.

5.4 Effectiveness of Redistribution
We compared Fβ=1 and best training time of F-
dist and W-dist. We used ζ = 2 that has shown

Table 4: Results obtained with taggers and chunkers based
on F-dist and W-dist. These results obtained with taggers and
chunkers trained with ω = {1, 10, 100,∞} and ζ = 2. F
and time indicate average Fβ=1 on test data and average best
training time.

POS tagging with F-dist
ν ω=1 ω=10 ω=100 ω=∞

F time F time F time F time
1 97.31 30.03 97.31 64.25 97.32 142.9 97.26 89.59
10 97.26 3.21 97.32 9.57 97.30 15.54 97.30 19.64
100 96.86 0.62 96.95 1.32 96.95 2.13 96.96 2.43

POS tagging with W-dist
ν ω=1 ω=10 ω=100 ω=∞

F time F time F time F time
1 97.32 29.96 97.31 57.05 97.31 163.2 97.32 98.71
10 97.24 2.66 97.30 25.70 97.28 16.20 97.29 20.49
100 97.00 0.54 97.02 1.31 97.07 2.22 97.08 2.58

Text Chunking with F-dist
ν ω=1 ω=10 ω=100 ω=∞

F time F time F time F time
1 93.95 7.42 94.30 23.30 94.22 34.74 94.31 21.26
10 93.99 0.98 94.08 2.44 94.19 3.11 94.18 3.18
100 93.32 0.16 93.33 0.32 93.42 0.40 93.42 0.40

Text Chunking with W-dist
ν ω=1 ω=10 ω=100 ω=∞

F time F time F time F time
1 93.99 2.93 94.24 24.77 94.32 35.72 94.32 35.61
10 93.98 0.71 94.30 2.82 94.29 3.60 94.30 4.05
100 93.66 0.17 93.65 0.36 93.50 0.42 93.50 0.42

better average accuracy than ζ = {1, 3} in both
tasks. Table 4 lists comparison of F-dist and W-
dist on POS tagging and text chunking. Most of
accuracy obtained with W-dist-based taggers and
parsers better than accuracy obtained with F-dist-
based taggers and parsers. These results have
shown that W-dist improves accuracy without dras-
tically increasing training time. The text chunker
and the tagger trained with AdaBoost.SDF (ν = 10,
ω = 10 and W-dist) has shown competitive accu-
racy with that of the chunker trained with Ad-
aBoost.SDF (ν = 1, ω =∞ and F-dist) while main-
taining about 7.5 times faster training speed.

5.5 Tagging and Chunking Speeds
We measured testing speeds of taggers and chun-
kers based on rules or models listed in Table 5. 10

We examined two types of fast classification al-
gorithms for polynomial kernel: Polynomial Ker-
nel Inverted (PKI) and Polynomial Kernel Ex-
panded (PKE). The PKI leads to about 2 to 12
times improvements, and the PKE leads to 30 to
300 compared with normal classification approach
of SVM (Kudo and Matsumoto, 2003). 11

The POS-taggers based on AdaBoost.SDF,
SVM with PKI, and SVM with PKE processed
4,052 words, 159 words, and 1,676 words per sec-
ond, respectively. The chunkers based on these
three methods processed 2,732 words, 113 words,
and 1,718 words per second, respectively.

10We list average speeds of three times tests measured with
a machine with Xeon 3.8 GHz CPU and 4 GB of memory.

11We use a chunker YamCha for evaluating classification
speeds based on PKI or PKE (http://www.chasen.org/˜taku/software/

yamcha/). We list the average speeds of SVM-based tagger and
chunker with PKE of a threshold parameter σ = 0.0005 for
rule selection in both task. The accuracy obtained with mod-
els converted by PKE are slightly lower than the accuracy ob-
tained with their original models in our experiments.
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Table 5: Comparison with previous best results: (Top :
POS tagging, Bottom: Text Chunking )

POS tagging Fβ=1
Perceptron (Collins, 2002) 97.11
Dep. Networks (Toutanova et al., 2003) 97.24
SVM (Giménez and Màrquez, 2003) 97.05
ME based a bidirectional inference (Tsuruoka and Tsujii, 2005) 97.15
Guided learning for bidirectional sequence classification (Shen et al., 2007) 97.33
AdaBoost.SDF with candidate features (ζ=2,ν=1,ω=100, W-dist) 97.32
AdaBoost.SDF with candidate features (ζ=2,ν=10,ω=10, F-dist) 97.32
SVM with candidate features (C=0.1, d=2) 97.32

Text Chunking Fβ=1
Regularized Winnow + full parser output (Zhang et al., 2001) 94.17
SVM-voting (Kudo and Matsumoto, 2001) 93.91
ASO + unlabeled data (Ando and Zhang, 2005) 94.39
CRF+Reranking(Kudo et al., 2005) 94.12
ME based a bidirectional inference (Tsuruoka and Tsujii, 2005) 93.70
LaSo (Approximate Large Margin Update) (Daumé III and Marcu, 2005) 94.4
HySOL (Suzuki et al., 2007) 94.36
AdaBoost.SDF with candidate featuers (ζ=2,ν=1,ω=∞, W-dist) 94.32
AdaBoost.SDF with candidate featuers (ζ=2,ν=10,ω=10,W-dist) 94.30
SVM with candidate features (C=1, d=2) 94.31

One of the reasons that boosting-based classi-
fiers realize faster classification speed is sparseness
of rules. SVM learns a final hypothesis as a linear
combination of the training examples using some
coefficients. In contrast, this boosting-based rule
learner learns a final hypothesis that is a subset of
candidate rules (Kudo and Matsumoto, 2004).

6 Related Works
6.1 Comparison with Previous Best Results
We list previous best results on English POS tag-
ging and Text chunking in Table 5. These results
obtained with the taggers and chunkers based on
AdaBoost.SDF and SVM showed competitive F-
measure with previous best results. These show
that candidate features contribute to create state-
of-the-art taggers and chunkers.

These results have also shown that
AdaBoost.SDF-based taggers and chunkers
show competitive accuracy by learning combi-
nation of features automatically. Most of these
previous works manually selected combination
of features except for SVM with polynomial
kernel and (Kudo and Matsumoto, 2001) a
boosting-based re-ranking (Kudo et al., 2005).

6.2 Comparison with Boosting-based
Learners

LazyBoosting randomly selects a small proportion
of features and selects a rule represented by a fea-
ture from the selected features at each iteration
(Escudero et al., 2000).

Collins and Koo proposed a method only up-
dates values of features co-occurring with a rule
feature on examples at each iteration (Collins and
Koo, 2005).

Kudo et al. proposed to perform several pseudo
iterations for converging fast (Kudo et al., 2005)
with features in the cache that maintains the fea-
tures explored in the previous iterations.

AdaBoost.MHKR learns a weak-hypothesis rep-
resented by a set of rules at each boosting iteration

(Sebastiani et al., 2000).
AdaBoost.SDF differs from previous works in

the followings. AdaBoost.SDF learns several rules
at each boosting iteration like AdaBoost.MHKR.
However, the confidence value of each hypothe-
sis in AdaBoost.MHKR does not always minimize
the upper bound of training error for AdaBoost
because the value of each hypothesis consists of
the sum of the confidence value of each rule.
Compared with AdaBoost.MHKR, AdaBoost.SDF
computes the confidence value of each rule to min-
imize the upper bound of training error on given
weights of samples at each update.

Furthermore, AdaBoost.SDF learns several
rules represented by combination of features from
limited search spaces at each boosting itera-
tion. The creation of subsets of features in Ad-
aBoost.SDF enables us to recreate the same classi-
fier with same parameters and training data. Recre-
ation is not ensured in the random selection of sub-
sets in LazyBoosting.

7 Conclusion
We have proposed a fast boosting-based learner,
which we call AdaBoost.SDF. AdaBoost.SDF re-
peats to learn several rules represented by combi-
nation of features from a small proportion of can-
didate rules. We have also proposed methods to
use candidate POS tags and chunk tags of each
word obtained from automatically tagged data as
features in POS tagging and text chunking.

The experimental results have shown drastically
improvement of training speed while maintaining
competitive accuracy compared with previous best
results.

Future work should examine our approach on
several tasks. Future work should also compare
our algorithm with other learning algorithms.

Appendix A: Convergence

The upper bound of the training error for AdaBoost
of (Freund and Mason, 1999), which is used in Ad-
aBoost.SDF, is induced by adopting THEOREM 1
presented in (Schapire and Singer, 1999). Let ZR
be
∑m

i=1wR+1,i that is a sum of weights updated
with R rules. The bound holds on the training er-
ror after selecting R rules,Pm

i=1[[F (xi) 6= yi]] ≤ ZR
is induced as follows.

By unraveling the Eq. (1), we obtain
wR+1,i = exp(−yi

∑R
r=1 h〈fr,cr〉(xi)). Thus, we

obtain [[F (xi) 6= yi]] ≤ exp(−yiPR
t=1 h〈fr,cr〉(xi)),

since if F (xi) 6= yi, then exp(−yiPR
r=1 h〈fr〉(xi)) ≥

1 . Combining these equations gives the stated
bound on training error
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mX
i=1

[[F (xi) 6= yi]] ≤
mX
i=1

exp(−yi
RX
t=1

h〈fr,cr〉(xi))

=

mX
i=1

wR+1,i = ZR. (2)

Then we show that the upper bound of training er-
ror ZR for R rules shown in Eq. (2) is less than or
equal to the upper bound of the training errorZR−1
for R-1 rules. By unraveling the (2) and plug-
ging the confidence values cR = { 1

2
log(

Wr,+1(fR)

Wr,−1(fR)
), 0

} given by the weak hypothesis into the unraveled
equation, we obtain ZR≤ZR−1, since

ZR =

mX
i=1

wR+1,i =

mX
i=1

wR,iexp(−yih〈fR,cR〉)

=

mX
i=1

wR,i −Wr,+1(fR)−Wr,+1(fR) +

Wr,+1(fR)exp(−cR) +Wr,−1(fR)exp(cR)

= ZR−1 − (
p
WR,+1(fR)−

p
WR,−1(fR))2
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Abstract

This article investigates the effect of a set
of linguistically motivated features on ar-
gument disambiguation in data-driven de-
pendency parsing of Swedish. We present
results from experiments with gold stan-
dard features, such as animacy, definite-
ness and finiteness, as well as correspond-
ing experiments where these features have
been acquired automatically and show
significant improvements both in overall
parse results and in the analysis of specific
argument relations, such as subjects, ob-
jects and predicatives.

1 Introduction

Data-driven dependency parsing has recently re-
ceived extensive attention in the parsing commu-
nity and impressive results have been obtained for
a range of languages (Nivre et al., 2007). Even
with high overall parsing accuracy, however, data-
driven parsers often make errors in the assign-
ment of argument relations such as subject and
object and the exact influence of data-derived fea-
tures on the parsing accuracy for specific linguistic
constructions is still relatively poorly understood.
There are a number of studies that investigate the
influence of different features or representational
choices on overall parsing accuracy, (Bod, 1998;
Klein and Manning, 2003). There are also attempts
at a more fine-grained analysis of accuracy, target-
ing specific linguistic constructions or grammati-
cal functions (Carroll and Briscoe, 2002; Kübler
and Prokić, 2006; McDonald and Nivre, 2007).

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

But there are few studies that combine the two per-
spectives and try to tease apart the influence of dif-
ferent features on the analysis of specific construc-
tions, let alone motivated by a thorough linguistic
analysis.

In this paper, we investigate the influence of a
set of linguistically motivated features on parse re-
sults for Swedish, and in particular on the analysis
of argument relations such as subjects, objects and
subject predicatives. Motivated by an error anal-
ysis of the best performing parser for Swedish in
the CoNLL-X shared task, we extend the feature
model employed by the parser with a set of lin-
guistically motivated features and go on to show
how these features may be acquired automatically.
We then present results from corresponding parse
experiments with automatic features.

The rest of the paper is structured as follows. In
section 2 we present relevant properties of Swedish
morphosyntax, as well as the treebank and parser
employed in the experiments. Section 3 presents
an error analysis of the baseline parser and we go
on to motivate a set of linguistic features in sec-
tion 4, which are employed in a set of experiments
with gold standard features, discussed in section
5. Section 6 presents the automatic acquisition of
these features, with a particular focus on animacy
classification and in section 7 we report parse ex-
periments with automatic features.

2 Parsing Swedish

Before we turn to a description of the treebank
and the parser used in the experiments, we want to
point to a few grammatical properties of Swedish
that will be important in the following:

Verb second (V2) Swedish is, like the majority of
Germanic languages a V2-language; the fi-
nite verb always resides in second position in
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declarative main clauses.
Word order variation Pretty much any con-

stituent may occupy the sentence-initial po-
sition, but subjects are most common.

Limited case marking Nouns are only inflected
for genitive case. Personal pronouns dis-
tinguish nominative and accusative case, but
demonstratives and quantifying pronouns are
case ambiguous (like nouns).

2.1 Treebank: Talbanken05

Talbanken05 is a Swedish treebank converted to
dependency format, containing both written and
spoken language (Nivre et al., 2006a).1 For each
token, Talbanken05 contains information on word
form, part of speech, head and dependency rela-
tion, as well as various morphosyntactic and/or
lexical semantic features. The nature of this ad-
ditional information varies depending on part of
speech:

NOUN: definiteness, animacy, case(Ø/GEN)

PRO: animacy, case(Ø/ACC)

VERB: tense, voice(Ø/PA)

2.2 Parser: MaltParser

We use the freely available MaltParser,2 which
is a language-independent system for data-driven
dependency parsing. MaltParser is based on
a deterministic parsing strategy, first proposed
by Nivre (2003), in combination with treebank-
induced classifiers for predicting the next parsing
action. Classifiers can be trained using any ma-
chine learning approach, but the best results have
so far been obtained with support vector machines,
using LIBSVM (Chang and Lin, 2001). Malt-
Parser has a wide range of parameters that need to
be optimized when parsing a new language. As
our baseline, we use the settings optimized for
Swedish in the CoNLL-X shared task (Nivre et al.,
2006b), where this parser was the best perform-
ing parser for Swedish. The only parameter that
will be varied in the later experiments is the fea-
ture model used for the prediction of the next pars-
ing action. Hence, we need to describe the feature
model in a little more detail.

MaltParser uses two main data structures, a
stack (S) and an input queue (I), and builds a de-
pendency graph (G) incrementally in a single left-

1The written sections of the treebank consist of profes-
sional prose and student essays and amount to 197,123 run-
ning tokens, spread over 11,431 sentences.

2http://w3.msi.vxu.se/users/nivre/research/MaltParser.html

FORM POS DEP FEATS

S:top + + + +
S:top+1 +
I:next + + +
I:next−1 + +
I:next+1 + + +
I:next+2 +
G: head oftop + +
G: left dep oftop +
G: right dep oftop +
G: left dep ofnext + + +
G: left dep of head oftop +
G: left sibling of right dep oftop +
G: right sibling of left dep oftop + +
G: right sibling of left dep ofnext + +

Table 1: Baseline and extended (FEATS) feature
model for Swedish; S: stack, I: input, G: graph;
±n = n positions to the left(−) or right (+)

to-right pass over the input. The decision that
needs to be made at any point during this deriva-
tion is (a) whether to add a dependency arc (with
some label) between the token on top of the stack
(top) and the next token in the input queue (next),
and (b) whether to poptop from the stack or push
nextonto the stack. The features fed to the classi-
fier for making these decisions naturally focus on
attributes oftop, nextand neighbouring tokens in
S, I or G. In the baseline feature model, these at-
tributes are limited to the word form (FORM), part
of speech (POS), and dependency relation (DEP) of
a given token, but in later experiments we will add
other linguistic features (FEATS). The baseline fea-
ture model is depicted as a matrix in Table 1, where
rows denote tokens in the parser configuration (de-
fined relative to S, I and G) and columns denote
attributes. Each cell containing a+ corresponds to
a feature of the model.

3 Baseline and Error Analysis

The written part of Talbanken05 was parsed em-
ploying the baseline feature model detailed above,
using 10-fold cross validation for training and test-
ing. The overall result for unlabeled and labeled
dependency accuracy is 89.87 and 84.92 respec-
tively.3

Error analysis shows that the overall most fre-
quent errors in terms of dependency relations in-
volve either various adverbial relations, due to PP-
attachment ambiguities and a large number of ad-

3Note that these results are slightly better than the official
CoNLL-X shared task scores (89.50/84.58), which were ob-
tained using a single training-test split, not cross-validation.
Note also that, in both cases, the parser input contained gold
standard part-of-speech tags.
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Gold Sys before after Total
SS OO 103 (23.1%) 343 (76.9%) 446 (100%)
OO SS 103 (33.3%) 206 (66.7%) 309 (100%)

Table 2: Position relative to verb for confused sub-
jects and objects

verbial labels, or the argument relations, such as
subjects, direct objects, formal subjects and sub-
ject predicatives. In particular, confusion of argu-
ment relations are among the most frequent error
types with respect to dependency assignment.4

Swedish exhibits some ambiguities in word or-
der and morphology which follow from the proper-
ties discussed above. We will exemplify these fac-
tors through an analysis of the errors where sub-
jects are assigned object status (SS OO) and vice
versa (OO SS). The confusion of subjects and ob-
jects follows from lack of sufficient formal disam-
biguation, i.e., simple clues such as word order,
part-of-speech and word form do not clearly indi-
cate syntactic function.

With respect to word order, subjects and objects
may both precede or follow their verbal head. Sub-
jects, however, are more likely to occur prever-
bally (77%), whereas objects typically occupy a
postverbal position (94%). We would therefore ex-
pect postverbal subjects and preverbal objects to be
more dominant among the errors than in the tree-
bank as a whole (23% and 6% respectively). Table
2 shows a breakdown of the errors for confused
subjects and objects and their position with respect
to the verbal head. We find that postverbal subjects
(after) are in clear majority among the subjects er-
roneously assigned the object relation. Due to the
V2 property of Swedish, the subject must reside
in the position directly following the finite verb
whenever another constituent occupies the prever-
bal position, as in (1) where a direct object resides
sentence-initially:

(1) Samma
same

erfarenhet
experience

gjorde
made

engelsm̈annen
englishmen-DEF

‘The same experience, the Englishmen had’

For the confused objects we find a larger propor-
tion of preverbal elements than for subjects, which

4We define argument relations as dependency relations
which obtain between a verb and a dependent which is
subcategorized for and/or thematically entailed by the verb.
Note that arguments are not distinguished structurally from
non-arguments, like adverbials, in dependency grammar, but
through dependency label.

is the mirror image of the normal distribution of
syntactic functions among preverbal elements. As
Table 2 shows, the proportion of preverbal ele-
ments among the subject-assigned objects (33.3%)
is notably higher than in the corpus as a whole,
where preverbal objects account for a miniscule
6% of all objects.

In addition to the word order variation dis-
cussed above, Swedish also has limited morpho-
logical marking of syntactic function. Nouns are
marked only for genitive case and only pronouns
are marked for accusative case. There is also syn-
cretism in the pronominal paradigm where the pro-
noun is invariant for case, e.g.det, den‘it’, in-
gen/inga‘no’, and may, in fact, also function as
a determiner. This means that, with respect to
word form, only the set of unambiguous pronouns
clearly indicate syntactic function. In the errors,
we find that nouns and functionally ambiguous
pronouns dominate the errors where subjects and
objects are confused, accounting for 84.5% of the
SS OO and 93.5% of theOO SSerrors.

The initial error analysis shows that the confu-
sion of argument relations constitutes a frequent
and consistent error during parsing. Ambiguities
in word order and morphological marking consti-
tute a complicating factor and we find cases that
deviate from the most frequent word order pat-
terns and are not formally disambiguated by part-
of-speech information. It is clear that we in order
to resolve these ambiguities have to examine fea-
tures beyond syntactic category and linear word or-
der.

4 Linguistic features for argument
disambiguation

Argument relations tend to differ along several lin-
guistic dimensions. These differences are found
as statistical tendencies, rather than absolute re-
quirements on syntactic structure. The property
of animacy, a referential property of nominal el-
ements, has been argued to play a role in argument
realization in a range of languages see de Swart
et.al. (2008) for an overview. It is closely cor-
related with the semantic property of agentivity,
hence subjects will tend to be referentially animate
more often than objects. Another property which
may differentiate between the argument functions
is the property ofdefiniteness, which can be linked
with a notion of givenness, (Weber and Müller,
2004). This is reflected in the choice of refer-
ring expression for the various argument types in

27



Talbanken05 – subjects are more often pronominal
(49.2%), whereas objects and subject predicatives
are typically realized by an indefinite noun (67.6%
and 89.6%, respectively). As mentioned in section
2, there are categorical constraints which are char-
acteristic for Swedish morphosyntax. Even if the
morphological marking of arguments in Scandina-
vian is not extensive or unambiguous,casemay
distinguish arguments. Only subjects may follow
a finite verb and precede a non-finite verb and only
complements may follow a non-finite verb. Infor-
mation ontenseor the relatedfinitenessis there-
fore something that one might assume to be ben-
eficial for argument analysis. Another property of
the verb which clearly influences the assignment
of core argument functions is thevoiceof the verb,
i.e., whether it is passive or active.5

5 Experiments with gold standard
features

We perform a set of experiments with an extended
feature model and added, gold standard informa-
tion on animacy, definiteness, case, finiteness and
voice, where the features were employed individu-
ally as well as in combination.

5.1 Experimental methodology

All parsing experiments are performed using 10-
fold cross-validation for training and testing on
the entire written part of Talbanken05. The fea-
ture model used throughout is the extended fea-
ture model depicted in Table 1, including all four
columns.6 Hence, what is varied in the exper-
iments is only the information contained in the
FEATS features (animacy, definiteness, etc.), while
the tokens for which these features are defined re-
mains constant. Overall parsing accuracy will be
reported using the standard metrics oflabeled at-
tachment score(LAS) and unlabeled attachment
score (UAS).7 Statistical significance is checked
using Dan Bikel’s randomized parsing evaluation

5We experimented with the use of tense as well as finite-
ness, a binary feature which was obtained by a mapping from
tense to finite/non-finite. Finiteness gave significantly better
results (p<.03) and was therefore employed in the following,
see (Øvrelid, 2008b) for details.

6Preliminary experiments showed that it was better to tie
FEATS features to the same tokens asFORM features (rather
than POS or DEP features). Backward selection from this
model was tried for several different instantiations ofFEATS
but with no significant improvement.

7LAS and UAS report the percentage of tokens that are as-
signed the correct headwith (labeled) orwithout (unlabeled)
the correct dependency label, calculated using eval.pl with de-
fault settings (http://nextens.uvt.nl/∼conll/software.html)

comparator.8 Since the main focus of this article is
on the disambiguation of grammatical functions,
we report accuracy for specific dependency rela-
tions, measured as a balanced F-score.

5.2 Results

The overall results for these experiments are pre-
sented in table 3, along with p-scores. The exper-
iments show that each feature individually causes
a significant improvement in terms of overall la-
beled accuracy as well as performance for argu-
ment relations. Error analysis comparing the base-
line parser (NoFeats) with new parsers trained with
individual features reveal the influence of these
features on argument disambiguation. We find
that animacy influences the disambiguation of sub-
jects from objects, objects from indirect objects
as well as the general distinction of arguments
from non-arguments. Definiteness has a notable
effect on the disambiguation of subjects and sub-
ject predicatives. Information on morphological
case shows a clear effect in distinguishing between
arguments and non-arguments, and in particular,
in distinguishing nominal modifiers with genitive
case. The added verbal features, finiteness and
voice, have a positive effect on the verbal depen-
dency relations, as well as an overall effect on the
assignment of theSS and OO argument relations.
Information on voice also benefits the relation ex-
pressing the demoted agent (AG) in passive con-
structions, headed by the prepositionav ‘by’, as in
English.

The ADCV experiment which combines infor-
mation on animacy, definiteness, case and verbal
features shows a cumulative effect of the added
features with results which differ significantly
from the baseline, as well as from each of the in-
dividual experiments (p<.0001). We observe clear
improvements for the analysis of all argument re-
lations, as shown by the third column in table 4
which presents F-scores for the various argument
relations.

6 Acquiring features

A possible objection to the general applicability
of the results presented above is that the added
information consists of gold standard annotation
from a treebank. However, the morphosyntactic
features examined here (definiteness, case, tense,
voice) represent standard output from most part-
of-speech taggers. In the following we will also

8http://www.cis.upenn.edu/∼dbikel/software.html
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UAS LAS p-value
NoFeats 89.87 84.92 –
Anim 89.93 85.10 p<.0002
Def 89.87 85.02 p<.02
Case 89.99 85.13 p<.0001
Verb 90.24 85.38 p<.0001
ADC 90.13 85.35 p<.0001
ADCV 90.40 85.68 p<.0001

Table 3: Overall results in gold standard ex-
periments expressed as unlabeled and labeled
attachment scores.

NoFeats Gold Auto
SS subject 90.25 91.80 91.32
OO object 84.53 86.27 86.10
SP subj.pred. 84.82 85.87 85.80
AG pass. agent 73.56 81.34 81.02
ES logical subj. 71.82 73.44 72.60
FO formal obj. 56.68 65.64 65.38
VO obj. small clause 72.10 83.40 83.12
VS subj. small clause 58.75 65.56 68.75
FS formal subj. 71.31 72.10 71.31
IO indir. obj. 76.14 77.76 76.29

Table 4: F-scores for argument relations with
combined features (ADCV).

Feature Application
Definiteness POS-tagger
Case POS-tagger
Animacy -NN Animacy classifier
Animacy -PN Named Entity Tagger
Animacy -PO Majority class
Tense (finiteness), voice POS-tagger

Table 5: Overview of applications employed for
automatic feature acquisition.

show that the property of animacy can be fairly
robustly acquired for common nouns by means
of distributional features from an automatically
parsed corpus.

Table 5 shows an overview of the applications
employed for the automatic acquisition of our lin-
guistic features. For part-of-speech tagging, we
employ MaltTagger – a HMM part-of-speech tag-
ger for Swedish (Hall, 2003). The POS-tagger dis-
tinguishes tense and voice for verbs, nominative
and accusative case for pronouns, as well as defi-
niteness and genitive case for nouns.

6.1 Animacy

The feature of animacy is clearly the most chal-
lenging feature to acquire automatically. Recall
that Talbanken05 distinguishes animacy for all
nominal constituents. In the following we describe
the automatic acquisition of animacy information
for common nouns, proper nouns and pronouns.

Common nouns Table 6 presents an overview
of the animacy data for common nouns in Tal-
banken05. It is clear that the data is highly skewed

Class Types Tokens covered
Animate 644 6010
Inanimate 6910 34822
Total 7554 40832

Table 6: The animacy data set from Talbanken05;
number of noun lemmas (Types) and tokens in
each class.

towards the non-person class, which accounts for
91.5% of the data instances. Due to the small size
of the treebank we classify common nounlem-
mas based on their morphosyntactic distribution
in a considerably larger corpus. For the animacy
classification of common nouns, we construct a
generalfeature spacefor animacy classification,
which makes use of distributional data regarding
syntactic properties of the noun, as well as various
morphological properties. The syntactic and mor-
phological features in the general feature space are
presented below:

Syntactic features A feature for each dependency
relation with nominal potential: (transitive)
subject (SUBJ), object (OBJ), prepositional
complement (PA), root (ROOT)9, apposition
(APP), conjunct (CC), determiner (DET), pred-
icative (PRD), complement of comparative
subjunction (UK). We also include a feature
for the complement of a genitive modifier, the
so-called ‘possessee’, (GENHD).

Morphological features A feature for each mor-

9Nominal elements may be assigned the root relation in
sentence fragments which do not include a finite verb.
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phological distinction relevant for a noun:
gender (NEU/UTR), number (SIN/PLU), defi-
niteness (DEF/IND), case (NOM/GEN). Also,
the part-of-speech tags distinguish dates
(DAT) and quantifying nouns (SET), e.g. del,
rad ‘part, row’, so these are also included as
features.

For extraction of distributional data for the Tal-
banken05 nouns we make use of the Swedish Pa-
role corpus of 21.5M tokens.10 To facilitate feature
extraction, we part-of-speech tag the corpus and
parse it with MaltParser, which assigns a depen-
dency analysis.11 For classification, we make use
of the Tilburg Memory-Based Learner (TiMBL)
(Daelemans et al., 2004).12 and optimize the
TiMBL parameters on a subset of the full data
set.13

We obtain results for animacy classification of
noun lemmas, ranging from 97.3% accuracy to
94.0% depending on the sparsity of the data. With
an absolute frequency threshold of 10, we obtain
an accuracy of 95.4%, which constitutes a 50%
reduction of error rate over a majority baseline.
We find that classification of the inanimate class is
quite stable throughout the experiments, whereas
the classification of the minority class of animate
nouns suffers from sparse data. We obtain a F-
score of 71.8% F-score for the animate class and
97.5% for the inanimate class with a threshold of
10. The common nouns in Talbanken05 are classi-
fied for animacy following a leave-one-out training
and testing scheme where each of then nouns in
Talbanken05 are classified with a classifier trained
on n − 1 instances. This ensures that the training
and test instances are disjoint at all times. More-
over, the fact that the distributional data is taken
from a separate data set ensures non-circularity

10Parole is available at http://spraakbanken.gu.se
11For part-of-speech tagging, we employ the MaltTagger –

a HMM part-of-speech tagger for Swedish (Hall, 2003). For
parsing, we employ MaltParser with a pretrained model for
Swedish, which has been trained on the tags output by the
tagger. It makes use of a smaller set of dependency relations
than those found in Talbanken05.

12TiMBL is freely available at
http://ilk.uvt.nl/software.html

13For parameter optimization we employ the
paramsearch tool, supplied with TiMBL, see
http://ilk.uvt.nl/software.html. Paramsearch implements
a hill climbing search for the optimal settings on iteratively
larger parts of the supplied data. We performed parameter
optimization on 20% of the total>0 data set, where we
balanced the data with respect to frequency. The resulting
settings arek = 11, GainRatio feature weighting and Inverse
Linear (IL) class voting weights.

since we are not basing the classification on gold
standard parses.

Proper nouns In the task of named entity recog-
nition (NER), proper nouns are classified accord-
ing to a set of semantic categories. For the annota-
tion of proper nouns, we make use of a named en-
tity tagger for Swedish (Kokkinakis, 2004), which
is a rule-based tagger based on finite-state rules,
supplied with name lists, so-called “gazetteers”.
The tagger distinguishes the category ‘Person’ for
human referring proper nouns and we extract in-
formation on this category.

Pronouns A subset of the personal pronouns in
Scandinavian, as in English, clearly distinguish
their referent with regard to animacy, e.g.han,
det ‘he, it’. There is, however, a quite large group
of third person plural pronouns which are ambigu-
ous with regards to the animacy of their referent,
e.g.,de, dem, deras‘they, them, theirs’. Pronom-
inal reference resolution is a complex task which
we will not attempt to solve in the present context.
The pronominal part-of-speech tags from the part-
of-speech tagger distinguish number and gender
and in the animacy classification of the personal
pronouns we classify based on these tags only. We
employ a simple heuristic where the pronominal
tags which had more than 85% human instances in
the gold standard are annotated as human.14 The
pronouns which are ambiguous with respect to an-
imacy are not annotated as animate.

In table 7 we see an overview of the accuracy
of the acquired features, i.e., the percentage of
correct instances out of all instances. Note that
we adhere to the general annotation strategy in
Talbanken05, where each dimension (definiteness,
case etc.) contains a null categoryØ, which ex-
presses the lack of a certain property. The acqui-
sition of the morphological features (definiteness,
case, finiteness and voice) are very reliable, with
accuracies from 96.9% for voice to 98.5% for the
case feature.

It is not surprising that we observe the largest
discrepancies from the gold standard annotation
in the automatic animacy annotation. In general,
the annotation of animate nominals exhibits a de-
cent precision (95.7) and a lower recall (61.3). The
automatic classification of human common nouns

14A manual classification of the individual pronoun lem-
mas was also considered. However, the treebank has a total of
324 different pronoun forms, hence we opted for a heuristic
classification of the part-of-speech tags instead.
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Dimension Features Instances Correct Accuracy
Definiteness DD, Ø 40832 40010 98.0
Case GG, AA , Ø 68313 67289 98.5
AnimacyNNPNPO HH, Ø 68313 61295 89.7
AnimacyNN HH, Ø 40832 37952 92.9
AnimacyPN HH, Ø 2078 1902 91.5
AnimacyPO HH, Ø 25403 21441 84.4

Finiteness FV, Ø 30767 30035 97.6
Voice PA, Ø 30767 29805 96.9

Table 7: Accuracy for automatically acquired linguistic features.

Gold Automatic
UAS LAS UAS LASp-value

NoFeats 89.87 84.92 89.87 84.92–
Def 89.87 85.02 89.88 85.03p<0.01
Case 89.99 85.13 89.95 85.11p<.0001
Verb 90.24 85.38 90.12 85.26p<.0001
Anim 89.93 85.10 89.86 85.01p<.03
ADC 90.13 85.35 90.01 85.21p<.0001
ADCV 90.40 85.68 90.27 85.54p<.0001

Table 8: Overall results in experiments with auto-
matic features compared to gold standard features.

(AnimacyNN ) also has a quite high precision
(94.2) in combination with a lower recall (55.5).
The named-entity recognizer (AnimacyPN ) shows
more balanced results with a precision of 97.8 and
a recall of 85.2 and the heuristic classification of
the pronominal part-of-speech tags (AnimacyPO)
gives us high precision (96.3) combined with lower
recall (62.0) for the animate class.

7 Experiments with acquired features

The experimental methodology is identical to the
one described in 5.1 above, the only difference be-
ing that the linguistic features are acquired auto-
matically, rather than being gold standard. In order
to enable a direct comparison with the results from
the earlier experiments, we employ the gold stan-
dard part-of-speech tags, as before. This means
that the set for which the various linguistic features
are defined is identical, whereas the feature values
may differ.

Table 8 presents the overall results with auto-
matic features, compared to the gold standard re-
sults and p-scores for the difference of the auto-
matic results from the NoFeats baseline. As ex-

pected, we find that the effect of the automatic fea-
tures is generally lower than their gold standard
counterparts. However, all automatic features im-
prove significantly on the NoFeats baseline. In the
error analysis we find the same tendencies in terms
of improvement for specific dependency relations.

The morphological argument features from the
POS-tagger are reliable, as we saw above, and
we observe almost identical results to the gold
standard results. The addition of information
on definiteness causes a significant improvement
(p<.01), and so does the addition of information
on case (p<.0001). The addition of the automat-
ically acquired animacy information results in a
smaller, but significant improvement of overall re-
sults even though the annotation is less reliable
(p<.03). An interesting result is that the automat-
ically acquired information on animacy for com-
mon nouns actually has a significantly better effect
than the gold standard counterparts due to captur-
ing distributional tendencies (Øvrelid, 2008a). As
in the gold standard experiments, we find that the
features which have the most notable effect on per-
formance are the verbal features (p<.0001).

In parallel with the results achieved with the
combination of gold standard features, we observe
improvement of overall results compared to the
baseline (p<.0001) and each of the individual fea-
tures when we combine the features of the argu-
ments (ADC; p<.01) and the argument and ver-
bal features (ADCV; p<.0001). Column 4 in Ta-
ble 4 shows an overview of performance for the
argument relations, compared to the gold standard
experiments. We find overall somewhat lower re-
sults in the experiment with automatic features, but
find the same tendencies with the automatically ac-
quired features.
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8 Conclusion

An error analysis of the best performing data-
driven dependency parser for Swedish revealed
consistent errors in dependency assignment,
namely the confusion of argument functions. We
established a set of features expressing distinguish-
ing semantic and structural properties of argu-
ments such as animacy, definiteness and finiteness
and performed a set of experiments with gold stan-
dard features taken from a treebank of Swedish.
The experiments showed that each feature individ-
ually caused an improvement in terms of overall la-
beled accuracy and performance for the argument
relations. We furthermore found that the results
may largely be replicated with automatic features
and a generic part-of-speech tagger. The features
were acquired automatically employing a part-of-
speech tagger, a named-entity recognizer and an
animacy classifier of common noun lemmas em-
ploying morphosyntactic distributional features. A
set of corresponding experiments with automatic
features gave significant improvement from the ad-
dition of individual features and a cumulative ef-
fect of the same features in combination. In partic-
ular, we show that the very same tendencies in im-
provement for specific argument relations such as
subjects, objects and predicatives may be obtained
using automatically acquired features.

Properties of the Scandinavian languages con-
nected with errors in argument assignment are not
isolated phenomena. A range of other languages
exhibit similar properties, for instance, Italian ex-
hibits word order variation, little case, syncretism
in agreement morphology, as well as pro-drop;
German exhibits a larger degree of word order
variation in combination with quite a bit of syn-
cretism in case morphology; Dutch has word order
variation, little case and syncretism in agreement
morphology. These are all examples of other lan-
guages for which the results described here are rel-
evant.
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ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
2007. CoNLL 2007 Shared Task on Dependency Pars-
ing. In Proceedings of the CoNLL Shared Task Session of
EMNLP-CoNLL 2007, pages 915–932.

Øvrelid, Lilja. 2008a. Argument Differentiation. Soft con-
straints and data-driven models. Ph.D. thesis, University
of Gothenburg.

Øvrelid, Lilja. 2008b. Finite matters: Verbal features in data-
driven parsing of Swedish. InProceedings of the Interna-
tional Conference on NLP, GoTAL 2008.

Weber, Andrea and Karin Müller. 2004. Word order varia-
tion in German main clauses: A corpus analysis. InPro-
ceedings of the 20th International Conference on Compu-
tational Linguistics, pages 71–77.

32



CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 33–40
Manchester, August 2008

Transforming Meaning Representation Grammars to Improve Semantic
Parsing

Rohit J. Kate

Department of Computer Sciences∗

The University of Texas at Austin

1 University Station C0500

Austin, TX 78712-0233, USA

rjkate@cs.utexas.edu

Abstract

A semantic parser learning system learns

to map natural language sentences into

their domain-specific formal meaning rep-

resentations, but if the constructs of the

meaning representation language do not

correspond well with the natural language

then the system may not learn a good se-

mantic parser. This paper presents ap-

proaches for automatically transforming a

meaning representation grammar (MRG)

to conform it better with the natural lan-

guage semantics. It introduces grammar

transformation operators and meaning rep-

resentation macros which are applied in an

error-driven manner to transform an MRG

while training a semantic parser learning

system. Experimental results show that the

automatically transformed MRGs lead to

better learned semantic parsers which per-

form comparable to the semantic parsers

learned using manually engineered MRGs.

1 Introduction

Semantic parsing is the task of converting natural

language (NL) sentences into their meaning repre-

sentations (MRs) which a computer program can

execute to perform some domain-specific task, like

controlling a robot, answering database queries

etc. These MRs are expressed in a formal mean-

ing representation language (MRL) unique to the

domain to suit the application, like some specific

command language to control a robot or some

∗Alumnus at the time of submission.
∗c© 2008. Licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

query language to execute database queries. A ma-

chine learning system for semantic parsing takes

NL sentences paired with their respective MRs as

training data and induces a semantic parser which

can then map novel NL sentences into their MRs.

The grammar of an MRL, which we will call

meaning representation grammar (MRG), is as-

sumed to be deterministic and context-free which

is true for grammars of almost all the computer

executable languages. A semantic parsing learn-

ing system typically exploits the given MRG of the

MRL to learn a semantic parser (Kate and Mooney,

2006; Wong and Mooney, 2006). Although in dif-

ferent ways, but the systems presented in these pa-

pers learn how the NL phrases relate to the pro-

ductions of the MRG, and using this information

they parse a test sentence to compositionally gen-

erate its best MR. In order to learn a good seman-

tic parser, it is necessary that the productions of

the MRG accurately represent the semantics be-

ing expressed by the natural language. However,

an MRL and its MRG are typically designed to

best suit the application with little consideration

for how well they correspond to the semantics of

a natural language.

Some other semantic parser learning systems

which need MRL in the form of Prolog (Tang

and Mooney, 2001) or λ-calculus (Zettlemoyer and

Collins, 2007; Wong and Mooney, 2007) do not

use productions of the MRG but instead use pred-

icates of the MRL. However, in order to learn a

good semantic parser, they still require that these

predicates correspond well with the semantics of

the natural language. There are also systems which

learn semantic parsers from more detailed train-

ing data in the form of semantically augmented

parse trees of NL sentences in which each inter-

nal node has a syntactic and a semantic label (Ge
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(a) NL: If the ball is in our midfield then player 5 should go to (-5,0).

MR: (bpos (rec (pt -32 -35)(pt 0 35))

(do (player our {5})(pos (pt -5 0))))

(b) NL: Which is the longest river in Texas?

MR: answer(longest(river(loc_2(stateid(’Texas’)))))

(c) NL: Which is the longest river in Texas?

MR: select river.name from river where

river.traverse=’Texas’ and river.length=

(select max(river.length) from river

where river.traverse=’Texas’);

Figure 1: Examples of NL sentences and their MRs from

(a) the CLANG domain (b) GEOQUERY domain with func-

tional MRL (c) GEOQUERY domain with SQL.

and Mooney, 2005; Nguyen et al., 2006). For these

systems to work well, it is also necessary that the

semantic labels of the MRL correspond well with

natural language semantics.

If the MRG of a domain-specific MRL does not

correspond well with natural language semantics

then manually re-engineering the MRG to work

well for semantic parsing is a tedious task and re-

quires considerable domain expertise. In this pa-

per, we present methods to automatically trans-

form a given MRG to make it more suitable for

learning semantic parsers. No previous work ad-

dresses this issue to our best knowledge. We intro-

duce grammar transformation operators and mean-

ing representation macros to transform an MRG.

We describe how these are applied in an error-

driven manner using the base semantic parsing

learning algorithm presented in (Kate and Mooney,

2006) resulting in a better learned semantic parser.

Our approach, however, is general enough to im-

prove any semantic parser learning system which

uses productions of the MRG. We present exper-

imental results with three very different MRLs to

show how these grammar transformations improve

the semantic parsing performance.

2 Background

The following subsection gives some examples of

semantic parsing domains and their corresponding

MRLs and illustrates why incompatibility between

MRGs and natural language could hurt semantic

parsing. The next subsection then briefly describes

a base semantic parser learning system which we

use in our experiments.

2.1 MRLs and MRGs for Semantic Parsing

Figure 1 (a) gives an example of a natural lan-

guage sentence and its corresponding MR in an

MRL called CLANG which is a formal declar-

REGION→ ( rec POINT POINT )

POINT→ ( pt NUM NUM )

NUM→ -32 NUM→ -35

POINT→ ( pt NUM NUM )

NUM→ 0 NUM→ 35

Figure 2: The parse for the CLANG expression “(rec (pt

-32 -35) (pt 0 35))” corresponding to the natural language ut-

terance “our midfield” using its original MRG.

ative language with LISP-like prefix notation

designed to instruct simulated soccer players in

the RoboCup1 Coach Competition. The MRL

and its MRG was designed by the Coach Com-

petition community (Chen et al., 2003) to suit

the requirements of their application independent

of how well the MRG conforms with the natural

language semantics. They were, in fact, not

aware that later (Kate et al., 2005) this will be

introduced as a test domain for learning semantic

parsers. In this original MRG for CLANG, there

are several constructs which do not correspond

well with their meanings in the natural language.

For example, the MR expression of the rectangle

(rec (pt -32 -35) (pt 0 35)) from

the example MR in Figure 1 (a), whose parse ac-

cording to the original MRG is shown in Figure 2,

corresponds to the NL utterance “our midfield”. In

the parse tree, the nodes are the MRG productions

and the tokens in upper-case are non-terminals

of the MRG while the tokens in lower-case are

terminals of the MRG, this convention will be

used throughout the paper. As can be seen,

the numbers as well as the productions in the

parse of the MR expression do not correspond to

anything in its natural language utterance. It is

also impossible to derive a semantic parse tree

of this MR expression over its natural language

utterance because there are not enough words in

it to cover all the productions present in the MR

parse at the lowest level. To alleviate this problem,

the provided MRG was manually modified (Kate

et al., 2005) to make it correspond better with

the natural language by replacing such long MR

expressions for soccer regions by shorter expres-

sions like (midfield our)2. This new MRG

was used in all the previous work which uses the

CLANG corpus. In the next sections of the paper,

we will present methods to automatically obtain a

1http://www.robocup.org
2The names for the new tokens introduced were chosen for

readability and their similarity to the natural language words
is inconsequential for learning semantic parsers.
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(a) ANSWER→ answer ( RIVER )

RIVER→ longest ( RIVER )

RIVER→ river ( LOCATIONS )

LOCATIONS→ loc 2 ( STATE )

STATE→ STATEID

STATEID→ stateid ( ‘Texas’ )

(b) ANSWER→ answer ( RIVER )

RIVER→ QUALIFIER ( RIVER )

QUALIFIER→ longest RIVER→ river ( LOCATIONS )

LOCATIONS→ LOC 2 ( STATE)

LOC 2→ loc 2 STATE→ STATEID

STATEID→ stateid ( ‘Texas’ )

Figure 3: Different parse trees obtained for the MR

“answer(longest(river(loc 2(stateid(‘Texas’)))))” correspond-

ing to the NL sentence “Which is the longest river in Texas?”

using (a) a simple MRG (b) a manually designed MRG.

better MRG which corresponds well with the NL

semantics.

Figure 1 (b) shows an NL sentence and its MR

from the GEOQUERY domain (Zelle and Mooney,

1996) which consists of a database of U.S. geo-

graphical facts about which a user can query. The

MRL used for GEOQUERY in some of the previ-

ous work is a variable-free functional query lan-

guage, that was constructed from the original MRs

in Prolog (Kate et al., 2005). From this MRL, the

MRG was then manually written so that its pro-

ductions were compatible with the semantics ex-

pressible in natural language. This MRG was dif-

ferent from some simple MRG one would other-

wise design for the MRL. Figure 3 (a) shows the

parse tree obtained using a simple MRG for the

MR shown in Figure 1 (b). The MR parse ob-

tained using the simple MRG is more like a linear

chain which means that in a semantic parse of the

NL sentence each production will have to corre-

spond to the entire sentence. But ideally, different

productions should correspond to the meanings of

different substrings of the sentence. Figure 3 (b)

shows a parse tree obtained using the manually de-

signed MRG in which the productions QUALIFIER

→ longest and LOC 2 → loc 2 would correspond to

the semantic concepts of “longest” and “located

in” that are expressible in natural language.

Finally, Figure 1 (c) shows the same NL sen-

tence from the GEOQUERY domain but the MR

in SQL which is the standard database query lan-

guage. The inner expression finds the length of the

longest river in Texas and then the outer expres-

sion finds the river in Texas which has that length.

Due to space restriction, we are not showing the

parse tree for this SQL MR, but its incompatibil-

ity with the NL sentence can be seen from the MR

itself because part of the query repeats itself with

’Texas’ appearing twice while in the NL sen-

tence everything is said only once.

2.2 KRISP: A Semantic Parser Learning

System

We very briefly describe the semantic parser learn-

ing system, KRISP (Kate and Mooney, 2006),

which we will use as a base system for transform-

ing MRGs, we however note that the MRG trans-

formation methods presented in this paper are gen-

eral enough to work with any system which learns

semantic parser using MRGs. KRISP (Kernel-

based Robust Interpretation for Semantic Parsing)

is a supervised learning system for semantic pars-

ing which takes NL sentences paired with their

MRs as training data. The productions of the MRG

are treated like semantic concepts. For each of

these productions, a Support-Vector Machine clas-

sifier is trained using string similarity as the ker-

nel (Lodhi et al., 2002). Each classifier can then

estimate the probability of any NL substring rep-

resenting the semantic concept for its production.

During semantic parsing, the classifiers are called

to estimate probabilities on different substrings of

the sentence to compositionally build the most

probable MR parse over the entire sentence with

its productions covering different substrings of the

sentence. KRISP was shown to perform competi-

tively with other existing semantic parser learning

systems and was shown to be particularly robust to

noisy NL input.

3 Transforming MRGs Using Operators

This section describes an approach to transform

an MRG using grammar transformation operators

to conform it better with the NL semantics. The

following section will present another approach

for transforming an MRG using macros which is

sometimes more directly applicable.

The MRLs used for semantic parsing are always

assumed to be context-free which is true for al-

most all executable computer languages. There

has been some work in learning context-free gram-

mars (CFGs) for a language given several exam-
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ples of its expressions (Lee, 1996). Most of the

approaches directly learn a grammar from the ex-

pressions but there also have been approaches that

first start with a simple grammar and then trans-

form it using suitable operators to a better gram-

mar (Langley and Stromsten, 2000). The goodness

for a grammar is typically measured in terms of its

simplicity and coverage. Langley and Stromsten

(2000) transform syntactic grammars for NL sen-

tences. To our best knowledge, there is no previous

work on transforming MRGs for semantic parsing.

For this task, since an initial MRG is always given

with the MRL, there is no need to first learn it from

its MRs. The next subsection describes the opera-

tors our method uses to transform an initial MRG.

The subsection following that then describes how

and when the operators are applied to transform the

MRG during training. Our criteria for goodness of

an MRG is the performance of the semantic parser

learned using that MRG.

3.1 Transformation Operators

We describe five transformation operators which

are used to transform an MRG. Each of these op-

erators preserves the coverage of the grammar,

i.e. after application of the operator, the trans-

formed grammar generates the same language that

the previous grammar generated3. The MRs do

not change but only the way they are parsed may

change because of grammar transformations. This

is important because the MRs are to be used in an

application and hence should not be changed.

1. Create Non-terminal from a Terminal

(CreateNT): Given a terminal symbol t in the

grammar, this operator adds a new production

T → t to it and replaces all the occurrences of

the terminal t in all the other productions by the

new non-terminal T . In the context of seman-

tic parsing learning algorithm, this operator intro-

duces a new semantic concept the previous gram-

mar was not explicit about. For example, this oper-

ator may introduce a production (a semantic con-

cept) LONGEST → longest to the simple grammar

whose parse was shown in Figure 3 (a). This is

close to the production QUALIFIER→ longest of the

manual grammar used in the parse shown in Fig-

ure 3 (b).

2. Merge Non-terminals (MergeNT): This op-

erator merges n non-terminals T1, T2, ..., Tn, by

introducing n productions T → T1, T → T2, ...,

3This is also known as weak equivalence of grammars.

T → Tn where T is a new non-terminal. All the

occurrences of the merged non-terminals on the

right-hand-side (RHS) of all the remaining produc-

tions are then replaced by the non-terminal T . In

order to ensure that this operator preserves the cov-

erage of the grammar, before applying it, it is made

sure that if one of these non-terminals, say T1, oc-

curs on the RHS of a production π1 then there also

exist productions π2, ..., πn which are same as π1

except that T2, ..., Tn respectively occur in them

in place of T1. If this condition is violated for any

production of any of the n non-terminals then this

operator is not applicable. This operator enables

generalization of some non-terminals which occur

in similar contexts leading to generalization of pro-

ductions in which they occur on the RHS. For ex-

ample, this operator may generalize non-terminals

LONGEST and SHORTEST in GEOQUERY MRG to

form QUALIFIER4 → LONGEST and QUALIFIER →
SHORTEST productions.

3. Combine Two Non-terminals (Combi-

neNT): This operator combines two non-terminals

T1 and T2 into one new non-terminal T by intro-

ducing a new production T → T1 T2. All the

instances of T1 and T2 occurring adjacent in this

order on the RHS (with at least one more non-

terminal5) of all the other productions are replaced

by the new non-terminal T . For example, the pro-

duction A→ a B T1 T2 will be changed to A→ a
B T . This operator will not eliminate other occur-

rences of T1 and T2 on the RHS of other produc-

tions in which they do not occur adjacent to each

other. In the context of semantic parsing, this op-

erator adds an extra level in the MR parses which

does not seem to be useful in itself, but later if

the non-terminals T1 and T2 get eliminated (by the

application of the DeleteProd operator described

shortly), this operator will be combining the con-

cepts represented by the two non-terminals.

4. Remove Duplicate Non-terminals (Re-

moveDuplNT): If a production has the same non-

terminal appearing twice on its RHS then this op-

erator adds an additional production which differs

from the first production in that it has only one oc-

currence of that non-terminal. For example, if a

production is A → b C D C, then this operator

will introduce a new production A → b C D re-

4A system generated name will be given to the new non-
terminal.

5Without the presence of an extra non-terminal on the
RHS, this change will merely add redundancy to the parse
trees using this production.

36



moving the second occurrence of the non-terminal

C. This operator is applied only when the subtrees

under the duplicate non-terminals of the produc-

tion are often found to be the same in the parse

trees of the MRs in the training data. As such this

operator will change the MRL the new MRG will

generate, but this can be easily reverted by appro-

priately duplicating the subtrees in its generated

MR parses in accordance to the original produc-

tion. This operator is useful during learning a se-

mantic parser because it eliminates the type of in-

compatibility between MRs and NL sentences il-

lustrated with Figure 1 (c) in Subsection 2.1.

5. Delete Production (DeleteProd): This last

operator deletes a production and replaces the oc-

currences of its left-hand-side (LHS) non-terminal

with its RHS in the RHS of all the other produc-

tions. In terms of semantic parsing, this operator

eliminates the need to learn a semantic concept. It

can undo the transformations obtained by the other

operators by deleting the new productions they in-

troduce.

We note that the CombineNT and MergeNT op-

erators are same as the two operators used by Lan-

gley and Stromsten (2000) to search a good syntac-

tic grammar for natural language sentences from

the space of its possible grammars. We also note

that the applications of CreateNT and CombineNT

operators can reduce a CFG to its Chomsky nor-

mal form6, and conversely, because of the reverse

transformations achieved by the DeleteProd opera-

tor, a Chomsky normal form of a CFG can be con-

verted into any other CFG which accepts the same

language.

3.2 Applying Transformation Operators

In order to transform an MRG to improve semantic

parsing, since a simple hill-climbing type approach

to search the space of all possible MRGs will be

computationally very intensive, we use the follow-

ing error-driven heuristic search which is faster al-

though less thorough.

First, using the provided MRG and the training

data, a semantic parser is trained using KRISP. The

trained semantic parser is applied to each of the

training NL sentences. Next, for each production π
in the MRG, two values totalπ and incorrectπ are

computed. The value totalπ counts how many MR

parses from the training examples use the produc-

6In which all the productions are of the form A → a or
A→ B C.

tion π. The value incorrectπ counts the number

of training examples for which the semantic parser

incorrectly uses the production π, i.e. it either did

not include the production π in the parse of the MR

it produces when the correct MR’s parse included

it, or it included the production π when it was not

present in the correct MR’s parse. These two statis-

tics for a production indicate how well the seman-

tic parser was able to use the production in seman-

tic parsing. If it was not able to use a production π
well, then the ratio incorrectπ/totalπ, which we

call mistakeRatioπ, will be high indicating that

some change needs to be made to that production.

After computing these values for all the produc-

tions, the procedure described below for applying

the first type of operator is followed. After this,

the MRs in the training data are re-parsed using

the new MRG, the semantic parser is re-trained and

the totalπ and incorrectπ values are re-computed.

Next, the procedure for applying the next operator

is followed and so on. The whole process is re-

peated for a specified number of iterations. In the

experiments, we found that the performance does

not improve much after two iterations.

1. Apply CreateNT: For each terminal t in the

grammar, totalt and incorrectt values are com-

puted by summing up the corresponding values for

all the productions in which t occurs on the RHS

with at least one non-terminal7. If totalt is greater

than β (a parameter) and mistakeRatiot =
incorrectt/totalt is greater than α (another pa-

rameter), then the CreateNT operator is applied,

provided the production T → t is not already

present.

2. Apply MergeNT: All the non-terminals oc-

curring on the RHS of all those productions π are

collected whose mistakeRatioπ value is greater

than α and whose totalπ value is greater than β.

The set of these non-terminals is then partitioned

such that the criteria for applying the MergeNT

is satisfied by the non-terminals in each partition

with size at least two. The MergeNT operator is

then applied to the non-terminals in each partition

with size at least two.

3. Apply CombineNT: For every non-terminal

pair T1 and T2, totalT1T2 and incorrectT1T2 val-

ues are computed by summing their correspond-

ing values for the productions in which the two

non-terminals are adjacent in the RHS in the

7Without a non-terminal on the RHS, the operator will
only add a redundant level to the parses which use this pro-
duction.
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presence of at least one more non-terminal. If

mistakeRatioT1T2 = incorectT1T2/totalT1T2 is

greater than α and totalT1T2 is greater than β, then

the CombineNT operator is applied to these two

non-terminals.

4. Apply RemoveDuplNT: If a production

π has duplicate non-terminals on the RHS under

which the same subtrees are found in the MR parse

trees of the training data more than once then this

operator is applied provided its mistakeRatioπ is

greater than α and totalπ is greater than β.

5. Apply DeleteProd: The DeleteProd opera-

tor is applied to all the productions π and whose

mistakeRatioπ is greater than α and totalπ is

greater than β. This step simply deletes the pro-

ductions which are mostly incorrectly used.

For the experiments, we set the α parameter to

0.75 and β parameter to 5, these values were de-

termined through pilot experiments.

4 Transforming MRGs Using Macros

As was illustrated with Figure 2 in Subsection 2.1,

sometimes there can be large parses for MR ex-

pressions which do not correspond well with their

semantics in the natural language. While it is pos-

sible to transform the MRG using the operators

described in the previous section to reduce a sub-

tree of the parse to just one production which will

then correspond directly to its meaning in the nat-

ural language, it will require a particular sequence

of transformation operators to achieve this which

may rarely happen during the heuristic search used

in the MRG transformation algorithm. In this sec-

tion, we describe a more direct way of obtaining

such transformations using macros.

4.1 Meaning Representation Macros

A meaning representation macro for an MRG is a

production formed by combining two or more ex-

isting productions of the MRG. For example, for

the CLANG example shown in Figure 2, the pro-

duction REGION→ (rec(pt -32 -35)(pt 0 35)) is a mean-

ing representation macro. There could also be non-

terminals on its RHS. From an MR parse drawn

with non-terminals at the internal nodes (instead of

productions), a macro can be derived from a sub-

tree8 rooted at any of the internal nodes by making

its root as the LHS non-terminal and the left-to-

right sequence formed by its leaves (which could

8Each node of a subtree must either include all the chil-
dren nodes of the corresponding node from the original tree
or none of them.

be non-terminals) as the RHS. We use the follow-

ing error-driven procedure to introduce macros in

the MRG in order to improve the performance of

semantic parsing.

4.2 Learning Meaning Representation

Macros

A semantic parser is first learned from the train-

ing data using KRISP and the given MRG. The

learned semantic parser is then applied to the train-

ing sentences and if the system can not produce

any parse for a sentence then the parse tree of its

corresponding MR is included in a set called failed

parse trees. Common subtrees in these failed parse

trees are likely to be good candidates for introduc-

ing macros. Then a set of candidate trees is cre-

ated as follows. This set is first initialized to the

set of failed parse trees. The largest common sub-

tree of every pair of trees in the candidate trees is

then also included in this set if it is not an empty

tree. The process continues with the newly added

trees until no new tree can be included. This pro-

cess is similar to the repeated bottom-up general-

ization of clauses used in the inductive logic pro-

gramming system GOLEM (Muggleton and Feng,

1992). Next, the trees in this set are sorted based

on the number of failed parse trees of which they

are a subtree. The trees which are part of fewer

than β subtrees are removed. Then in highest to

lowest order, the trees are selected one-by-one to

form macros, provided their height is greater than

two (otherwise it will be an already existing MRG

production) and an already selected tree is not its

subtree. A macro is formed from a tree by mak-

ing the non-terminal root of the tree as its LHS

non-terminal and the left-to-right sequence of the

leaves as its RHS.

These newly formed macros (productions) are

then included in the MRG. The MRs in the train-

ing data are re-parsed and the semantic parser is

re-trained using the new MRG. In order to delete

the macros which were not found useful, a pro-

cedure similar to the application of DeleteProd is

used. The totalπ and incorrectπ values for all the

macros are computed in a manner similar to de-

scribed in the previous section. The macros for

which mistakeRatioπ = totalπ/incorrectπ is

greater than α and totalπ is greater than β are re-

moved. This whole procedure of adding and delet-

ing macros is repeated a specified number of it-

erations. In the experiments, we found that two
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Figure 4: The results comparing the performances of the

learned semantic parsers on the GEOUQERY domain with the

functional query language using different MRGs.
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Figure 5: The results comparing the performances of

the learned semantic parsers on the GEOUQERY domain with

SQL as the MRL using different MRGs.

iterations are usually sufficient.

5 Experiments

We tested our MRG transformation methods with

MRGs of three different MRLs which were de-

scribed in the Background section. In each case,

we first transformed the given MRG using macros

and then using grammar transformation operators.

The training and testing was done using standard

10-fold cross-validation and the performance was

measured in terms of precision (the percentage of

generated MRs that were correct) and recall (the

percentage of all sentences for which correct MRs

were obtained). Since we wanted to evaluate how

the grammar transformation changes the perfor-

mance on the semantic parsing task, in each of

the experiments, we used the same system, KRISP,

and compared how it performs when trained using

different MRGs for the same MRL. Since KRISP

assigns confidences to the MRs it generates, an en-

tire range of precision-recall trade-off was plotted

by measuring precision and recall values at various

confidence levels.

Figure 4 shows the results on the GEOQUERY

domain using the functional query language whose
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Figure 6: The results comparing the performances of the

learned semantic parsers on the CLANG corpus using different

MRGs.

corpus contained total 880 NL-MR pairs. As can

be seen, the performance of the semantic parser

that KRISP learns when trained using the initial

simple MRG for the MRL is not good. But

when that MRG is transformed, the performance

of the semantic parser dramatically improves and

is very close to the performance obtained with the

manually-engineered grammar. The macro trans-

formations did not help improve the performance

with this MRG, and most of the the performance

gain was obtained because of the CreateNT and

DeleteProd operators.

We next tested our MRG transformation algo-

rithm on SQL as the MRL for the GEOQUERY do-

main. This corpus contains 700 NL-MR pairs in

which the NL sentences were taken from the orig-

inal 880 examples. This corpus was previously

used to evaluate the PRECISION system (Popescu

et al., 2003), but since that system is not a machine

learning system, its results cannot be directly com-

pared with ours. The initial MRG we used con-

tained the basic SQL productions. Figure 5 shows

that results improve by a large amount after MRG

transformations. We did not have any manually-

engineered MRG for SQL for this domain avail-

able to us. With this MRG, most of the improve-

ment was obtained using the macros and the Re-

moveDuplNT transformation operator.

Finally, we tested our MRG transformation al-

gorithm on the CLANG domain using its origi-

nal MRG in which all the chief regions of the

soccer field were in the form of numeric MR ex-

pressions which do not correspond to their mean-

ings in the natural language. Its corpus contains

300 examples of NL-MR pairs. Figure 6 shows

the results. After applying the MRG transforma-

tions the performance improved by a large margin.

The gain was due to transformations obtained us-
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ing macros while the grammar transformation op-

erators did not help with this MRG. Although the

precision was lower for low recall values, the re-

call increased by a large quantity and the best F-

measure improved from 50% to 63%. But the per-

formance still lagged behind that obtained using

the manually-engineered MRG. The main reason

for this is that the manual MRG introduced some

domain specific expressions, like left, right,

left-quarter etc., which correspond directly

to their meanings in the natural language. On

the other hand, the only way to specify “left” of

a region using the original CLANG MRG is by

specifying the coordinates of the left region, like

(rec(pt -32 -35)(pt 0 0)) is the left of

(rec (pt -32 -35) (pt 0 35)) etc. It

is not possible to learn the concept of “left” from

such expressions even with MRG transformations.

6 Conclusions

A meaning representation grammar which does not

correspond well with the natural language seman-

tics can lead to a poor performance by a learned

semantic parser. This paper presented grammar

transformation operators and meaning representa-

tion macros using which the meaning representa-

tion grammar can be transformed to make it better

conform with the semantics of natural language.

Experimental results on three different grammars

demonstrated that the performance on semantic

parsing task can be improved by large amounts by

transforming the grammars.
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Abstract

Detecting the semantic coherence of a doc-
ument is a challenging task and has sev-
eral applications such as in text segmenta-
tion and categorization. This paper is an
attempt to distinguish between a ‘semanti-
cally coherent’ true document and a ‘ran-
domly generated’ false document through
topic detection in the framework of latent
Dirichlet analysis. Based on the premise
that a true document contains only a few
topics and a false document is made up of
many topics, it is asserted that the entropy
of the topic distribution will be lower for
a true document than that for a false docu-
ment. This hypothesis is tested on several
false document sets generated by various
methods and is found to be useful for fake
content detection applications.

1 Introduction

The “Internet revolution” has dramatically in-
creased the monetary value of higher ranking on
the web search engines index, fostering the ex-
pansion of techniques, collectively known as “Web
Spam”, that fraudulently help to do so. Internet is
indeed “polluted” with fake Web sites whose only
purpose is to deceive the search engines by arti-
ficially pushing up the popularity of commercial
sites, or sites promoting illegal content 1. These
fake sites are often forged using very crude content
generation techniques, ranging from web scrap-
ping (blending of chunks of actual contents) to
simple-minded text generation techniques based

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1The annual AirWeb challenge http://airweb.
cse.lehigh.edu gives a state-of-the art on current Web
Spam detection techniques.

on random sampling of words (“word salads”),
or randomly replacing words in actual documents
(“word stuffing”) 2. Among these, the latter two
are easy to detect using simple statistical models
of natural texts, but the former is more challeng-
ing, it being made up of actual sentences: recog-
nizing these texts as forged requires either to resort
to plagiarism detection techniques, or to automati-
cally identify their lack of semantic consistency.

Detecting the consistency of texts or of text
chunks has many applications in Natural Language
Processing. So far, it has been used mainly in the
context of automatic text segmentation, where a
change in vocabulary is often the mark of topic
change (Hearst, 1997), and, to a lesser extent, in
discourse studies (see, e.g., (Foltz et al., 1998)).
It could also serve to devise automatic metrics for
text summarization or machine translation tasks.

This paper is an attempt to address the issue
of differentiating between ‘true’ and ‘false’ doc-
uments on the basis of their consistency through
topic modeling approach. We have used La-
tent Dirichlet allocation (LDA) (Blei et al., 2002)
model as our main topic modeling tool. One of the
aims of LDA and similar methods, including prob-
abilistic latent semantic analysis (PLSA) (Hof-
mann, 2001), is to produce low dimensionality rep-
resentations of texts in a “semantic space” such
that most of their inherent statistical characteristics
are preserved. A reduction in dimensionality facil-
itates storage as well as faster retrieval. Modeling
discrete data has many applications in classifica-
tion, categorization, topic detection, data mining,
information retrieval (IR), summarization and col-
laborative filtering (Buntine and Jakulin, 2004).

The aim of this paper is to test LDA for es-
tablishing the semantic coherence of a document
based on the premise that a real (coherent) docu-
ment should discuss only a few number of topics,

2The same techniques are commonly used in mail spams
also.
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a property hardly granted for forged documents
which are often made up of random assemblage
of words or sentences. As a consequence, the co-
herence of a document may reflect in the entropy
of its posterior topic distribution or in its perplex-
ity for the model. The entropy of the estimated
topic distribution of a true document is expected to
be lower than that of a fake document. Moreover,
the length normalized log-likelihood of a true and
coherent document may be higher as compared to
that of a false and incoherent document.

In this paper, we compare two methods to esti-
mate the posterior topic distribution of test docu-
ments, and this study is also an attempt to inves-
tigate the role of different parameters on the effi-
ciency of these methods.

This paper is organized as follows: In Section 2,
the basics of the LDA model are set. We then dis-
cuss and contrast several approaches to the prob-
lem of inferring the topic distribution of a new
document in Section 3. In Section 4, we describe
the corpus and experimental set-up that are used
to produce the results presented in Section 5. We
summarize our main findings and draw perspec-
tives for future research in Section 6.

2 Latent Dirichlet Allocation

2.1 Basics

LDA is a probabilistic model of text data which
provides a generative analog of PLSA (Blei et al.,
2002), and is primarily meant to reveal hidden top-
ics in text documents. In (Griffiths and Steyvers,
2004), the authors used LDA for identifying “hot
topics” by analyzing the temporal dynamics of top-
ics over a period of time. More recently LDA has
also been used for unsupervised language model
(LM) adaptation in the context of automatic speech
recognition (ASR) (Hsu and Glass, 2006; Tam
and Schultz, 2007; Heidel et al., 2007). Several
extensions of the LDA model, such as hierarchi-
cal LDA (Blei et al., 2004), HMM-LDA (Grif-
fiths et al., 2005), correlated topic models (Blei
and Lafferty, 2005) and hidden topic Markov mod-
els (Gruber et al., 2007), have been proposed, that
introduce more complex dependency patterns in
the model.

Like most of the text mining techniques, LDA
assumes that documents are made up of words and
the ordering of the words within a document is
unimportant (“bag-of-words” assumption). Con-
trary to the simpler Multinomial Mixture Model

(see, e.g., (Nigam et al., 2000) and Section 2.4),
LDA assumes that every document is represented
by a topic distribution and that each topic defines
an underlying distribution on words.

The generative history of a document (a bag-
of-words) collection is the following: Assuming
a fixed and known number of topics nT , for each
topic t, a distribution βt over the indexing vocab-
ulary (w = 1 . . . nW ) is drawn from a Dirichlet
distribution. Then, for each document d, a distri-
bution θd over the topics (t = 1 . . . nT ) is drawn
from a Dirichlet distribution. For a document d,
the document length ld being an exogenous vari-
able, the next step consists of drawing a topic ti
from θd for each position i = 1...ld. Finally, a
word is selected from the chosen topic ti. Given
the topic distribution, each word is thus drawn in-
dependently from every other word using a docu-
ment specific mixture model. The probability of
ith word token is thus:

P (wi|θd, β) =
nT∑
t=1

P (ti = t|θd)P (wi|ti, β) (1)

=
nT∑
t=1

θdtβtw (2)

Conditioned on β and θd, the likelihood of doc-
ument d is a mere product of terms such as (2),
which can be rewritten as:

P (Cd|θd, β) =
nW∏
w=1

[
nT∑
t=1

(θdtβtw)

]Cdw

(3)

where Cdw is the count of word w in d.

2.2 LDA: Training

LDA training consists of estimating the following
two parameter vectors from a text collection: the
topic distribution in each document d (θdt, t =
1...nT , d = 1...nD) and the word distribution in
each topic (βtw, t = 1...nT , w = 1...nW ). Both
θd and βt define discrete distributions, respectively
over the set of topics and over the set of words.
Various methods have been proposed to estimate
LDA parameters, such as variational method (Blei
et al., 2002), expectation propagation (Minka and
Lafferty, 2002) and Gibbs sampling (Griffiths and
Steyvers, 2004). In this paper, we have used
the latter approach, which boils down to repeat-
edly going through the training data and sampling
the topic assigned to each word token conditioned
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on the topic assigned to all the other word to-
kens. Given a particular Gibbs sample, the pos-
teriors for θ and β are 3: Dirichlet with parameters
(Kt1+λ, . . . ,KtnW +λ) and Dirichlet with param-
eters (Jd1 +α, . . . , JdnT

+α), respectively, where
Ktw is the number of times word w is assigned to
topic t and Jdt is the number of times topic t is as-
signed to some word token in document d. Hence,

βtw =
Ktw + λ∑nW

k=1 Ktk + nW λ
(4)

θdt =
Jdt + α∑nT

k=1 Jdk + nT α
(5)

During the Gibbs sampling phase, βt and θd are
sampled from the above posteriors while the final
estimates for these parameters are obtained by av-
eraging the posterior means over the complete set
of Gibbs iteration.

2.3 LDA: Testing

Training LDA model on a text collection already
provides interesting insights regarding the the-
matic structure of the collection. This has been the
primary application of LDA in (Blei et al., 2002;
Griffiths and Steyvers, 2004). Even better, being
a generative model, LDA can be used to make
prediction regarding novel documents (assuming
they use the same vocabulary as the training cor-
pus). In a typical IR setting, where the main fo-
cus is on computing the similarity between a doc-
ument d and a query d′, a natural similarity mea-
sure is given by P (Cd′ |θd, β), computed according
to (3) (Buntine et al., 2004).

An alternative would be to compute the KL di-
vergence between the topic distribution in d and d′,
which however requires to infer the latter quantity.
As the topic distribution of a (new) document gives
its representation along the latent semantic dimen-
sions, computing this value is helpful for many
applications, including text segmentation and text
classification. Methods for efficiently and accu-
rately estimating topic distribution for text docu-
ments are presented and evaluated in Section 3.

2.4 Baseline: Multinomial Mixture Model

The performance of LDA model is compared
with that of the simpler multinomial mixture
model (Nigam et al., 2000; Rigouste et al., 2007).

3assuming non-informative priors with hyper-parameters
α and λ for the Dirichlet distribution over topics and the
Dirichlet distribution over words respectively

In this model, every word in a document belongs
to the same topic, as if the document specific topic
distribution θd in LDA were bound to lie on one
vertex of the [0, 1]nT simplex. Using the same no-
tations as before (except for θt, which now denotes
the position independent probability of topic t in
the collection), the probability of a document is:

P (Cd|θt, β) =
nT∑
t=1

θt

nW∏
w=1

βCdw
tw (6)

This model can be trained through expectation
maximization (EM), using the following reestima-
tion formulas, where (7) defines the E-step; (8) and
(9) define the M-step.

P (t|Cd, θ, β) =
θt
∏nW

w=1(β
′
tw)Cdw∑nT

t=1 θt
∏nW

w=1(βtw)Cdw
(7)

θ′
t ∝ α +

nD∑
d=1

P (t|Cd, θ, β) (8)

β′
tw ∝ λ +

nD∑
d=1

CdwP (t|Cd, θ, β) (9)

As suggested in (Rigouste et al., 2007), we ini-
tialize the EM algorithm by drawing initial topic
distributions from a prior Dirichlet distribution
with hyper-parameter α = 1. β = 0.1 in all the
experiments.

During testing, the parameters of the multino-
mial models are used to estimate the posterior topic
distribution in each document using (7). The like-
lihood of a test document is given by (6).

3 Inferring the Topic Distribution of Test
Documents

P (Cd|θd), the conditional probability of a docu-
ment d given θd is obtained using (3) 4. Computing
the likelihood of a test document requires to inte-
grate this quantity over θ; likewise for the compu-
tation of the posterior distribution of θ. This inte-
gral has no close form solution, but can be approx-
imated using Monte-Carlo sampling techniques as:

P (Cd) ≈
1
M

M∑
m=1

P (Cd|θ
(m)) (10)

where θ(m) denotes the mth sample from the
Dirichlet prior, and M is the number of Monte

4The dependence on β is dropped for simplicity. β is
learned during training and kept fixed during testing.
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Carlo samples. Given the typical length of doc-
uments and the large vocabulary size, small scale
experiments convinced us that a cruder approxima-
tion was in order, as the sum in (10) is dominated
by the maximum value. We thus contend ourselves
to solve:

θ∗ = argmax
θ,

P
t θt=1

P (Cd|θ) (11)

and use this value to approximate P (Cd) using (3).
The maximization program (11) has no close

form solution. However, the objective function is
differentiable and log-concave, and can be opti-
mized in a number of ways. We considered two
different algorithms: an EM-like approach, ini-
tially introduced in (Heidel et al., 2007), and an ex-
ponentiated gradient approach (Kivinen and War-
muth, 1997; Globerson et al., 2007).

The first approach implements an iterative pro-
cedure based on the following update rule:

θdt ←
1
ld

nW∑
w=1

Cdwθdtβtw∑nT
t′=1 θdt′βt′w

(12)

Although no justification was given in (Hei-
del et al., 2007), it can be shown that this
update rule converges towards a global opti-
mum of the likelihood. Let θ and θ′ be two
topic distributions in the nT -dimensional simplex,
L(θ) = log P (Cd|θ), and ρt(w, θ) = θtβtwP

t′ θt′βt′w
.

We define an auxiliary function Q(θ, θ′) =∑
w Cw(

∑
t ρt(w, θ) log(θ′

t)). Q(θ, θ′) is concave
in θ′, and performs the role played by the auxil-
iary function in the EM algorithm. Simple cal-
culus suffices to prove that (i) the update (12)
maximizes in θ′ the function Q(θ, θ′), and (ii)
Q(θ, θ′) − Q(θ, θ) ≥ L(θ′) − L(θ), which stems
from the concavity of the log. At an optimum of
Q(θ, θ′) the positivity of the first term implies the
positivity of the second. Maximizing Q using the
update rule (12) thus increases the likelihood and
repeating this update converges towards the opti-
mum value. We experimented both with an un-
smoothed (12) and with a smoothed version of this
update rule. The unsmoothed version yielded a
slightly better result than the smoothed one.

Exponentiated gradient (Kivinen and Warmuth,
1997; Globerson et al., 2007) yields an alternative
update rule:

θdt ← θdt exp

(
η

nW∑
w=1

Cdwβtw∑nT
t′=1 θdt′βt′w

)
(13)

where η defines the convergence rate. In this form,
the update rule does not preserve the normaliza-
tion of θ, which needs to be performed after every
iteration.

A systematic comparison of these rules was car-
ried out, yielding the following conclusions:

• the convergence of the EM-like method is
very fast. Typically, it requires less than half
a dozen iterations to converge. After conver-
gence, the topic distribution estimated by this
method for a subset of train documents was
always very close (as measured by the KL-
divergence) to the respective topic distribu-
tion of the same documents observed at the
end of the LDA training. Taking nT = 50,
the average KL divergence for a set of 4,500
documents was found to be less than 0.5.

• exponentiated gradient has a more erratic be-
haviour, and requires a careful tuning of η on
a per document basis. For large values of η,
the update rule (13) sometimes fails to con-
verge; smaller values of η allowed to consis-
tently reach convergence, but required more
iterations (typically 20-30). On a positive
side, on an average, the topic distributions
estimated by this method are better than the
ones obtained with the EM-like algorithm.

Based on these findings, we decided to use the
EM-like algorithm in all our subsequent experi-
ments.

4 Experimental protocol

4.1 Training and test corpora

The Reuters Corpus Volume 1 (RCV1) (Lewis et
al., 2004) is a collection of over 800,000 news
items in English from August 1996 to August
1997. Out of the entire RCV1 dataset, we se-
lected 27,672 documents (news items) for training
(TrainReuters) and 23,326 documents for testing
(TestReuters). The first 4000 documents from the
TestReuters dataset were used as true documents
(TrueReuters) in the experiments reported in this
paper. The vocabulary size in the train set, after
removing the function words, is 93, 214.

Along with these datasets of “true” documents,
three datasets of fake documents were also cre-
ated. Document generation techniques are many:
here we consider documents made by mixing short
passages from various texts and documents made
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by assembling randomly chosen words (sometimes
called as “word salads”). In addition, we also
consider the case of documents generated with a
stochastic language model (LM). Our “fake” test
documents are thus composed of:

• (SentenceSalad) obtained by randomly pick-
ing sentences from TestReuters.

• (WordSalad) created by generating random
sentences from a conventional unigram LM
trained on TrainReuters.

• (Markovian) created by generating random
sentences from a conventional 3-gram LM
trained on TrainReuters.

Each of these forged document set contains 4,000
documents.

To assess the performance on out-of-domain
data, we replicated the same tests using 2,000
Medline abstracts (Ohta et al., 2002). 1,500 doc-
uments were used either to generate fake docu-
ments by picking sentences randomly or to train an
LM and then using the LM to generate fake docu-
ments. The remaining 500 abstracts were set aside
as “true” documents (TrueMedline).

4.2 Performance Measurements : EER

The entropy of the topic distribution is computed
as H = −

∑T
j=1 θ̂dj log θ̂dj . The other measure

of interest is the average ‘log-likelihood per word’
(LLPW) 5.

While evaluating the performance of our sys-
tem, two types of errors are encountered: false ac-
ceptance (FA) when a false document is accepted
as a true document and false rejection (FR) when a
true document is rejected as a false document. The
rate of FA and FR is dependent on the threshold
used for taking the decision, and usually the per-
formance of a system is shown by its receiver op-
erating characteristic (ROC) curve which is a plot
between FA and FR rates for different values of
threshold. Instead of reporting the performance of
a system based on two error rates (FA and FR),
the general practice is to report the performance in
terms of equal-error-rate (EER). The EER is the
error rate at the threshold where FA rate = FR rate.

In our system, a threshold on entropy (or
LLPW) is used for taking the decision, and all the

5This measure is directly related to the text per-
plexity in the model, according to perplexity =

2−average log-likelihood per word

documents having their entropy (or LLPW) below
(or above) the threshold are accepted as true doc-
uments. The EER is obtained on the test set by
changing the threshold on the test set itself, and
the best results thus obtained are reported.

5 Detecting semantic inconsistency

5.1 Detecting fake documents with LDA and
Multinomial mixtures

In the first set of experiments, the LLPW and en-
tropy of the topic distribution (the two measures)
of the Multinomial mixture and LDA models were
compared to check the ability of these two mea-
sures and models in discriminating between true
and false documents. These results are summa-
rized in Table 1.

TrueReuters vs.
Multinomial

LLPW Entropy
SentenceSalad 15.3% 48.8%
WordSalad 9.3% 35.8%
Markovian 17.6% 38.9%

TrueReuters vs.
LDA

LLPW Entropy
SentenceSalad 18.9% 0.88%
WordSalad 9.9% 0.13%
Markovian 25.0% 0.28%

Table 1: Performance of the Multinomial Mixture
and LDA

For the multinomial mixture model, the LLPW
measure is able to discriminate between true and
false documents to a certain extent. As expected
(not shown here), the LLPW of the true documents
is usually higher than that of the false documents.
In contrast, the entropy of the posterior topic dis-
tribution does not help much in discriminating be-
tween true and false documents. In fact it remains
close to zero (meaning that only one topic is “ac-
tive”) both for true and false documents.

The behaviour of the LDA scores is entirely dif-
ferent. The perplexity scores (LLPW) of true and
fake texts are comparable, and do not make useful
predictors. In contrast, the entropy of the topic dis-
tribution allows to sort true documents from fake
ones with a very high accuracy for all kinds of fake
texts considered in this paper. Both results stem
from the ability of LDA to assign a different topic
to each word occurrence.

Similar pattern is observed for our three false
test sets (against the TrueReuters set) with small
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variations The texts generated with a Markov
model, no matter the order, have the highest en-
tropy, reflecting the absence of long range corre-
lation in the generation model. Though the texts
generated by mixing sentences are more confus-
ing with the true documents, the performance is
still less than 1% EER. Texts mixing a high num-
ber of topics (e.g., Sentence Salads) are almost as
likely as natural texts that address only a few top-
ics. However, the former has much higher entropy
of the topic distribution due to a large number of
topics being active in such texts (see also Figure 1).
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Figure 1: Histogram of entropy of θ for different
true and false document sets.

It is noteworthy that both the predictors (LLPW
and Entropy) give complementary clues regarding
a text category. A linear combination of these two
scores (the weight to the LLPW score is 0.1) al-
lows to substantially improve over these baseline
results, yielding a relative improvement (in EER)
of +20.0% for the sentence salads, +20.8% for the
word salads, and +27.3% for the Markov Models.

5.2 Effect of the number of topics

In this part, we investigate the performance of
LDA in detecting false documents when the num-
ber of topics is changed. Increasing the number
of topics means higher memory requirements both
during training and testing. Though the results are
shown only for SentenceSalad, similar trend is ob-
served for WordSalad and Markovian.

The numbers in Table 2 show that the perfor-
mance obtained with the LLPW score consistently
improve with an increase in the number of top-
ics, though the % improvement obtained when the

number of topics exceeds 200 is marginal. In con-
trast, the best performance in case of entropy is
achieved at 50 topics and slowly degrades when a
more complex model is used.

Number of Topics LLPW Entropy
10 27.9 1.88
50 18.9 0.88
100 16.0 0.93
200 14.8 0.90
300 13.8 1.05
400 13.6 1.10

Table 2: EER from LLPW and Entropy distribution
for TrueReuters against SentenceSalad.

5.3 Detecting “noisy” documents

In this section, we study fake documents produced
by randomly changing words in true documents
(the TrueReuters dataset). In each document, a
fixed percentage of content words is randomly re-
placed by any other word from the training vocab-
ulary 6. This percentage was varied from 5 to 100
and EER for these corrupted document sets is com-
puted at each % corruption level (Figure 2). As
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Figure 2: EER at various noise levels

expected, the EER is very high at low noise levels,
and as the noise level is increased, EER gets lower.
When only a few words are changed in a true doc-
ument, it retrains the properties of a true document
(high LLPW and low entropy). However, as more
number of words are changed in a true document,

6When the replacement words are chosen from a small set
of very specific words, the fake document generation strategy
is termed as “word stuffing”.
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it starts showing the characteristics of a false docu-
ment (low LLPW and high entropy). These results
suggest that our semantic consistency tests are too
crude a measure to detect a small number of in-
consistencies, such as the ones found in the state-
of-the-art OCR or ASR systems’ outputs. On the
other hand, it confirms the numerous studies that
have shown that topic detection (and topic adapta-
tion) or text categorization tasks can be performed
with the same accuracy for moderately noisy texts
and clean texts, a finding which warrants the topic-
based LM adaptation strategies deployed in (Hei-
del et al., 2007; Tam and Schultz, 2007).

The difference in the behavior of our two pre-
dictors is striking. The EER obtained using LLPW
drops more quickly than the one obtained with en-
tropy of the topic distribution. It suggests that the
influence of “corrupting” content words (mostly
with low βtw) is heavy on the LLPW, but the topic
information is not lost till a majority of the “uncor-
rupted” content words belong to the same topic.

5.4 Effect of the document length

In this section, we study the robustness of our
two predictors with respect to the document length
by progressively increasing the number of content
words in a document (true or fake). As can be seen
from Figure 3, the entropy of the posterior topic
distribution starts to provide a reasonable discrim-
ination (5% EER) when the test documents contain
about 80 to 100 content words, and attains results
comparable to those reported earlier in this paper
when this number doubles. This definitely rules
out this method as a predictor of the semantic con-
sistency of a sentence: we need to consider at least
a paragraph to get acceptable results.

5.5 Testing with out-of-domain data

In this section, we study the robustness of our pre-
dictors on out-of-domain data using a small ex-
cerpt of abstracts from the Medline database. Both
true and fake documents are from this dataset.
The results are summarized in Table 3. The per-

TrueMedline vs. LLPW Entropy
SentenceSalad 31.23% 22.13%
WordSalad 30.03% 19.46%
Markovian 36.51% 23.63%

Table 3: Performance of LDA on PubMed ab-
stracts

formance on out-of-domain documents is poor,
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Figure 3: EER with change in number of con-
tent words used for LDA analysis. EER based
on: LLPW of TrueReuters and false document sets
(solid line) and Entropy of topic distribution of
TrueReuters and false document sets (dashed line).

though the entropy of the topic distribution is still
the best predictor. The reasons for this failure are
obvious: a majority of the words occurring in these
documents (true or fake) are, from the perspective
of the model, characteristic of one single Reuters
topic (health and medicine). They cannot be dis-
tinguished either in terms of perplexity or in terms
of topic distribution (the entropy is low for all the
documents). It is interesting to note that all the
out-of-domain Medline data can be separated from
the in-domain TrueReuters data with good accu-
racy on the basis of the lower LLPW of the former
as compared to the higher LLPW of the latter.

6 Conclusion

In the LDA framework, this paper investigated two
methods to infer the topic distribution in a test
document. Further, the paper suggested that the
coherence of a document can be evaluated based
on its topic distribution and average LLPW, and
these measures can help to discriminate between
true and false documents. Indeed, through exper-
imental results, it was shown that entropy of the
topic distribution is lower and average LLPW of
true documents is higher for true documents and
the former measure was found to be more effective.
However, the poor performance of this method on
out-of-domain data suggests that we need to use a
much larger training corpus to build a robust fake
document detector. This raises the issue of train-
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ing LDA model with very large collections. In fu-
ture we would like to explore the potential of this
method for text segmentation tasks.
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Abstract

This paper investigates, in a first stage,
some methods for the automatic acquisi-
tion of verb-particle constructions (VPCs)
taking into account their statistical prop-
erties and some regular patterns found in
productive combinations of verbs and par-
ticles. Given the limited coverage pro-
vided by lexical resources, such as dictio-
naries, and the constantly growing number
of VPCs, possible ways of automatically
identifying them are crucial for any NLP
task that requires some degree of semantic
interpretation. In a second stage we also
study whether the combination of statis-
tical and linguistic properties can provide
some indication of the degree of idiomatic-
ity of a given VPC. The results obtained
show that such combination can success-
fully be used to detect VPCs and distin-
guish idiomatic from compositional cases.

1 Introduction

Considerable investigative effort has focused on
the automatic identification of Multiword Expres-
sions (MWEs), like compound nouns (science fic-
tion) and phrasal verbs (carry out) (e.g. Pearce
(2002), Evert and Krenn (2005) and Zhang et
al. (2006)). Some of them employ language
and/or type dependent linguistic knowledge for
the task, while others employ independent statis-
tical methods, such as Mutual Information and
Log-likelihood (e.g. Pearce (2002) and, Zhang et
al. (2006)), or even a combination of them (e.g.

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

Baldwin (2005) and Sharoff (2004)), as basis for
helping to determine whether a given sequence
of words is in fact an MWE. Although some re-
search aims at developing methods for dealing
with MWEs in general (e.g. Zhang et al. (2006),
Ramisch et al. (2008)), there is also some work that
deals with specific types of MWEs (e.g. Pearce
(2002) on collocations and Villavicencio (2005)
on verb-particle constructions (VPCs)) as each of
these MWE types has distinct distributional and
linguistic characteristics.

VPCs are combinations of verbs and particles,
such as take off in Our plane took off late, that due
to their complex characteristics and flexible na-
ture, provide a real challenge for NLP. In particu-
lar, there is a lack of adequate resources to identify
and treat them, and those that are available provide
only limited coverage, in face of the huge number
of combinations in use. For tasks like parsing and
generation, it is essential to know whether a given
VPC is possible or not, to avoid for example us-
ing combinations that sound unnatural or ungram-
matical to native speakers (e.g. give/lend/?grant
out for the conveying of something to someone or
some place - (Fraser, 1976)).1 Thus, the knowl-
edge of which combinations are possible is cru-
cial for precision grammar engineering. In ad-
dition, as the semantics of VPCs varies from the
idiomatic to the more compositional cases, meth-
ods for the automatic detection and handling of id-
iomaticity are very important for any NLP task that
involves some degree of semantic interpretation
such as Machine Translation (in this case avoiding
the problem of producing an unrelated translation
for a source sentence). Automatic methods for the
identification of idiomaticity in MWEs have been

1See Baldwin et al. (2004) for a discussion of the effects of
multiword expressions like VPCs on a parser’s performance.
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proposed using a variety of approaches such as
statistical, substitutional, distributional, etc. (e.g.
McCarthy et al. (2003), Bannard (2005) and Fa-
zly and Stevenson (2006)). In particular, Fazly
and Stevenson (2006) look at the correlation be-
tween syntactic fixedness (in terms of e.g. pas-
sivisation, choice of determiner type and pluralisa-
tion) and non-compositionality of verb-noun com-
pounds such as shoot the breeze.

In this work we investigate the automatic extrac-
tion of VPCs, looking into a variety of methods,
combining linguistic with statistical information,
ranging from frequencies to association measures:
Mutual Information (MI), χ2 and Entropy. We also
investigate the determination of compositionality
of VPCs verifying whether the degree of semantic
flexibility of a VPC combined with some statisti-
cal information can be used to determine if it is
idiomatic or compositional.

This paper starts with a brief description of
VPCs, research on their automatic identification
and determination of their semantics (§ 2). We then
explain the research questions and the assumptions
that serve as the basis for the application of statis-
tical measures (§ 3) on the dataset (§ 4). Our meth-
ods and experiments are then detailed (§ 5), and
the results obtained are analysed (§ 6). We con-
clude with a discussion of the contributions that
this work brings to the research on verb-particle
constructions (§ 7).

2 Verb-Particle Constructions in Theory
and Practice

Particles in VPCs are characterised by containing
features of motion-through-location and of com-
pletion or result in their core meaning (Bolinger,
1971). VPCs can range from idiosyncratic or semi-
idiosyncratic combinations, such as get on (in e.g.
Bill got on well with his new colleagues), to more
regular ones, such as tear up (e.g. in In a rage she
tore up the letter Jack gave her). A three way clas-
sification is adopted by (Dehé, 2002) and (Jack-
endoff, 2002), where a VPC can be classified as
compositional, idiomatic or aspectual, depending
on its sense. In compositional VPCs the meaning
of the construction is determined by the literal in-
terpretations of the particle and the verb. These
VPCs usually involve particles with directional or
spatial meaning, and these can often be replaced
by the appropriate directional PPs (e.g. carry in
in Sheila carried the bags in/into the house Dehé

(2002)). Idiomatic VPCs, on the other hand, can-
not have their meaning determined by interpreting
their components literally (e.g. get on, meaning to
be on friendly terms with someone). The third class
is that of aspectual VPCs, which have the parti-
cle providing the verb with an endpoint, suggesting
that the action described by the verb is performed
completely, thoroughly or continuously (e.g. tear
up meaning to tear something into a lot of small
pieces).

From a syntactic point of view, a given combi-
nation can occur in several different subcategorisa-
tion frames. For example, give up can occur as an
intransitive VPC (e.g. in I give up! Tell me the an-
swer), where no other complement is required, or
it may occur as a transitive VPC which requires a
further NP complement (e.g. in She gave up alco-
hol while she was pregnant ). Since in English par-
ticles tend to be homographs with prepositions (up,
out, in), a verb followed by a preposition/particle
and an NP can be ambiguous between a transitive
VPC and a prepositional verb (e.g. rely on, in He
relies on his wife for everything). Some criteria
that characterise VPCs are discussed by Bolinger
(1971):2

C1 In a transitive VPC the particle may come ei-
ther before or after the NP (e.g. He backed
up the team vs. He backed the team up).
However, whether a particle can be separated
or not from the verb may depend on the de-
gree of bonding between them, the size of the
NP, and the kind of NP. This is considered by
many to be sufficient condition for diagnos-
ing a VPC, as prepositions can only appear in
a position contiguous to the verb (e.g. *He
got the bus off ).

C2 Unstressed personal pronouns must precede
the particle (e.g. They ate it up but not *They
ate up it).

C3 If the particle precedes a simple definite NP,
the particle does not take the NP as its object
(e.g. in He brought along his girlfriend) un-
like with PP complements or modifiers (e.g.
in He slept in the hotel). This means that in
the first example the NP is not a complement
of the particle along, while in the second it is.

2The distinction between a VPC and a prepositional verb
may be quite subtle, and as pointed out by Bolinger, many
of the criteria proposed for diagnosing VPCs give different
results for the same combination, frequently including un-
wanted combinations and excluding genuine VPCs.
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In this paper we use the first two criteria, therefore
the candidates may contain noise (in the form of
prepositional verbs and related constructions).

VPCs have been the subject of a considerable
amount of interest, and some analysis has been
done on the subject of productive VPCs. In many
cases the particle seems to be compositionally
adding a specific meaning to the construction and
following a productive pattern (e.g. in tear up,
cut up and split up, where the verbs are seman-
tically related and up adds a sense of completion
to the action of these verbs). Fraser (1976) points
out that semantic properties of verbs can affect
their ability to combine with particles: for exam-
ple, bolt/cement/clamp/glue/paste/nail are seman-
tically similar verbs where the objects represented
by the verbs are used to join material, and they can
all combine with down. There is clearly a com-
mon semantic thread running through this list, so
that a new verb that is semantically similar to them
can also be reasonably assumed to combine with
down. Indeed, frequently new VPCs are formed by
analogy with existing ones, where often the verb is
varied and the particle remains (e.g. hang on, hold
on and wait on). Similarly, particles from a given
semantic class can be replaced by other particles
from the same class in compositional combina-
tions: send up/in/back/away (Wurmbrand, 2000).
By identifying classes of verbs that follow patterns
such as these in VPCs, we can help in the identi-
fication of a new unknown candidate combination,
using the degree of productivity of a class to which
the verb belongs as a back-off strategy.

In terms of methods for automatic identifica-
tion of VPCs from corpora, Baldwin (2005) pro-
poses the extraction of VPCs with valence infor-
mation from raw text, exploring a range of tech-
niques (using (a) a POS tagger, (b) a chunker, (c) a
chunk grammar, (d) a dependency parser, and (e) a
combination of all methods). Villavicencio (2005)
uses the Web as a corpus and productive patterns
of combination to generate and validate candidate
VPCs. The identification of compositionality in
VPCs is addressed by McCarthy et al. (2003) who
examine the overlap of similar words in an auto-
matically acquired distributional thesaurus for verb
and VPCs, and by Bannard (2005) who uses a
distributional approach to determine when and to
what extent the components of a VPC contribute
their simplex meanings to the interpretation of the
VPC. Both report a correlation between some of

the measures and compositionality judgements.

3 The Underlying Hypotheses

The problem of the automatic detection and classi-
fication of VPCs can be summarised as, for a given
VPC candidate, to answer to the questions:

Q1 Is it a real VPC or some free combination
of verb and preposition/adverb or a preposi-
tional verb?

Q2 If it is a true VPC, is it idiomatic or composi-
tional?

In order to answer the first question, we use two
assumptions. Firstly, we consider that the elements
of a true VPC co-occur above chance. The greater
the correlation between the verb and the particle
the greater the chance that the candidate is a true
VPC. Secondly, based on criterion C1 we also as-
sume that VPCs have more flexible syntax and are
more productive than non-VPCs. This second as-
sumption goes against what is usually adopted for
general MWEs, since it is the prepositional verbs
that allow less syntactic configurations than VPCs
and are therefore more rigid (§ 2). To further dis-
tinguish VPCs from prepositional verbs and other
related constructions we also verify the possibil-
ity of the particle to be immediately followed by
an indirect prepositional complement (like in The
plane took off from London), which is a good in-
dicator/delimiter of a VPC since in non-VPC con-
structions like prepositional verbs the preposition
needs to have an NP complement. Therefore, we
will assume that a true VPC occurs in the following
configurations, according to Villavicencio (2005)
and Ramisch et al. (2008):

S1 VERB + PARTICLE + DELIMITER, for intran-
sitive VPCs;

S2 VERB + NP + PARTICLE + DELIMITER, for
transitive split VPCs and;

S3 VERB + PARTICLE + NP + DELIMITER, for
transitive joint VPCs.

In order to answer Q2, we look at the link be-
tween productivity and compositionality and as-
sume that a compositional VPC accepts the sub-
stitution of one of its members by a semantically
related term. This is in accordance to Fraser
(1976), who shows that semantic properties of
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verbs can affect their ability to combine with par-
ticles: for example verbs of hunting combining
with the resultative down (hunt/track/trail/follow
down) and verbs of cooking with the aspectual up
(bake/cook/fry/broil up), forming essentially pro-
ductive VPCs. Idiomatic VPCs, however, will
not accept the substitution of one of its members
by a related term (e.g. get and its synonyms in
get/*obtain/*receive over), even if at first glance
this could seem natural. In our experiments, we
will consider that a VPC is compositional if it ac-
cepts: the replacement of the verb by a synonym,
or of the preposition by another preposition. Sum-
marising our hypothesis, we get:

• For Q1: Is the candidate syntactically flexi-
ble, i.e. does it allow the configurations S1
through S3?

– NO: non-VPC
– YES: VPC

• For Q2: Is the candidate semantically flexi-
ble, allowing the substitution of a member by
a related word?

– NO: idiomatic VPC
– YES: compositional VPC

4 Data Sources

To generate a gold standard, we used the Bald-
win VPC candidates dataset (henceforth Baldwin
CD)3, which contains 3,078 English VPC candi-
dates annotated with information about idiomatic-
ity (14.5% are considered idiomatic). We fur-
ther annotated this dataset with information about
whether each candidate is a genuine VPC or not,
where a candidate is consider genuine if it be-
longs to at least one of a set of machine-readable
dictionaries: the Alvey Natural Language Tools
(ANLT) lexicon (Carroll and Grover, 1989), the
Comlex lexicon (Macleod and Grishman, 1998),
and the LinGO English Resource Grammar (ERG)
(Copestake and Flickinger, 2000)4. With this crite-
rion 81.8% of them are considered genuine VPCs.

To gather information about the candidates in
this work we employ both a fragment of 1.8M
sentences from the British National Corpus (BNC
Burnard (2000)) and the Web as corpora. The
BNC fragment is used to calculate the correlation

3This dataset was provided by Timothy Baldwin for the
MWE2008 Workshop.

4Version of November 2001.

measures since they require a corpus with known
size. The Web is used to generate frequencies
for the entropy measures, as discussed in § 5.2.
Web frequencies are approximated by the number
of pages containing a candidate and indexed by
Yahoo Search API. In order to keep the searches
as simple and self-sufficient as possible, no addi-
tional sources of information are used (Villavicen-
cio, 2005). Therefore, the frequencies are quite
conservative in the sense that by employing in-
flected forms of verbs, potentially much more evi-
dence could be gathered.

For the generation of semantic variational pat-
terns, we use both Wordnet 3.0 (Fellbaum, 1998)
and Levin’s English Verb Classes and Alternations
(Levin, 1993). Wordnet is organised as a graph of
concepts, called synsets, linked by relations of syn-
onymy, hyponymy, etc. Each synset contains a list
of words that represent the concept. The verbs in
a synset and its synonym synsets are used to gen-
erate variations of a VPC candidate. Likewise we
use Levin’s classes, which define 190 fine-grained
classes for English verbs, based on their syntactic
and semantic features.

It is important to highlight that the generation
of the semantic variations strongly relies on these
resources. Therefore, cross-language extension
would depend on the availability of similar tools
for the target language.

5 Carrying out the experiments

Our experiments are composed of two stages, each
one consisting of three steps (corresponding to the
next three sections). The first stage filters out ev-
ery candidate that is evaluated as not being a VPC,
while the second one intends to identify the id-
iomatic VPCs among the remaining candidates of
the previous stage.

5.1 Generating candidates

For each of the 3,078 items in the Baldwin CD we
generated 2 sets of variations, syntactic and seman-
tic, and we will refer to these as alternative forms
or variations of a candidate.

The syntactic variations are generated using the
patterns S1 to S3 described in section 3. Following
the work of Villavicencio (2005) 3 frequently used
prepositions for, from and with are used as delim-
iters and we search for NPs in the form of pronouns
like this and definite NPs like the boy. The use of
alternative search patterns also helps to give an in-
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dication about the syntactic distribution of a can-
didate VPC, and consequently if it has a preferred
syntactic realisation. For instance, for eat up and
the delimiter with, we propose a list of Web search
queries for its respective variations vi, shown with
their corresponding Web frequencies in table 1.5

Variation (vi) Frequency (nY ahoo(vi))
eat up with 49200

eat the * up with 2240
eat this up with 1120

eat up the * with 3110

Table 1: Distribution of syntactic variations for the
candidate eat up.

For the semantic variations, in order to capture
the idiomaticity of VPCs we generate the alterna-
tive forms by replacing the verb by its synonym
verbs as follows:

WNS Wordnet Strict variations. When using Word-
net, we consider any verb that belongs to the
same synset of the candidate as a synonym.

WNL Wordnet Loose variations. This is an indi-
rect synonymy relation capturing any verb
in Wordnet that belongs either to the same
synset or to a synset that is synonym of the
synset in which the candidate verb is con-
tained.

Levin These include all verbs in the same Levin
class as the candidate.

Multiword synonyms are ignored in this step to
avoid noisy search patterns, (e.g. *eat up up). The
examples for these variations are shown in table 2
for the candidate act in.

Wordnet and Levin are considered ambiguous
resources because one verb is potentially contained
in several synsets or classes. However, as Word
Sense Disambiguation is not within the scope of
this work we employ some heuristics to select a
given sense for the candidate verb. In order to test
the effect of frequency, the first heuristic adopts the
first synset in the list, as Wordnet organises synsets
in descending order of frequency (denoted as first).
To study the influence of the number of synonyms,
the second and third heuristics use respectively the
biggest (max) and smallest (min) synsets. The last

5The Yahoo wildcard used in these searches matches any
word occurring in that particular position.

Variation (vi) Source nY ahoo(vi)
act in — 2690

playact in WNS 0
play in WNS 167000

behave in WNL 98
do in WNL 24600

pose in Levin 1610
qualify in Levin 358

rank in Levin 706
rate in Levin 16700

serve in Levin 2240

Table 2: Distribution of syntactic variations for the
candidate eat up.

heuristic is the union of all synonyms (all). These
heuristics are indicated using a subscript notation,
where e.g. WNSall symbolizes the WNS varia-
tions set using the union of all synsets as disam-
biguation heuristic. Finally, we generated two
additional sets of candidates by replacing the par-
ticle by one of the 48 prepositions listed in the
ANLT dictionary (prep) and also by one of 9 cho-
sen locative prepositions (loc-prep). It is impor-
tant to also verify possible variations of the prepo-
sition because compositional VPCs combine pro-
ductively with one or more groups of particles, e.g.
locatives, and present consequently a wider prob-
ability distribution among the variations, while an
idiomatic VPC presents a higher frequency for a
chosen preposition.

5.2 Working the statistical measures out
The classifications of the candidate VPCs are done
using a set of measures: the frequencies of the
VPC candidates and of their individual words,
their Mutual Information (MI), χ2 and Entropies.
We calculate the MI and χ2 indices of a candidate
formed by a verb and a particle based on their in-
dividual frequencies and on their co-occurrence in
the BNC fragment.

The Entropy measure is given by

H(V ) = −
n∑

i=1

p(vi) ln [ p(vi) ]

where

p(vi) =
n(vi)∑

∀ vj∈V

n(vj)

is the probability of the variation vi to occur
among the set of all possible variations V =
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H(V ) ≤ 0.001081
nBNC(p) ≤ 51611
nY ahoo(vtransitive) ≤ 1
nY ahoo(v) ≤ 2020000000 : yes
nY ahoo(v) > 2020000000
χ2 ≤ 25.99
· · ·

Figure 1: Fragment of the decision tree that filters
out non-VPCs.

{v1, v2, . . . , vn}, and n(vi) is the Web frequency
for the variation vi.

The entropy of a probability distribution gives
us some clues about its shape. A very low en-
tropy is a sign of a heterogeneous distribution that
contains a peak. On the other hand, a distribution
that presents uniformity will lead to a high entropy
value.

The interest of H(V ) for the detection of VPCs
is in that true instances are more likely to not prefer
a canonical form, more widely distributing proba-
bilities over all alternative syntactic frames (S1 to
S3), while non-VPCs are more likely to choose one
frame and present low frequencies for the proposed
variations.

For the semantic variations, the entropy is cal-
culated from a set V of variations generated by the
Wordnet synset, Levin class and preposition sub-
stitutions described in § 5.1. The interpretation of
the entropy at this point is that high entropy indi-
cates compositionality while low entropy indicates
idiomaticity, since compositional VPCs are more
productive and distribute well over a class of verbs
or a class of prepositions and idiomatic VPCs pre-
fer a specific verb or preposition.

5.3 Bringing estimations together
Once we got a set of measures to predict
VPCs and another to predict their idiomatic-
ity/compositionality, we would like to know which
measures are useful. Therefore, we combine our
measures automatically by building a decision tree
with the J48 algorithm, a version of the traditional
entropy-based C4.5 algorithm implemented in the
Weka package.6

6 Weighting the results up

The first stage of our experiments applied to the
3,078 VPC candidates generated a decision tree us-

6http://www.cs.waikato.ac.nz/ml/weka/

ing 10-fold cross validation that is partially repro-
duced in figure 1. From these, 2,848 candidates
were considered genuine VPCs, with 2,419 true
positives, 100 false negatives and 429 false posi-
tives. This leads to a recall of 96% of the VPCs
being kept in the list with a precision of 84.9%,
and an f-measure of 90.1%. We interpret this as a
very positive result since although some false neg-
atives have been filtered out, the remaining candi-
dates are now less noisy.

Figure 1 shows that the entropy of the variations
is the best predictor since it is at the root of the
tree. We can also see that there are several types
of raw frequencies being used before a correlation
measure appears (χ2). We can conclude that the
frequency of each transitive, intransitive and split
configurations are also good predictors to detect
false from true VPCs. At this point, MI does not
seem to contribute to the classification task.

For our second stage, we generated Wordnet
synonym, Levin class and preposition variations
for a list of the 2,867 VPC candidates classified
as genuine cases. We also took into account the
proportion of synonyms that are MWEs (vpc-syn)
and the proportion of synonyms that contain the
candidate itself (self-syn).

In order to know what kind of contribution each
measure gives to the construction of the decision
tree, we used a simple iterative algorithm that con-
structs the set U of useful attributes. It first ini-
tialises U with all attributes, then calculates the
precision for each class (yes and no)7 on a cross
validation using all attributes in U . For each at-
tribute a ∈ U , it ignores a and recalculates preci-
sions. If both precisions decrease, the contribution
of a is positive, if both increase then a is negative,
else its contribution remains unknown. All fea-
tures that contribute negatively are removed from
U , and the algorithm is repeated until there is no
negative attribute left.

The step-by-step execution of the algorithm
can be observed in table 3, where the inconclu-
sive steps are hidden. We found out that the
optimal features are U∗ = {self-syn, H(prep),
H(Levinfirst), H(WNSfirst), H(WNSmin),
H(Levinmax), H(Levinmin).} The self-syn in-
formation seems to be very important, as without
it precisions of both classes decrease considerably

7We use the precision as a quality estimator since it gives
a good idea of the amount of work that a grammar engineer
or lexicographer must perform in order to clear the list from
false positives.
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Precision
# Ignored No Yes +/−

1st iteration
0 — 86.6% 54.9%
1 vpc-syn 86.7% 56.6% −
2 self-syn 85.2% 28.7% +
4 H(loc-prep) 86.7% 56.1% −
6 H(WNSmax) 87.5% 57.4% −
9 H(WNLfirst) 86.7% 57.9% −

10 H(WNLmax) 86.7% 57.8% −
11 H(WNLmin) 86.9% 57.6% −
16 H(Levinall) 86.7% 55.1% −

2nd iteration
17 — 87.7% 60.3%
18 H(prep) 87.6% 59.2% +
21 H(WNSall) 87.8% 61.6% −
22 H(WNLall) 87.8% 61.0% −
23 H(Levinfirst) 87.5% 60.2% +

3rd iteration
26 — 87.8% 61.9%
27 H(WNSfirst) 87.8% 61.9% ±
28 H(WNSmin) 87.7% 61.1% +
29 H(Levinmax) 87.8% 61.6 ±
30 H(Levinmin) 87.7% 61.5% +

Table 3: Iterative attributes selection process. Pre-
cision in each class is used as quality estimator.

(experiment #2).
All entropies of the WNL heuristics are of little

or no utility. This could probably be explained by
either the choice of simple WSD heuristics for se-
lecting synsets, or because the indirect synonymy
information is too far related to the original verb to
be used in variational patterns. Inspecting the gen-
erated variations, we notice that most of the syn-
onym synsets are related to secondary senses or
very specific uses of a verb and are thus not cor-
rectly disambiguated.

In what concerns the WNS sets, only the small-
est and first synset were kept, suggesting again that
it may not be a good idea to maximise the syn-
onyms set and for future work, we intent to es-
tablish a threshold for a synset to be taken into
account. In addition, we can also infer a posi-
tive contribution of the frequency of a sense with
the choice of the first synset returned by Word-
net resulting in a reasonable WSD heuristic (which
is compatible with the results by McCarthy et al.
(2004)).

On the other hand, the algorithm selected the

first, the smallest and the biggest of the Levin’s
sets. This probably happens because the major-
ity of these verbs belongs only to one or two, but
never to a great number of classes. Since the gran-
ularity of the classes is coarser than for synsets,
the heuristics often offer four equal or very close
entropies and thus redundant information. As an
overall result, the last iteration shown in table 3
indicates a precision of 61.9% for the classifier in
detecting idiomatic VPCs, that is to say that we au-
tomatically retrieved 176 VPCs where 67 are false
positives and 109 are truly idiomatic. This value is
a quality estimator for the resulting VPCs that will
potentially be used in the construction of a lexi-
con. Recall of idiomatic VPCs goes from 16.7%
to 24.9%.

7 Conclusions

One of the important challenges for robust natu-
ral language processing systems is to be able to
successfully deal with Multiword Expressions and
related constructions. We investigated the identifi-
cation of VPCs using a combination of statistical
methods and linguistic information, and whether
there is a correlation between the productivity of
VPCs and their semantics that could help us detect
if a VPC is idiomatic or compositional.

The results confirm that the use of statistical
and linguistic information to automatically iden-
tify verb-particle constructions presents a reason-
able way of improving coverage of existing lexi-
cal resources in a very simple and straightforward
manner. In terms of grammar engineering, the in-
formation about compositional candidates belong-
ing to productive classes provides us with the ba-
sis for constructing a family of fine-grained redun-
dancy rules for these classes. These rules are ap-
plied in a constrained way to verbs already in the
lexicon, according to their semantic classes. The
VPCs identified as idiomatic, on the other hand,
need to be explicitly added to the lexicon, after
their semantic is determined. This study can also
be complemented with the results of investigations
into the semantics of VPCs, as discussed by both
Bannard (2005) and McCarthy et al. (2003).

In addition, the use of clustering methods is an
interesting possibility for automatically identify-
ing clusters of productive classes of both verbs and
of particles that combine well together.
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Abstract

Children can determine the meaning of a
new word from hearing it used in a familiar
context—an ability often referred to asfast
mapping. In this paper, we study fast map-
ping in the context of a general probabilistic
model of word learning. We use our model
to simulate fast mapping experiments on chil-
dren, such as referent selection and retention.
The word learning model can perform these
tasks through an inductive interpretation of
the acquired probabilities. Our results suggest
that fast mapping occurs as a natural conse-
quence of learning more words, and provides
explanations for the (occasionally contradic-
tory) child experimental data.

1 Fast Mapping

An average six-year-old child knows over14, 000
words, most of which s/he has learned from hearing
other people use them in ambiguous contexts (Carey,
1978). Children are thus assumed to be equipped with
powerful mechanisms for performing such a complex
task so efficiently. One interesting ability children as
young as two years of age show is that of correctly and
immediately mapping a novel word to a novel object
in the presence of other familiar objects. The term
“fast mapping” was first used by Carey and Bartlett
(1978) to refer to this phenomenon.

Carey and Bartlett’s goal was to examine how much
children learn about a word when presented in an am-
biguous context, as opposed to concentrated teaching.
They used an unfamiliar name (chromium) to refer to
an unfamiliar color (olive green), and then asked
a group of four-year-old children to select an object
from among a set, upon hearing a sentence explicitly

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/). Some
rights reserved.

asking for the object of the new color, as in:bring
the chromium tray, not the blue one. Children were
generally good at performing this “referent selection”
task. In a production task performed six weeks later,
when children had to use the name of the new color,
they showed signs of having learned something about
the new color name, but were not successful at pro-
ducing it. On the basis of these findings, Carey and
Bartlett suggest that fast mapping and word learning
are two distinct, yet related, processes.

Extending Carey and Bartlett’s work, much re-
search has concentrated on providing an explanation
for fast mapping, and on examining its role in word
learning. These studies also show that children are
generally good at referent selection, given a novel tar-
get. However, there is not consistent evidence regard-
ing whether children actually learn the novel word
from one or a few such exposures (retention). For
example, whereas the children in the experiments of
Golinkoff et al. (1992) and Halberda (2006) showed
signs of nearly-perfect retention of the fast-mapped
words, those in the studies reported by Horst and
Samuelson (2008) did not (all participating children
were close in age range).

There are also many speculations about the possible
causes of fast mapping. Some researchers consider
it as a sign of a specialized (innate) mechanism for
word learning. Markman and Wachtel (1988), for ex-
ample, argue that children fast map because they ex-
pect each object to have only one name (mutual exclu-
sivity). Golinkoff et al. (1992) attribute fast mapping
to a (hard-coded) bias towards mapping novel names
to nameless object categories. Some even suggest a
change in children’s learning mechanisms, at around
the time they start to show evidence of fast mapping
(which coincides with a sudden burst in their vocab-
ulary), e.g., from associative to referential (Gopnik
and Meltzoff, 1987; Reznick and Goldfield, 1992). In
contrast, others see fast mapping as a phenomenon
that arises from more general processes of learning
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and/or communication, which also underlie the im-
pressive rate of lexical acquisition in children (e.g.,
Clark, 1990; Diesendruck and Markson, 2001; Regier,
2005; Horst et al., 2006; Halberda, 2006).

In our previous work (Fazly et al., 2008), we pre-
sented a word learning model which proposes a prob-
abilistic interpretation of cross-situational learning,
and bootstraps its own partially-learned knowledge of
the word meanings to accelerate word learning over
time. We have shown that the model can learn reason-
able word–meaning associations from child-directed
data, and that it accounts for observed learning pat-
terns in children, such as vocabulary spurt, without
requiring a developmental change in the underlying
learning mechanism. Here, we use this computational
model to investigate fast mapping and its relation to
word learning. Specifically, we take a close look at
the onset of fast mapping in our model by simulat-
ing some of the psychological experiments mentioned
above. We examine the behaviour of the model in var-
ious referent selection and retention tasks, and pro-
vide explanations for the (occasionally contradictory)
experimental results reported in the literature. We also
study the effect of exposure to more input on the per-
formance of the model in fast mapping.

Our results suggest that fast mapping can be ex-
plained as an induction process over the acquired as-
sociations between words and meanings. Our model
learns these associations in the form of probabilities
within a unified framework; however, we argue that
different interpretations of such probabilities may be
involved in choosing the referent of a familiar as op-
posed to a novel target word (as noted by Halberda,
2006). Moreover, the overall behaviour of our model
confirms that the probabilistic bootstrapping approach
to word learning naturally leads to the onset of fast
mapping in the course of lexical development, with-
out hard-coding any specialized learning mechanism
into the model to account for this phenomenon.

2 Overview of the Computational Model

This section summarizes the model presented in Fa-
zly et al. (2008). Our word learning algorithm is an
adaptation of the IBM translation model proposed by
Brown et al. (1993). However, our model is incre-
mental, and does not require a batch process over the
entire data.

2.1 Utterance and Meaning Representations

The input to our word learning model consists of a set
of utterance–scene pairs that link an observed scene
(what the child perceives) to the utterance that de-
scribes it (what the child hears). We represent each
utterance as a sequence of words, and the correspond-

ing scene as a set of meaning symbols. To simulate
referential uncertainty (i.e., the case where the child
perceives aspects of the scene that are unrelated to the
perceived utterance), we include additional symbols
in the representation of the scene, e.g.:

Utterance: Joe rolled the ball
Scene: {joe, roll, the, ball, mommy, hand, talk}
In Section 3.1, we explain how the utterances and
the corresponding semantic symbols are selected, and
how we add referential uncertainty.

Given a corpus of such utterance–scene pairs, our
model learns the meaning of each wordw as a prob-
ability distribution, p(.|w), over the semantic sym-
bols appearing in the corpus. In this representation,
p(m|w) is the probability of a symbolm being the
meaning of a wordw. In the absence of any prior
knowledge, all symbols are equally likely to be the
meaning of a word. Hence, prior to receiving any us-
ages of a given word, the model assumes a uniform
distribution over semantic symbols as its meaning.

2.2 Meaning Probabilities

Our model combines probabilistic interpretations of
cross-situational learning (Quine, 1960) and of a
variation of the principle of contrast (Clark, 1990),
through an interaction between two types of prob-
abilistic knowledge acquired and refined over time.
Given an utterance–scene pair received at timet, i.e.,
(U(t), S(t)), the model first calculates an alignment
probability a for eachw ∈ U(t) and eachm ∈ S(t),
using the meaning probabilitiesp(.|w) of all the
words in the utterance prior to this time. The model
then revises the meaning of the words inU(t) by in-
corporating the alignment probabilities for the current
input pair. This process is repeated for all the input
pairs, one at a time.

Step 1: Calculating the alignment probabilities.
We estimate the alignment probabilities of words
and meaning symbols based on a localized version
of the principle of contrast: that a meaning sym-
bol in a scene is likely to be highly associated with
only one of the wordsin the corresponding utter-
ance.1 For a symbolm ∈ S(t) and a wordw ∈ U(t),
the higher the probability ofm being the meaning
of w (according top(m|w)), the more likely it is
that m is aligned withw in the current input. In
other words,a(w |m, U(t), S(t)) is proportional to
p(t−1)(m|w). In addition, if there is strong evidence
that m is the meaning of another word inU(t)—
i.e., if p(t−1)(m|w′) is high for somew′ ∈ U(t) other

1Note that this differs from what is widely known as the prin-
ciple of contrast (Clark, 1990), in that the latter assumes contrast
across the entire vocabulary rather than within an utterance.
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thanw—the likelihood of aligningm to w should de-
crease. Combining these two requirements:

a(w |m, U(t), S(t)) =
p(t−1)(m|w)∑

w ′∈U(t)

p(t−1)(m|w ′)
(1)

Due to referential uncertainty, some of the meaning
symbols in the scene might not have a counterpart
in the utterance. To accommodate for such cases, a
dummy word is added to each utterance before the
alignment probabilities are calculated, in order to let
a meaning symbol not be (strongly) aligned with any
of the words in the current utterance.

Step 2: Updating the word meanings. We need to
update the probabilitiesp(.|w) for all wordsw ∈ U(t),
based on the evidence from the current input pair re-
flected in the alignment probabilities. We thus add
the current alignment probabilities forw and the sym-
bolsm ∈ S(t) to the accumulated evidence from prior
co-occurrences ofw and m. We summarize this
cross-situational evidence in the form of an associa-
tion score, which is updated incrementally:

assoc(t)(w, m) = assoc(t−1)(w, m) +
a(w|m, U(t), S(t)) (2)

whereassoc(t−1)(w, m) is zero ifw andm have not
co-occurred before. The association score of a word
and a symbol is basically a weighted sum of their co-
occurrence counts.

The model then uses these association scores to up-
date the meaning of the words in the current input:

p(t)(m|w) =
assoc(t)(m, w) + λ∑

mj∈M
assoc(t)(mj , w) + β × λ

(3)

whereM is the set of all symbols encountered prior to
or at timet, β is the expected number of symbol types,
andλ is a small smoothing factor. The denominator is
a normalization factor to get valid probabilities. This
formulation results in a uniform probability of1/β
over allm ∈M for a novel wordw, and a probability
smaller thanλ for a meaning symbolm that has not
been previously seen with a familiar wordw.

Our model updates the meaning of a word ev-
ery time it is heard in an utterance. The strength
of learning of a word at timet is reflected in
p(t)(m = mw|w), wheremw is the “correct” mean-
ing of w: for a learned wordw, the probability dis-
tribution p(.|w) is highly skewed towards the correct
meaningmw, and therefore hearingw will trigger the
retrieval of the meaningmw.2

2An input-generation lexicon contains the correct meaning for
each word, as described in Section 3.1. Note that the model does
not have access to this lexicon for learning; it is used only for
input generation and evaluation.

From this point on, we simply usep(m|w) (omit-
ting the superscript(t)) to refer to the meaning prob-
ability of m for w at the present time of learning.

2.3 Referent Probabilities

The meaning probabilityp(m|w) is used to retrieve
the most probable meaning forw among all the possi-
ble meaning symbolsm. However, in the referent se-
lection tasks performed by children, the subject is of-
ten forced to select the referent of a target word from
among a limited set of objects, even when the mean-
ing of the target word has not been accurately learned
yet. For our model to perform such tasks, it has to de-
cide how likely it is for a target wordw to refer to a
particular objectm, based on its previous knowledge
about the mapping betweenm andw (i.e., p(m|w)),
as well as the mapping betweenm and other words in
the lexicon.3

The likelihood of using a particular namew to refer
to a given objectm is calculated as:

rf (w|m) = p(w|m)

=
p(m|w) · p(w)

p(m)

=
p(m|w) · p(w)∑

w′∈V p(m|w′) · p(w′)
(4)

whereV is the set of all words that the model has seen
so far, andp(w) is the relative frequency ofw:

p(w) =
freq(w)∑

w′∈V freq(w′)
(5)

The referent of a target wordw among the present ob-
jects, therefore, will be the objectm with the highest
referent probabilityrf (w|m).

3 Experimental Setup

3.1 The Input Corpora

We extract utterances from the Manchester corpus
(Theakston et al., 2001) in the CHILDES database
(MacWhinney, 2000). This corpus contains tran-
scripts of conversations with children between the
ages of1; 8 and 3; 0 (years;months). We use the
mother’s speech from transcripts of6 children, re-
move punctuation and lemmatize the words, and con-
catenate the corresponding sessions as input data.

There is no semantic representation of the corre-
sponding scenes available from CHILDES. There-
fore, we automatically construct a scene representa-
tion for each utterance, as a set containing the seman-
tic referents of the words in that utterance. We get
these from an input-generation lexicon that contains
a symbol associated with each word as its semantic

3All through the paper, we usem as both the meaning and the
referent of a wordw.
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referent. We use every other sentence from the orig-
inal corpus, preserving their chronological order. To
simulate referential uncertainty in the input, we then
pair each sentence with its own scene representation
as well as that of the following sentence in the origi-
nal corpus. (Note that the latter sentence is not used
as an utterance in our input.) The extra semantic sym-
bols that are added to each utterance thus correspond
to meaningful semantic representations, as opposed
to randomly selected symbols. In the resulting corpus
of 92, 239 input pairs, each utterance is, on average,
paired with78% extra meaning symbols, reflecting a
high degree of referential uncertianty.

3.2 The Model Parameters

We set the parameters of our learning algorithm using
a development data set which is similar to our training
and test data, but is selected from a non-overlapping
portion of the Manchester corpus. The expected num-
ber of symbols,β in Eq. (3), is set to8500 based on
the total number of distinct symbols extracted for the
development data. Therefore, the default probability
of a symbol for a novel word will be1/8500. A famil-
iar word, on the other hand, has been seen with some
symbols before. Therefore, the probability of a previ-
ously unseen symbol for it (which, based on Eq. (3),
has an upper bound ofλ) must be less than the default
probability mentioned above. Accordingly, we setλ
to 10−5.

3.3 The Training Procedure

In the next section, we report results from the com-
putational simulation of our model for a number of
experiments. All of the simulations use the same pa-
rameter settings (as described in the previous section),
but different input: in each simulation, a random por-
tion of 1000 utterance–scene pairs is selected from
the input corpus, and incrementally processed by the
model. The size of the training corpus is chosen arbi-
trarily to reflect a sample point in learning, and further
experiments have shown that increasing this number
does not change the pattern observed in the results. In
order to avoid behaviour that is specific to a particu-
lar sequence of input items, the reported results in the
next section are averaged over10 simulations.

4 Experimental Results and Analysis

4.1 Referent Selection

In a typical word learning scenario, the child faces
a scene where a number of familiar and unfamiliar
objects are present. The child then hears a sentence,
which describes (some part of) the scene, and is com-
posed of familiar and novel words (e.g., hearingJoe is

eating a cheem, wherecheem is a previously unseen
fruit). In such a setting, our model aligns the objects
in the scene with the words in the utterance based on
its acquired knowledge of word meanings, and then
updates the meanings of the words accordingly. The
model can align a familiar word with its referent with
high confidence, since the previously learned mean-
ing probability of the familiar object given the famil-
iar word, orp(m|w), is much higher than the meaning
probability of the same object given any other word in
the sentence. In a similar fashion, the model can eas-
ily align a novel word in the sentence with a novel
object in the scene, because the meaning probability
of the novel object given the novel word (1/β, ac-
cording to Eq. (3)) is higher than the meaning proba-
bility of that object for any previously heard word in
the sentence (the latter probability is smaller thanλ in
Eq. (3), as explained in Section 3.2).

Earlier fast mapping experiments on children as-
sumed that it is such a contrast between the familiar
and novel words in the same sentence that helps chil-
dren select the correct target object in a referent selec-
tion task. For example, in Carey and Bartlett’s (1978)
experiment, to introduce a novel word–meaning as-
sociation (e.g.,chromium–olive), the authors use
both the familiar and the novel words in one sentence
(bring me the chromium tray, not the blue one.). How-
ever, further experiments show that children can suc-
cessfully select the correct referent even if such a con-
trast is not present in the sentence. Many researchers
have performed experiments where young subjects
are forced to choose between a novel and a familiar
object upon hearing a request, such asgive me the
ball (familiar target), orgive me the dax (novel tar-
get). In all of the reported experimental results, chil-
dren can readily pick the correct referent for a famil-
iar or a novel target word in such a setting (Golinkoff
et al., 1992; Halberda and Goldman, 2008; Halberda,
2006; Horst and Samuelson, 2008).

However, Halberda’s eye-tracking experiments on
both adults and pre-schoolers suggest that the pro-
cesses involved for referent selection in the familiar
target situation may be different from those in the
novel target situation. In the latter situation, subjects
appear to systematically reject the familiar object as
the referent of the novel name before mapping the
novel object to the novel name. In the familiar target
situation, however, there is no need to reject the novel
distractor object, because the subject already knows
the referent of the target.

The difference between these two conditions can be
explained in terms of the meaning and referent proba-
bilities of our model explained in Section 2. In a typi-
cal referent selection experiment, the child is asked to
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“get the ball” while facing aball and a novel object
(dax). We assume that the child knows the meaning
of verbs and determiners such asget andthe, therefore
we simplify the familiar target condition in the form
of the following input item:

ball (FAMILIAR TARGET)

{ball, dax}
A familiar word such asball has a meaning prob-
ability highly skewed towards its correct meaning.
That is, upon hearingball, the model can confidently
retrieve its meaningball, which is the one with
the highest probabilityp(m|ball) among all possible
meaningsm. In such a case, ifball is present in the
scene, the model can easily pick it as the referent of
the familiar target name, without processing the other
objects in the scene.

Now consider the condition where a novel target
name is used in the presence of a familiar and a pre-
viously unseen object:

dax (NOVEL TARGET)

{ball, dax}
Since this is the first time the model has heard the
word dax, both meaningsball anddax are equally
likely becausep(.|dax ) is uniform. Thus the mean-
ing probabilities cannot be solely used for selecting
the referent ofdax, and the model has to perform
some kind of induction on the potential referents in
the scene based on what it has learned about each
of them. The model can infer the referent ofdax
by comparing the referent probabilitiesrf (dax |ball)
andrf (dax |dax) from Eq. (4) after processing the in-
put item. Sinceball has strong associations with an-
other wordball, its referent probability for the novel
namedax is much lower than the referent probability
of dax, which does not have strong associations with
any of the words in the learned lexicon.

We simulate the process of referent selection in our
model as follows. We train the model as described
in Section 3.3. We then present the model with one
more input item, which represents either the FAMIL -
IAR TARGET or the NOVEL TARGET condition. For
each condition, we compare the meaning probability
p(object|target) for both familiar and novel objects
in the scene (see Table 1, top panel). In the FA-
MILIAR TARGET condition, the model demonstrates
a strong preference towards choosing the familiar ob-
ject as the referent, whereas in the NOVEL TARGET

condition, the model shows no preference towards any
of the objects based on the meaning probabilities of
the target word. Therefore, for the NOVEL TARGET

condition, we also compare the referent probabilities
rf (target |object) for both objects after processing

Table 1: Referent selection in FAMILIAR and NOVEL

TARGET conditions.

UPON HEARING THE TARGET WORD

Condition p(ball|target ) p(dax|target )
FAMILIAR TARGET 0.843 ±0.056 ≪ 0.0001
NOVEL TARGET 0.0001±0.00 0.0001±0.00

AFTER PERFORMING INDUCTION

Condition rf (target |ball) rf (target |dax)
NOVEL TARGET 0.127±0.127 0.993 ±0.002

the input item as a training pair, simulating the in-
duction process that humans go through to select the
referent in such cases. This time, the model shows a
strong preference towards the novel object as the ref-
erent of the target word (see Table 1, bottom panel).
Our results confirm that in both conditions, the model
consistently selects the correct referent for the target
word across all the simulations.

4.2 Retention

As discussed in the previous section, results from
the human experiments as well as our computational
simulations show that the referent of a novel target
word can be selected based on the previous knowl-
edge about the present objects and their names. How-
ever, the success of a subject in a referent selection
task does not necessarily mean that the child/model
haslearned the meaning of the novel word based on
that one trial. In order to better understand what and
how much children learn about a novel word from a
single ambiguous exposure, some studies have per-
formed retention trials after the referent selection ex-
periments. Often, various referent selection trials are
performed in one session, where in each trial a novel
object–name pair is introduced among familiar ob-
jects. Some of the recently introduced objects are
then put together in one last trial, and the subjects
are asked to choose the correct referent for one of the
(recently heard) novel target words. The majority of
the reported experiments show that children can suc-
cessfully perform the retention task (Golinkoff et al.,
1992; Halberda and Goldman, 2008; Halberda, 2006).

We simulate a similar retention experiment by
training the model as usual. We further present the
model with two experimental training items similar to
the one used in the NOVEL TARGET condition in the
previous section, with different familiar and novel ob-
jects and words in each input:

dax (REFERENTSELECTIONTRIAL 1)

{ball, dax}

cheem (REFERENTSELECTION TRIAL 2)

{pen, cheem}
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Table 2: Retention of a novel target word from a set
of novel objects.

2-OBJECTRETENTION TRIAL

rf (dax |dax) rf (dax |cheem)
0.996 ±0.001 0.501±0.068

3-OBJECTRETENTION TRIAL

rf (dax |dax) rf (dax |cheem) rf (dax |lukk)
0.995 ±0.001 0.407±0.062 0.990 ±0.001

The training session is followed by a retention trial,
where the two novel objects used in the previous ex-
perimental inputs are paired with one of the novel tar-
get words:

dax (2-OBJECTRETENTION TRIAL )

{cheem, dax}
After processing the retention input, we com-
pare the referent probabilitiesrf (dax |cheem) and
rf (dax |dax) to see if the model can choose the cor-
rect novel object in response to the target worddax.
The top panel in Table 2 summarizes the results of this
experiment. The model consistently shows a strong
preference towards the correct novel object as the ref-
erent of the novel target word across all simulations.

Unlike studies on referent selection, experimental
results for retention have not been consistent across
various studies. Horst and Samuelson (2008) per-
form experiments with two-year-old children involv-
ing both referent selection and retention, and report
that their subjects perform very poorly at the retention
task. One factor that discriminates the experimental
setup of Horst and Samuelson from others (e.g., Hal-
berda, 2006) is that, in their retention trials, they put
together two recently observed novel objects with a
third novel object that has not been seen in any of the
experimental sessions before. The authors do not at-
tribute their contradictory results to the presence of
this third object, but this factor can in fact affect the
performance considerably. We simulate this condition
by using the same input items for referent selection
trials as in the previous simulation, but we replace the
retention trial with the following:

dax (3-OBJECTRETENTION TRIAL )

{cheem, dax, lukk}
The third object,lukk, has not been seen by the
model before. Results under the new condition are re-
ported in the bottom panel of Table 2. As can be seen,
the model shows a strong tendency towards the cor-
rect novel referentdax for the novel targetdax, com-
pared to the other recently seen novel objectcheem.
However, the probability of the unseen objectlukk
is also very high for the target worddax. That is be-
cause the model cannot use any previously acquired

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

0

5

10

15

20

25

30

35

time of first exposure

nu
m

be
r 

of
 u

sa
ge

s 
ne

ed
ed

 to
 le

ar
n

Figure 1: Number of usages needed to learn a word,
as a function of the word’s age of exposure.

knowledge aboutlukk (i.e., associating it with an-
other word) to rule it out as a referent fordax. These
results show that introducing a new object for the first
time in a retention trial considerably increases the dif-
ficulty of the task. This can explain the contradictory
results reported in the literature: when the referent
probabilities are not informative, other factors may
influence the outcome of the experiment, such as the
amount of training received for a novel word–object,
or a possible delay between training and test sessions.

4.3 The Effect of Exposure to More Input

The fast mapping ability observed in children implies
that once children have learned a repository of words,
they can easily link novel words to novel objects in a
familiar context based only on a few exposures. We
examine this effect in our model: we train the model
on20, 000 input pairs, looking at the relation between
the time of first exposure to a word, and the number
of usages that the model needs for learning that word.
Figure 1 plots this for words that have been learned at
some point during the training.4 We can see that the
model shows clear fast mapping behaviour—that is,
words received later in time, on average, require fewer
usages to be learned. These results show that our
model exhibits fast mapping patterns once it has been
exposed to enough word usages, and that no change
in the underlying learning mechanism is needed.5

The effect of exposure to more input on fast map-
ping can be described in terms of context familiarity:
the more input the model has processed so far, the
more likely it is that the context of the usage of a novel
word (the other words in the sentence and the objects
in the scene) is familiar to the model. This pattern
has been studied through a number of experiments on

4We consider a wordw as learned if the meaning probability
p(mw|w) is higher than a certain thresholdθ. For this experi-
ment, we setθ = 0.70.

5In Fazly et al. (2008), we reported a variation of this exper-
iment, where we used a smaller training set, and also a different
semantic representation for word meanings.
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children. For example, Gershkoff-Stowe and Hahn
(2007) taught16- to 18-month-olds the names of24
unfamiliar objects over12 training sessions, where
unfamiliar objects were presented with varying fre-
quency. Data were compared to a control group of
children who were exposed to the same experimen-
tal words at the first and last sessions only. Their re-
sults show that for children in the experimental group,
extended practice with a novel set of words led to
the rapid acquisition of a second set of low-practice
words. Children in the control group did not show the
same lexical advantage.

Inspired by Gershkoff-Stowe and Hahn (2007), we
perform an experiment to study the effect of con-
text familiarity on fast mapping in our model. We
choose two sets of words, CONTEXT (containing20
words) and TARGET (containing10 words), to con-
duct a referent selection task as follows. First, we
train our model on a sequence of utterance–scene
pairs constructed from the set CONTEXT ∪ TARGET,
as follows: the unified set is randomly shuffled and
divided into two subsets, words in each subset are
put together to form an utterance, and the meanings
of the words in that utterance are put together to
form the corresponding scene. We repeat this process
twice, so that each word appears in exactly two input
pairs. We train our model on the constructed pairs.6

Next, we perform a referent selection task on each
word in the TARGET set: we pair each target word
w with the meaning of10 randomly selected words
from CONTEXT ∪ TARGET, including the meaning of
the target word itself (mw), and have the model pro-
cess this test pair. We compare the referent probabil-
ity of w and eachm ∈ CONTEXT ∪ TARGET to see
whether the model can correctly map the target word
to its referent. We call this setting the LOW TRAIN-
ING condition.

In the above setting, the context words in the ref-
erent selection trials are as new to the model as the
target words. We thus repeat this experiment with
a familiar context: we first train the model over in-
put pairs that are randomly constructed from words
in CONTEXT only, using the same training proce-
dure as described above. This context-familiarization
process is followed by a similar training session on
CONTEXT ∪ TARGET, and a test session on target
words, similar to the previous condition. Again, we
count the number of correct mappings between a tar-
get word and its referent based on the referent proba-
bilities. We call this setting the HIGH TRAINING con-
dition. Table 3 shows the results for both conditions.
It can be seen that the accuracy of finding the referent

6Unlike in previous experiments, here we do not use child-
directed data as we want to control the familiarity of the context.

Table 3: Average number of correct mappings and the
referent probabilities of target words for two condi-
tions, LOW and HIGH TRAINING.

Condition Correct mappings P (target |mtarget)
LOW TRAINING %54 0.216±0.04
HIGH TRAINING %90 0.494±0.79

for a target word, as well as the referent probability of
a target word for its correct meaning, increase as a re-
sult of more training on the context. In other words, a
more familiar context helps the model perform better
in a fast mapping task.

5 Related Computational Models

The rule-based model of Siskind (1996), and the con-
nectionist model proposed by Regier (2005), both
show that learning gets easier as the model is exposed
to more input—that is, words heard later are learned
faster. These findings confirm that fast mapping may
simply be a result of learning more words, and that
no explicit change in the underlying learning mech-
anism is needed. However, these studies do not ex-
amine various aspects of fast mapping, such as ref-
erent selection and retention. Horst et al. (2006) ex-
plicitly test fast mapping in their connectionist model
of word learning by performing referent selection and
retention tasks. The behaviour of their model matches
the child experimental data reported in a study by the
same authors (Horst and Samuelson, 2008), but not
that of the contradictory findings of other similar ex-
periments. Moreover, the model’s learning capacity
is limited, and the fast mapping experiments are per-
formed on a very small vocabulary. Frank et al. (2007)
examine fast mapping in their Bayesian model by test-
ing its performance in a novel target referent selection
task. However, the experiment is performed on an ar-
tifical corpus. Moreover, since the learning algorithm
is non-incremental, the success of the model in refer-
ent selection is determined implicitly: each possible
word–meaning mapping from the test input is added
to the current lexicon, and the consistency of the new
lexicon is checked against the training corpus.

6 Discussion and Concluding Remarks

We have used a general computational model of word
learning (first introduced in Fazly et al., 2008) to study
fast mapping. Our model learns a probabilistic asso-
ciation between a word and its meaning, from expo-
sure to word usages in naturalistic contexts. We have
shown that these probabilities can be used to simu-
late various fast mapping experiments performed on
children, such as referent selection and retention. Our
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experimental results suggest that fast mapping can be
explained as an induction process over the acquired
associations between words and objects. In that sense,
fast mapping is a general cognitive ability, and not
a hard-coded, specialized mechanism of word learn-
ing.7 In addition, our results confirm that the onset
of fast mapping is a natural consequence of learning
more words, which in turn accelerates the learning of
new words. This bootstrapping approach results in a
rapid pace of vocabulary acquisition in children, with-
out requiring a developmental change in the underly-
ing learning mechanism.

Results of the referent selection experiments show
that our model can successfully find the referent of
a novel target word in a familiar context. Moreover,
our retention experiments show that the model can
map a recently heard novel word to its recently seen
novel referent (among other novel objects) after only
one exposure. However, the strength of the associa-
tion of a novel pair after one exposure shows a no-
table difference compared to the association between
a “typical” familiar word and its meaning.8 This is
consistent with what is commonly assumed in the lit-
erature: even though children learn something about
a word from only one exposure, they often need more
exposure to reliably learn its meaning (Carey, 1978).
Various kinds of experiments have been performed to
examine how strongly children learn novel words in-
troduced to them in experimental settings. For exam-
ple, children are persuaded to produce a fast-mapped
word, or to use the novel word to refer to objects
that are from the same category as its original refer-
ent (e.g., Golinkoff et al., 1992; Horst and Samuelson,
2008). We intend to look at these new tasks in our fu-
ture research.
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Abstract

The most accurate unsupervised word seg-
mentation systems that are currently avail-
able (Brent, 1999; Venkataraman, 2001;
Goldwater, 2007) use a simple unigram
model of phonotactics. While this sim-
plifies some of the calculations, it over-
looks cues that infant language acquisition
researchers have shown to be useful for
segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Here we explore the
utility of using bigram and trigram phono-
tactic models by enhancing Brent’s (1999)
MBDP-1 algorithm. The results show
the improved MBDP-Phon model outper-
forms other unsupervised word segmenta-
tion systems (e.g., Brent, 1999; Venkatara-
man, 2001; Goldwater, 2007).

1 Introduction

How do infants come to identify words in the
speech stream? As adults, we break up speech
into words with such ease that we often think
that there are audible pauses between words in the
same sentence. However, unlike some written lan-
guages, speech does not have any completely reli-
able markers for the breaks between words (Cole
and Jakimik, 1980). In fact, languages vary on how
they signal the ends of words (Cutler and Carter,
1987), which makes the task even more daunting.
Adults at least have a lexicon they can use to rec-
ognize familiar words, but when an infant is first
born, they do not have a pre-existing lexicon to
consult. In spite of these challenges, by the age of

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

six months infants can begin to segment words out
of speech (Bortfeld et al., 2005). Here we present
an efficient word segmentation system aimed to
model how infants accomplish the task.

While an algorithm that could reliably extract
orthographic representations of both novel and fa-
miliar words from acoustic data is something we
would like to see developed, following earlier re-
searchers, we simplify the problem by using a text
that does not contain any word boundary markers.
Hereafter, we use the phrase “word segmentation”
to mean some process which adds word boundaries
to a text that does not contain them.

This paper’s focus is on unsupervised, incre-
mental word segmentation algorithms; i.e., those
that do not rely on preexisting knowledge of a par-
ticular language, and those that segment the cor-
pus one utterance at a time. This is in contrast
to supervised word segmentation algorithms (e.g.,
Teahan et al., 2000), which are typically used for
segmenting text in documents written in languages
that do not put spaces between their words like
Chinese. (Of course, unsupervised word segmen-
tation algorithms also have this application.) This
also differs from batch segmentation algorithms
(Goldwater, 2007; Johnson, 2008b; Fleck, 2008),
which process the entire corpus at least once be-
fore outputting a segmentation of the corpus. Un-
supervised incremental algorithms are of interest
to some psycholinguists and acquisitionists inter-
ested in the problem of language learning, as well
as theoretical computer scientists who are inter-
ested in what unsupervised, incremental models
are capable of achieving.

Phonotactic patterns are the rules that deter-
mine what sequences of phonemes or allophones
are allowable within words. Learning the phono-
tactic patterns of a language is usually modeled
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separately from word segmentation; e.g., current
phonotactic learners such as Coleman and Pierre-
humbert (1997), Heinz (2007), or Hayes and Wil-
son (2008) are given word-sized units as input.

However, infants appear to simultaneously learn
which phoneme combinations are allowable within
words and how to extract words from the input. It
is reasonable that the two processes feed into one
another, and when infants acquire a critical mass of
phonotactic knowledge, they use it to make judge-
ments about what phoneme sequences can occur
within versus across word boundaries (Mattys and
Jusczyk, 2001). We use this insight, also suggested
by Venkataraman (2001) and recently utilized by
Fleck (2008) in a different manner, to enhance
Brent’s (1999) model MBDP-1, and significantly
increase segmentation accuracy. We call this mod-
ified segmentation model MBDP-Phon.

2 Related Work

2.1 Word Segmentation

The problem of unsupervised word segmentation
has attracted many earlier researchers over the
past fifty years (e.g., Harris, 1954; Olivier, 1968;
de Marcken, 1995; Brent, 1999). In this section,
we describe the base model MBDP-1, along with
two other segmentation approaches, Venkataraman
(2001) and Goldwater (2007). In §4, we compare
MBDP-Phon to these models in more detail. For
a thorough review of word segmentation literature,
see Brent (1999) or Goldwater (2007).

2.1.1 MBDP-1
Brent’s (1999) MBDP-1 (Model Based Dy-

namic Programming) algorithm is an implemen-
tation of the INCDROP framework (Brent, 1997)
that uses a Bayesian model of how to generate an
unsegmented text to insert word boundaries. The
generative model consists of five steps:

1. Choose a number of word types, n.

2. Pick n distinct strings from Σ+#, which will
make up the lexicon, L. Entries in L are la-
beled W1 . . .Wn. W0 = $, where $ is the
utterance boundary marker.

3. Pick a function, f , which maps word types to
their frequency in the text.

4. Choose a function, s, to map positions in the
text to word types.

5. Concatenate the words in the order specified
by s, and remove the word delimiters (#).

It is important to note that this model treats the
generation of the text as a single event in the prob-
ability space, which allows Brent to make a num-
ber of simplifying assumptions. As the values for
n, L, f, and s completely determine the segmenta-
tion, the probability of a particular segmentation,
wm, can be calculated as:

P (wm) = P (n, L, f, s) (1)

To allow the model to operate on one utterance at
a time, Brent states the probability of each word in
the text as a recursive function, R(wk), where wk

is the text up to and including the word at position
k, wk. Furthermore, there are two specific cases
for R: familiar words and novel words. If wk is
familiar, the model already has the word in its lex-
icon, and its score is calculated as in Equation 2.

R(wk) =
f(wk)

k
·
(

f(wk)− 1
f(wk)

)2

(2)

Otherwise, the word is novel, and its score is cal-
culated using Equation 31 (Brent and Tao, 2001),

R(wk) =
6
π2 · n

k · PΣ(a1)...PΣ(aq)
1−PΣ(#) ·

(
n−1

n

)2 (3)

where PΣ is the probability of a particular
phoneme occurring in the text. The third term of
the equation for novel words is where the model’s
unigram phonotactic model comes into play. We
detail how to plug a more sophisticated phonotac-
tic learning model into this equation in §3. With
the generative model established, MBDP-1 uses a
Viterbi-style search algorithm to find the segmen-
tation for each utterance that maximizes the R val-
ues for each word in the segmentation.

Venkataraman (2001) notes that considering the
generation of the text as a single event is un-
likely to be how infants approach the segmenta-
tion problem. However, MBDP-1 uses an incre-
mental search algorithm to segment one utterance
at a time, which is more plausible as a model of
infants’ word segmentation.

1Brent (1999) originally described the novel word score

as R(wk) = 6
π2 · nk

k
· Pσ(Wnk

)

1−nk−1
nk

·
∑nk

j=1
Pσ(Wj)

·
(

nk−1
nk

)2

,

where Pσ is the probability of all the phonemes in the word
occurring together, but the denominator of the third term was
dropped in Brent and Tao (2001). This change drastically
speeds up the model, and only reduces segmentation accuracy
by ∼ 0.5%.
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2.1.2 Venkataraman (2001)
MBDP-1 is not the only incremental unsuper-

vised segmentation model that achieves promis-
ing results. Venkataraman’s (2001) model tracks
MBDP-1’s performance so closely that Batchelder
(2002) posits that the models are performing the
same operations, even though the authors describe
them differently.

Venkataraman’s model uses a more traditional,
smoothed n-gram model to describe the distribu-
tion of words in an unsegmented text.2 The most
probable segmentation is retrieved via a dynamic
programming algorithm, much like Brent (1999).

We use MBDP-1 rather than Venkataraman’s
approach as the basis for our model only because it
was more transparent how to plug in a phonotactic
learning module at the time this project began.

2.1.3 Goldwater (2007)
We also compare our results to a segmenter put

forward by Goldwater (2007). Goldwater’s seg-
menter uses an underlying generative model, much
like MBDP-1 does, only her language model is
described as a Dirichlet process (see also John-
son, 2008b). While this model uses a unigram
model of phoneme distribution, as did MBDP-1, it
implements a bigram word model like Venkatara-
man (2001). A bigram word model is useful in
that it prevents the segmenter from assuming that
frequent word bigrams are not simply one word,
which Goldwater observes happen with a unigram
version of her model.

Goldwater uses a Gibbs sampler augmented
with simulated annealing to sample from the pos-
terior distribution of segmentations and deter-
mine the most likely segmentation of each utter-
ance.3 This approach requires non-incremental
learning.4 We include comparison with Goldwa-
ter’s segmenter because it outperforms MBDP-1
and Venkataraman (2001) in both precision and
recall, and we are interested in whether an incre-
mental algorithm supplemented with phonotactic
learning can match its performance.

2.2 Phonotactic Learning
Phonotactic acquisition models have seen a surge
in popularity recently (e.g., Coleman and Pierre-

2We refer the reader to Venkataraman (2001) for the de-
tails of this approach.

3We direct the reader to Goldwater (2007) for details.
4In our experiments and those in Goldwater (2007), the

segmenter runs through the corpus 1000 times before out-
putting the final segmentation.

humbert, 1997; Heinz, 2007; Hayes and Wilson,
2008). While Hayes and Wilson present a more
complex Maximum Entropy phonotactic model in
their paper than the one we add to MBDP-1, they
also evaluate a simple n-gram phonotactic learner
operating over phonemes. The input to the mod-
els is a list of English onsets and their frequency
in the lexicon, and the basic trigram learner simply
keeps track of the trigrams it has seen in the cor-
pus. They test the model on novel words with ac-
ceptable rhymes—some well-formed (e.g., [kIp]),
and some less well-formed (e.g., [stwIk])—so any
ill-formedness is attributable to onsets. This ba-
sic trigram model explains 87.7% of the variance
in the scores that Scholes (1966) reports his 7th
grade students gave when subjected to the same
test. When Hayes and Wilson run their Maximum
Entropy phonotactic learning model with n-grams
over phonological features, the r-score increases
substantially to 95.6%.

Given the success and simplicity of the basic n-
gram phonotactic model, we choose to integrate
this with MBDP-1.

3 Extending MBDP-1 with Phonotactics

The main contribution of our work is adding
a phonotactic learning component to MBDP-1
(Brent, 1999). As we mention in §2.1.1, the third
term of Equation 3 is where MBDP-1’s unigram
phonotactic assumption surfaces. The original
model simply multiplies the probabilities of all the
phonemes in the word together and divides by one
minus the probability of a particular phoneme be-
ing the word boundary to come up with probabil-
ity of the phoneme combination. The order of the
phonemes in the word has no effect on its score.
The only change we make to MBDP-1 is to the
third term of Equation 3. In MBDP-Phon this be-
comes

q∏
i=0

PMLE(ai . . . aj) (4)

where ai . . . aj is an n-gram inside a proposed
word, and a0 and aq are both the word boundary
symbol, #5.

It is important to note that probabilities calcu-
lated in Equation 4 are maximum likelihood esti-
mates of the joint probability of each n-gram in the
word. The maximum likelihood estimate (MLE)

5The model treats word boundary markers like a phoneme
for the purposes of storing n-grams (i.e., a word boundary
marker may occur anywhere within the n-grams).
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for a particular n-gram inside a word is calculated
by dividing the total number of occurrences of that
n-gram (including in the word we are currently ex-
amining) by the total number of n-grams (includ-
ing those in the current word). The numbers of
n-grams are computed with respect to the obtained
lexicon, not the corpus, and thus the frequency of
lexical items in the corpus does not affect the n-
gram counts, just like Brent’s unigram phonotactic
model and other phonotactic learning models (e.g.,
Hayes and Wilson, 2008).

We use the joint probability instead of the con-
ditional probability which is often used in compu-
tational linguistics (Manning and Schütze, 1999;
Jurafsky and Martin, 2000), because of our intu-
ition that the joint probability is truer to the idea
that a phonotactically well-formed word is made
up of n-grams that occur frequently in the lexicon.
On the other hand, the conditional probability is
used when one tries to predict the next phoneme
that will occur in a word, rather than judging the
well-formedness of the word as a whole.6

We are able to drop the denominator that was
originally in Equation 3, because PΣ(#) is zero
for an n-gram model when n > 1. This sim-
ple modification allows the model to learn what
phonemes are more likely to occur at the begin-
nings and ends of words, and what combinations
of phonemes rarely occur within words.

What is especially interesting about this mod-
ification is that the phonotactic learning compo-
nent estimates the probabilities of the n-grams by
using their relative frequencies in the words the
segmenter has extracted. The phonotactic learner
is guaranteed to see at least two valid patterns in
every utterance, as the n-grams that occur at the
beginnings and ends of utterances are definitely
at the beginnings and ends of words. This al-
lows the learner to provide useful information to
the segmenter even early on, and as the segmenter
correctly identifies more words, the phonotactic
learner has more correct data to learn from. Not
only is this mutually beneficial process supported
by evidence from language acquisitionists (Mat-
tys et al., 1999; Mattys and Jusczyk, 2001), it also
resembles co-training (Blum and Mitchell, 1998).
We refer to the extended version of Brent’s model

6This intuition is backed up by preliminary results sug-
gesting MBDP-Phon performs better when using MLEs of the
joint probability as opposed to conditional probability. There
is an interesting question here, which is beyond the scope of
this paper, so we leave it for future investigation.

described above as MBDP-Phon.

4 Evaluation

4.1 The Corpus
We run all of our experiments on the Bernstein-
Ratner (1987) infant-directed speech corpus from
the CHILDES database (MacWhinney and Snow,
1985). This is the same corpus that Brent (1999),
Goldwater (2007), and Venkataraman (2001) eval-
uate their models on, and it has become the de
facto standard for segmentation testing, as unlike
other corpora in CHILDES, it was phonetically
transcribed.

We examine the transcription system Brent
(1999) uses and conclude some unorthodox
choices were made when transcribing the corpus.
Specifically, some phonemes that are normally
considered distinct are combined into one symbol,
which we call a bi-phone symbol. These phonemes
combinations include diphthongs and vowels fol-
lowed by /ô/. Another seemingly arbitrary deci-
sion is the distinction between stressed and un-
stressed syllabic /ô/ sound (i.e., there are differ-
ent symbols for the /ô/ in “butter” and the /ô/ in
“bird”) since stress is not marked elsewhere in the
corpus. To see the effect of these decisions, we
modified the corpus so that the bi-phone symbols
were split into two7 and the syllabic /ô/ symbols
were collapsed into one.

4.2 Accuracy
We ran MBDP-1 on the original corpus, and the
modified version of the corpus. As illustrated by
Figures 1 and 2, MBDP-1 performs worse on the
modified corpus with respect to both precision and
recall. As MBDP-1 and MBDP-Phon are both iter-
ative learners, we calculate segmentation precision
and recall values over 500-utterance blocks. Per
Brent (1999) and Goldwater (2007), precision and
recall scores reflect correctly segmented words,
not correctly identified boundaries.

We also test to see how the addition of an n-gram
phonotactic model affects the segmentation accu-
racy of MBDP-Phon by comparing it to MBDP-
1 on our modified corpus.8 As seen in Figure 3,
MBDP-Phon using bigrams (henceforth MBDP-
Phon-Bigrams) is consistently more precise in its

7We only split diphthongs whose first phoneme can occur
in isolation in English, so the vowels in “bay” and “boat” were
not split.

8We also compare MBDP-Phon to MBDP-1 on the origi-
nal corpus. The results are given in Tables 1 and 2.
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Figure 1: Precision of MBDP-1 on both corpora.
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Figure 2: Recall of MBDP-1 on both corpora.

segmentation than MBDP-1, and bests it by∼ 18%
in the last block. Furthermore, MBDP-Phon-
Bigrams significantly outpaces MBDP-1 with re-
spect to recall only after seeing 1000 utterances,
and finishes the corpus ∼ 10% ahead of MBDP-
1 (see Figure 4). MBDP-Phon-Trigrams does not
fair as well in our tests, falling behind MBDP-1
and MBDP-Phon-Bigrams in recall, and MBDP-
Phon-Bigrams in precision. We attribute this poor
performance to the fact that we are not currently
smoothing the n-gram models in any way, which
leads to data sparsity issues when using trigrams.
We discuss a potential solution to this problem in
§5.

Having established that MBDP-Phon-Bigrams
significantly outperforms MBDP-1, we compare
its segmentation accuracy to those of Goldwater
(2007) and Venkataraman (2001).9 As before, we

9We only examine Venkataraman’s unigram model, as his
bigram and trigram models perform better on precision, but
worse on recall.
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Figure 3: Precision of MBDP-1 and MBDP-Phon
on modified corpus.
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Figure 4: Recall of MBDP-1 and MBDP-Phon on
modified corpus.

run the models on the entire corpus, and then mea-
sure their performance over 500-utterance blocks.

MBDP-Phon-Bigrams edges out Goldwater’s
model in precision on our modified corpus, with
an average precision of 72.79% vs. Goldwa-
ter’s 70.73% (Table 1). If we drop the first 500-
utterance block for MBDP-Phon-Bigrams because
the model is still in the early learning stages,
whereas Goldwater’s has seen the entire corpus, its
average precision increases to 73.21% (Table 1).
When considering the recall scores in Table 2,
it becomes clear that MBDP-Phon-Bigrams has a
clear advantage over the other models. Its aver-
age recall is higher than or nearly equal to both
of the other models’ maximum scores. Since
Venkataraman’s (2001) model performs similarly
to MBDP-1, it is no surprise that MBDP-Phon-
Bigrams achieves higher precision and recall.
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MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 72.84% 67.46% 67.87%
Max. 79.91% 71.79% 71.98%
Min. 63.97% 61.77% 61.87%

Modified: Utterances 0 to 9790
Avg. 72.79% 59.64% 70.73%
Max. 80.60% 66.84% 74.61%
Min. 64.78% 52.54% 65.29%

Modified: Utterances 500 to 9790
Avg. 73.21% 59.54% 70.59%
Max. 80.60% 66.84% 74.61%
Min. 67.40% 52.54% 65.29%

Table 1: Precision statistics for MBDP-Phon-
Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

The only metric by which MBDP-Phon-
Bigrams does not outperform the other algorithms
is lexical precision, as shown in Table 3. Lexi-
cal precision is the ratio of the number of correctly
identified words in the lexicon to the total number
of words in the lexicon (Brent, 1999; Venkatara-
man, 2001).10 The relatively poor performance
of MBDP-Phon-Bigrams is due to the incremental
nature of the MBDP algorithm. Initially, it makes
numerous incorrect guesses that are added to the
lexicon, and there is no point at which the lexi-
con is purged of earlier erroneous guesses (c.f. the
improved lexical precision when omitting the first
block in Table 3). On the other hand, Goldwater’s
algorithm runs over the corpus multiple times, and
only produces output when it settles on a final seg-
mentation.

In sum, MBDP-Phon-Bigrams significantly im-
proves the accuracy of MBDP-1, and achieves
better performance than the models described in
Venkataraman (2001) and Goldwater (2007).

5 Future Work

There are many ways to implement phonotactic
learning. One idea is to to use n-grams over phono-
logical features, as per Hayes and Wilson (2008).
Preliminary results have shown that we need to add
smoothing to our n-gram model, and we plan to use

10See Brent (1999) for a discussion of the meaning of this
statistic.

MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 72.03% 70.02% 71.02%
Max. 79.31% 75.59% 76.79%
Min. 44.71% 42.57% 64.32%

Modified: Utterances 0 to 9790
Avg. 74.63% 66.24% 70.48%
Max. 82.45% 70.47% 74.79%
Min. 47.63% 44.71% 63.74%

Modified: Utterances 500 to 9790
Avg. 76.05% 67.37% 70.28%
Max. 82.45% 70.47% 74.79%
Min. 71.92% 63.86% 63.74%

Table 2: Recall statistics for MBDP-Phon-
Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

Modified Kneser-Ney smoothing (Chen and Good-
man, 1998).

Another approach would be to develop a
syllable-based phonotactic model (Coleman and
Pierrehumbert, 1997). Johnson (2008b) achieves
impressive segmentation results by adding a sylla-
ble level with Adaptor grammars.

Some languages (e.g., Finnish, and Navajo)
contain long-distance phonotactic constraints that
cannot be learned by n-gram learners (Heinz,
2007). Heinz (2007) shows that precedence-based
learners—which work like a bigram model, but
without the restriction that the elements in the bi-
gram be adjacent—can handle many long-distance
agreement patterns (e.g., vowel and consonantal
harmony) in the world’s languages. We posit that
adding such a learner to MBDP-Phon would allow
it to handle a greater variety of languages.

Since none of these approaches to phonotactic
learning depend on MBDP-1, it is also of interest
to integrate phonotactic learners with other word
segmentation strategies.

In addition to evaluating segmentation models
integrated with phonotactic learning on their seg-
mentation performance, it would be interesting to
evaluate the quality of the phonotactic grammars
obtained. A good point of comparison for English
are the constraints obtained by Hayes and Wilson
(2008), since the data with which they tested their
phonotactic learner is publicly available.

Finally, we are looking forward to investigat-
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MBDP-
Phon-
Bigrams

Venkataraman Goldwater

Original: Utterances 0 to 9790
Avg. 47.69% 49.78% 56.50%
Max. 49.71% 52.95% 63.09%
Min. 46.30% 41.83% 55.33%

Modified: Utterances 0 to 9790
Avg. 48.31% 45.98% 58.03%
Max. 50.42% 48.90% 65.58%
Min. 41.74% 36.57% 56.43%

Modified: Utterances 500 to 9790
Avg. 54.34% 53.06% 57.95%
Max. 63.76% 54.35% 62.30%
Min. 51.31% 51.95% 56.52%

Table 3: Lexical precision statistics for MBDP-
Phon-Bigrams, Goldwater, and Venkataraman on
both corpora over 500-utterance blocks.

ing the abilities of these segmenters on corpora
of different languages. Fleck (2008) tests her seg-
menter on a number of corpora, including Arabic
and Spanish, and Johnson (2008a) applies his seg-
menter to a corpus of Sesotho.

6 Conclusion

From the results established in §4, we can con-
clude that MBDP-Phon using a bigram phonotac-
tic model is more accurate than the models de-
scribed in Brent (1999), Venkataraman (2001), and
Goldwater (2007). The n-gram phonotactic model
improves overall performance, and is especially
useful for corpora that do not encode diphthongs
with bi-phone symbols. The main reason there
is such a marked improvement with MBDP-Phon
vs. MBDP-1 when the bi-phone symbols were re-
moved from the original corpus is that these bi-
phone symbols effectively allow MBDP-1 to have
a select few bigrams in the cases where it would
otherwise over-segment.

The success of MBDP-Phon is not clear evi-
dence that the INCDROP framework (Brent, 1997)
is superior to Venkataraman or Goldwater’s mod-
els. We imagine that adding a phonotactic learning
component to either of their models would also im-
prove their performance.

We also tentatively conclude that phonotactic
patterns can be learned from unsegmented text.
However, the phonotactic patterns learned by our
model ought to be studied in detail to see how well

they match the phonotactic patterns of English.
MBDP-Phon’s performance reinforces the the-

ory put forward by language acquisition re-
searchers that phonotactic knowledge is a cue for
word segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Furthermore, our results in-
dicate that learning phonotactic patterns can oc-
cur simultaneously with word segmentation. Fi-
nally, further investigation of the simultaneous ac-
quisition of phonotactics and word segmentation
appears fruitful for theoretical and computational
linguists, as well as acquisitionists.
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Abstract 

This paper presents an iterative model of 

knowledge acquisition of gender infor-

mation associated with word endings in 

French. Gender knowledge is represented 

as a set of rules containing exceptions. 

Our model takes noun-gender pairs as in-

put and constantly maintains a list of 

rules and exceptions which is both coher-

ent with the input data and minimal with 

respect to a minimum description length 

criterion. This model was compared to 

human data at various ages and showed a 

good fit. We also compared the kind of 

rules discovered by the model with rules 

usually extracted by linguists and found 

interesting discrepancies. 

1 Introduction 

In several languages, nouns have a gender. In 

French, nouns are either masculine or feminine. 

For example, you should say le camion (the 

truck) but la voiture (the car). Gender assignment 

in French can be performed using two kinds of 

information. Firstly, lexical information, related 

to the co-occurring words (e.g., articles, adjec-

tives) which most of times marks gender unam-

biguously. Secondly, sublexical information, es-

pecially noun-endings, are pretty good predictors 

of their grammatical gender (e.g., almost all 

nouns endings in –age are masculine). Several 

word endings can be used to reliably predict 

gender of new words but this kind of rules is 

never explicitly taught to children: they have to 

implicitly learn that knowledge from exposure to 

noun-gender pairs. It turns out that children as 

young as 3 already constructed some of these 
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rules, which can be observed by testing them on 

pseudo-words (Karmiloff-Smith, 1979). 

This paper presents an iterative model of the 

way children may acquire this gender knowl-

edge. Its input is a large random sequence of 

noun-gender pairs following the distribution of 

word frequency at a given age. It is supposed to 

represent the words children are exposed to. The 

model constantly maintains a list of rules and 

exceptions both coherent with the input data and 

minimal with respect to an information theory 

criterion. This model was compared to human 

data at various ages and showed a good fit. We 

also compared the kind of rules discovered by 

the model with rules usually extracted by lin-

guists and found interesting discrepancies. 

2 Principle of Simplicity 

Gender knowledge is learned from examples. 

Children are exposed to thousands of nouns 

which are most of the time accompanied with a 

gender clue because of their corresponding de-

terminer or adjective. For instance, when hearing 

“ta poussette est derrière le fauteuil” [your 

stroller is behind the armchair], a child knows 

that poussette is feminine because of the femi-

nine possessive determiner ta, and that fauteuil is 

masculine because of the masculine determiner 

le. After processing thousands of such 

noun/gender pairs, children acquired some gen-

der knowledge which allows them to predict the 

gender of pseudo-words (Marchal et al., 2007; 

Meunier et al., 2008). This knowledge is largely 

dependent on the end of the words since the end-

ings of many nouns in French are associated 

more often with one gender than the other 

(Holmes & Segui, 2004). For instance children 

would predict that pseudo-words such as limette 

or mossette are rather feminine words although 

they never heard them before. It means that they 

should have constructed a rule-like knowledge 

saying that “words ending in -ette are rather 

feminine”. Or maybe it is “words ending in -te 

are rather feminine” or even “words ending in -e 
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are rather feminine”… Actually, there are many 

ways to structure this knowledge, especially be-

cause this kind of rule generally has exceptions. 

Let us take an example. Consider the following 

words and their gender (masculine or feminine): 

barrage [weir] (m), image [image] (f), courage 

[courage] (m), plage [beach] (f), étage [floor] 

(m), garage [garage] (m), collage [collage] (m). 

Several rules could be constructed from this data: 

(1) words ending in -age are masculine except 

image and plage; 

(2) words ending in -age are feminine except 

barrage, courage, étage, garage and collage; 

(3) words ending in -age are feminine except 

words ending in -rage, étage and collage. 

The latter is an example of a rule whose excep-

tions may themselves contain rules. The question 

is to know which rules may be constructed and 

used by children, and which cognitive mecha-

nisms may lead to the construction of such rules.  

In order to investigate that issue, we relied on the 

assumption that children minds obey a principle 

of simplicity. 

This principle is a cognitive implementation of 

the Occam’s razor, saying that one should choose 

the simplest hypothesis consistent with the data. 

This idea has already been used in the field of 

concept learning where it would dictate that we 

induce the simplest category consistent with the 

observed examples—the most parsimonious gen-

eralization available (Feldman, 2003). Chater & 

Vitányi (2003) view it as a unifying principle in 

cognitive science to solve the problem of induc-

tion in which infinitely many patterns are com-

patible with any finite set of data. They assume 

“that the learner chooses the underlying theory of 

the probabilistic structure of the language that 

provides the simplest explanation of the history 

of linguistic input to which the learner has been 

exposed.” (Chater & Vitányi, 2007). 

One way to implement this idea is to consider 

that the simplest description of a hypothesis is 

the shortest one. Without considering frequency 

of the rule usage, rule 1 in the previous example 

seems intuitively more likely to be used by hu-

mans because it is the shortest. 

Intuitively, counting the number of characters 

of each hypothesis could seem a good method 

but it is better to choose the most compact repre-

sentation (Chater, 1999). More important, the 

choice should also depend on the frequency of 

rule usage: the description length of a rule that 

would be frequently used should not be counted 

like a seldom used rule. For instance, rule 2 

could be a more appropriate coding if it is used 

very frequently in the language as opposed to the 

frequency of its exceptions. That is the reason 

why we rely on word frequencies for various 

ages in our simulations. 

Information theory provides a formal version 

of this assumption: the minimum description 

length (MDL) principle (Rissanen, 1978). The 

goal is to minimize the coding cost of both the 

hypothesis and the data reconstructed from the 

hypothesis (two-part coding). However, we will 

see that, in our case, the model contains all the 

data which lead to a simpler mechanism: the idea 

is to select the hypothesis which represents the 

data in the most compact way, that is which has 

the shortest code length. Given a realization x of 

a random variable X with probability distribution 

p, x can be optimally coded with a size of 

−log2(p(x)) bits. 

For instance, suppose you are exposed to only 

4 words A, B, C and D with frequencies .5, .25, 

.125, .125. For example, exposure could be: 

BAACADBABACADBAA. An optimal coding 

would need only 1 bit (−log2(.5)) to code word A 

since it occurs 50% of the time. For instance, A 

would be 0 and all other words would begin with 

1. B needs 2 bits (−log2(.25)), for instance 10. C 

and D both needs 3 bits (−log2(.125)), for in-

stance 110 for C and 111 for D.  

The average code length for a realization of 

the random variable X is computed by weighting 

each code length by the corresponding probabil-

ity. It is exactly what is called entropy: 

H(X)= − ∑ p(x).log2(p(x)) 

In the previous example, the average code length 

is 1×.5+2×.25+3×.125+3×.125=1.75 bits 

From this point of view, learning is data com-

pression (Grünwald, 2005). To sum up, the gen-

eral idea of our approach is to generate rules that 

are coherent with the data observed so far and to 

select the one with the smallest entropy. 

3 Model 

Some computational models have been proposed 

in the literature, but they are concerned with the 

problem of gender assignment given an existing 

lexicon rather than dynamically modeling the 

acquisition of gender knowledge. Their input is 

therefore a set of words representative of all the 

words in the language. Analogical modeling 

(Skousen, 2003) is such a model. It predicts the 

gender of a new word by constructing a set of 

words that are analogous to it, with respect to 
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morphology. Matthews (2005) compared ana-

logical modeling and a neural net and could not 

find any significant difference. Our model takes 

noun-gender pairs as input and dynamically up-

dates the set of rules it has constructed so far in 

order to minimize their description length. 

3.1 Input 

The input to our model is supposed to represent 

the noun/gender pairs children are exposed to.  

We used Manulex (Lété et al., 2004), a French 

lexical database which contains word frequencies 

of 48,900 lexical forms from the analysis of 54 

textbooks. Word frequencies are provided for 3 

levels: grades 1, 2 and 3-5. 

We used the phonetic form of words
2
 because 

the development of the gender knowledge is only 

based on phonological data during the first six 

years of life. It would also be interesting to study 

the development of written-specific rules, but 

this will be done in a future work. 

We constructed a learning corpus by randomly 

selecting in this database 200,000 words and 

their gender such that their distribution is akin to 

their frequency distribution in Manulex. In other 

words, the probability of picking a given word in 

the corpus is just its frequency. In fact, we sup-

pose that the construction of the rule depends on 

the frequency of words children are exposed to 

and not just on the words at a type level.  

It would have been more accurate to take real 

corpora as input, in particular because the order 

in which words are considered probably plays a 

role, but such French corpora for specific ages, 

large enough to be sufficiently accurate, do not 

exist to our knowledge. 

We now present how our model handles these 

noun-gender pairs, one after the other. 

3.2 Knowledge Representation 

Gender knowledge is represented as rules con-

taining exceptions. The premise of a rule is a 

word ending and the conclusion is a gender. The 

* character indicates any substring preceding the 

word ending. A natural language example of a 

rule is: 

(4) */yR/ are feminine nouns (f) except 

/azyR/, /myR/, /myRmyR/ which are mascu-

line (m). 

                                                           
2
 We used an ASCII version of the International Phonetic 

Alphabet. 

Exceptions may contain words that could also be 

organized in rules, which itselves may contain 

exceptions. Here is an example: 

(5) */R/→m except: 

     /tiRliR/, /istwaR/→f 

     */jER/→f except /gRyjER/→m 

     */yR/→f except /azyR/ and /myR/→m 

The gender knowledge corresponding to a given 

corpus is represented as a set of such rules. Such 

a set contains about 80 rules for a grade-1 learn-

ing corpus. We now present how this knowledge 

is updated according to a new noun-gender pair 

to be processed. 

3.3 Rule Construction 

Each time a new noun-gender pair is processed, 

all possible set of rules that are coherent with the 

data are generated, and the best one, with respect 

to the minimum description length criterion, will 

be selected. As an example, consider this little 

current set of two rules which was constructed 

from the words /azyR/, /baRaZ/, /etaZ/, /imaZ/, 

/plaZ/, /SosyR/ and /vwAtyR/
3
 (words above be-

low square brackets are the examples which were 

used to form the rule): 

(6) */yR/→f [/SosyR/, /vwAtyR/] except 

/azyR/→m 

(7a) */aZ/→f [/imaZ/, /plaZ/] except 

/etaZ/, /baRaZ/→m 

Then a new word is processed: /kuRaZ/ which is 

of masculine gender. Since it is not coherent with 

the most specific rule (rule 7a) matching its end-

ing (genders are different), the algorithm at-

tempts to generalize it with the first-level excep-

tions in order to make a new rule. /etaZ/ is taken 

first. It can be generalized with the new word 

/kuRaZ/ to form the new rule: 

(8a) */aZ/→m [/etaZ/, /kuRaZ/] 

All other exceptions which could be included are 

added. The new rule becomes: 

(8b) */aZ/→m [/baRaZ/, /etaZ/, /kuRaZ/] 

Once a new rule has been created, the algorithm 

needs to maintain the coherence of the base. It 

checks whether this new rule is in conflict with 

other rules with a different gender. This is the 
                                                           
3
  Translations: /azyR/ (azur [azure]), /baRaZ/ (bar-

rage [weir]), /etaZ/ (étage [floor]), /imaZ/ (image 

[image]), /plaZ/ (plage [beach]), /SosyR/ (chaus-

sure [shoe]) and /vwAtyR/ (voiture [car]) 
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case since we have the exact same rule but for 

the feminine gender (rule 7a). Conflicting exam-

ples are therefore removed from the old rule and 

put as exceptions to the new rule. In that case of 

identity between old and new rule, all examples 

are removed and the rule disappears. The new 

rule is: 

(8c) */aZ/→m [/baRaZ/, /etaZ/, /kuRaZ/] except 

/imaZ/, /plaZ/→f 

After having checked for rules with a different 

gender, the algorithm now checks for existing 

rules with the same gender that the new rule, ei-

ther more specific or more general. This is not 

the case here. We thus created our first candidate 

set of rules (rules 6 and 8c): 

CANDIDATE SET #1: 
*/yR/→f [/SosyR/, /vwAtyR/] except  

/azyR/→m 

*/aZ/→m [/baRaZ, /etaZ/, /kuRaZ/] except 

/imaZ/, /plaZ/→f 

Other rules could have been generated from the 

set of exceptions of */aZ/→f. The word /etaZ/ was 

taken first but the algorithm needs to consider all 

other exceptions. It then takes /baRaZ/ to form 

the rule: 

(9) */RaZ/→m [/baRaZ/, /kuRaZ/] 

Note that this is a more specific rule than the 

previous one: it is based on a 3-letter ending 

whereas /etaZ/ and /kuRaZ/ generated a 2-letter 

ending. No other exceptions can be added. The 

algorithm now checks for conflicting rules with 

the same gender and puts this new rule as an ex-

ception of the previous rule. Then it checks for 

possible conflict with rules of different gender, 

but there are none. The second candidate set is 

therefore:  

CANDIDATE SET #2: 

*/yR/→f [/SosyR/, /vwAtyR/] except 

/azyR/→m 

*/aZ/→f [/imaZ/, /plaZ/] except  

/etaZ/→m 

*/RaZ/ [/baRaZ/, /kuRaZ/]→m 

Something else needs to be done: removing 

words from a rule and putting them as exceptions 

may lead to new generalizations between them or 

with other existing words. In our case, the algo-

rithm memorized the fact that /imaZ/ and /plaZ/ 

have been put as exceptions. 

It now applies the same mechanism as before: 

adding those words to the new set of rules, as if 

they were new words. By the same previous al-

gorithm, it gives the new rule: 

(7b) */aZ/→f [/imaZ/, /plaZ/] 

In order to maintain the coherence of the rule 

base, examples of conflicting rules are removed 

and put as exceptions: 

(7c) */aZ/→f [/imaZ/, /plaZ/] except  

/baRaZ/, /etaZ/, /kuRaZ/→m 

We now have our third candidate set of rules: 

CANDIDATE SET #3: 
*/yR/→f [/SosyR/, /vwAtyR/] except  

/azyR/→m 

*/aZ→f/ [imaZ,plaZ] except  

/etaZ/, /baRaZ/, /kuRaZ/→m 

Figure 1 summarizes the model’s architecture. 

 
Figure 1. Overall architecture 

3.4 Model Selection 

This section describes how to choose between 

candidate models. As we mentioned before, the 

idea is to select the most compact model. For 

each exception, we compute its frequency F from 

the number of times it appeared so far. For each 

rule, F is just the sum of the frequencies of all 

examples it covered. 

The description length of each rule or excep-

tion is –log2(F). Since the overall value needs to 

take into account the variation of frequency of 

each rule or exception, each description length is 

weighted by its frequency, which gives the aver-

age description length of a candidate set of rules 

(corresponding to the entropy):  

weigth(Model) = –∑Fi.log2 (Fi) 

Suppose the words of the previous example were 

given in that order: /imaZ/ - /vwAtyR/ - /SosyR/ 

- /imaZ/ - /plaZ/ - /SosyR/ - /plaZ/ - /imaZ/ - 

/etaZ/ - /vwAtyR/ - /baRaZ/ - /azyR/ - /plaZ/ - 

/imaZ/ - /imaZ/ - /kuRaZ/ 
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Candidate set #2 would then have an average 

description length of 1.875 bits: 

azyR m -1/16 x log2(1/16) = .25 

*yR f SosyR,vwAtyR -4/16 x log2(4/16) = .5  

*RaZ m baRaZ,kuRaZ -2/16 x log2(2/16) = .375 

etaZ m -1/16 x log2(1/16) = .25 

*aZ f imaZ,plaZ -8/16 x log2(8/16) = .5 

 Sum = 1.875 bits 

In the same way, candidate set #1 would have a 

value of 2.18 bits. Candidate set #3 would have a 

value of 2 bits. The best model is therefore 

model #2 which is the most compact one, ac-

cording to the word frequencies.  

4 Implementation 

For computational purposes, the knowledge in-

ternal representation is slightly different than the 

one we use here: rules and exceptions are repre-

sented on different lines such that exceptions are 

written before their corresponding rules and if a 

rule is more specific than another one, it is writ-

ten before. For instance, candidate set #2 is writ-

ten that way: 

azyR m 
*yR f SosyR,vwAtyR 
*RaZ m baRaZ,kuRaZ 
etaZ m 
*aZ f imaZ,plaZ 

This allows a linear inspection of the rule base in 

order to predict the gender of a new word: the 

first rule which matches the new word gives the 

gender. For instance, if the previous model were 

selected, it would predict that the word /caZ/ is 

feminine, the pseudo-word /tapyR/ is feminine 

and the pseudo-word /piRaZ/ is masculine. 

We could have improved the efficiency of the 

algorithm by organizing words in a prefix tree 

where the keys would be in the reverse order of 

words. However, we are not concerned with the 

efficiency of the model for the moment, but 

rather its ability to account for human data. 

The algorithm is the following (R1<R2 indi-

cates that R1 is more specific than R2. For in-

stance, */tyR/ is more specific than */yR/, which 

in turn is more specific than */R/). 

updateModel(word W, rule base B): 

if W matches a rule R∈B then 

   if R did not contain W as an example 
      add W to the examples of B 
   return B 
else 
   for all exceptions E of B 
      if E and W can be generalized 

         create the new rule N from them 
         include possible other exceptions 

         # More general rule of different gender 

         if ∃R∈B/ R<N and gender(R)≠gender(N) 

            put examples of N matching R as exceptions 
            memorize those exceptions 
            if N now contains one example 
               put that example as an exception 
            if N contains no examples 
               remove N 

         # More specific rule of different gender 

         if ∃R∈B/ R≥N and gender(R)≠gender(N) 

            put examples of R matching N as exceptions  
            memorize those exceptions 
            if R now contains one example 
               put that example as an exception 
            if R contains no examples 
               remove R 

         # Conflicting rule of same gender 

         if ∃R∈B/ N>R and gender(R)=gender(N) 

            include R into N 

         if ∃R∈B/ N<R and gender(R)=gender(N) 

            include N into R 

        Solutions = {B} 

         # Run the algorithm with new exceptions 
         for all memorized exceptions E 

           Solutions=Solutions ∪ updateModel(E,B) 

   if no generalizations was possible 
      Add W to B 
      Solutions = {B} 

return(Solutions) 

5 Simulations 

We ran this model on two corpora, representing 

words grade-1 and grade-2 children are exposed 

to (each 200,000-word long). 76 rules were ob-

tained in running the grade-1 corpus, and 83 

rules with the grade-2 corpus. 

End-

ings 

Gen-

der 

Gender 

Predict-

ability 

Nb  

Exam-

ples 

Nb  

excep-

tions 

*/l/ f 56% 79 62 

*/sol/ m 57% 4 3 

*/i/ m 57% 74 55 

*/R/ m 72% 188 71 

*/am/ f 77% 7 2 

*/sy/ m 83% 5 1 

*/jER/ f 88% 31 4 

*/5/ m 97% 91 2 

*/fon/ m 100% 5 0 

*/sj6/ f 100% 58 0 

Table 1. Sample of rules (with endings and pre-

dicted gender) constructed from grade-1 corpus. 

77



Some of the rules of the first set are listed in 

Table I (from grade-1 corpus). For each rule, rep-

resented by a word ending, is detailed its pre-

dicted gender, the number of words (as types) 

following the rule, the number of exceptions. 

Moreover, the “gender predictability” of each 

rule is computed (third column) as the percentage 

of words matching the rule over the total number 

of words with this ending. 

The results of the simulations show that the 

lengths of word endings vary from only one pho-

neme (e.g., /*l/, /*i/) to three (/*jER/, /*fon/). 

These rules do not really correspond to the kind 

of rules linguists would have produced. They 

usually consider that the appropriate ending to 

associate to a given gender is the suffix (Riegel 

et al., 2005). Actually, the nature of the word 

ending that humans may rely on to predict gen-

der is an open question in psycholinguistics. Do 

we rely on the suffix, the last morpheme, the last 

phoneme? The results of our model which did 

not use any morphological knowledge, suggests 

another answer: it may only depend on the statis-

tical regularities of word endings in the language 

and can vary in French from one phoneme to 

three and these endings are sometimes matching 

morphological units. 

However, it is worth noting that the model has 

yet some obvious limitations. The first one is that 

the gender predictability of rules is variable: 

while some rules are highly predictive (e.g., 

*/sj§/ 100% feminine, */@/ 97% masculine), 

other are not (e.g., */l/ 56% feminine, */i/ 57% 

masculine). The second limitation is that the 

rules found by our model are accounting for a 

variable amount of examples. For instance, the 

rule */R/ masculine accounts for 188 examples 

while */sol/ masculine does only 4. One could 

wonder what it means from a developmental 

point of view to create rules that are extracted 

from very few examples. Do children build such 

rules? This is far from sure and we shall have to 

further address these clear limitations. 

Another of our research goals was to test to 

what extent our model could predict human data. 

To that end, the model’s gender assignment per-

formance was compared to children’s one. 

6 Comparison to Experimental Data 

6.1 Experiment 

An experiment was conducted to study how and 

when French native children acquire regularities 

between words endings and their associated gen-

der. Nine endings were selected, five which are 

more likely associated to the feminine gender 

(/ad/, /asj§/, /El/, /ot/, /tyR/) and four to the mas-

culine gender (/aZ/, /m@/, /waR/, /O/). Two lists 

of 30 pseudo-words were created containing each 

15 pseudo-words whose expected gender is mas-

culine (such as “brido” or “rinloir”) and 15 

whose expected gender is feminine (such as 

“surbelle” or “marniture”). The presentation of 

each list was counterbalanced across participants.  

Participants were 136 children from Grenoble 

(all French native speakers): 28 children at the 

end of preschool, 30 children at the beginning of 

grade 1, 36 children at the end of grade 1 and 42 

children at the beginning of grade 2. Each par-

ticipant was given a list and had to perform a 

computer-based gender decision task. Each 

pseudo-word was simultaneously spoken and 

displayed in the center of the screen when the 

determiners “le” (masculine) and “la” (feminine) 

were displayed at the bottom of the screen. Then 

children had to press the keyboard key corre-

sponding to their intuition, which was recorded. 

 

    

Pre-

school 

Beg.  

Grade1 

End  

Grade1 

Beg.  

Grade2 

End-

ings Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

% Exp. 

Gd. 

/ad/ f 45.24 56.67 67.59** 57.14 

/asj§/ f 58.33 58.89 70.37** 65.08** 

/El/ f 60.71* 62.22* 76.85** 64.29** 

/ot/ f 53.57 71.11** 82.41** 72.22** 

/tyR/ f 50.00 68.89** 77.78** 68.25** 

/aZ/ m 51.19 64.44** 64.81** 61.11** 

/m@/ m 60.71* 55.56 57.41 50.00 

/O/ m 61.90* 65.56** 80.56** 78.57** 

/waR/ m 52.38 62.22* 64.81** 68.25** 

Legend: Gd.:Gender; Beg.:Beginning; 

% Exp. Gd.:% Expected Gender; 

* p<.05,**p<.01   

Table 2. Gender attribution rate as a function of 

endings and grade level. 

 

In brief, results are twofold. First, children 

have acquired some implicit knowledge regard-

ing gender information associated with word 

ending. As can be seen in Table 2, at the begin-

ning of grade 1, children respond above chance 

and in the expected direction for the majority of 

endings (Chi2 test was used to assess statistical 

significance). At preschool children responded 

also above chance for three word endings. Sec-

ond, there is a clear developmental trend since 

gender attribution increases in the expected di-

rection with grade level and more endings are 

determined by the older children. The exposure 
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to written language during the first school year 

probably reinforces the implicit knowledge de-

veloped by children before primary school. 

6.2 Human vs. Model Data Comparison 

Two types of analyses were drawn in order to 

compare model and data. Firstly, the gender pre-

dictions obtained from the model were correlated 

to those given by children, regarding the gender 

of pseudo-words. Secondly, the endings created 

by the model were compared  to those used in the 

experimental material. Correlations were com-

puted between our model and human data (Table 

3) by taking into account the rate of predicted 

masculine gender, for each pseudo-word. 

 

 Model Grade 1 Model Grade 2 

Preschool 0.31 0.33 

Beg. Grade 1 0.6 0.64 

End Grade 1 0.82 0.86 

Beg. Grade 2 0.74 0.77 

Table 3. Correlations between model and data. 

 

The highest correlations are obtained for children 

at the end of grade 1 and at the beginning of 

grade 2. This result is interesting since the cor-

pora are precisely intended to represent the lexi-

cal knowledge corresponding to the school level 

of these children. Moreover, the correlations ob-

tained with the grade-2 model are higher (though 

not significantly) than those obtained with the 

grade-1 model. It thus seems that our model is 

fairly well suited to account for children’s re-

sults, at least for the older ones. The low correla-

tions observed with the younger children of our 

sample cannot be interpreted unambiguously; 

one could say that children before grade 1 have 

not built much knowledge regarding gender of 

word endings but this conclusion contradicts 

previous results (Meunier et al., 2008) and it re-

mains to be explored by using a corpora appro-

priated to the lexicon of preschool children. 

The endings used by the model to predict the 

gender of pseudo-words were also compared 

with the endings used in the experiment. Table 4 

presents these endings as well as the rate of mas-

culine gender predicted for the experimental end-

ings by the two models trained with grade-1 and 

grade-2 lexicons. First, note that the endings 

used by the models are the same for both grade-1 

and grade-2 lexicons. The growth of the lexicon 

between grade 1 and grade 2 does not modify 

these rules. Secondly, one can notice that grade-2 

model results are more defined than grade-1 re-

sults. Third, a very salient result is that model 

endings are short. For example, the model did 

not create a rule such */ad/ and rather used the 

more compact rule */d/ to predict the gender of 

the pseudo-word /bOSad/. 

 

 Model Grade 1 Model Grade 2 

Endings 

End-

ings 

% Gd. 

Masc 

End-

ings 

% Gd. 

Masc 

/ad/ */d/ 0.28 */d/ 0.17 

/asj§/ */sj§/ 0 */sj§/ 0 

/El/ */l/ 0.44 */l/ 0.32 

/ot/ */t/ 0.14 */t/ 0.09 

/tyR/ */yR/ 0.09 */yR/ 0.05 

/aZ/ */Z/ 0.8 */Z/ 0.91 

/m@/ */@/ 0.95 */@/ 0.98 

/O/ */O/ 0.93 */O/ 0.96 

/waR/ */R/ 0.72 */R/ 0.82 

Table 4. Rate for expected masculine gender 

predicted by our models. 

 

In fact, the majority of the endings used by the 

model are short, i.e. composed with one pho-

neme. Very few endings created by the model are 

morphological units such as suffixes. In fact, the 

endings /d/ or /R/ are not derivational mor-

phemes, but the endings /sj§/ or /yR/ are suffixes. 

So the MDL-based model establishes rules that 

take into account different types of linguistic 

units from phonemes to morphemes depending 

of the statistical predictability of each ending 

type. This result is related to an important con-

cern about the study of the acquisition of gram-

matical gender: to which unit do children rely on 

to predict gender? Do they rely on the last pho-

neme, biphone, morpheme? 

7 Do children rely on morphemes? 

In grammatical gender acquisition studies, the 

kind of endings used often mixes up phonologi-

cal, derivational and even orthographic cues. 

Several studies used true suffixes (Marchal et al., 

2007, Meunier et al., 2008) to ask children to 

assign gender to pseudo-words. As those studies 

consistently showed that children from 3 years 

old onwards assign a gender to those pseudo-

words following the excepted suffix gender, the 

tentative conclusion was to say that children rely 

on suffixes to assign the gender of new words. 

This is an appealing interpretation as the devel-

opment of morphological structure of words is an 

important aspect of lexical development and 

some of this knowledge is acquired very early 

(Casalis et al., 2000; Karmiloff-Smith, 1979).  
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However, the observations from the MDL-

based model strongly question this assumption: 

the units retained in the model’s rules are often 

shorter than suffixes and the last phoneme seems 

often as predictive as the suffix itself as it leads 

to satisfying correlations with children’s data.  

So, one would conclude that gender knowl-

edge is not attached to morphological units such 

as suffix but is rather a knowledge associated 

with the smaller ending segment that best pre-

dicts gender. Note however that despite the high 

correlations observed, the actual gender predic-

tions issued from children’s data and those is-

sued from the model are not exactly of the same 

magnitude and this would suggest that the MDL-

based model presented here must still be worked 

on in order to better describe gender acquisition. 

For example, the notion of gender predictability 

would benefit from being computed from token 

counts instead of type counts. 

8 Conclusion 

The purpose of this research was to know which 

kind of gender information may be constructed 

and used by children, and which cognitive 

mechanisms may lead to the construction of such 

rules. To investigate that issue, we constructed a 

model based on the MDL principle which reveals 

to be an interesting way to describe the gram-

matical gender acquisition in French, although 

we do not claim that children employ such an 

algorithm. Our model predicts the gender of a 

new word by sequentially scanning exceptions 

and rules. This process appears quite similar to 

the decision lists technique in machine learning 

(Rivest, 1987) which has already been combined 

with the MDL principle (Pfahringer, 1997). 

However, we are not committed to this formal-

ism: we are more interested in the content of the 

model rather than its knowledge representation. 

The comparison between model’s results and 

human data opens a way of reflection on the kind 

of relevant units on which children would rely 

on. Perhaps it is not a kind of ending in particular 

that plays a role but different units varying fol-

lowing the principle of parsimony. 
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Abstract

A fundamental task in sentence compre-
hension is to assign semantic roles to sen-
tence constituents. The structure-mapping
account proposes that children start with
a shallow structural analysis of sentences:
children treat the number of nouns in the
sentence as a cue to its semantic predicate-
argument structure, and represent language
experience in an abstract format that per-
mits rapid generalization to new verbs. In
this paper, we tested the consequences of
these representational assumptions via ex-
periments with a system for automatic se-
mantic role labeling (SRL), trained on a
sample of child-directed speech. When
the SRL was presented with representa-
tions of sentence structure consisting sim-
ply of an ordered set of nouns, it mim-
icked experimental findings with toddlers,
including a striking error found in children.
Adding features representing the position
of the verb increased accuracy and elim-
inated the error. We show the SRL sys-
tem can use incremental knowledge gain
to switch from error-prone noun order fea-
tures to a more accurate representation,
demonstrating a possible mechanism for
this process in child development.

1 Introduction

How does the child get started in learning to in-
terpret sentences? The structure-mapping view
of early verb and syntax acquisition proposes that

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

children start with a shallow structural analysis of
sentences: children treat the number of nouns in
the sentence as a cue to its semantic predicate-
argument structure (Fisher, 1996), and represent
language experience in an abstract format that per-
mits rapid generalization to new verbs (Gertner et
al., 2006).

The structure-mapping account makes strong
predictions. First, as soon as children can identify
some nouns, they should interpret transitive and in-
transitive sentences differently, simply by assign-
ing a distinct semantic role to each noun in the sen-
tence. Second, language-specific syntactic learn-
ing should transfer rapidly to new verbs. Third,
some striking errors of interpretation can occur.
In “Fred and Ginger danced”, an intransitive verb
is presented with two nouns. If children interpret
any two-noun sentence as if it were transitive, they
should be fooled into interpreting the order of two
nouns in such conjoined-subject intransitive sen-
tences as conveying agent-patient role information.
Experiments with young children support these
predictions. First, 21-month-olds use the number
of nouns to understand sentences containing new
verbs (Yuan et al., 2007). Second, 21-month-olds
generalize what they have learned about English
transitive word-order to sentences containing new
verbs: Children who heard ”The girl is gorping the
boy” interpreted the girl as an agent and the boy as
a patient (Gertner et al., 2006). Third, 21-month-
olds make the predicted error, treating intransitive
sentences containing two nouns as if they were
transitive: they interpret the first noun in “The girl
and the boy are gorping” as an agent and the sec-
ond as a patient (Gertner and Fisher, 2006). This
error is short-lived. By 25 months, children add
new features to their representations of sentences,
and interpret conjoined-subject intransitives differ-
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ently from transitives (Naigles, 1990).
These experimental results shed light on what

syntactic information children might have avail-
able for early sentence comprehension, but do not
rule out the possibility that children’s early per-
formance is based on a more complex underlying
system. In this paper, we tested the consequences
of our representational assumptions by perform-
ing experiments with a system for automatic se-
mantic role labeling (SRL), whose knowledge of
sentence structure is under our control. Com-
putational models of semantic role labeling learn
to identify, for each verb in a sentence, all con-
stituents that fill a semantic role, and to determine
their roles. We adopt the architecture proposed
by Roth and colleagues (Punyakanok et al., 2005),
limiting the classifier’s features to a set of lexical
features and shallow structural features suggested
by the structure-mapping account. Learning abil-
ity is measured by the level of SRL accuracy and,
more importantly, the types of errors made by the
system on sentences containing novel verbs. Test-
ing these predictions on the automatic SRL pro-
vides us with a demonstration that it is possible to
learn how to correctly assign semantic roles based
only on these very simple cues.

From an NLP perspective this feature study pro-
vides evidence for the efficacy of alternative, sim-
pler syntactic representations in gaining an initial
foothold on sentence interpretation. It is clear that
human learners do not begin interpreting sentences
in possession of full part-of-speech tagging, or full
parse trees. By building a model that uses shal-
low representations of sentences and mimics fea-
tures of language development in children, we can
explore the nature of initial representations of syn-
tactic structure and build more complex features
from there, further mimicking child development.

2 Learning Model

We trained a simplified SRL classifier (Baby SRL)
with sets of features derived from the structure-
mapping account. Our test used novel verbs to
mimic sentences presented in experiments with
children. Our learning task is similar to the full
SRL task (Carreras and Màrquez, 2004), except
that we classify the roles of individual words rather
than full phrases. A full automatic SRL system
(e.g. (Punyakanok et al., 2005)) typically involves
multiple stages to 1) parse the input, 2) identify ar-
guments, 3) classify those arguments, and then 4)

run inference to make sure the final labeling for the
full sentence does not violate any linguistic con-
straints. Our simplified SRL architecture (Baby
SRL) essentially replaces the first two steps with
heuristics. Rather than identifying arguments via
a learned classifier with access to a full syntac-
tic parse, the Baby SRL treats each noun in the
sentence as a candidate argument and assigns a
semantic role to it. A simple heuristic collapsed
compound or sequential nouns to their final noun:
an approximation of the head noun of the noun
phrase. For example, ’Mr. Smith’ was treated
as the single noun ’Smith’. Other complex noun
phrases were not simplified in this way. Thus,
a phrase such as ’the toy on the floor’ would be
treated as two separate nouns, ’toy’ and ’floor’.
This represents the assumption that young children
know ’Mr. Smith’ is a single name, but they do not
know all the predicating terms that may link mul-
tiple nouns into a single noun phrase. The simpli-
fied learning task of the Baby SRL implements a
key assumption of the structure-mapping account:
that at the start of multiword sentence comprehen-
sion children can tell which words in a sentence are
nouns (Waxman and Booth, 2001), and treat each
noun as a candidate argument.

Feedback is provided based on annotation in
Propbank style: in training, each noun receives the
role label of the phrase that noun is part of. Feed-
back is given at the level of the macro-role (agent,
patient, etc., labeled A0-A4 for core arguments,
and AM-* adjuncts). We also introduced a NO la-
bel for nouns that are not part of any argument.

For argument classification we use a linear clas-
sifier trained with a regularized perceptron update
rule (Grove and Roth, 2001). This learning algo-
rithm provides a simple and general linear clas-
sifier that has been demonstrated to work well in
other text classification tasks, and allows us to in-
spect the weights of key features to determine their
importance for classification. The Baby SRL does
not use inference for the final classification. In-
stead it classifies every argument independently;
thus multiple nouns can have the same role.

2.1 Training

The training data were samples of parental speech
to one child (’Eve’; (Brown, 1973), available
via Childes (MacWhinney, 2000)). We trained
on parental utterances in samples 9 through 20,
recorded at child age 21-27 months. All verb-
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containing utterances without symbols indicating
long pauses or unintelligible words were automat-
ically parsed with the Charniak parser (Charniak,
1997) and annotated using an existing SRL sys-
tem (Punyakanok et al., 2005). In this initial pass,
sentences with parsing errors that misidentified ar-
gument boundaries were excluded. Final role la-
bels were hand-corrected using the Propbank an-
notation scheme (Kingsbury and Palmer, 2002).
The child-directed speech (CDS) training set con-
sisted of about 2200 sentences, of which a majority
had a single verb and two nouns to be labeled1. We
used the annotated CDS training data to train our
Baby SRL, converting labeled phrases to labeled
nouns in the manner described above.

3 Experimental Results

To evaluate the Baby SRL we tested it with sen-
tences like those used for the experiments with
children described above. All test sentences con-
tained a novel verb (’gorp’). We constructed two
test sentence templates: ’A gorps B’ and ’A and B
gorp’, where A and B were replaced with nouns
that appeared more than twice in training. We
filled the A and B slots by sampling nouns that
occurred roughly equally as the first and second
of two nouns in the training data. This procedure
was adopted to avoid ’building in’ the predicted er-
ror by choosing A and B nouns biased toward an
agent-patient interpretation. For each test sentence
template we built a test set of 100 sentences by ran-
domly sampling nouns in this fashion.

The test sentences with novel verbs ask whether
the classifier transfers its learning about argument
role assignment to unseen verbs. Does it as-
sume the first of two nouns in a simple transi-
tive sentence (’A gorps B’) is the agent (A0) and
the second is the patient (A1)? Does it over-
generalize this rule to two-noun intransitives (’A
and B gorp’), mimicking children’s behavior? We
used two measures of success, one to assess clas-
sification accuracy, and the other to assess the
predicted error. We used a per argument F1 for
classification accuracy, with F1 based on correct
identification of individual nouns rather than full
phrases. Here precision is defined as the propor-
tion of nouns that were given the correct label
based on the argument they belong to, and recall
is the proportion of complete arguments for which

1Corpus available at http://L2R.cs.uiuc.edu/
∼cogcomp/data.php

some noun in that argument was correctly labeled.
The desired labeling for ’A gorps B’ is A0 for the
first argument and A1 for the second; for ’A and
B gorp’ both arguments should be A0. To mea-
sure predicted errors we also report the proportion
of test sentences classified with A0 first and A1
second (%A0A1). This labeling is a correct gener-
alization for the novel ’A gorps B’ sentences, but
is an overgeneralization for ’A and B gorp.’

3.1 Noun Pattern

The basic feature we propose is the noun pattern
feature. We hypothesize that children use the num-
ber and order of nouns to represent argument struc-
ture. To encode this we created a feature (NPat-
tern) that indicates how many nouns there are in
the sentence and which noun the target is. For ex-
ample, in our two-noun test sentences noun A has
the feature ’ N’ active indicating that it is the first
noun of two. Likewise for B the feature ’N ’ is ac-
tive, indicating that it is the second of two nouns.
This feature is easy to compute once nouns are
identified, and does not require fine-grained dis-
tinctions between types of nouns or any other part
of speech. Table 1 shows the initial feature pro-
gression that involves this feature. The baseline
system (feature set 1) uses lexical features only:
the target noun and the root form of the predicate.

We first tested the hypothesis that children use
the NPattern features to distinguish different noun
arguments, but only for specific verbs. The NPat-
tern&V features are conjunctions of the target verb
and the noun pattern, and these are added to the
word features to form feature set 2. Now every
example has three features active: target noun, tar-
get predicate, and a NPattern&V feature indicating
’the target is the first of two nouns and the verb
is X.’ This feature does not improve results on the
novel ’A gorps B’ test set, or generate the predicted
error with the ’A and B gorp’ test set, because the
verb-specific NPattern&V features provide no way
to generalize to unseen verbs.

We next tested the NPattern feature alone, with-
out making it verb-specific (feature set 3). The
noun pattern feature was added to the word fea-
tures and again each example had three features ac-
tive: target noun, target predicate, and the target’s
noun-pattern feature (first of two, second of three,
etc.). The abstract NPattern feature allows the
Baby SRL to generalize to new verbs: it increases
the system’s tendency to predict that the first of two
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CHILDES WSJ
Unbiased Noun Choice Biased Noun Choice Biased Noun Choice

A gorps B A and B gorp A gorps B A and B gorp A gorps B A and B gorp
Features F1 %A0A1 F1 %A0A1 F1 %A0A1 F1 %A0A1 F1 %A0A1 F1 %A0A1
1. Words 0.59 0.38 0.46 0.38 0.80 0.65 0.53 0.65 0.57 0.31 0.37 0.31
2. NPattern&V 0.53 0.28 0.54 0.28 0.81 0.67 0.53 0.67 0.56 0.31 0.39 0.31
3. NPattern 0.83 0.65 0.33 0.65 0.96 0.92 0.46 0.92 0.67 0.44 0.37 0.44
4. NPattern + NPattern&V 0.83 0.65 0.33 0.65 0.95 0.90 0.45 0.90 0.73 0.53 0.44 0.53
5. + VPosition 0.99 0.96 0.98 0.00 1.00 1.00 0.99 0.01 0.94 0.88 0.69 0.39

Table 1: Experiments showing the efficacy of Noun Pattern features for determining agent/patient roles in
simple two-noun sentences. The novel verb test sets assess whether the Baby SRL generalizes transitive
argument prediction to unseen verbs in the case of ‘A gorps B’ (increasing %A0A1 and thus F1), and
overgeneralizes in the case of ‘A and B gorp’ (increasing %A0A1, which is an error). By varying the
sampling method for creating the test sentences we can start with a biased or unbiased lexical baseline,
demonstrating that the noun pattern features still improve over knowledge that can be contained in
typical noun usage. The simple noun pattern features are still effective at learning this pattern when
trained with more complex Wall Street Journal training data.

nouns is A0 and the second of two nouns is A1 for
verbs not seen in training. Feature set 4 includes
both the abstract, non-verb-specific NPattern fea-
ture and the verb-specific version. This feature set
preserves the ability to generalize to unseen verbs;
thus the availability of the verb-specific NPattern
features during training did not prevent the abstract
NPattern features from gathering useful informa-
tion.

3.2 Lexical Cues for Role-Labeling

Thus far, the target nouns’ lexical features pro-
vided little help in role labeling, allowing us to
clearly see the contribution of the proposed sim-
ple structural features. Would our structural fea-
tures produce any improvement above a more re-
alistic lexical baseline? We created a new set of
test sentences, sampling the A nouns based on the
distribution of nouns seen as the first of two nouns
in training, and the B nouns based on the distri-
bution of nouns seen as the second of two nouns.
Given this revised sampling of nouns, the words-
only baseline is strongly biased toward A0A1 (bi-
ased results for feature set 1 in table 1). This high
baseline reflects a general property of conversa-
tion: Lexical choices provide considerable infor-
mation about semantic roles. For example, the 6
most common nouns in the Eve corpus are pro-
nouns that are strongly biased in their positions
and in their semantic roles (e.g., ’you’, ’it’). De-
spite this high baseline, however, we see the same
pattern in the unbiased and biased experiments in
table 1. The addition of the NPattern features (fea-
ture set 3) substantially improves performance on
’A gorps B’ test sentences, and promotes over-
generalization errors on ’A and B gorp’ sentences.

3.3 More Complex Training Data

For comparison purposes we also trained the Baby
SRL on a subset of the Propbank training data
of Wall Street Journal (WSJ) text (Kingsbury and
Palmer, 2002). To approximate the simpler sen-
tences of child-directed speech we selected only
those sentences with 8 or fewer words. This
provided a training set of about 2500 sentences,
most with a single verb and two nouns to be la-
beled. The CDS and WSJ data pose similar prob-
lems for learning abstract and verb-specific knowl-
edge. However, newspaper text differs from ca-
sual speech to children in many ways, including
vocabulary and sentence complexity. One could
argue that the WSJ corpus presents a worst-case
scenario for learning based on shallow representa-
tions of sentence structure: Full passive sentences
are more common in written corpora such as the
WSJ than in samples of conversational speech, for
example (Roland et al., 2007). As a result of such
differences, two-noun sequences are less likely to
display an A0-A1 sequence in the WSJ (0.42 A0-
A1 in 2-noun sentences) than in the CDS training
data (0.67 A0-A1). The WSJ data provides a more
demanding test of the Baby SRL.

We trained the Baby SRL on the WSJ data, and
tested it using the biased lexical choices as de-
scribed above, sampling A and B nouns for novel-
verb test sentences based on the distribution of
nouns seen as the first of two nouns in training, and
as the second of two nouns, respectively. The WSJ
training produced performance strikingly similar
to the performance resulting from CDS training
(last 4 columns of Table 1). Even in this more
complex training set, the addition of the NPattern
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features (feature set 3) improves performance on
’A gorps B’ test sentences, and promotes over-
generalization errors on ’A and B gorp’ sentences.

3.4 Tests with Familiar Verbs

Features Total A0 A1 A2 A4
1. Words 0.64 0.83 0.74 0.33 0.00
2. NPattern&V 0.67 0.86 0.77 0.45 0.44
3. NPattern 0.66 0.87 0.76 0.37 0.22
4. NPattern + NPattern&V 0.68 0.87 0.80 0.47 0.44
5. + VPosition 0.70 0.88 0.83 0.50 0.50

Table 2: Testing NPattern features on full SRL task
of heldout section 8 of Eve when trained on sec-
tions 9 through 20. Each result column reflects a
per argument F1.

Learning to interpret sentences depends on bal-
ancing abstract and verb-specific structural knowl-
edge. Natural linguistic corpora, including our
CDS training data, have few verbs of very high fre-
quency and a long tail of rare verbs. Frequent verbs
occur with differing argument patterns. For exam-
ple, ’have’ and ’put’ are frequent in the CDS data.
’Have’ nearly always occurs in simple transitive
sentences that display the canonical word order of
English (e.g., ’I have cookies’). ’Put’, in contrast,
tends to appear in non-canonical sentences that do
not display an agent-patient ordering, including
imperatives (’Put it on the floor’). To probe the
Baby SRL’s ability to learn the argument-structure
preferences of familiar verbs, we tested it on a
held-out sample of CDS from the same source
(Eve sample 8, approximately 234 labeled sen-
tences). Table 2 shows the same feature progres-
sion shown previously, with the full SRL test set.
The words-only baseline (feature set 1 in Table 2)
yields fairly accurate performance, showing that
considerable success in role assignment in these
simple sentences can be achieved based on the
argument-role biases of the target nouns and the
familiar verbs. Despite this high baseline, how-
ever, we still see the benefit of simple structural
features. Adding verb-specific (feature set 2) or
abstract NPattern features (feature set 3) improves
classification performance, and the combination of
both verb-specific and abstract NPattern features
(feature set 4) yields higher performance than ei-
ther alone. The combination of abstract NPattern
features with the verb-specific versions allows the
Baby SRL both to generalize to unseen verbs, as
seen in earlier sections, and to learn the idiosyn-
crasies of known verbs.

3.5 Verb Position

The noun pattern feature results show that the
Baby SRL can learn helpful rules for argument-
role assignment using only information about the
number and order of nouns. It also makes the error
predicted by the structure-mapping account, and
documented in children, because it has no way to
represent the difference between the ’A gorps B’
and ’A and B gorp’ test sentences. At some point
the learner must develop more sophisticated syn-
tactic representations that could differentiate these
two. These could include many aspects of the sen-
tence, including noun-phrase and verb-phrase mor-
phological features, and word-order features. As a
first step in examining recovery from the predicted
error, we focused on word-order features. We did
this by adding a verb position feature (VPosition)
that specifies whether the target noun is before or
after the verb. Now simple transitive sentences in
training should support the generalization that pre-
verbal nouns tend to be agents, and post-verbal
nouns tend to be patients. In testing, the Baby
SRL’s classification of the ’A gorps B’ and ’A and
B gorp’ sentences should diverge.

When we add verb position information (fea-
ture set 5 in table 1 and 2), performance improves
still further for transitive sentences, both with bi-
ased and unbiased test sentences. Also, for the first
time, the A0A1 pattern is predicted less often for
’A and B gorp’ sentences. This error diminished
because the classifier was able to use the verb po-
sition features to distinguish these from ’A gorps
B’ sentences.

Unbiased Lexical
A gorps B A and B gorp

Features F1 %A0A1 F1 %A0A1
1. Words 0.59 0.38 0.46 0.38
3. NPattern 0.83 0.65 0.33 0.65
6. VPosition 0.99 0.95 0.97 0.00

Table 3: Verb Position vs. Noun Pattern features
alone. Verb position features yield better overall
performance, but do not replicate the error on ‘A
and B gorp’ sentences seen with children.

Verb position alone provides another simple ab-
stract representation of sentence structure, so it
might be proposed as an equally natural initial
representation for human learners, rather than the
noun pattern features we proposed. The VPo-
sition features should also support learning and
generalization of word-order rules for interpret-
ing transitive sentences, thus reproducing some of
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the data from children that we reviewed above.
In table 3 we compared the words-only baseline
(set 1), words and NPattern features (set 3), and a
new feature set, words and VPosition (set 6). In
terms of correct performance on novel transitive
verbs (’A gorps B’), the VPosition features out-
perform the NPattern features. This may be partly
because the same VPosition features are used in
all sentences during training, while the NPattern
features partition sentences by number of nouns,
but is also due to the fact that the verb position
features provide a more sophisticated representa-
tion of English sentence structure. Verb position
features can distinguish transitive sentences from
imperatives containing multiple post-verbal nouns,
for example. Although verb position is ultimately
a more powerful representation of word order for
English sentences, it does not accurately reproduce
a 21-month-old’s performance on all aspects of
this task. In particular, the VPosition feature does
not support the overgeneralization of the A0A1
pattern to the ’A and B gorp’ test sentences. This
suggests that children’s very early sentence com-
prehension is dominated by less sophisticated rep-
resentations of word order, akin to the NPattern
features we proposed.

3.6 Informativeness vs. Availability

In the preceding sections, we modeled increases
in syntactic knowledge by building in more so-
phisticated features. The Baby SRL escaped the
predicted error on two-noun intransitive sentences
when given access to features reflecting the posi-
tion of the target noun relative to the verb. This
imposed sequence of features is useful as a starting
point, but a more satisfying approach would be to
use the Baby SRL to explore possible reasons why
NPattern features might dominate early in acquisi-
tion, even though VPosition features are ultimately
more useful for English.

In theory, a feature might be unavailable early in
acquisition because of its computational complex-
ity. For example, lexical features are presumably
less complex than relative position features such as
NPattern and VPosition. In practice, features can
also be unavailable at first because of an informa-
tional lack. Here we suggest that NPattern features
might dominate VPosition features early in acqui-
sition because the early lexicon is dominated by
nouns, and it is easier to compute position relative
to a known word than to an unknown word. Many

studies have shown that children’s early vocabu-
lary is dominated by names for objects and peo-
ple (Gentner and Boroditsky, 2001).
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(c) Verb threshold = 20, +verb-specific features

Figure 1: Testing the consequences of the assump-
tion that Verb Position features are only active for
familiar verbs. The figure plots the bias of the fea-
tures ’ N’ and ’ V’ to predict A0 over A1, as the
difference between the weights of these connec-
tions in the learned network. Verb position fea-
tures win out over noun pattern features as the
verb vocabulary grows. Varying the verb familiar-
ity threshold ((a) vs. (b)) and the presence versus
absence of verb-specific versions of the structural
features ((b) vs. (c)) affects how quickly the verb
position features become dominant.

To test the consequences of this proposed infor-
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mational bottleneck on the relative weighting of
NPattern and VPosition features during training,
we modified the Baby SRL’s training procedure
such that NPattern features were always active, but
VPosition features were active during training only
when the verb in the current example had been en-
countered a critical number of times. This repre-
sents the assumption that the child can recognize
which words in the sentence are nouns, based on
lexical familiarity or morphological context (Wax-
man and Booth, 2001), but is less likely to be able
to represent position relative to the verb without
knowing the verb well.

Figure 1 shows the tendency of the NPattern fea-
ture ’ N’ (first of two nouns) and the VPosition
feature ’ V’ (pre-verbal noun) to predict the role
A0 as opposed to A1 as the difference between
the weights of these connections in the learned net-
work. Figure 1(a) shows the results when VPosi-
tion features were active whenever the target verb
had occurred at least 5 times; in Figure 1(b) the
threshold for verb familiarity was 20. In both fig-
ures we see that the VPosition features win out
over the NPattern features as the verb vocabulary
grows. Varying the degree of verb familiarity re-
quired to accurately represent VPosition features
affects how quickly the VPosition features win
out (compare Figures 1(a) and 1(b)). Figure 1(c)
shows the same analysis with a threshold of 20,
but with verb-specific as well as abstract versions
of the NPattern and the VPosition features. In this
procedure, every example started with three fea-
tures: target noun, target predicate, NPattern, and
if the verb was known, added NPattern&V, VPo-
sition, and VPosition&V. Comparing Figures 1(b)
and 1(c), we see that the addition of verb-specific
versions of the structural features also affects the
rate at which the VPosition features come to dom-
inate the NPattern features.

Thus, in training the VPosition features become
dominant as the SRL learns to recognize more
verbs. However, the VPosition features are inac-
tive when the Baby SRL encounters the novel-verb
test sentences. Since the NPattern features are ac-
tive in test, the system generates the predicted error
until the bias of the NPattern features reaches 0.
Note in figure 1(c) that when verb-specific struc-
tural features were added, the Baby SRL never
learned to entirely discount the NPattern features
within the range of training provided. This result
is reminiscent of suggestions in the psycholinguis-
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Figure 2: Testing the ability of simple features
to cope with varying amounts of noisy feedback.
Even with noisy feedback, the noun pattern fea-
tures support learning and generalization to new
verbs of a simple agent-patient template for un-
derstanding transitive sentences. These results are
lower than those found in table 1 due to slightly
different training assumptions.

tics literature that shallow representations of syn-
tax persist in the adult parser, alongside more so-
phisticated representations (e.g., (Ferreira, 2003)).

3.7 Noisy Training

So far, the Baby SRL has only been trained with
perfect feedback. Theories of human language ac-
quisition assume that learning to understand sen-
tences is naturally a partially-supervised task: the
child uses existing knowledge of words and syntax
to assign a meaning to a sentence; the appropriate-
ness of this meaning for the referential context pro-
vides the feedback (e.g., (Pinker, 1989)). But this
feedback must be noisy. Referential scenes pro-
vide useful but often ambiguous information about
the semantic roles of sentence participants. For ex-
ample, a participant could be construed as an agent
of fleeing or as a patient being chased. In a final
set of experiments, we examined the generaliza-
tion abilities of the Baby SRL as a function of the
integrity of semantic feedback.

We provided noisy semantic-role feedback dur-
ing training by giving a randomly-selected argu-
ment label on 0 to 100% of examples. Following
this training, we tested with the ’A gorps B’ test
sentences, using the unbiased noun choices.

As shown in Figure 2, feature sets including
NPattern or VPosition features yield reasonable
performance on the novel verb test sentences up to
50% noise, and promote an A0-A1 sequence over
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the words-only baseline even at higher noise lev-
els. Thus the proposed simple structural features
are robust to noisy feedback.

4 Conclusion

The simplified SRL classifier mimicked experi-
mental results with toddlers. We structured the
learning task to ask whether shallow representa-
tions of sentence structure provided a useful ini-
tial representation for learning to interpret sen-
tences. Given representations of the number and
order of nouns in the sentence (noun pattern fea-
tures), the Baby SRL learned to classify the first
of two nouns as an agent and the second as a pa-
tient. When provided with both verb-general and
verb-specific noun pattern features, the Baby SRL
learned to balance verb-specific and abstract syn-
tactic knowledge. By treating each noun as an
argument, it also reproduced the errors children
make. Crucially, verb-position features improved
performance when added to the noun-pattern fea-
ture, but when presented alone failed to produce
the error found with toddlers. We believe that
our model can be naturally extended to support
the case in which the arguments are noun phrases
rather than single noun words and this extension is
one of the first steps we will explore next.
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Carreras, X. and L. Màrquez. 2004. Introduction to
the CoNLL-2004 shared tasks: Semantic role label-
ing. In Proceedings of CoNLL-2004, pages 89–97.
Boston, MA, USA.

Charniak, E. 1997. Statistical parsing with a context-
free grammar and word statistics. In Proc. National
Conference on Artificial Intelligence.

Ferreira, F. 2003. The misinterpretation of noncanoni-
cal sentences. Cognitive Psychology, 47:164–203.

Fisher, C. 1996. Structural limits on verb mapping:
The role of analogy in children’s interpretation of
sentences. Cognitive Psychology, 31:41–81.

Gentner, D. and L. Boroditsky. 2001. Individuation,
relativity and early word learning. In Bowerman, M.
and S. C. Levinson, editors, Language acquisition
and conceptual development, pages 215–256. Cam-
bridge University Press, New York.

Gertner, Y. and C. Fisher. 2006. Predicted errors in
early verb learning. In 31st Annual Boston Univer-
sity Conference on Language Development.

Gertner, Y., C. Fisher, and J. Eisengart. 2006. Learning
words and rules: Abstract knowledge of word order
in early sentence comprehension. Psychological Sci-
ence, 17:684–691.

Grove, A. and D. Roth. 2001. Linear concepts and
hidden variables. Machine Learning, 42(1/2):123–
141.

Kingsbury, P. and M. Palmer. 2002. From Treebank to
PropBank. In Proceedings of LREC-2002, Spain.

MacWhinney, B. 2000. The CHILDES project: Tools
for analyzing talk. Third Edition. Lawrence Elrbaum
Associates, Mahwah, NJ.

Naigles, L. R. 1990. Children use syntax to learn verb
meanings. Journal of Child Language, 17:357–374.

Pinker, S. 1989. Learnability and Cognition. Cam-
bridge: MIT Press.

Punyakanok, V., D. Roth, and W. Yih. 2005. The ne-
cessity of syntactic parsing for semantic role label-
ing. In Proc. of the International Joint Conference
on Artificial Intelligence (IJCAI), pages 1117–1123.

Roland, D., F. Dick, and J. L. Elman. 2007. Fre-
quency of basic english grammatical structures: A
corpus analysis. Journal of Memory and Language,
57:348–379.

Waxman, S. R. and A. Booth. 2001. Seeing pink
elephants: Fourteen-month-olds’s interpretations of
novel nouns and adjectives. Cognitive Psychology,
43:217–242.

Yuan, S., C. Fisher, Y. Gertner, and J. Snedeker. 2007.
Participants are more than physical bodies: 21-
month-olds assign relational meaning to novel tran-
sitive verbs. In Biennial Meeting of the Society for
Research in Child Development, Boston, MA.

88



CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 89–96
Manchester, August 2008

An Incremental Bayesian Model for Learning Syntactic Categories

Christopher Parisien, Afsaneh Fazly and Suzanne Stevenson
Department of Computer Science

University of Toronto
Toronto, ON, Canada

[chris,afsaneh,suzanne]@cs.toronto.edu

Abstract

We present an incremental Bayesian model for
the unsupervised learning of syntactic cate-
gories from raw text. The model draws infor-
mation from the distributional cues of words
within an utterance, while explicitly bootstrap-
ping its development on its own partially-
learned knowledge of syntactic categories.
Testing our model on actual child-directed
data, we demonstrate that it is robust to noise,
learns reasonable categories, manages lexical
ambiguity, and in general shows learning be-
haviours similar to those observed in children.

1 Introduction

An important open problem in cognitive science and
artificial intelligence is how children successfully
learn their native language despite the lack of explicit
training. A key challenge in the early stages of lan-
guage acquisition is to learn the notion of abstract
syntactic categories (e.g., nouns, verbs, or determin-
ers), which is necessary for acquiring the syntactic
structure of language. Indeed, children as young as
two years old show evidence of having acquired a
good knowledge of some of these abstract categories
(Olguin and Tomasello, 1993); by around six years of
age, they have learned almost all syntactic categories
(Kemp et al., 2005). Computational models help to
elucidate the kinds of learning mechanisms that may
be capable of achieving this feat. Such studies shed
light on the possible cognitive mechanisms at work
in human language acquisition, and also on potential
means for unsupervised learning of complex linguis-
tic knowledge in a computational system.

Learning the syntactic categories of words has
been suggested to be based on the morphological and
phonological properties of individual words, as well

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

as on the distributional information about the con-
texts in which they appear. Several computational
models have been proposed that draw on one or more
of the above-mentioned properties in order to group
words into discrete unlabeled categories. Most ex-
isting models only intend to show the relevance of
such properties to the acquisition of adult-like syn-
tactic categories such as nouns and verbs; hence, they
do not necessarily incorporate the types of learning
mechanisms used by children (Schütze, 1993; Red-
ington et al., 1998; Clark, 2000; Mintz, 2003; Onnis
and Christiansen, 2005). For example, in contrast to
the above models, children acquire their knowledge
of syntactic categories incrementally, processing the
utterances they hear one at a time. Moreover, chil-
dren appear to be sensitive to the fact that syntactic
categories are partially defined in terms of other cat-
egories, e.g., nouns tend to follow determiners, and
can be modified by adjectives.

We thus argue that a computational model should
be incremental, and should use more abstract cate-
gory knowledge to help better identify syntactic cat-
egories. Incremental processing also allows a model
to incorporate its partially-learned knowledge of cat-
egories, letting the modelbootstrapits development.
To our knowledge, the only incremental model of
category acquisition that also incorporates bootstrap-
ping is that of Cartwright and Brent (1997). Their
template-based model, however, draws on very spe-
cific linguistic constraints and rules to learn cate-
gories. Moreover, their model has difficulty with the
variability of natural language data.

We address these shortcomings by developing an
incremental probabilistic model of syntactic category
acquisition that uses a domain-general learning algo-
rithm. The model also incorporates a bootstrapping
mechanism, and learns syntactic categories by look-
ing only at the general patterns of distributional sim-
ilarity in the input. Experiments performed on actual
(noisy) child-directed data show that an explicit boot-
strapping component improves the model’s ability to
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learn adult-like categories. The model’s learning tra-
jectory resembles some relevant behaviours seen in
children, and we also show that the categories that
our model learns can be successfully used in a lexical
disambiguation task.

2 Overview of the Computational Model

We adapt a probabilistic incremental model of un-
supervised categorization (i.e., clustering) proposed
by Anderson (1991). The original model has been
used to simulate human categorization in a variety
of domains, including the acquisition of verb argu-
ment structure (Alishahi and Stevenson, 2008). Our
adaptation of the model incorporates an explicit boot-
strapping mechanism and a periodic merge of clus-
ters, both facilitating generalization over input data.
Here, we explain the input to our model (Section 2.1),
the categorization model itself (Section 2.2), how we
estimate probabilities to facilitate bootstrapping (Sec-
tion 2.3), and our approach for merging similar clus-
ters (Section 2.4).

2.1 Input Frames

We aim to learn categories of words, and we do this
by looking for groups of similar word usages. Thus,
rather than categorizing a word alone, we categorize a
word tokenwith its context from that usage. The ini-
tial input to our model is a sequence of unannotated
utterances, that is, words separated by spaces. Before
being categorized by the model, each word usage in
the input is processed to produce aframe that con-
tains the word itself (the head word of the frame) and
its distributional context (the two words before and
after it). For example, in the utterance ‘I gave Josie
a present,’ when processing the head wordJosie, we
create the following frame for input to the categoriza-
tion system:

feature w−2 w−1 w0 w+1 w+2

I gave Josie a present

wherew0 denotes the head word feature, andw−2,
w−1, w+1, w+2 are the context word features. A con-
text word may be ‘null’ if there are fewer than two
preceding or following words in the utterance.

2.2 Categorization

Using Anderson’s (1991) incremental Bayesian cat-
egorization algorithm, we learn clusters of word us-
ages (i.e., the input frames) by drawing on the overall
similarity of their features (here, the head word and
the context words). The clusters themselves are not
predefined, but emerge from similarities in the input.
More formally, for each successive frameF in the
input, processed in the order of the input words, we
placeF into the most likely cluster, either from the

K existing clusters, or a new one:

BestCluster(F ) = argmax
k

P (k|F ) (1)

where k = 0, 1, ..,K, including the new cluster
k = 0. Using Bayes’ rule, and droppingP (F ) from
the denominator, which is constant for allk, we find:

P (k|F ) =
P (k)P (F |k)

P (F )
∝ P (k)P (F |k) (2)

The prior probability ofk, P (k), is given by:

P (k) =
cnk

(1− c) + cn
, 1 ≤ k ≤ K (3)

P (0) =
1− c

(1− c) + cn
(4)

where nk is the number of frames ink, and n is
the total number of frames observed at the time of
processing frameF . Intuitively, a well-entrenched
(large) cluster should be a more likely candidate for
categorization than a small one. We reserve a small
probability for creating a new cluster (Eq. 4). As the
model processes more input overall, it should become
less necessary to create new clusters to fit the data, so
P (0) decreases with largen. In our experiments, we
set c to a large value,0.95, to further increase the
likelihood of using existing clusters.1

The probability of a frameF given a clusterk,
P (F |k), depends on the probabilities of the features
in F given k. We assume that the individual fea-
tures in a frame are conditionally independent given
k, hence:

P (F |k) = PH(w0|k)
∏

i∈{−2,−1,+1,+2}
P (wi|k) (5)

wherePH is the head word probability, i.e., the like-
lihood of seeingw0 as a head word among the frames
in clusterk. The context word probabilityP (wi|k) is
the likelihood of seeingwi in theith context position
of the frames in clusterk. Next, we explain how we
estimate each of these probabilities from the input.

2.3 Probabilities and Bootstrapping

For the head word probabilityPH(w0|k), we use a
smoothed maximum likelihood estimate (i.e., the pro-
portion of frames in clusterk with head wordw0).
For the context word probabilityP (wi|k), we can
form two estimates. The first is a simple maximum
likelihood estimate, which enforces a preference for
creating clusters of frames with the same context
words. That is, head words in the same cluster will

1The priorP (k) is equivalent to the prior in a Dirichlet pro-
cess mixture model (Sanborn et al., 2006), commonly used for
sampling clusters of objects.
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tend to share the same adjacent words. We call this
word-based estimatePword.

Alternatively, we may consider the likelihood of
seeing not just the context wordwi, butsimilar words
in that position. For example, ifwi can be used as a
noun or a verb, then we want the likelihood of seeing
othernouns or verbs in positioni of frames in cluster
k. Here, we use the partial knowledge of the learned
clusters. That is, we look over all existing clusters
k′, estimate the probability thatwi is the head word
of frames ink′, then estimate the probability of using
the head words from those other clusters in positioni
in clusterk. We refer to this category-based estimate
asPcat:

Pcat(wi|k) =
∑
k′

PH(wi|k′)Pi(k′|k) (6)

wherePi(k′|k) is the probability of finding usages
from clusterk′ in positioni given clusterk. To sup-
port this we record the categorization decisions the
model has made. When we categorize the frames of
an utterance, we get a sequence of clusters for that
utterance, which gives additional information to sup-
plement the frame. We use this information to esti-
matePi(k′|k) for future categorizations, again using
a smoothed maximum likelihood formula.

In contrast to thePword estimate, the estimate in
Eq. (6) prefers clusters of frames that use the same
categoriesas context. While some of the results of
these preferences will be the same, the latter approach
lets the model make second-order inferences about
categories. There may be no context words in com-
mon between the current frame and a potential clus-
ter, but if the context words in the cluster have been
found to be distributionally similar to those in the
frame, it may be a good cluster for that frame.

We equally weight the word-based and the
category-based estimates forP (wi|k) to get the like-
lihood of a context word; that is:

P (wi|k) ≈ 1
2
Pword(wi|k) +

1
2
Pcat(wi|k) (7)

This way, the model sees an input utterance simulta-
neously as a sequence of words and as a sequence of
categories. It is thePcat component, by using devel-
oping category knowledge, that yields the bootstrap-
ping abilities of our model.

2.4 Generalization

Our model relies heavily on the similarity of word
contexts in order to find category structure. In nat-
ural language, these context features are highly vari-
able, so it is difficult to draw consistent structure from
the input in the early stages of an incremental model.
When little information is available, there is a risk of

incorrectly generalizing, leading to clustering errors
which may be difficult to overcome. Children face
a similar problem in early learning, but there is ev-
idence that they may manage the problem by using
conservative strategies (see, e.g., Tomasello, 2000).
Children may form specific hypotheses about each
word type, only later generalizing their knowledge to
similar words. Drawing on this observation, we form
early small clusters specific to the head word type,
then later aid generalization by merging these smaller
clusters. By doing this, we ensure that the model only
groups words of different types when there is suffi-
cient evidence for their contextual similarity.

Thus, when a cluster has been newly created, we
require that all frames put into the cluster share the
same head word type.2 When clusters are small, this
prevents the model from making potentially incorrect
generalizations to different words. Periodically, we
evaluate a set of reasonably-sized clusters, and merge
pairs of clusters that have highly similar contexts (see
below for details). If the model decides to merge two
clusters with different head word types—e.g., one
cluster with all instances ofdog, and another with
cat—it has in effect made a decision to generalize.
Intuitively, the model has learned that the contexts
in the newly merged cluster apply to more than one
word type. We now say thatanyword type could be
a member of this cluster, if its context is sufficiently
similar to that of the cluster. Thus, when categoriz-
ing a new word token (represented as a frameF ),
our model can choose from among the clusters with
a matching head word, and any of these ‘generalized’
clusters that contain mixed head words.

Periodically, we look through a subset of the clus-
ters to find similar pairs to merge. In order to limit
the number of potential merges to consider, we only
examine pairs of clusters in which at least one cluster
has changed since the last check. Thus, after pro-
cessing every100 frames of input, we consider the
clusters used to hold those recent100 frames as can-
didates to be merged with another cluster. We only
consider clusters of reasonable size (here, at least10
frames) as candidates for merging. For each candi-
date pair of clusters,k1 and k2, we first evaluate a
heuristic merge score that determines if the pair is
appropriate to be merged, according to some local
criteria, i.e., the size and the contents of the candi-
date clusters. For each suggested merge (a pair whose
merge score exceeds a pre-determined threshold), we
then look at the set of all clusters, theglobalevidence,
to decide whether to accept the merge.

The merge score combines two factors: the en-
trenchment of the two clusters, and the similarity of

2However, a word type may exist in several clusters (e.g., for
distinct noun and verb usages), thus handling lexical ambiguity.
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their context features. The entrenchment measure
identifies clusters that contain enough frames to show
a significant trend. We take a sigmoid function over
the number of frames in the clusters, giving a soft
threshold approaching0 for small clusters and1 for
large clusters. The similarity measure identifies pairs
of clusters with similar distributions of word and cat-
egory contexts. Given two clusters, we measure the
symmetric Kullback-Leibler divergence for each cor-
responding pair of context feature probabilities (in-
cluding the category contextsPi(k′|k), 8 pairs in to-
tal), then place the sum of those measures on another
sigmoid function. The merge score is the sum of the
entrenchment and similarity measures.

Since it is only a local measure, the merge score is
not sufficient on its own for determining if a merge
is appropriate. For each suggested merge, we thus
examine the likelihood of a sample of input frames
(here, the last100 frames) under two states: the set
of clusters before the merge, and the set of clusters if
the merge is accepted. We only accept a merge if it
results in an increase in the likelihood of the sample
data. The likelihood of a sample set of frames,S,
over a set of clusters,K, is calculated as in:

P (S) =
∏
F∈S

∑
k∈K

P (F |k)P (k) (8)

3 Evaluation Methodology

To test our proposed model, we train it on a sample of
language representative of what children would hear,
and evaluate its categorization abilities. We have
multiple goals in this evaluation. First, we determine
the model’s ability to discover adult-level syntactic
categories from the input. Since this is intended to be
a cognitively plausible learning model, we also com-
pare the model’s qualitative learning behaviours with
those of children. In the first experiment (Section 4),
we compare the model’s categorization with a gold
standard of adult-level syntactic categories and exam-
ine the effect of the bootstrapping component. The
second experiment (Section 5) examines the model’s
development of three specific parts of speech. De-
velopmental evidence suggests that children acquire
different syntactic categories at different ages, so we
compare the model’s learning rates of nouns, verbs,
and adjectives. Lastly, we examine our model’s abil-
ity to handle lexically ambiguous words (Section 6).
English word forms commonly belong to more than
one syntactic category, so we show how our model
uses context to disambiguate a word’s category.

In all experiments, we train and test the model us-
ing the Manchester corpus (Theakston et al., 2001)
from the CHILDES database (MacWhinney, 2000).
The corpus contains transcripts of mothers’ conver-
sations with 12 British children between the ages of

1;8 (years;months) and 3;0. There are 34 one-hour
sessions per child over the course of a year. The age
range of the children roughly corresponds with the
ages at which children show the first evidence of syn-
tactic categories.

We extract the mothers’ speech from each of the
transcripts, then concatenate the input of all 12 chil-
dren (all of Anne’s sessions, followed by all of Aran’s
sessions, and so on). We remove all punctuation. We
spell out contractions, so that each token in the input
corresponds to only one part-of-speech (PoS) label
(noun, verb, etc.). We also remove single-word ut-
terances and utterances with a single repeated word
type, since they contain no distributional informa-
tion. We randomly split the data into development
and evaluation sets, each containing approximately
683,000 tokens. We use the development set to fine-
tune the model parameters and develop the experi-
ments, then use the evaluation set as a final test of
the model. We further split the development set into
about 672,000 tokens (about 8,000 types) for training
and 11,000 tokens (1,300 types) for validation. We
split the evaluation set comparably, into training and
test subsets. All reported results are for the evaluation
set. A conservative estimate suggests that children
are exposed to at least 1.5 million words of child-
directed speech annually (Redington et al., 1998), so
this corpus represents only a small portion of a child’s
available input.

4 Experiment 1: Adult Categories

4.1 Methods

We use three separate versions of the categorization
model, in which we change the components used to
estimate the context word probability,P (wi|k) (as
used in Eq. (5), Section 2.2). In theword-based
model, we estimate the context probabilities using
only the words in the context window, by directly
using the maximum-likelihoodPword estimate. The
bootstrapmodel uses only the existing clusters to es-
timate the probability, directly using thePcat esti-
mate from Eq. (6). Thecombinationmodel uses an
equally-weighted combination of the two probabili-
ties, as presented in Eq. (7).

We run the model on the training set, categoriz-
ing each of the resulting frames in order. After every
10,000 words of input, we evaluate the model’s cate-
gorization performance on the test set. We categorize
each of the frames of the test set as usual, treating the
text as regular input. So that the test set remains un-
seen, the model does not record these categorizations.

4.2 Evaluation

The PoS tags in the Manchester corpus are too fine-
grained for our evaluation, so for our gold standard
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we map them to the following 11 tags: noun, verb,
auxiliary, adjective, adverb, determiner, conjunction,
negation, preposition, infinitiveto, and ‘other.’ When
we evaluate the model’s categorization performance,
we have two different sets of clusters of the words in
the test set: one set resulting from the gold standard,
and another as a result of the model’s categorization.
We compare these two clusterings, using the adjusted
Rand index (Hubert and Arabie, 1985), which mea-
sures the overall agreement between two clusterings
of a set of data points. The measure is ‘corrected for
chance,’ so that a random grouping has an expected
score of zero. This measure tends to be very con-
servative, giving values much lower than an intuitive
percentage score. However, it offers a useful relative
comparison of overall cluster similarity.

4.3 Results

Figure 1 gives the adjusted Rand scores of the three
model variants,word-based, bootstrap, and combi-
nation. Higher values indicate a better fit with the
gold-standard categorization scheme. The adjusted
Rand score is corrected for chance, thus providing a
built-in baseline measure. Since the expected score
for a random clustering is zero, all three model vari-
ants operate at above-baseline performance.

As seen in Figure 1, the word-based model gains
an early advantage in the comparison, but its per-
formance approaches a plateau at around 200,000
words of input. This suggests that while simple
word distributions provide a reliable source of infor-
mation early in the model’s development, the infor-
mation is not sufficient to sustain long-term learn-
ing. The bootstrap model learns much more slowly,
which is unsurprising, given that it depends on hav-
ing some reasonable category knowledge in order to
develop its clusters—leading to a chicken-and-egg
problem. However, once started, its performance im-
proves well beyond the word-based model’s plateau.
These results suggest that on its own, each compo-
nent of the model may be effectively throwing away
useful information. By combining the two models,
the combination model appears to gain complemen-
tary benefits from each component, outperforming
both. The word-based component helps to create a
base of reliable clusters, which the bootstrap compo-
nent uses to continue development.

After all of the training text, the combination
model uses 411 clusters to categorize the test tokens
(compared to over 2,000 at the first test point). While
this seems excessive, we note that 92.5% of the test
tokens are placed in the 25 most populated clusters.3

3See www.cs.toronto.edu/˜chris/syncat for examples.
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Figure 1: Adjusted Rand Index of each of three mod-
els’ clusterings of the test set, as compared with the
PoS tags of the test data.

5 Experiment 2: Learning Trends

A common trend observed in children is that differ-
ent syntactic categories are learned at different rates.
Children appear to have learned the category of nouns
by 23 months of age, verbs shortly thereafter, and
adjectives relatively late (Kemp et al., 2005). Our
goal in this experiment is to look for these specific
trends in the behaviour of our model. We thus simu-
late an experiment where a child uses a novel word’s
linguistic context to infer its syntactic category (e.g.,
Tomasello et al., 1997). For our experiment, we ran-
domly generate input frames with novel head words
using contexts associated with nouns, verbs, and ad-
jectives, then examine the model’s categorization in
each case. We expect that our model should approxi-
mate the developmental trends of children, who tend
to learn the category of ‘noun’ before ‘verb,’ and both
of these before ‘adjective.’

5.1 Methods

We generate new input frames using the most com-
mon syntactic patterns in the training data. For each
of the noun, verb, and adjective categories (from the
gold standard), we collect the five most frequent PoS
sequences in which these are used, bounded by the
usual four-word context window. For example, the
Adjective set includes the sequence ‘V DetAdj N
null’, where the sentence ends after the N. For each
of the three categories, we generate each of 500 input
frames by sampling one of the five PoS sequences,
weighted by frequency, then sampling words of the
right PoS from the lexicon, also weighted by fre-
quency. We replace the head word with a novel word,
forcing the model to use only the context for cluster-
ing. Since the context words are chosen at random,
most of the word sequences generated will be novel.
This makes the task more difficult, rather than sim-
ply sampling utterances from the corpus, where rep-
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etitions are common. While a few of the sequences
may exist in the training data, we expect the model
to mostly use the underlying category information to
cluster the frames.

We intend to show that the model uses context to
find the right category for a novel word. To evaluate
the model’s behaviour, we let it categorize each of
the randomly generated frames. We score each frame
as follows: if the frame gets put into a new cluster,
it earns score zero. Otherwise, its score is the pro-
portion of frames in the chosen cluster matching the
correct part of speech (we use a PoS-tagged version
of the training corpus; for example, a noun frame put
into a cluster with 60% nouns would get 0.6). We re-
port the mean score for each of the noun, verb, and
adjective sets. Intuitively, the matching score indi-
cates how well the model recognizes that the given
contexts are similar to input it has seen before. If the
model clusters the novel word frame with others of
the right type, then it has formed a category for the
contextual information in that frame.

We use the full combination model (Eq. (7)) to
evaluate the learning rates of individual parts of
speech. We run the model on the training subset of
the evaluation corpus. After every 10,000 words of
input, we use the model to categorize the 1,500 con-
text frames with novel words (500 frames each for
noun, verb, and adjective). As in experiment 1, the
model does not record these categorizations.

5.2 Results

Figure 2 shows the mean matching scores for each
of the tested parts of speech. Recall that since the
frames each use a novel head word, a higher match-
ing score indicates that the model has learned to cor-
rectly recognize the contexts in the frames. This does
not necessarily mean that the model has learned sin-
gle, complete categories of ‘noun,’ ‘verb,’ and ‘ad-
jective,’ but it does show that when the head word
gives no information, the model can generalize based
on the contextual patterns alone. The model learns
to categorize novel nouns better than verbs until late
in training, which matches the trends seen in children.
Adjectives progress slowly, and show nearly no learn-
ing ability by the end of the trial. Again, this appears
to reflect natural behaviour in children, although the
effect we see here may simply be a result of the over-
all frequency of the PoS types. Over the entire corpus
(development and evaluation), 35.4% of the word to-
kens are nouns and 24.3% are verbs, but only 2.9%
are tagged as adjectives. The model, and similarly a
child, may need much more data to learn adjectives
than is available at this stage.

The scores in Figure 2 tend to fluctuate, partic-
ularly for the noun contexts. This fluctuation cor-
responds to periods of overgeneralization, followed
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Figure 2: Comparative learning trends of noun, verb,
and adjective patterns.

by recovery (also observed in children; see, e.g.,
Tomasello, 2000). When the model merges two clus-
ters, the contents of the resulting cluster can initially
be quite heterogeneous. Furthermore, the new cluster
is much larger, so it becomes a magnet for new cate-
gorizations. This results in overgeneralization errors,
giving the periodic drops seen in Figure 2. While our
formulation in Section 2.4 aims to prevent such er-
rors, they are likely to occur on occasion. Eventually,
the model recovers from these errors, and it is worth
noting that the fluctuations diminish over time. As the
model gradually improves with more input, the dom-
inant clusters become heavily entrenched, and incon-
sistent merges are less likely to occur.

6 Experiment 3: Disambiguation

The category structure of our model allows a single
word type to be a member of multiple categories. For
example,kisscould belong to a category of predom-
inantly noun usages (Can I have a kiss?) and also
to a category of verb usages (Kiss me!). As a result,
the model easily represents lexical ambiguity. In this
experiment, inspired by disambiguation work in psy-
cholinguistics (see, e.g., MacDonald, 1993), we ex-
amine the model’s ability to correctly disambiguate
category memberships.

6.1 Methods

Given a word that the model has previously seen as
various different parts of speech, we examine how
well the model can use that ambiguous word’s con-
text to determine its category in the current usage.
For example, by presenting the wordkiss in sepa-
rate noun and verb contexts, we expect that the model
should categorizekissas a noun, then as a verb, re-
spectively. We also wish to examine the effect of the
target word’s lexical bias, that is, the predominance of
a word type to be used as one category over another.
As with adults, ifkiss is mainly used as a noun, we
expect the model to more accurately categorize the
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Figure 3: Syntactic category disambiguation. Shown are theproportions of nouns and verbs in the chosen
clusters for ambiguous words used in either noun (N) or verb (V) contexts.

word in a noun context than in a verb context.
We focus on noun/verb ambiguities. We artificially

generate input frames for noun and verb contexts as
in experiment 2, with the following exceptions. To
make the most use of the context information, we al-
low nonull words in the input frames. We also ensure
that the contexts are distinctive enough to guide dis-
ambiguation. For each PoS sequence surrounding a
noun (e.g., ‘V Dethead Prep Det’), we ensure that
over 80% of the instances of that pattern in the cor-
pus are for nouns, and likewise for verbs.

We test the model’s disambiguation in six con-
ditions, with varying degrees of lexical bias. Un-
ambiguous (‘noun/verb only’) conditions test words
seen in the corpus only as nouns or verbs (10 words
each). ‘Biased’ conditions test words with a clear
bias (15 with average 93% noun bias; 15 with aver-
age 84% verb bias). An ‘equibiased’ condition uses 4
words of approximately equal bias, and a novel word
condition provides an unbiased case.

For the six sets of test words, we measure the ef-
fect of placing each of these words in both noun and
verb contexts. That is, each word in each condition
was used as the head word in each of the 500 noun
and 500 verb disambiguating frames. For example,
we create 500 frames wherebook is used as a noun,
and 500 frames where it is used as a verb. We then
use the fully-trained ‘combination’ model (Eq. (7)) to
categorize each frame. Unlike in the previous experi-
ment, we do not let the model create new clusters. For
each frame, we choose the best-fitting existing clus-
ter, then examine that cluster’s contents. As in ex-
periment 2, we measure the proportions of each PoS
of the frames in this cluster. We then average these
measures over all tested frames in each condition.

6.2 Results

Figure 3 presents the measured PoS proportions for
each of the six conditions. For both the equibias and

novel word conditions, we see that the clusters cho-
sen for the noun context frames (labeled N) contain
more nouns than verbs, and the clusters chosen for
the verb context frames (V) contain more verbs than
nouns. This suggests that although the model’s past
experience with the head word is not sufficiently in-
formative, the model can use the word’s context to
disambiguate its category. In the ‘unambiguous’ and
the ‘biased’ conditions, the head words’ lexical biases
are too strong for the model to overcome.

However, the results show a realistic effect of the
lexical bias. Note the contrasts from the ‘noun only’
condition, to the ‘noun biased’ condition, to ‘equibi-
ased’ (and likewise for the verb biases). As the lex-
ical bias weakens, the counter-bias contexts (e.g., a
noun bias with a verb context) show a stronger ef-
fect on the chosen clusters. This is a realistic effect
of disambiguation seen in adults (MacDonald, 1993).
Strongly biased words are more difficult to categorize
in conflict with their bias than weakly biased words.

7 Related Work

Several existing computational models use distribu-
tional cues to find syntactic categories. Schütze
(1993) employs co-occurrence statistics for common
words, while Redington et al. (1998) build word dis-
tributional profiles using corpus bigram counts. Clark
(2000) also builds distributional profiles, introducing
an iterative clustering method to better handle am-
biguity and rare words. Mintz (2003) shows that
even very simple three-word templates can effec-
tively define syntactic categories. Each of these mod-
els demonstrates that by using the kinds of simple in-
formation to which children are known to be sensi-
tive, syntactic categories are learnable. However, the
specific learning mechanisms they use, such as the
hierarchical clustering methods of Redington et al.
(1998), are not intended to be cognitively plausible.

In contrast, Cartwright and Brent (1997) propose
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an incremental model of syntactic category acquisi-
tion that uses a series of linguistic preferences to find
common patterns across sentence-length templates.
Their model presents an important incremental al-
gorithm which is very effective for discovering cat-
egories in artificial languages. However, the model’s
reliance on templates limits its applicability to tran-
scripts of actual spoken language data, which contain
high variability and noise.

Recent models that apply Bayesian approaches
to PoS tagging are not incremental and assume a
fixed number of tags (Goldwater and Griffiths, 2007;
Toutanova and Johnson, 2008). In syntactic cate-
gory acquisition, the true number of categories is un-
known, and must be inferred from the input.

8 Conclusions and Future Directions

We have developed a computational model of syn-
tactic category acquisition in children, and demon-
strated its behaviour on a corpus of naturalistic child-
directed data. The model is based on domain-general
properties of feature similarity, in contrast to earlier,
more linguistically-specific methods. The incremen-
tal nature of the algorithm contributes to a substantial
improvement in psychological plausibility over pre-
vious models of syntactic category learning. Further-
more, due to its probabilistic framework, our model
is robust to noise and variability in natural language.

Our model successfully uses a syntactic bootstrap-
ping mechanism to build on the distributional proper-
ties of words. Using its existing partial knowledge
of categories, the model applies a second level of
analysis to learn patterns in the input. By making
few assumptions about prior linguistic knowledge,
the model develops realistic syntactic categories from
the input data alone. The explicit bootstrapping com-
ponent improves the model’s ability to learn adult cat-
egories, and its learning trajectory resembles relevant
behaviours seen in children. Using the contextual
patterns of individual parts of speech, we show dif-
ferential learning rates across nouns, verbs, and ad-
jectives that mimic child development. We also show
an effect of a lexical bias in category disambiguation.

The algorithm is currently only implemented as an
incremental process. However, comparison with a
batch version of the algorithm, such as by using a
Gibbs sampler (Sanborn et al., 2006), would help us
further understand the effect of incrementality on lan-
guage fidelity.

While we have only examined the effects of learn-
ing categories from simple distributional information,
the feature-based framework of our model could eas-
ily be extended to include other sources of informa-
tion, such as morphological and phonological cues.
Furthermore, it would also be possible to include se-

mantic features, thereby allowing the model to draw
on correlations between semantic and syntactic cate-
gories in learning.
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Abstract.  

In this paper, we propose a new metho-
dology based on directed graphs and the 
TextRank algorithm to automatically in-
duce general-specific noun relations from 
web corpora frequency counts. Different 
asymmetric association measures are im-
plemented to build the graphs upon 
which the TextRank algorithm is applied 
and produces an ordered list of nouns 
from the most general to the most specif-
ic. Experiments are conducted based on 
the WordNet noun hierarchy and assess 
65.69% of correct word ordering.   

1 Introduction 

Taxonomies are crucial for any knowledge-
based system. They are in fact important because 
they allow to structure information, thus foster-
ing their search and reuse. However, it is well 
known that any knowledge-based system suffers 
from the so-called knowledge acquisition bottle-
neck, i.e. the difficulty to actually model the do-
main in question. As stated in (Caraballo, 1999), 
WordNet has been an important lexical know-
ledge base, but it is insufficient for domain spe-
cific texts. So, many attempts have been made to 
automatically produce taxonomies (Grefenstette, 
1994), but (Caraballo, 1999) is certainly the first 
work which proposes a complete overview of the 
problem by (1) automatically building a hierar-
chical structure of nouns based on bottom-up 
clustering methods and (2) labeling the internal 
nodes of the resulting tree with hypernyms from 
the nouns clustered underneath by using patterns 
such as “B is a kind of A”. 

                                                 
 © 2008. Licensed under the Creative Commons At-
tribution-Noncommercial-Share Alike 3.0 Unported 
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved. 

In this paper, we are interested in dealing with 
the second problem of the construction of an or-
ganized lexical resource i.e. discovering general-
specific noun relationships, so that correct nouns 
are chosen to label internal nodes of any hierar-
chical knowledge base, such as the one proposed 
in (Dias et al., 2006). Most of the works pro-
posed so far have (1) used predefined patterns or 
(2) automatically learned these patterns to identi-
fy hypernym/hyponym relationships. From the 
first paradigm, (Hearst, 1992) first identifies a set 
of lexico-syntactic patterns that are easily recog-
nizable i.e. occur frequently and across text genre 
boundaries. These can be called seed patterns. 
Based on these seeds, she proposes a bootstrap-
ping algorithm to semi-automatically acquire 
new more specific patterns. Similarly, (Carabal-
lo, 1999) uses predefined patterns such as “X is a 
kind of Y” or “X, Y, and other Zs” to identify 
hypernym/hyponym relationships. This approach 
to information extraction is based on a technique 
called selective concept extraction as defined by 
(Riloff, 1993). Selective concept extraction is a 
form of text skimming that selectively processes 
relevant text while effectively ignoring surround-
ing text that is thought to be irrelevant to the do-
main. 
A more challenging task is to automatically learn 
the relevant patterns for the hypernym/hyponym 
relationships. In the context of pattern extraction, 
there exist many approaches as summarized in 
(Stevenson and Greenwood, 2006). The most 
well-known work in this area is certainly the one 
proposed by (Snow et al., 2005) who use ma-
chine learning techniques to automatically re-
place hand-built knowledge. By using depend-
ency path features extracted from parse trees, 
they introduce a general-purpose formalization 
and generalization of these patterns. Given a 
training set of text containing known hypernym 
pairs, their algorithm automatically extracts use-
ful dependency paths and applies them to new 
corpora to identify novel pairs. (Sang and Hof-
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mann, 2007) use a similar way as (Snow et al., 
2006) to derive extraction patterns for hy-
pernym/hyponym relationships by using web 
search engine counts from pairs of words en-
countered in WordNet. However, the most inter-
esting work is certainly proposed by (Bollegala 
et al., 2007) who extract patterns in two steps. 
First, they find lexical relationships between 
synonym pairs based on snippets counts and ap-
ply wildcards to generalize the acquired knowl-
edge. Then, they apply a SVM classifier to de-
termine whether a new pair shows a relation of 
synonymy or not, based on a feature vector of 
lexical relationships. This technique could be 
applied to hypernym/hyponym relationships al-
though the authors do not mention it. 
On the one hand, links between words that result 
from manual or semi-automatic acquisition of 
relevant predicative or discursive patterns 
(Hearst, 1992; Carballo, 1999) are fine and accu-
rate, but the acquisition of these patterns is a te-
dious task that requires substantial manual work. 
On the other hand, works done by (Snow et al., 
2005; Snow et al., 2006; Sang and Hofmann, 
2007; Bollegala et al., 2007) have proposed me-
thodologies to automatically acquire these pat-
terns mostly based on supervised learning to le-
verage manual work. However, training sets still 
need to be built.  
Unlike other approaches, we propose an unsu-
pervised methodology which aims at discovering 
general-specific noun relationships which can be 
assimilated to hypernym/hyponym relationships 
detection2. The advantages of this approach are 
clear as it can be applied to any language or any 
domain without any previous knowledge, based 
on a simple assumption: specific words tend to 
attract general words with more strength than the 
opposite. As (Michelbacher et al., 2007) state: 
“there is a tendency for a strong forward associa-
tion from a specific term like adenocarcinoma to 
the more general term cancer, whereas the asso-
ciation from cancer to adenocarcinoma is weak”.  
Based on this assumption, we propose a metho-
dology based on directed graphs and the Tex-
tRank algorithm (Mihalcea and Tarau, 2004) to 
automatically induce general-specific noun rela-
tionships from web corpora frequency counts. 
Indeed, asymmetry in Natural Language 
Processing can be seen as a possible reason for 

                                                 
2 We must admit that other kinds of relationships may be 
covered. For that reason, we will speak about general-
specific relationships instead of hypernym/hyponym rela-
tionships. 

the degree of generality of terms (Michelbacher 
et al., 2007). So, different asymmetric associa-
tion measures are implemented to build the 
graphs upon which the TextRank algorithm is 
applied and produces an ordered list of nouns, 
from the most general to the most specific. Expe-
riments have been conducted based on the 
WordNet noun hierarchy and assessed that 65% 
of the words are ordered correctly. 

2 Asymmetric Association Measures 

In (Michelbacher et al., 2007), the authors 
clearly point at the importance of asymmetry in 
Natural Language Processing. In particular, we 
deeply believe that asymmetry is a key factor for 
discovering the degree of generality of terms. It 
is cognitively sensible to state that when some-
one hears about mango, he may induce the prop-
erties of a fruit. But, when hearing fruit, more 
common fruits will be likely to come into mind 
such as apple or banana. In this case, there exists 
an oriented association between fruit and mango 
(mango → fruit) which indicates that mango at-
tracts more fruit than fruit attracts mango. As a 
consequence, fruit is more likely to be a more 
general term than mango. 
Based on this assumption, asymmetric associa-
tion measures are necessary to induce these asso-
ciations. (Pecina and Schlesinger, 2006) and 
(Tan et al., 2004) propose exhaustive lists of as-
sociation measures from which we present the 
asymmetric ones that will be used to measure the 
degree of attractiveness between two nouns, x 
and y, where f(.,.), P(.), P(.,.) and N are respec-
tively the frequency function, the marginal prob-
ability function, the joint probability function and 
the total of digrams. 
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All seven definitions show their asymmetry by 
evaluating the maximum value between two hy-
potheses i.e. by evaluating the attraction of x 
upon y but also the attraction of y upon x. As a 
consequence, the maximum value will decide the 
direction of the general-specific association i.e. 
(x → y) or (y → x). 

3 TextRank Algorithm 

Graph-based ranking algorithms are essential-
ly a way of deciding the importance of a vertex 
within a graph, based on global information re-
cursively drawn from the entire graph. The basic 
idea implemented by a graph-based ranking 
model is that of voting or recommendation. 
When one vertex links to another one, it is basi-
cally casting a vote for that other vertex. The 
higher the number of votes that are cast for a ver-
tex, the higher the importance of the vertex. 
Moreover, the importance of the vertex casting 
the vote determines how important the vote itself 
is, and this information is also taken into account 
by the ranking model. Hence, the score asso-
ciated with a vertex is determined based on the 
votes that are cast for it, and the score of the ver-
tices casting these votes. 
Our intuition of using graph-based ranking algo-
rithms is that more general words will be more 
likely to have incoming associations as they will 
be associated to many specific words. On the 
opposite, specific words will have few incoming 
associations as they will not attract general words 
(see Figure 1). As a consequence, the voting pa-
radigm of graph-based ranking algorithms should 
give more strength to general words than specific 
ones, i.e. a higher voting score. 
For that purpose, we first need to build a directed 
graph. Informally, if x attracts more y than y at-
tracts x, we will draw an edge between x and y as 
follows (x → y) as we want to give more credits 
to general words. Formally, we can define a di-
rected graph G = (V, E) with the set of vertices V 
(in our case, a set of words) and a set of edges E 
where E is a subset of V×V (in our case, defined 
by the asymmetric association measure value 
between two words). In Figure 1, we show the 
directed graph obtained by using the set of words 
V = {isometry, rate of growth, growth rate, rate} 
randomly extracted from WordNet where rate of 

growth and growth rate are synonyms, isometry 
an hyponym of the previous set and rate an 
hypernym of the same set. The weights asso-
ciated to the edges have been evaluated by the 
confidence association measure (Equation 3) 
based on web search engine counts3. 
  

 
 

Fig. 1. Directed Graph based on synset #13153496 (rate of 
growth, growth rate) and its direct hypernym (rate) and 

hyponym (isometry). 

Figure 1 clearly shows our assumption of gene-
rality of terms as the hypernym rate only has 
incoming edges whereas the hyponym isometry 
only has outgoing edges. As a consequence, by 
applying a graph-based ranking algorithm, we 
aim at producing an ordered list of words from 
the most general (with the highest value) to the 
most specific (with the lowest value). For that 
purpose, we present the TextRank algorithm pro-
posed by (Mihalcea and Tarau, 2004) both for 
unweighted and weighted directed graphs. 

3.1 Unweighted Directed Graph 

For a given vertex Vi let In(Vi) be the set of 
vertices that point to it, and let Out(Vi) be the set 
of vertices that vertex Vi points to. The score of a 
vertex Vi is defined in Equation 8 where d is a 
damping factor that can be set between 0 and 1, 
which has the role of integrating into the model 
the probability of jumping from a given vertex to 
another random vertex in the graph4. 

 
 
 (8) 

3.2 Weighted Directed Graph 

In order to take into account the edge weights, 
a new formula is introduced in Equation 9. 
 

                                                 
3 We used counts returned by http://www.yahoo.com. 
4 d is usually set to 0.85.  
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(9) 

After running the algorithm in both cases, a score 
is associated to each vertex, which represents the 
“importance” of the vertex within the graph. No-
tice that the final values obtained after TextRank 
runs to completion are not affected by the choice 
of the initial values randomly assigned to the ver-
tices. Only the number of iterations needed for 
convergence may be different. As a consequence, 
after running the TextRank algorithm, in both its 
configurations, the output is an ordered list of 
words from the most general one to the most 
specific one. In table 1, we show both the lists 
with the weighted and unweighted versions of 
the TextRank based on the directed graph shown 
in Figure 1. 
 

Unweighted Weighted WordNet 
S(Vi) Word WS(Vi) Word Categ. Word 
0.50 rate 0.81 rate Hyper. rate 

0.27 
growth 

rate 
0.44 

growth 
rate 

Synset 
growth 

rate 

0.19 
rate of 
growth 

0.26 
rate of 
growth 

Synset 
rate of 
growth 

0.15 isometry 0.15 isometry Hypo. isometry 

Table 1. TextRank ordered lists. 
 
The results show that asymmetric measures 
combined with directed graphs and graph-based 
ranking algorithms such as the TextRank are 
likely to give a positive answer to our hypothesis 
about the degree of generality of terms. More-
over, we propose an unsupervised methodology 
for acquiring general-specific noun relationships. 
However, it is clear that deep evaluation is 
needed. 

4 Experiments and Results 

Evaluation is classically a difficult task in 
Natural Language Processing. In fact, as human 
evaluation is time-consuming and generally sub-
jective even when strict guidelines are provided, 
measures to automatically evaluate experiments 
must be proposed. In this section, we propose 
three evaluation measures and discuss the respec-
tive results. 

4.1 Constraints 

WordNet can be defined as applying a set of 
constraints to words. Indeed, if word w is the 
hypernym of word x, we may represent this rela-
tion by the following constraint y › x, where › is 
the order operator stating that y is more general 
than x. As a consequence, for each set of three 

synsets (the hypernym synset, the seed synset 
and the hyponym synset), a list of constraints can 
be established i.e. all words of the hypernym 
synset must be more general than all the words of 
the seed synset and the hyponym synset, and all 
the words of the seed synset must be more gener-
al than all the words in the hyponym synset. So, 
if we take the synsets presented in Table 1, we 
can define the following set of constraints: {rate 
› growth rate, rate › rate of growth, growth rate › 
isometry, rate of growth › isometry}. 
In order to evaluate our list of words ranked by 
the level of generality against the WordNet cate-
gorization, we just need to measure the propor-
tion of constraints which are respected as shown 
in Equation (10). We call, correctness this meas-
ure. 
 

(10) 

For example, in Table 1, all the constraints are 
respected for both weighted and unweighted 
graphs, giving 100% correctness for the ordered 
lists compared to WordNet categorization. 

4.2 Clustering 

Another way to evaluate the quality of the or-
dering of words is to apply hard clustering to the 
words weighted by their level of generality. By 
evidencing the quality of the mapping between 
three hard clusters generated automatically and 
the hypernym synset, the seed synset and the hy-
ponym synset, we are able to measure the quality 
of our ranking. As a consequence, we propose to 
(1) perform 3-means clustering over the list of 
ranked words, (2) classify the clusters by level of 
generality and (3) measure the precision, recall 
and f-measure of each cluster sorted by level of 
generality with the hypernym synset, the seed 
synset and the hyponym synset. 
For the first task, we use the implementation of 
the k-means algorithm of the NLTK toolkit5. In 
particular, we bootstrap the k-means by choosing 
the initial means as follows. For the first mean, 
we choose the weight (the score) of the first word 
in the TextRank generated list of words. For the 
second mean, we take the weight of the middle 
word in the list and for the third mean, the weight 
of the last word in the list.  
For the second task the level of generality of 
each cluster is evaluated by the average level of 

                                                 
5 http://nltk.sourceforge.net/ 
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generality of words inside the cluster (or said 
with other words by its mean).  
For the third task, the most general cluster and 
the hypernym synset are compared in terms of-
precision, recall and f-measure as shown in Equ-
ation (11), (12) and (13)6. The same process is 
applied to the second most general cluster and 
the seed synset, and the third cluster and the hy-
ponym synset. 
 

(11) 

  

(12) 

 

(13) 

4.3 Rank Coefficient Test 

The evaluation can be seen as a rank test be-
tween two ordered lists. Indeed, one way to eva-
luate the results is to compare the list of general-
specific relationships encountered by the Tex-
tRank algorithm and the original list given by 
WordNet. However, we face one problem. 
WordNet does not give an order of generality 
inside synsets. In order to avoid this problem, we 
can order words in each synset by their estimated 
frequency given by WordNet7 as well as their 
frequency calculated by web search hits. An ex-
ample of both ordered lists is given in Table 2 for 
the synset #6655336 and its immediate hyper-
nyms and hyponyms. 
 

WordNet Estimated Frequency  Web Estimated Frequency 

Category Word Category Word 
Hypernym statement Hypernym statement 

Synset answer Synset reply 
Synset reply Synset response 
Synset response Synset answer 

Hyponym rescript Hyponym feedback 
Hyponym feedback Hyponym rescript 

Table 2. Estimated Frequency ordered lists for synset 
#6655336. 

 
For that purpose, we propose to use the Spear-
man’s rank correlation coefficient (Rho). The 
Spearman’s Rho is a statistical coefficient that 
shows how much two random variables are cor-

                                                 
6  Where Cluster ∩ Synset means the number of words 
common to both Synset and Cluster, and |Synset| and 
|Cluster| respectively measure the number of words in the 
Synset and the Cluster. 
7 We use WordNet 2.1. 

related. It is defined in Equation (14) where d is 
the distance between every pair of words in the 
list ordered with TextRank and the reference list 
which is ordered according to WordNet or the 
Web and n is the number of pairs of ranked 
words. 

 

  
(14) 

 

In particular, the Spearman’s rank correlation 
coefficient is a number between -1 (no correla-
tion at all) and 1 (very strong correlation). 

4.4 Experiments 

In order to evaluate our methodology, we ran-
domly8 extracted 800 seed synsets for which we 
retrieved their hypernym and hyponym synsets. 
For each seed synset, we then built the associated 
directed weighted and unweighted graphs based 
on the asymmetric association measures referred 
to in section 29 and ran the TextRank algorithm 
to produce a general-specific ordered lists of 
terms. 

4.4.1 Results by Constraints 

In Table 3, we present the results of the cor-
rectness for all seven asymmetric measures, both 
for the unweighted and weighted graphs. 

 
Equation Type of Graph Correctness  

Braun-Blanquet 
Unweighted 65.68% 

Weighted 65.52% 

J measure 
Unweighted 60.00% 

Weighted 60.34% 

Confidence 
Unweighted 65.69% 
Weighted 65.40% 

Laplace 
Unweighted 65.69% 
Weighted 65.69% 

Conviction 
Unweighted 61.81% 

Weighted 63.39% 

Certainty Factor 
Unweighted 65.59% 

Weighted 63.76% 

Added Value 
Unweighted 65.61% 

Weighted 64.90% 

Baseline10 None 55.68% 
Table 3. Results for the Evaluation by Constraints. 

 
The best results are obtained by the Confidence 
and the Laplace measures reaching 65.69% cor-

                                                 
8 We guarantee 98% significance level for an error of 0.05 
following the normal distribution. 
9 The probability functions are estimated by the Maximum 
Likelihood Estimation (MLE). 
10 The baseline is the list of words ordered by web hits fre-
quency (without TextRank). 
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rectness. However, the Braun-Blanquet, the Cer-
tainty Factor and the Added Value give results 
near the best ones. Only the J measure and the 
Conviction metric seem to perform worst.  
It is also important to note that the difference 
between unweighted and weighted graphs is 
marginal which clearly points at the fact that the 
topology of the graph is more important than its 
weighting. This is also confirmed by the fact that 
most of the asymmetric measures perform alike. 

4.4.2 Results by Clustering 

In Table 4, we present the results of precision, 
recall and f-measure for both weighted and un-
weighted graphs for all the seven asymmetric 
measures. The best precision is obtained for the 
weighted graph with the Confidence measure 
evidencing 47.62% and the best recall is also 
obtained by the Confidence measure also for the 
weighted graph reaching 47.68%. Once again, 
the J measure and the Conviction metric perform 
worst showing worst f-measures. Contrarily, the 
Confidence measure shows the best performance 
in terms of f-measure for the weighted graph, i.e. 
47.65% while the best result for the unweighted 
graphs is obtained by the Certainty factor with 
46.50%.  
These results also show that the weighting of the 
graph plays an important issue in our methodolo-
gy. Indeed, most metrics perform better with 
weighted graphs in terms of f-measure. 
 

Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 46.61 46.06 46.33 

Weighted 47.60 47.67 47.64 

J measure 
Unweighted 40.92 40.86 40.89 

Weighted 42.61 43.71 43.15 

Confidence 
Unweighted 46.54 46.02 46.28 

Weighted 47.62 47.68 47.65 

Laplace 
Unweighted 46.67 46.11 46.39 

Weighted 46.67 46.11 46.39 

Conviction 
Unweighted 42.13 41.67 41.90 

Weighted 43.62 43.99 43.80 

Certainty 
Factor 

Unweighted 46.49 46.52 46.50 
Weighted 44.84 45.85 45.34 

Added 
Value 

Unweighted 46.61 46.59 46.60 

Weighted 47.13 47.27 47.19 
Table 4. Results for the Evaluation by Clustering. 

 
In Table 5, 6 and 7, we present the same results 
as in Table 4 but at different levels of analysis 
i.e. precision, recall and f-measure at hypernym, 
seed and hyponym levels. Indeed, it is important 
to understand how the methodology performs at 
different levels of generality as we verified that 

our approach performs better at higher levels of 
generality. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 59.38 37.38 45.88 

Weighted 58.75 39.35 47.14 

J measure 
Unweighted 46.49 37.00 41.20 

Weighted 47.19 41.90 44.38 

Confidence 
Unweighted 59.20 37.30 45.77 

Weighted 58.71 39.22 47.03 

Laplace 
Unweighted 59.50 37.78 45.96 
Weighted 59.50 37.78 45.96 

Conviction 
Unweighted 50.07 35.88 41.80 

Weighted 52.72 40.74 45.96 

Certainty 
Factor 

Unweighted 55.90 38.29 45.45 

Weighted 51.64 42.93 46.88 

Added 
Value 

Unweighted 56.26 37.90 45.29 

Weighted 58.21 40.09 47.48 
Table 5. Results at the hypernym level. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 43.05 37.86 40.29 

Weighted 46.38 33.14 38.66 

J measure 
Unweighted 40.82 43.72 42.22 

Weighted 43.98 33.89 38.28 

Confidence 
Unweighted 43.03 37.67 40.17 

Weighted 46.36 33.02 38.57 

Laplace 
Unweighted 43.10 37.78 40.27 

Weighted 43.10 37.78 40.27 

Conviction 
Unweighted 40.36 38.02 39.16 

Weighted 42.60 26.39 32.59 

Certainty 
Factor 

Unweighted 44.28 40.87 42.51 
Weighted 44.14 40.70 42.35 

Added 
Value 

Unweighted 44.21 40.74 42.40 

Weighted 45.78 32.90 38.29 
Table 6. Results at the seed level. 

 
Equation Graph Precision Recall F-measure 

Braun-
Blanquet 

Unweighted 37.39 62.96 46.92 

Weighted 37.68 70.50 49.12 

J measure 
Unweighted 35.43 41.87 38.38 

Weighted 36.69 55.33 44.12 

Confidence 
Unweighted 37.38 63.09 46.95 

Weighted 37.79 70.80 49.27 

Laplace 
Unweighted 37.40 63.11 46.97 

Weighted 37.40 63.11 46.97 

Conviction 
Unweighted 35.97 50.94 42.16 

Weighted 35.54 64.85 45.92 

Certainty 
Factor 

Unweighted 39.28 60.40 47.60 

Weighted 38.74 53.92 45.09 

Added 
Value 

Unweighted 39.36 61.15 47.89 
Weighted 37.39 68.81 48.45 

Table 7. Results at the hyponym level. 
 

Indeed, the precision scores go down from 
59.50% at the hypernym level to 39.36% at the 
hyponym level with 46.38% at the seed level. 
The same phenomenon is inversely true for the 
recall with 42.93% at the hypernym level, 
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43.72% at the seed level and 70.80% at the hy-
ponym level.  
This situation can easily be understood as most 
of the clusters created by the k-means present the 
same characteristics i.e. the upper level cluster 
usually has fewer words than the middle level 
cluster which in turn has fewer words than the 
last level cluster. As a consequence, the recall is 
artificially high for the hyponym level. But on 
the opposite, the precision is high for higher le-
vels of generality which is promising for the au-
tomatic construction of hierarchical thesauri. In-
deed, our approach can be computed recursively 
so that each level of analysis is evaluated as if it 
was at the hypernym level, thus taking advantage 
of the good performance of our approach at up-
per levels of generality11. 

4.4.3 Results by Rank Test 

For each produced list, we calculated the 
Spearman’s Rho both with WordNet and Web 
Estimated Lists for weighted and unweighted 
graphs. Table 8 presents the average results for 
the 800 randomly selected synsets. 

 

Equation 
Type of 
Graph 

Rho with 
WNet Est. 

list 

Rho with 
Web Est. 

list 

Braun-
Blanquet 

Unweighted 0.38 0.30 

Weighted 0.39 0.39 

J measure 
Unweighted 0.23 0.19 

Weighted 0.27 0.27 

Confidence 
Unweighted 0.38 0.30 

Weighted 0.39 0.39 

Laplace 
Unweighted 0.38 0.30 

Weighted 0.38 0.38 

Conviction 
Unweighted 0.30 0.22 

Weighted 0.33 0.33 

Certainty 
Factor 

Unweighted 0.38 0.29 

Weighted 0.35 0.35 

Added Value 
Unweighted 0.37 0.29 

Weighted 0.38 0.38 

Baseline
12

 None 0.14 0.14 
Table 8. Results for the Spearman’s rank correlation 

coefficient. 
 

Similarly to what we evidenced in section 4.4.1., 
the J measure and the Conviction metric are the 
measures which less seem to map the correct or-
der by evidencing low correlation scores. On the 
other hand, the Confidence metric still gives the 
best results equally with the Laplace and Braun-
Blanquet metrics.  

                                                 
11 This will be studied as future work. 
12 The baseline is the list of words ordered by web hits fre-
quency. 

It is interesting to note that in the case of the web 
estimated list, the weighted graphs evidence 
much better results than the unweighted ones, 
although they do not show improved results 
compared to the WordNet list. On the one hand, 
these results show that our methodology is capa-
ble to map to WordNet lists as easily as to Web 
lists even that it is based on web frequency 
counts. On the other hand, the fact that weighted 
graphs perform best, shows that the topology of 
the graph lacks in accuracy and needs the appli-
cation of weights to counterpoint this lack.    

4.5 Discussion 

An important remark needs to be made at this 
point of our explanation. There is a large ambi-
guity introduced in the methodology by just 
looking at web counts. Indeed, when counting 
the occurrences of a word like answer, we count 
all its occurrences for all its meanings and forms. 
For example, based on WordNet, the word an-
swer can be a verb with ten meanings and a noun 
with five meanings. Moreover, words are more 
frequent than others although they are not so 
general, unconfirming our original hypothesis. 
Looking at Table 2, feedback is a clear example 
of this statement. As we are not dealing with a 
single domain within which one can expect to 
see the “one sense per discourse” paradigm, it is 
clear that the Rho coefficient would not be as 
good as expected as it is clearly biased by “incor-
rect” counts. One direct implication of this com-
ment is the use of web estimated lists to evaluate 
the methodology. 
Also, there has been a great discussion over the 
last few months in the corpora list13 whether one 
should use web counts instead of corpus counts 
to estimate word frequencies. In our study, we 
clearly see that web counts show evident prob-
lems, like the ones mentioned by (Kilgarriff, 
2007). However, they cannot be discarded so 
easily. In particular, we aim at looking at web 
counts in web directories that would act as spe-
cific domains and would reduce the space for 
ambiguity. Of course, experiments with well-
known corpora will also have to be made to un-
derstand better this phenomenon. 

5 Conclusions and Future Work 

In this paper, we proposed a new methodology 
based on directed weighted/unweighted graphs 
and the TextRank algorithm to automatically in-

                                                 
13 Finalized by (Kilgarriff, 2007). 
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duce general-specific noun relationships from 
web corpora frequency counts. To our know-
ledge, such an unsupervised experiment has nev-
er been attempted so far. In order to evaluate our 
results, we proposed three different evaluation 
metrics. The results obtained by using seven 
asymmetric association measures based on web 
frequency counts showed promising results 
reaching levels of (1) constraint coherence of 
65.69%, (2) clustering mapping of 59.50% in 
terms of precision for the hypernym level and 
42.72% on average in terms of f-measure and (3) 
ranking similarity of 0.39 for the Spearman’s 
rank correlation coefficient. 
As future work, we intend to take advantage of 
the good performance of our approach at the 
hypernym level to propose a recursive process to 
improve precision results over all levels of gene-
rality.  
Finally, it is important to notice that the evalua-
tion by clustering evidences more than a simple 
evaluation of the word order, but shows how this 
approach is capable to automatically map clus-
ters to WordNet classification.   
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Abstract

This paper presents a method of acquiring
knowledge from the Web for noun sense
disambiguation. Words, called selectors,
are acquired which take the place of an
instance of a target word in its local con-
text. The selectors serve for the system to
essentially learn the areas or concepts of
WordNet that the sense of a target word
should be a part of. The correct sense
is chosen based on a combination of the
strength given from similarity and related-
ness measures over WordNet and the prob-
ability of a selector occurring within the lo-
cal context. Our method is evaluated using
the coarse-grained all-words task from Se-
mEval 2007. Experiments reveal that path-
based similarity measures perform just as
well as information content similarity mea-
sures within our system. Overall, the re-
sults show our system is out-performed
only by systems utilizing training data or
substantially more annotated data.

1 Introduction

Recently, the Web has become the focus for many
word sense disambiguation (WSD) systems. Due
to the limited amount of sense tagged data avail-
able for supervised approaches, systems which are
typically referred to as unsupervised, have turned
to the use of unannotated corpora including the
Web. The advantage of these systems is that they
can disambiguate all words, and not just a set of
words for which training data has been provided.
In this paper we present an unsupervised system
which uses the Web in a novel fashion to perform

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

sense disambiguation of any noun, incorporating
both similarity and relatedness measures.

As explained in (Brody et al., 2006), there are
generally two approaches to unsupervised WSD.
The first is referred to astokenbased, which com-
pares the relatedness of a target word to other
words in its context. The second approach istype
based, which uses or identifies the most common
sense of a word over a discourse or corpus, and an-
notates all instances of a word with the most com-
mon sense. Although thetypebased approach is
clearly bound to fail occasionally, it is commonly
found to produce the strongest results, rivaling su-
pervised systems (McCarthy et al., 2004). We
identify a third approach through the use ofselec-
tors, first introduced by (Lin, 1997), which help
to disambiguate a word by comparing it to other
words that may replace it within the same local
context.

We approach the problem of word sense dis-
ambiguation through a relatively straightforward
method that incorporates ideas from thetoken,
type, and selectorapproaches. In particular, we
expand the use ofselectorsin several ways. First,
we revise the method for acquiring selectors to be
applicable to the web, a corpus that is, practically
speaking, impossible to parse in whole. Second,
we describe a path-based similarity measure that
is more suited for a portion of our method than the
relatedness measures used bytokenbased systems.
Finally, we expand the use of selectors to help with
disambiguating nouns other than the one replaced.

2 Background

2.1 Word Sense Disambiguation

A popular approach to using the web or unanno-
tated corpora for word sense disambiguation in-
volves the use of monosemous relatives. Monose-
mous relatives are words which are similar to a
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sense of the target word, but which only have one
sense. By searching text for these words, one can
build training data for each sense of a target word.
This idea was proposed by (Leacock et al., 1998).
More recently, the idea has been used to auto-
matically create sense tagged corpora (Mihalcea,
2002; Agirre and Martinez, 2004) . These meth-
ods queried large corpora with relatives rather than
with the context.

With some resemblances to our approach, (Mar-
tinez et al., 2006) present therelatives in context
method. A key similarity of this method with ours
is the use of context in the web queries. They pro-
duce queries with relatives in place of the target
word in a context with a window size of up to 6.
Similarly, (Yuret, 2007) first chooses substitutes
and determines a sense by looking at the proba-
bility of a substitute taking the place of the target
word within the Web1T corpus. The number of
hits each query has on the web is then used to pick
the correct sense. Our approach differs from these
in that we acquire words(selectors) from the web,
and proceed to choose a sense based on similarity
measures over WordNet (Miller et al., 1993). We
also attempt to match the context of the entire sen-
tence if possible, and we are more likely to receive
results from longer queries by including the wild-
card instead of pre-chosen relatives.

We adopted the termselectorfrom (Lin, 1997)
to refer to a word which takes the place of another
in the same local context. Lin searched a local con-
text database, created from dependency relation-
ships over an unannotated corpora in order to find
selectors. In this case, the local context was repre-
sented by the dependency relationships. Given that
the task of producing a dependency parse database
of the Web is beyond our abilities, we search for
the surrounding local context as text in order to
retrieve selectors for a given word. Another dif-
ference is that we compare the relatedness of se-
lectors of other words in the sentence to the target
word, and we also incorporate a path-based simi-
larity measure along with a gloss-based relatedness
measure.

2.2 Similarity and Relatedness Measures

Semantic similarity and relatedness measures have
an extensive history. The measures reported in this
work were included based on appropriateness with
our approach and because of past success accord-
ing to various evaluations (Patwardhan et al., 2003;

Budanitsky and Hirst, 2006).
Many similarity measures have been created

which only use paths in the WordNet ontology.
One approach is to simply compute the length
of the shortest path between two concepts over
the hypernym/hyponym relationship (Rada et al.,
1989). Other methods attempt to compensate for
the uniformity problem, the idea that some areas of
the ontology are more dense than others, and thus
all edges are not equal. (Wu and Palmer, 1994)
uses the path length from the root to the lowest
common subsumer(LCS) of two concepts scaled
by the distance from the LCS to each concept. An-
other method, by (Leacock et al., 1998), normal-
izes path distance based on the depth of hierar-
chy. Our method attempts to produce a normalized
depth based on the average depth of all concepts
which are leaf nodes below the lowest common
subsumer in a tree.

We employ several other measures in our sys-
tem. These measures implement various ideas
such asinformation content(Jiang and Conrath,
1997; Lin, 1997) andgloss overlaps(Banerjee and
Pedersen, 2003). For our work the path-based and
information content measures are referred to as
similarity measures, while the gloss-based meth-
ods are referred to asrelatedness measures. Re-
latedness measures can be used to compare words
from different parts of speech. In past evaluations
of token based WSD systems, information con-
tent and gloss-based measures perform better than
path-based measures (Patwardhan et al., 2003; Bu-
danitsky and Hirst, 2006).

3 Method

The general idea of our method is to find the sense
of a target noun which is most similar to all se-
lectors which can replace the target and most re-
lated to other words in context and their selectors.
Our method requires that a test sentence has been
part-of-speech tagged with noun, verb, and adjec-
tive POS, and we use the selectors from all of these
parts of speech as well as noun selectors of pro-
nouns and proper nouns. In this work, we only dis-
ambiguate nouns becausesimilarity measures for
target selectors are based heavily on the depth that
is present in the WordNet noun ontology. How-
ever, we are still able to use verb and adjective se-
lectors from the context throughrelatednessmea-
sures working over all parts of speech listed. The
method can be broken into two steps:
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1. Acquire probabilities of selectors occurring
for all nouns, verbs, adjectives, pronouns and
proper nouns from the Web.

2. Rank the senses of a target noun according to
similarity with its own selectors and related-
ness with other selectors in the context.

These steps are described in detail below. Finally,
we also describe a similarity measure we employ.

3.1 Acquiring Selectors

We acquiretarget selectorsandcontext selectors
from the Web. Target selectors are those words
which replace the current target word in the local
context, whilecontext selectorsare words which
may replace other words in the local context.
There are four different types of context selectors:

noun context selectorsessentially the target se-
lectors for other nouns of the sentence.

verb context selectorsverbs which are found to
replace other verbs in the sentence.

adjective context selectorsadjectives which re-
place other adjectives in the sentence.

pro context selectorsnouns which replace pro-
nouns and proper nouns.

A query must be created based on the original
sentence and target word. This is fairly straightfor-
ward as the target word is removed and replaced
with a * to indicate the wildcard. For example,
when searching for selectors of “batter” from “She
put the batter in the refrigerator.”, a query of “She
put the * in the refrigerator.” is used. The queries
are sent through the Yahoo! Search Web Services1

in order to retrieve matching text on the web.
The selectors are extracted from the samples re-

turned from the web by matching the wildcard of
the query to the sample. The wildcard match is
thrown out if any of the following conditions are
true: longer than 4 words, contains any punctua-
tion, is composed only of pronouns or the origi-
nal word. Keep in mind we acquire the nouns that
replace the pronouns of the original sentence, so
a selector is never a pronoun. WordNet is used
to determine if the phrase is a compound and the
base morphological form of the head word. Re-
sults containing head words not found in WordNet
are filtered out. Proper nouns are used if they are
found in WordNet. Finally, the list of selectors is

1http://developer.yahoo.com/search/

adjusted so no single word takes up more than 30%
of the list.

The Web is massive, but unfortunately it is not
large enough to find results when querying with
a whole sentence a majority of the time. There-
fore, we perform truncation of the query to acquire
more selectors. For this first work with selectors
from the web, we chose to create a simple trunca-
tion focused just on syntax in order to run quickly.
The steps below are followed and the final step is
repeated until a stop condition is met.

i Shorten to a size of 10 words.

ii Remove end punctuation, if not preceded by *.

iii Remove front punctuation, if not proceeded by *.

iv Remove determiners (the, a, an, this, that) preceding *.

v Remove a single word.

When removing a single word, the algorithm at-
tempts to keep the * in the center. Figure 1 demon-
strates the loop that occurs until a stop condition
is met: enough selectors are found or the query
has reached a minimum size. Since a shorter query
should return the same results as a longer query, we
filter the selectors from longer query results out of
the shorter results. It is important that the criteria
to continue searching is based on the number of se-
lectors and not on the number of samples, because
many samples fail to produce a selector.Validation
experiments were performed to verify that each
step of truncation was helpful in returning more re-
sults with valid selectors, although the results are
not reported as the focus is on the method in gen-
eral. Selectors are tied to the queries used to ac-
quire them in order to help emphasize results from
longer queries.

The steps to acquire all types of selectors (tar-
get or any in context) are the same. The part of
speech only plays a part in determining the base
form or compounds when using WordNet. Note
that all selectors for each noun, verb, adjective, and
pronoun/proper can be acquired in one pass, so that
duplicate queries are not sent to the Web. When the
process is complete we have a probability value for
each selector word (ws) to occur in a local context
given by the acquisition query (q). The probability
of ws appearing inq is denoted as:

pocc(ws, q)

3.2 Ranking Senses

There are essentially two assumptions made in or-
der to rank the senses of a noun.
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Figure 1: The overall process undertaken to disambiguate a noun. (Note that selectors only need to be
acquired once for each sentence since they can be reused for each target noun.)

1. Similar concepts (or noun senses) appear in
similar syntactic constructions.

2. The meaning of a word is often related to
other words in its context

The first assumption implies the use of a similarity
measure withtarget selectors. The meaning of the
target selectors should be very similar to that of
the original word, and thus we compare similarity
between all target selectors with each sense of the
original word.

The second assumption reflects the information
provided bycontext selectors, for which we use a
relatedness measure to compare with the original
word. Note that because context selectors may be
of a different part of speech, we should be sure this
measure is able to handle multiple parts of speech.

Regardless of the similarity or relatedness mea-
sure used, the value produced is applied the same
for both target selectorsandcontext selectors. We
are comparing the senses (or concepts) of the origi-
nal target word with all of the selectors. To find the
similarity or relatedness of two words, rather than
two concepts, one can use the maximum value over
all concepts of the selector word and all the senses
of the target word, (Resnik, 1999,word similarity):

wsr(wt, ws) = max
ct,cs

[srm(ct, cs)]

wheresrm is a similarity or relatedness measure
and ct, cs represent a sense (concept) of the tar-
get word (wt) and selector word (ws) respectively.
We would like to get a value for each sense of a
target word if possible, so we derive similarity or
relatedness between one concept and one word as:

cwsr(ct, ws) = max
cs

[srm(ct, cs)]

Intuitively, combiningcwsr with pocc is the ba-
sis for scoring the senses of each noun. However,
we also take several others values into accout, in
order to learn most effectively from Web selectors.
The score is scaled by the number of senses of the
selector and the length of the query used to ac-
quire it. This gives less ambiguous selectors and
those selectors with a most similar local context
a stronger role. These values are represented by
senses(ws) andqweight = current length

original length :

score(ct, ws, q)

= pocc(ws, q) ∗ cwsr(ct, ws) ∗ qweight

senses(ws)

The scores are summed with:

sumtype(ct) =
∑
q

∑
ws

score(ct, ws, q)

whereq ranges over all queries for a type(type) of
selector, andws ranges over all selectors acquired
with queryq.

Overall, the algorithm gives a score to each
sense by combining the normalized sums from all
types of the selectors:

Score(ct) =
∑
type

sumtype(ct)
max
c∈wt

[sumtype(c)]
∗ scaletype

wheretyp ranges over a type of selector (target,
noun context, verb context, adjective context, pro
context),c ranges over all senses of the target word
(wt), andscaletype is a constant for each type of
selector. We experimented with different values
over 60 instances of the corpus to decide on a scale
value of 1 fortarget selectors, a value of 0.5 for
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noun and verbcontext selectors, and a value of
0.1 for adjective and procontext selectors. This
weights the scores that come from target selectors
equal to that of noun and verb context selectors,
while the adjective and pro selectors only play a
small part.

Finally, the senses are sorted based on their
Score, and we implement the most frequent sense
heuristic as a backoff strategy. All those senses
within 5% of the top sense’sScore, are re-sorted,
ranking those with lower sense numbers in Word-
Net higher. The highest ranking sense is taken to
be the predicted sense.

3.3 Similarity Measure

We use the notion that similarity is a specific type
of relatedness (Rada et al., 1989; Patwardhan et
al., 2003). For our purposes, asimilarity measure
is used for nouns which may take the place of a
target word within its local context, while words
which commonly appear in other parts of the local
context are measured byrelatedness. In particular,
thesimilarity measure places emphasis strictly on
the is-a relationship. As an example, “bottle” and
“water” are related but not similar, while “cup”
and “bottle” aresimilar. Because of this distinc-
tion, we would classify our path-based measure as
asimilarity measure.

A well known problem with path-based mea-
sures is the assumption that the links between con-
cepts are all uniform (Resnik, 1999). As a re-
sponse to this problem, approaches based on in-
formation content are used, such as (Resnik, 1999;
Jiang and Conrath, 1997; Lin, 1997). These mea-
sures still use theis-a relationship in WordNet, but
they do not rely directly on edges to determine the
strength of a relationship between concepts. (Pat-
wardhan et al., 2003) shows that measures based
on information content or even gloss based mea-
sures generally perform best for comparing a word
with other words in its context for word sense dis-
ambiguation. However, these measures may not
be as suited for relating one word to other words
which may replace it (target selectors). Therefore,
our similarity measure examines the use of links in
WordNet, and attempts to deal with the uniformity
problem by normalizing depths based on average
leaf node depth.

All types of relatedness measures return a value
representing the strength of the relation between
the two concepts. These values usually range be-

tween 0 and 1. Note that concepts are not the
same as words, and the example above assumes
one chooses the sense of “water” as a liquid and
the sense of “bottle” and “cup” as a container. Our
similarity measure is based on finding the normal-
ized depth (nd) of a concept (c) in the WordNet
Hierarchy:

nd(c) =
depth(c)
ald(c)

Wheredepthis the length from the concept to the
root, andald returns the average depth of all de-
scendants (hyponyms) that do not have hyponyms
themselves (average leaf depth):

ald(c) =

∑
L∈lnodes(c) depth(l)

|lnodes(c)|
To be clear,lnodes returns a list of only those
nodes without hyponyms that are themselves hy-
ponyms ofc. We chose to only use the leaf depth
as opposed to all depths of descendants, because
ald produces a value representing maximum depth
for that branch in the tree, which is more appropri-
ate for normalization.

Like other similarity measures, for any two con-
cepts we compute the lowest (or deepest) common
subsumer,lcs, which is the deepest node in the hi-
erarchy which is a hypernym of both concepts. The
similarity between two concepts is then given by
the normalized depth of theirlcs:

sim(c1, c2) = nd(lcs(c1, c2))

Thus, a concept compared to itself will have a
score of 1, while the most dissimilar concepts will
have a score of 0. Following (Wu and Palmer,
1994; Lin, 1997) we scale the measure by each
concept’snd as follows:

scaled sim(c1, c2) =
2 ∗ sim(c1, c2)
nd(c1) + nd(c2)

where ournormalized depthreplaces thedepthor
information contentvalue used by the past work.

4 Evaluation

We evaluated our algorithm using the SemEval
2007 coarse-grained all-words task. In order to
achieve a coarse grained sense inventory WordNet
2.1 senses were manually mapped to the top-level
of the Oxford Dictionary of English by an expert
lexicographer. This task avoids the issues of a fine
granular sense inventory, which provides senses
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type insts avgSels
target 1108 68.5

noun context 1108 68.5
verb context 591 70.1
adj context 362 37.3
pro context 372 31.9

Table 1: Total word instances for which selectors
were acquired (insts), and average number of se-
lectors acquired for use in each instance (avgSels).

that are difficult even for humans to distinguish.
Additionally, considering how recent the event oc-
curred, there is a lot of up-to-date data about the
performance of other disambiguation systems to
compare with. (Navigli et al., 2007)

Out of 2269 noun, verb, adjective, or adverb in-
stances we are concerned with disambiguating the
1108 noun instances from the 245 sentences in the
corpus . These noun instances represent 593 differ-
ent words. Since we did not use the coarse-grained
senses within our algorithm, the predicted senses
were correct if they mapped to the correct coarse-
grained sense. The average instance had 2.5 possi-
ble coarse-grained senses. The average number of
selectors acquired for each word is given in Table
1. The bottom of Table 2 shows the random base-
line as well as a baseline using the most frequent
sense (MFS) heuristic. As previously mentioned,
many supervised systems only perform marginally
better than the MFS. For the SemEval workshop,
only 6 of 15 systems performed better than this
baseline on the nouns (Navigli et al., 2007), all of
which used MFS as a back off strategy and an ex-
ternal sense tagged data set. Our results are pre-
sented as precision (P), recall (R), and F1 value
(F1 = 2 ∗ P∗R

P+R ).

4.1 Results and Discussion

Table 2 shows the results when using various simi-
larity for the target selectors. We selected gloss-
based measures (Banerjee and Pedersen, 2003;
Patwardhan et al., 2003) due to the need for han-
dling multiple parts of speech for thecontext se-
lectors. Functionality for our use of many dif-
ferent relatedness measurements was provided by
WordNet::Similarity (Pedersen et al., 2004). Our
method performs better than the MFS baseline,
and clearly better than the random baseline. As
one can see, thescaled sim (path2) similarity
measure along with the gloss based relatedness

gloss1 gloss2
path1 78.8 78.3
path2 80.2 78.6
path3 78.7 78.6
IC1 78.6 79.3
IC2 78.5 79.2
IC3 78.0 78.1

gloss1 78.4 80.0
gloss2 78.6 78.9

MFS baseline 77.4
random baseline 59.1

Table 2: Performance of our method, given by F1
values (precision = recall), with various similarity
measures fortarget selectors: path1= sim (nor-
malized depth),path2 = scaledsim, path3 = (Wu
and Palmer, 1994),IC1 = (Resnik, 1999),IC2 =
(Lin, 1997),IC3 = (Jiang and Conrath, 1997), and
relatedness measures forcontext selectors: gloss1
= (Banerjee and Pedersen, 2003),gloss2= (Pat-
wardhan et al., 2003). Baselines:MFS = most fre-
quent sense,random = random choice of sense.

measure of (Banerjee and Pedersen, 2003) gave
the best results. Note that the path-based and in-
formation content measures, in general, performed
equally.

We experimented with using the gloss-based re-
latedness measures in place of similarity measures.
The idea was that one measure could be used for
both target selectors and context selectors. As one
can gather from the bottom of table 2, for the most
part, the measures performed equally. The experi-
mental runtime of the path-based and information
content measures was roughly one-fourth that of
the gloss-based measures.

Table 3 presents results from experiments where
we only attempted to annotate instances with over
a minimum number of target selectors (tMin) and
context selectors (cMin). We use steps of four for
target selectors and steps of ten for context selec-
tors, reflecting a ratio of roughly 2 target selectors
for every 5 context selectors. It was more common
for an instance to not have any target selectors than
to not have context selectors, so we present results
with only a tMin or cMin. The main goal of these
experiments was simply to determine if the algo-
rithm performed better on instances that we were
able to acquire more selectors. We were able to see
this was the case as the precision improved at the
expense of recall from avoiding the noun instances
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tMin cMin A P R F1

0 0 1108 80.2 80.2 80.2
4 0 658 84.4 50.1 62.9

16 0 561 85.2 43.1 57.2
0 10 982 81.1 71.9 76.2
0 40 908 81.3 66.6 73.3
4 10 603 85.4 46.4 60.1
8 20 554 85.3 42.6 56.9

12 30 516 86.4 40.2 54.9
16 40 497 86.5 38.8 53.5

Table 3: Number attempted (A), Precision (P),
Recall (R) andF1 values of our method with re-
strictions on a minimum number of target selectors
(tMin ) and context selectors (cMin ).

sel noMFS 1SPD
80.2 79.6 79.8

Table 4: Results of a variety of experiments using
path2andgloss1from the previous table.noMFS
= no use of most frequent sense,1SPD= use of 1
sense per discourse.

that did not have many selectors.
Table 4 shows the results when we modify the

method in a few ways. All these results use
the path2 (scaledsim) and gloss1 (Banerjee and
Pedersen, 2003) measures. The results of Ta-
ble 2 include first sense heuristic used as a back-
off strategy for close calls, when multiple senses
have a score within0.05 of each other. There-
fore, we experiment without this heuristic pre-
sented asnoMFS, and found our method still per-
forms strongly. We also implemented one sense
per discourse, reported as1SPD. Our experimental
corpus had five documents, and for each document
we calculated the most commonly predicted sense
and used that for all occurrences of the word within
the document. Interestingly, this strategy does not
seem to improve the results in our method.

4.2 Comparison with other systems

Table 5 shows the results of our method (sel) com-
pared with a few systems participating in the Se-
mEval coarse-grained all-words task. These re-
sults include the median of all participating sys-
tems, the top system not using training data (UPV-
WSD) (Buscaldi and Rosso, 2007), and the top
system using training data (NUS-PT) (Chan et
al., 2007). The best performance reported on the

sel med UPV-WSD NUS-PT SSI
80.2 71.1 79.33 82.31 84.12

Table 5: Comparison of noun F1 values with
various participants in the SemEval2007 coarse-
grained all-words task.

nouns for the SemEval coarse-grained task, was
actually from a system by the authors of the task
(SSI) (Navigli and Velardi, 2005). All systems
performing better than the MFS used the heuris-
tic as a backoff strategy when unable to output a
sense (Navigli et al., 2007). Also, the systems per-
forming better than ours (including SSI) used more
sources of sense annotated data.

5 Conclusion

We have presented a method for acquiring knowl-
edge from the Web for noun sense disambiguation.
Rather than searching the web with pre-chosen rel-
atives, we search with a string representing the lo-
cal context of a target word. This produces a list
of selectors, words which may replace the target
word within its local context. The selectors are
then compared with the senses of the target word
via similarity and relatedness measures to choose
the correct sense. By searching with context in-
stead of simply relatives, we are able to insure
more relevant results from the web. Additionally,
this method has an advantage over methods which
use relatives and context in that it does not restrict
the results to include pre-chosen words.

We also show that different types of similarity
and relatedness measures are appropriate for dif-
ferent roles in our disambiguation algorithm. We
found a path-based measure to be best withtar-
get selectorswhile a slower gloss-based method
was appropriate forcontext selectorsin order to
handle multiple POS. For many tasks, information
content based measures perform better than path-
based measures. However, we found a path-based
measure to be just as strong if not stronger in our
approach.

Results of our evaluation using the SemEval
coarse-grained all-words task showed strength in
the use of selectors from the Web for disambigua-
tion. Our system was out-performed only by sys-
tems using training data or substantially more an-
notated data. Future work may improve results
through the use of sense tagged corpora, a gram-
matical parse, or other methods commonly used in
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WSD. Additionally, better precision was achieved
when requiring a minimum number of selectors,
giving promise to improved results with more
work in acquiring selectors. This paper has shown
an effective and novel method of noun sense dis-
ambiguation through the use of selectors acquired
from the web.
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Abstract 

Catchwords refer to those popular words 
or phrases in a time period. In this paper, 
we propose a novel approach for 
automatic extraction of Chinese 
catchwords. By analyzing features of 
catchwords, we define three aspects to 
describe Popular Degree of catchwords. 
Then we use curve fitting in Time Series 
Analysis to build Popular Degree Curves 
of the extracted terms. Finally we give a 
formula that can calculate Popular 
Degree values of catchwords and get a 
ranking list of catchword candidates. 
Experiments show that the method is 
effective. 

1 Introduction 

Generally, a catchword is a term which 
represents a hot social phenomenon or an 
important incident, and is paid attention by 
public society within certain time period. On the 
one hand, catchwords represent the mass value 
orientation for a period. On the other hand, they 
have a high timeliness. Currently, there are quiet 
a few ranking and evaluations of catchwords 
every year in various kinds of media. Only in 
year 2005, tens of Chinese organizations 
published their ranking list of Chinese 
catchwords.  

Catchwords contain a great deal of 
information from any particular area, and such 
words truly and vividly reflect changes of our 
lives and our society. By monitoring and analysis 
of catchwords, we can learn the change of public 
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sa/3.0/). Some rights reserved. 

attention in time. In addition, we may detect the 
potential changes of some linguistic rules, which 
can help establish and adjust state language 
policies. 

Currently, two kinds of approaches are 
adopted to evaluate catchwords. One is by CTR 
(Click-Through Rate) or retrieval times, but the 
limitation is that it is just based on frequency, 
which is only one feature of catchwords. The 
other is by manual evaluation, but it depends on 
their subjective judgment to a large extent. In this 
paper, we propose a novel approach that can 
automatically analyze and extract Chinese 
catchwords. By analyzing sample catchwords 
and finding out their common features, we 
provide a method to evaluate the popular degree. 
After ranking, terms that have high values are 
picked out as catchword candidates.  

The rest of the paper is organized as follows. 
In Section 2, we discuss about the linguistic basis 
of catchword judgment. In Section 3, we describe 
the extraction method in detail. In Section 4, we 
present the experimental results as well as some 
discussions. Finally, we give the conclusion and 
future work in Section 5. 

2 Linguistic basis 

The popularity of a word or phrase contains two 
factors: time and area, namely how long it lasts 
and how far it spreads. But neither of them have 
definite criterion. 

2.1 Linguistic definition of catchword 

Many researches of catchwords come from pure 
linguistic areas. Wang (1997) proposed that 
catchwords, which include words, phrases, 
sentences or special patterns, are a language form 
in certain times and among certain groups or 
communities. Guo (1999) specified that 
catchwords are popular words, which are widely 
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used in certain period of time among certain 
groups of people. To sum up, catchwords are a 
language form spreading quickly within certain 
area in certain period of time. 

According to Zipf’s Law (Zipf, 1949), the 
word that has a higher usage frequency is shorter 
than others. Catchwords also follow this 
principle: most catchwords are words and 
phrases instead of sentences and longer language 
units, which are more difficult to extract 
automatically. In the paper, we focus on 
catchwords as words and phrases. 

2.2 Features of catchword 

Some features of catchwords have been proposed, 
but there have been few research to quantify and 
weigh the features. Zhang (1999) proposed a 
method to judge catchwords by weighing 
Circulating Degree of catchwords, which are 
based on Dynamic Circulating Corpus. But the 
corpus construction and the judgment still 
depend on manual efforts. 

By analyzing usage frequency of catchwords, 
we find that being a language phenomenon 
within a period of time, a catchword has two 
features: one is high usage frequency, namely a 
catchword is frequently used in certain period of 
time; the other is timeliness, namely this 
situation will lasts for some time. Our 
quantification method is based on these features. 

3 Extraction Method 

In this section, the extraction method is described 
in detail. After term extraction, the features of 
terms are weighed by time series analysis. The 
algorithm in section 3.4 shows the process to 
extract catchword candidates. 

3.1 Term Extraction 

Catchwords are words or phrases with maximal 
meanings, most of which are multi-character 
words or phrases. Word segmentation has a low 
discrimination for long phrases, while term 
extraction has a better way to extract them. 
Zhang (2006) proposed a new ATE algorithm, 
which is based on the decomposition of prime 
string. The algorithm evaluates the probability of 
a long string to be a term by weighing relation 
degree among sub-strings within the long string. 
The algorithm can raise the precision in 
extracting multi-character words and long 
phrases. In this paper, we use this method to 
extract terms. 

3.2 Popular Degree Curve 

For extracted terms, a time granularity should be 
defined to describe their features. We select 
‘day’ as the time granularity and get every day’s 
usage frequency for each term in one year. These 
can be described as a time series like below: 

{ }1 2, ,..., ,...,w w w wt wC c c c c= n           (1) 

wC  is the time series of term w.  is the 
usage frequency of term w in the day t. n is the 
number of observation days.  

wtc

As a latent knowledge, two features of 
catchwords mentioned in section 2.2 exist in 
their time series. The effective method to find out 
the latent knowledge in the time series is Time 
Series Analysis, which includes linear analysis 
and nonlinear analysis. As the time series of 
terms belong to nonlinear series, we use 
nonlinear analysis to deal with them. 

After getting usage frequency, we use SMA 
(Simple Moving Average) method to eliminate 
the random fluctuation of series . The 
formula is as follows: 

wC

( )
1

m

w t m j
j

wt

c
c

m

− +
==
∑

                   (2) 

wtc  is the smoothed usage frequency of term 
w in the day t and m is the interval. In SMA 
method, a short interval has a little effect, while a 
long one may result in low accuracy. So we 
should specify a proper interval. Through 
experiments we find that an appropriate interval 
is between 10 and 20. Smoothed time series is as 
follows: 

{ }1 2, ,..., ,...,w w w wt wC c c c c= n          (3) 
Smoothed time series of terms can be 

described as curves, in which the coordinate x is 

day t and coordinate y is wtc . Through these 
curves we can see that, catchwords appear in 
certain period of time and its usage frequency 
increases in this period. After reaching the 
highest point, usage frequency of catchwords 
decrease slowly. We call this process Popular 
Degree, which contains three aspects: 

1) Popular Trend: the increasing process of 
usage frequency; the more obviously the popular 
trend changes, the higher the popular degree is. 

2) Peak Value: maximum usage frequency 
within certain period of time; the larger the peak 
value is, the higher the popular degree is. 
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3) Popular Keeping: the decreasing process of 
usage frequency; the more gently the popular 
keeping changes, the higher the popular degree is. 

Three aspects above determine popular degree 
of catchwords. Figure 1 shows the smoothed 
time series curve of the catchword ‘苏丹红 2 ’  
evaluated in year 2005: 

 
Figure 1. Smoothed time series curve of 

the catchword ‘苏丹红’ 

To the catchword ‘苏丹红’, its Popular Trend 
changes obviously and its Popular Keeping 
changes gently. Meanwhile, its Peak Value is 
relatively higher than those of most catchwords. 
So the catchword ‘苏丹红’ has a high Popular 
Degree. 

According to three aspects of Popular Degree, 
smoothed time series curve is separated into two 
parts: one is ascending period, namely Popular 
Trend process; the other is descending period, 
namely Popular Keeping process. We use conic 
fitting to deal with two parts of series. A conic’s 
formula is like below: 

2Y a bt ct= + +                             
According to least square method, a standard 

equation that can deduce three parameters a, b 
and c is as follows: 

2

2

2 2 3

 

 

 

Y na b t c t

tY a t b t c t

t Y a t b t c t
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∑ ∑ ∑ ∑
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4
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Assume TS is the starting time, TE is the ending 
time, and TM is the time that time series curve 
reaches the highest point. According to conic 
fitting method we can get curves of ascending 
and descending period. Formulas of two conics 
are as follows: 

2

2

( )           

( )        
S

M E

u a bu cu T t T

v a b v c v T t T

ϕ

ψ

⎧ = + + ≤ ≤⎪
⎨

′ ′ ′= + + ≤ ≤⎪⎩
     (4)  

                                                 
2 苏丹红 means Sudan red in English. 

Variable u and v are usage frequency of a term 
in a day, ( )uϕ  is the formula of ascending curve, 
and ( )vψ  is the formula of descending curve. The 
curve described by equation (4) is called Popular 
Degree Curve. Figure 2 shows the Popular 
Degree Curve of the catchword ‘苏丹红’: 

 Figure 2. Popular Degree Curve of 
the catchword ‘苏丹红’ 

3.3 Popular Degree Value 

The decision of catchwords is based on three 
aspects of Popular Degree described in section 
3.2. We propose a formula to calculate Popular 
Degree values of terms. After getting the values, 
a ranking list by inverse order is established. The 
Popular Degree of a catchword is in the direct 
ratio to its place in the ranking list. The formula 
is as follows: 

( ) ( ) ( ) ( )PD w PT w PV w PK w= × ×        (5) 
PD(w) is the Popular Degree value of the 

catchword w. PT(w) is the Popular Trend value 
of w: 

( ) ( )( )
( )

M S

M

T TPT w
T

ϕ ϕα
ϕ

−
= i                  (6) 

α is the adjusting parameter of Popular Trend. 
The formula indicates that PT(w) is related to 
changing process of Popular Degree Curve. 
PV(w) is the Peak Value of w: 

{ }
{ } { }

max
( ) 1 max max

wt

wt wt
ww

c
PV w

c c
N

β=
+∑

i  (7) 

β is the adjusting parameter of Peak Value. 
The formula indicates that PV(w) is related to the 
maximum usage frequency of w. PK(w) is the 
Popular Keeping value of w: 

( ) ( )( ) 1
( )

M E

M

T TPK w
T

ψ ψγ
ψ

⎛ ⎞−
= −⎜ ⎟

⎝ ⎠
i            (8) 

γ is the adjusting parameter of Popular 
Keeping. The formula indicates that PK(w) is 
related to changing process of Popular Degree 
Curve. Parameter α, β and γ control proportion 
of three aspects in Popular Degree value. 
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All extracted terms are ranked according to 
their Popular Degree values. Terms that have 
high scores are picked out as catchword 
candidates. 

3.4 Algorithm 

The algorithm of automatic catchwords 
extraction is described below: 

 
Algorithm Extracting catchwords 
Input text collections 
Output ranking list of catchword candidates 
Method 
1) use ATE algorithm mentioned in section 3.1 to 
extract terms 
2) filter terms that contains numbers and 
punctuations 
3) foreach term 
4)   calculate its smoothed time series by formula 

(2) 
5)   use conic fitting method in section 3.2 to get 

its Popular Degree Curve like equation (4) 
6)   use formula (5) ~ (8) to calculate its Popular 

Degree value 
7) rank all Popular Degree values from high to 
low 

4 Experimental Results and Analysis 

4.1 Text Collection 

In the experiment, we use 136,191 web pages 
crawled from Sina3’s news reports in year 2005 
including six categories: economy, science, 
current affairs, military, sports and entertainment. 
For the experimental purpose, we extract body 
content in every web page by using Noise 
Reducing algorithm (Shianhua Lin & Janming 
Ho, 2002). Totally, the extracted subset includes 
129,328 documents. 

4.2 Experiment settings 

In the experiment, several parameters should be 
settled to perform the catchwords extraction. 

·n  
A large time granularity may result in low 
accuracy for conic fitting. In this paper, we 
select ‘day’ as the time granularity. 
·m 
For the interval m in formula (2), a proper 
value should be specified to not only 
eliminate random fluctuation but also keep 

                                                 
3 http://www.sina.com.cn/ 

accuracy of data. In the experiment we find 
that the proper interval is between 10 and 20.  
·TS and TE

Catchwords have a high timeliness, so we 
should specify a time domain. By analysis of 
sample catchwords, we find that popular 
time domain for most of them approximately 
last for not more than 6 months. So we 
specify the time domain is n / 2. Thus the 
relationship among the starting time TS and 
the ending time TE is below: 

2S E
nT T= −  

As a proper example, the starting point can 
be 60 days away from the highest point. 
Thus the Popular Trend process and the 
Popular Keeping process both last for nearly 
3 months. So the relationship can be 
described as formulas below: 

4S M
nT T ⎡ ⎤= − ⎢ ⎥⎢ ⎥

,  
4E M
nT T ⎡ ⎤= + ⎢ ⎥⎢ ⎥

                

·α, β, γ 
To keep the Popular Degree values of 
catchwords within [0, 1], three adjusting 
parameters are satisfied to the inequation: 
0 , , 1α β γ< ≤ . 

Table 1 shows proper values of parameters as 
schema 1. We also give other schemas, which 
contain different values of parameters, to 
compare with the schema 1. In schema 2 to 
schema 4, default values of parameters are the 
same with schema 1. 

 
parameter Value 

n 365 
t [1, 365] 
m 15 
TS TM – ⎡ n / 4⎤ 
TE TM + ⎡ n / 4⎤ 
α 1 
β 1 
γ 1 

Table 1. parameters in schema 1 
 
schema 2: different m values 
schema 3: different values of TS and TE

schema 4: different values of α, β and γ 

4.3 Evaluation Measure 

Currently, there is no unified standard for 
catchword evaluation. In year 2005, NLRMRC 
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(National Language Resources Monitoring and 
Research Centre, held by MOE of China) had 
published their top 100 Chinese catchwords. We 
use co-occurrence ratio of catchwords for the 
evaluation. The formula of co-occurrence ratio is 
as follows: 

CNr
N

=  

N is the number of ranking catchwords. NC is 
the co-occurrence of catchwords, namely the 
number of catchwords which appear both in our 
approach and NLRMRC in top N. 

4.4 Results 

We use algorithm described in section 3.4 to get 
a ranking list of catchword candidates. 
According to ATE algorithm mentioned in 
section 3.1, we extract 966,532 terms. After 
filtering invalid terms we get 892,184 terms and 
calculate each term’s Popular Degree value. 
Table 2 - 5 shows the co-occurrence ratio with 
schema 1 - 4. 

N=20 N=40 N=60 N=80 N=100
7% 18% 36% 53% 66%

Table 2. Co-occurrence ratio using schema 1 

m N=20 N=40 N=60 N=80 N=100
5 3% 7% 16% 29% 45%
10 4% 11% 25% 44% 59%
20 7% 15% 32% 49% 63%
25 6% 14% 29% 46% 60%

Table 3. Co-occurrence ratio using schema 2 

TM - TS : 
TE - TM

N=20 N=40 N=60 N=80 N=100

1 : 4 0% 3% 8% 15% 22%
2 : 3 4% 14% 30% 49% 64%
3 : 2 5% 15% 33% 51% 63%
4 : 1 2% 5% 12% 21% 26%

Table 4. Co-occurrence ratio using schema 3 

 N=20 N=40 N=60 N=80 N=100
α=0.5 3% 9% 24% 42% 55%
α=0.8 6% 15% 31% 50% 64%
β=0.5 2% 6% 16% 37% 52%
β=0.8 5% 13% 29% 47% 59%
γ=0.5 3% 11% 26% 43% 57%
γ=0.8 6% 15% 32% 51% 62%

Table 5. Co-occurrence ratio using schema 4 

Table 2 shows the co-occurrence ratio of the 
catchwords extracted by our approach and 
NLRMRC in top N catchwords ranking list. It 
indicates that, when N is 100, co-occurrence of 
the catchwords reaches 66%; when N is lower, 

the ratio is also lower. On the one hand, we can 
see that our approach has a good effect on 
automatically extracting catchwords, closing to 
the result of manual evaluation with the 
increment of N. On the other hand, it proves that 
divergence exists between our approach and 
manual evaluation in high-ranking catchwords. 

Table 3 indicates that, the condition of m = 20 
has a better co-occurrence ratio in contrast with 
others in schema 2. It is because a short interval 
has a little effect, while a long one may result in 
low accuracy in SMA. 

Table 4 indicates that a better performance can 
be made when the proportion of TM - TS and TE - 
TM is close to 1:1. It proves that Popular Trend 
process is just as important as Popular Keeping 
process. Therefore the best time domain of these 
two processes are both n / 4.  

Three parameters can adjust the weights of PD, 
PV and PK in formula (5). Table 5 indicates that 
three factors above are all important for weighing 
a catchword, while β  is a little more important 
than α and γ. Therefore, maximum usage 
frequency of a catchword is a little more 
important than two other factors. 

From Table 2 – 5 we can see that, parameters 
in schema 1 is most appropriate for the 
evaluation. 

Table 6 shows the ranking list of top 10 
catchword candidates according to their Popular 
Degree values: 

candidates4 PD value 
苏丹红 0.251262 
超级女声 0.220975 
油价 0.213843 
纺织品谈判 0.196326 
TD-SCDMA 0.185691 
芙蓉姐姐 0.166730 
发现号 0.154803 
丁俊晖 0.137211 
六方会谈 0.121738 
猪链球菌 0.120667 

Table 6. Popular Degree values of Top 10 
catchword candidates 

                                                 
4  超级女声 means a talent show by Hunan Satellite. 

油价 means petroleum price 
纺织品谈判 means textile negotiation 
芙蓉姐姐 means a famous girl called sister lotus 
发现号 means STS Discovery OV-103 
丁俊晖 means a billiards player named Junhui Ding 
六方会谈 means Six-Party Talks 
猪链球菌 means swine streptococcus suis 
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4.5 Analysis 

In our experiment, Popular Values of some 
catchwords by manual evaluation are lower. By 
analyzing their time series curves, we find that 
usage frequencies of these terms are not high. 
We also find that these catchwords mostly have 
other expressions. Such as the catchword ‘社会

保障体系 5 ’ can be also called ‘社保体系 6 ’. 
These two synonyms are treated as one term in 
manual evaluation that corresponds to promote 
usage frequency. However, relationship between 
the two synonyms is not concerned in automatic 
extraction. They are treated as separate terms. So 
the Popular Degree Values of these two 
synonyms are not high either. It proves that parts 
of catchwords by manual evaluation are collected 
and generalized. A catchword should be treated 
not only as a separate word or a phrase, but also 
as a part of a word-cluster, which consist of 
synonymous words or phrases. Through word 
clustering method, we can get an increasing 
quantity of the co-occurrence of catchwords 
between our approach and manual evaluations. 

5 Conclusions 

Being as one aspect of dynamic language 
research, catchwords have a far-reaching 
significance for the development of linguistics. 
The paper proposes an approach that can 
automatically detect and extract catchwords. By 
analyzing evaluated catchwords and finding out 
their common feature called popular degree, the 
paper provides a method of popular degree 
quantification and gives a formula to calculate 
term’s popular degree value. After ranking, terms 
that have high values are picked out as 
catchword candidates. The result can be provided 
as a reference for catchword evaluation. 
Experiments show that automatic catchword 
extraction can promote the precision and 
objectivity, and mostly lighten difficulties and 
workload of evaluation. 

In the experiment, we also find that some 
catchwords are not isolated, but have a strong 
relationship and express the same meaning. In 
the future, we can unite all synonymous 
catchwords to a word cluster and calculate the 
cluster’s popular degree value. Thus we would 
be able to achieve a better performance for 
extraction. 

                                                 
5 社会保障体系 means social security system 
6 社保体系 is the abbreviation of 社会保障体系 
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Abstract

Pictorial communication systems convert

natural language text into pictures to as-

sist people with limited literacy. We define

a novel and challenging problem: picture

layout optimization. Given an input sen-

tence, we seek the optimal way to lay out

word icons such that the resulting picture

best conveys the meaning of the input sen-

tence. To this end, we propose a family

of intuitive “ABC” layouts, which organize

icons in three groups. We formalize layout

optimization as a sequence labeling prob-

lem, employing conditional random fields

as our machine learning method. Enabled

by novel applications of semantic role la-

beling and syntactic parsing, our trained

model makes layout predictions that agree

well with human annotators. In addition,

we conduct a user study to compare our

ABC layout versus the standard linear lay-

out. The study shows that our semantically

enhanced layout is preferred by non-native

speakers, suggesting it has the potential to

be useful for people with other forms of

limited literacy, too.

1 Introduction

A picture is worth a thousand words—especially

when you are someone with communicative dis-

orders, a foreign language speaker, or a young

child. Pictorial communication systems aim to au-

tomatically convert general natural language text

into meaningful pictures. A perfect pictorial

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

communication system can turn signs and opera-

tion instructions into easy-to-understand graphical

forms; combined with optical character recogni-

tion input, a personal assistant device could create

such visual translations on-the-fly without the help

of a caretaker. Pictorial communication may also

facilitate literacy development and rapid browsing

of documents through pictorial summaries.

Pictorial communication research is in its in-

fancy with a spectrum of experimental systems,

which we review in Section 2. At one end of

the spectrum, some systems render highly realis-

tic 3D scenes but require specific scene-descriptive

language. At the other end, some systems per-

form dictionary-based iconic transliteration (turn-

ing words into icons1 one by one) on arbitrary text

but the pictures can be hard to understand. We are

interested in using pictorial communication as an

assistive communication tool. Thus, our system

needs to be able to handle general text yet produce

easy-to-understand pictures, which is in the middle

of the spectrum. To this end, our system adopts

a “collage” approach (Zhu et al., 2007). Given a

piece of text (e.g., a sentence), it first identifies im-

portant and easy-to-depict words (or phrases) with

natural language processing (NLP) techniques. It

then finds one good icon per word, either from a

manually created picture-dictionary, or via image

analysis on image search results. Finally, it lays

out the icons to create the picture. Each step in-

volves several interesting research problems.

This paper focuses exclusively on the picture

layout component and addresses the following

question: Can we use machine learning and NLP

techniques to learn a good picture layout that im-

1In this paper, an icon refers to a small thumbnail image
corresponding to a word or phrase. A picture refers to the
overall large image corresponding to the whole text.
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proves picture comprehension for our target audi-

ences of limited literacy? We first propose a sim-

ple yet novel picture layout scheme called “ABC.”

Next, we design a Conditional Random Field-

based semantic tagger for predicting the ABC lay-

out. Finally, we conduct a user study contrasting

our ABC layout to the linear layout used in iconic

transliteration. The main contribution of this paper

is to introduce the novel task of layout prediction,

learned using linguistic features including Prop-

Bank role labels, part-of-speech tags, and lexical

features.

2 Prior Pictorial Communication Work

At one extreme, there has been significant prior

work on “text-to-scene” type systems, which were

often intended to aid graphic designers in placing

objects in a 3D environment. Example systems in-

clude NALIG (Adorni et al., 1983), SPRINT (Ya-

mada et al., 1992), Put (Clay and Wilhelms,

1996), and others (Brown and Chandrasekaran,

1981). Perhaps the best known system of this type,

WordsEye (Coyne and Sproat, 2001), uses a large

manually tagged collection of 3D polyhedral mod-

els to create photo-realistic scenes. Similarly, Car-

Sim (Johansson et al., 2005) can create animated

scenes, but operates exclusively in the limited do-

main of reconstructing road accidents from traffic

reports. These systems cater to detailed descriptive

text with visual and spatial elements. They are not

intended as assistive tools to communicate general

text, which is our goal.

Several systems (Zhu et al., 2007; Mihalcea and

Leong, 2006; Joshi et al., 2006) attempt to bal-

ance language coverage versus picture sophistica-

tion. They perform some form of keyword selec-

tion, and select corresponding icons automatically

from a 2D image database. The result is a pictorial

summary representing the main idea of the origi-

nal text, but precisely determining the original text

by looking at the picture can be difficult.

At the other extreme, augmentative and alterna-

tive communication software allows users to in-

put arbitrary text. The words, and sometimes

common phrases, are semi-automatically translit-

erated into icons, and displayed in sequential or-

der. Users must learn special icons, which corre-

spond to function words, before the resulting pic-

tures can be fully understood. Examples include

SymWriter (Widgit Software, 2007) and Blissym-

bols (Hehner, 1980).

Other than explicit scene-descriptive languages,

pictorial communication systems have not suffi-

ciently addressed the issue of picture layout for

general text. We believe a good layout can better

communicate the text a picture is trying to convey.

The present work studies the use of a semantically

inspired layout to enhance pictorial communica-

tion. For simplicity, we restrict our attention to the

layout of a single sentence. We anticipate the use

of text simplification (Chandrasekar et al., 1996;

Vickrey and Koller, 2008) to convert complex text

into a set of appropriate inputs for our system.

3 The ABC Layout

A good picture layout scheme must be intuitive to

humans and easy to generate by computers. To

design such a layout, we conducted a pilot study.

Five human annotators produced free-hand pic-

tures of many sentences. Analyzing these pictures,

we found a large amount of agreement in the use

of arrows to mark actions and to provide structure

to what would otherwise be a jumble of icons.

Motivated by the pilot study, we propose a sim-

ple layout scheme called ABC. It features three

positions, referred to as A, B, and C. In addition,

an arrow points from A through B to C (Figure 1).

These positions are meant to denote certain seman-

tic roles: roughly speaking, A denotes “who,” B

denotes “what action,” and C denotes “to whom,

for what.” Each position can contain any number

of icons, each representing a word or phrase in the

text. Words that do not play a significant role in

the text will be omitted from the ABC layout.

There are two main advantages of the ABC lay-

out:

1. The ABC positioning of icons allows users to

infer the semantic role of the corresponding con-

cepts. In particular, we found that verbs can be dif-

ficult to depict and understand without such hints.

The B position serves as an action indicator to dis-

ambiguate between multiple senses of the same

icon. For example, in Figure 1, the school bus icon

clearly represents the verb phrase “rides the bus,”

rather than just the noun “bus.”

2. Such a layout is particularly amenable to ma-

chine learning. Specifically, we can turn the prob-

lem of finding the optimal layout for an input sen-

tence into a sequence tagging problem, which is

well-studied in NLP.
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The girl rides the bus to school in the morning

O A B B B O C O O B

Figure 1: Example ABC picture layout, original

text, and tag sequence.

3.1 ABC Layout as Sequence Tagging

Given an input sentence, one can assign each word

a tag from the set {A, B, C, O}. The bottom row in
Figure 1 shows an example tag sequence. The tag

specifies the ABC layout position of the icon cor-

responding to that word. Tag O means “other” and

marks words not included in the picture. Within

each position, icons appear in the word order in the

input sentence. Therefore, a tag sequence uniquely

determines an ABC layout of the picture.

Finding the optimal ABC layout of the input

sentence is thus equivalent to computing the most

likely tag sequence given the input sentence. We

adopt a machine learning approach by training a

sequence tagger for this task. To do so, we need

to collect labeled training data in the form of sen-

tences with manually annotated tag sequences. We

discuss our annotation effort next, and present our

machine learning models in Section 4.

3.2 Human Annotated Training Data

We asked the five annotators to manually label 571

sentences compiled from several online sources,

including grade school texts about history and sci-

ence, children’s books, and recent news headlines.

Some sentences were written by the annotators and

describe daily activities. The annotators tagged

each sentence using a Web-based tool to drag-and-

drop icons into the desired positions in the layout2.

To gauge the quality of the manually labeled

data, and to understand the difficulty of the ABC

2The manual tagging actually employs a more detailed tag
set to denote phrase structure: Each A, B, or C tag is com-
bined with a modifier of b (begin phrase) or i (inside phrase).
For example, the phrase “rides the bus” in Figure 1 is tagged
with Bb Bi Bi, and shares one icon. The icons were also
manually selected by the annotator from a list of Web image
search results.

layout, we computed inter annotator agreement

among three of the five annotators on a common

set of 48 sentences. Considering all pair-wise com-

parisons of the three annotators, the overall aver-

age tag agreement was 77%. This measures the to-

tal number of matching tags (across all sentences)

divided by the total number of tags. Matching

strictly requires both the correct tag and the correct

modifier. We also computed Fleiss’ kappa, which

measures the degree of inter-annotator agreement

beyond the amount expected by chance (Fleiss,

1971). The values range from 0 to 1, with 1 indi-

cating perfect agreement. The kappa statistic was

0.71, which is often considered moderate to high

agreement.

Further inspection revealed that most disagree-

ment was due to annotators reversing A and C

tags. This could arise from interpreting passive

sentences in different ways or trying to represent

physical movement. For example, some annotators

found it more natural to depict eating by placing a

food item in A and the eater in C, treating the ar-

row as the transfer of food. It was also common for

annotators to disagree on whether certain adverbs

and time modifiers belong in B or in C. These dif-

ferences all suggest the highly subjective nature of

conceptualizing pictures from text.

4 A Conditional Random Field Model for
ABC Layout Prediction

We now introduce our approach to automatically

predicting the ABC layout of an input sentence.

While it was most natural for human annotators to

annotate text at the word level, early experiments

quickly revealed that predicting tags at this level is

quite challenging. Most of this stems from the fact

that human annotators tend to fragment the text

into many small segments based on the availability

of good icons. For example, the phrase “the white

pygmy elephant” may be tagged as “O A O A” be-

cause it is difficult for the annotator to find an icon

of this exact phrase or the word “pygmy,” but easy

to find icons of “white” and “elephant” separately.

Essentially, human annotation combines two tasks

in one: deciding where each phrase goes in the lay-

out, and deciding which words within a phrase can

be depicted with icons.

To rectify this situation, we make layout predic-

tions at the level of chunks (phrases); that is, we

automatically break the text into chunks, then pre-

dict one A, B, C, or O tag for each chunk. Since the
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tag choices made for different chunks may depend

on each other, we employ Conditional Random

Fields (CRF) (Lafferty et al., 2001), which are fre-

quently used in sequential labeling tasks like infor-

mation extraction. Our choice of chunking is de-

scribed in Section 4.1, and the CRF models and in-

put features are described in Section 4.2. The task

of deciding which words within a chunk should ap-

pear in the picture is addressed by a “word pictura-

bility” model, and is discussed in a separate paper.

For training, we automatically map the word-

level tags in our annotated data to chunk-level tags

based on the majority ABC tag within a chunk.

4.1 Chunking by Semantic Role Labeling

Ideally, we would like semantically coherent text

chunks to be represented pictorially in the same

layout position. To obtain such chunks, we lever-

age existing semantic role labeling (SRL) tech-

nology (Palmer et al., 2005; Gildea and Jurafsky,

2002). SRL is an active NLP task in which words

or phrases in a sentence are assigned a label indi-

cating the role they play with respect to a particu-

lar verb (also known as the target predicate). SRL

systems like FrameNet (Baker et al., 1998) and

PropBank (Palmer et al., 2005) aim to provide a

rich representation for applications requiring some

degree of natural language understanding, and are

thus perfectly suited for our needs. We shall fo-

cus on PropBank labels because they are easier to

use for our task. To obtain semantic role labels,

we use the automatic statistical semantic role la-

beler ASSERT (Pradhan et al., 2004), trained to

identify PropBank arguments through the use of

support vector machines and full syntactic parses.

To understand how SRL can be useful for deriv-

ing pictorial layouts, consider the sentence “The

boy gave the ball to the girl.” PropBank marks

the semantic role labels of the “arguments” of

verbs. The target verb “give” is part of the frameset

“transfer,” with core arguments “Arg0: giver” (the

boy), “Arg1: thing given” (the ball), and “Arg2:

entity given to” (the girl). Verbs can also in-

volve non-core modifier arguments, such as ArgM-

TMP (time), ArgM-LOC (location), ArgM-CAU

(cause), etc. The entities playing semantic roles

are likely to be entities we want to portray in a

picture. For PropBank, Arg0 often represents an

Agent, and Arg1 the Patient or Theme. If we could

map the different semantic role labels to ABC tags

with simple rules, then we would be done.

Unfortunately, it is not this simple, as Prop-

Bank roles are verb-specific. As Palmer et al.

pointed out, “No consistent generalizations can be

made across verbs for the higher-numbered argu-

ments” (Palmer et al., 2005). In the above exam-

ple, we might expect a layout rule of [Arg0]→A,
[Target, Arg1]→B, [Arg2]→C. However, this rule
does not generalize to other verbs, such as “drive,”

as in the sentence “The boy drives his parents

crazy,” which also has three core arguments “Arg0:

driver,” “Arg1: thing in motion,” and “Arg2: sec-

ondary predication on Arg1.” However, here the

action is figurative, and we would expect a lay-

out rule that puts Arg1 in position C: [Arg0]→A,
[Target]→B, [Arg1,Arg2]→C.
In addition, while modifier arguments have the

same meaning across verbs, their pictorial repre-

sentation may differ based on context. Consider

the sentences “Polar bears live in the Arctic.” and

“Yesterday at the zoo, the students saw a polar

bear.” In the former, a human annotator is likely

to place an icon for the ArgM-LOC “in the Arc-

tic” in position C (e.g., following a polar bear icon

in A and a house icon in B). However, the ArgM-

LOC in the second sentence, “at the zoo,” seems

more appropriately placed in position B since it de-

scribes where this particular action occurred.

Finally, the situation is further complicated

when a sentence contains multiple verbs. SRL

treats each verb in isolation, producing multiple

sets of role labels, yet our goal is to produce a sin-

gle picture. Clearly, the mapping from semantic

roles to layout positions is non-trivial. We describe

our statistical machine learning approach next.

4.2 Our CRF Models and Features

We use a linear-chain CRF as our sequence tag-

ging model. A CRF is a discriminative model of

the conditional probability p(y|x), where y is the

sequence of layout tags in Y ={A,B,C,O}, and x

is the sequence of SRL chunks produced by the

process described in Section 4.1. Our CRF has the

general form

p(y|x) =
1

Z(x)
exp





|x|
∑

t=1

K
∑

k=1

λkfk(yt, yt−1,x, t)





where the model parameters are {λk}. We

use binary features fk(yt, yt−1,x, t) detailed be-
low. Finally, we use an isotropic Gaussian prior

N(0, σ2I) on parameters as regularization.
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We explored three versions of the above model

by specializing the weighted feature function

λkfk(). Model 1 ignores the pairwise label poten-
tials and treats each labeling prediction indepen-

dently: λjk1{yt=j}fk(x, t), where 1{z} is an indi-

cator function on z. This is equivalent to a multi-

class logistic regression classifier. Model 2 resem-

bles a Hidden Markov Model (HMM) by factoring

pairwise label potentials and emission potentials:

λij1{yt−1=i}1{yt=j}+λjk1{yt=j}fk(x, t). Finally,
Model 3 has the most general linear-chain poten-

tial: λijk1{yt−1=i}1{yt=j}fk(x, t). Model 3 is the
most flexible, but has the most weights to learn.

We use the following binary predicate features

fk(x, t) in all our models, evaluated on each chunk
produced by the semantic role labeler:

1. PropBank role label(s) of the chunk (e.g., Tar-

get, Arg0, Arg1, ArgM-LOC). A chunk can have

multiple role labels if the sentence contains multi-

ple verbs; in this case, we merge the multiple SRL

results by taking their union.

2. Part-of-speech tags of all the words in the

chunk. All syntactic parsing results are obtained

from the Stanford Parser (Klein and Manning,

2003), using the default PCFG model.

3. Phrase type (e.g., NP, VP, PP) of the deepest

syntactic parse tree node covering the entire chunk.

We also include a feature indicating whether the

phrase is nested within an ancestor VP.

4. Lexical features: individual word identities in

the top 5000 most frequent words in the Google 1T

5gram corpus (Brants and Franz, 2006). For other

words, we use their automatically predicted Word-

Net supersenses (Ciaramita and Altun, 2006). Su-

persenses are 41 broad semantic categories (e.g.,

noun.location, verb.communication). By dividing

lexical features in this way, we hope to learn spe-

cific qualities of common words, but generalize

across rarer words.

We also experimented with features derived

from typed dependency relations, but these did not

improve our models. We suspect the PropBank

role labels capture much of the same information.

In addition, the Google 5000-word list was the best

among several word lists that we explored for split-

ting up the lexical features.

4.3 CRF Experimental Results

We trained our CRF models using the MAL-

LET toolkit (McCallum, 2002). Our complete

dataset consists of the 571 manually annotated sen-
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Figure 2: 5-fold cross validation results for dif-

ferent values of the regularization parameter (vari-

ance σ2) and three CRF models predicting A, B,

C, or O layout tags.

tences (tags mapped to chunk-level). The only

tuning parameter is the Gaussian prior variance,

σ2. We performed 5-fold cross validation, vary-

ing σ2 and comparing performance across models.

Figure 2 demonstrates that peak per-chunk accu-

racy (77.6%) and macro-averaged F1 scores are

achieved using the most general sequence labeling

model. As a result, the user study in the next sec-

tion is based on layouts predicted by Model 3 with

σ2 = 1.0, trained on all the data.
To understand which features contribute most

to performance, we experimented with removing

each of the four types (individually). Peak accu-

racy drops the most when lexical features are re-

moved (76.4%), followed by PropBank features

(76.5%), phrase features (76.9%), and POS fea-

tures (77.1%).

The features in the final learned model make in-

tuitive sense. It prefers tag transitions A→B and
B→C, but not A→C or C→A. The model likes the
word “I” and noun phrases (not nested in a verb

phrase) to have tag A. Verbs and ArgM-NEGs are

frequently tagged B, while noun.object’s, Arg4s,

and ArgM-CAUs are typically C. The model dis-

courages Arg0s and conjunctions in B, and dislikes

adverbial phrases and noun.time’s in C.

While 77.6% cross validation accuracy may

seem low, it is in fact close to the 81% inter an-

notator agreement3, and thus close to optimal. The

confusion matrix (not shown) reveals that most er-

3The 81% agreement is on mapped chunk-level tags with-
out modifiers (Fleiss’ kappa 0.74), while the 77% agreement
in Section 3.2 is on word-level tags with modifiers.
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rors probably arise from disagreements in the in-

dividual annotators. The most common errors are

predicting B for chunks labeled O and confusing

tags B and C. Manually inspecting the pictures in

our training set shows that annotators often omit-

ted the verb (such as “is” or “has”) and left the B

position empty, since it could be inferred by the

presence of the arrow and the images in A and C.

Also, annotators tended to disagree on the location

of adverbial expressions, dividing them between

positions B and C. Finally, only 3.3% of chunks

were incorrectly omitted from the pictures. There-

fore, we conclude that our CRFmodels are capable

of predicting the ABC layouts.

5 User Study

We have proposed the ABC layout, and showed

that we can learn to predict it reasonably well. But

an important question remains: Can the proposed

ABC layout help a target audience of limited lit-

eracy understand pictures better, compared to the

linear layout used in state-of-the-art augmentative

and alternative communication software? We de-

scribe a user study as our first attempt to answer

this question. This line of work has two main chal-

lenges: one is the practical difficulty of working

with human subjects of limited literacy; the other is

the lack of a quantitative measure of picture com-

prehension.

[Subjects]: To partially overcome the first chal-

lenge, we recruited two groups of subjects with

medium and high literacy respectively, in hopes

of extrapolating our findings towards the low lit-

eracy group. Specifically, the medium group con-

sisted of seven non-native English speakers who

speak some degree of English—“medium literacy”

refers to their English fluency; twelve native En-

glish speakers comprised the high literacy group.

All subjects were adults and did not include the

authors of this paper or the five annotators. The

subjects had no prior exposure to pictorial com-

munication systems.

[Material]: We randomly chose 90 test sen-

tences from three sources4 representing our

target application domains: short narratives

written by and for individuals with commu-

nicative disorders (symbolworld.org);

one-sentence news synopses written in simple

English targeting foreign language learners

(simpleenglishnews.com); and the child

4Distinct from the sources of the 571 training sentences.

writing sections of the LUCY corpus (Sampson,

2003). We created two pictures for each test

sentence: one using a linear layout and one

using an ABC layout. For the linear layout,

we used SymWriter. Typing text in SymWriter

automatically produces a left-to-right sequence

of icons, chosen from an icon database. In cases

where SymWriter suggests several possible icons

for a word, we manually selected the best one. For

words not in the database, we found appropriate

thumbnail images using Web image search. This

is how a typical user would use SymWriter. To

produce the ABC layout, we applied the trained

CRF tagger Model 3 to the test sentence. After

obtaining A, B, C, and O tags for text chunks, we

placed the corresponding icons (from SymWriter’s

linear layout) in the correct layout positions. Icons

for words tagged O did not appear in the ABC

version of the picture. Aside from this difference,

both pictures of each test sentence contained

exactly the same icons—the only difference was

the layout.

[Protocol]: All 19 subjects observed each of

the 90 test sentences exactly once: 45 with the

linear layout and 45 with the ABC layout. The

layouts and the order of sentences were both ran-

domized throughout the sequence, and the subjects

were counter-balanced so each sentence’s linear

and ABC layouts were viewed by roughly equal

numbers of subjects. At the start of the study,

each subject read a brief introduction describing

the task and saw an example of each layout style.

Then for each test sentence, we displayed a pic-

ture, and the subject typed a guess of the underly-

ing sentence. Finally, the subject provided a confi-

dence rating (2=“almost sure,” 1=“maybe correct,”

or 0=“no idea”). We measured response time as

the time from image display until sentence/rating

submission. Figure 3 shows a test sentence in both

layouts, together with several subjects’ guesses.

[Evaluation metrics]: As noted above, the

second main challenge is measuring picture

comprehension—we need a way to compare the

original sentences with the subjects’ guesses. In

many ways, this is like machine translation (via

pictures), so we turned to two automatic eval-

uation metrics: BLEU-1 (Papineni et al., 2002)

and METEOR (Lavie and Agarwal, 2007). BLEU-1

computes unigram precision (i.e., fraction of re-

sponse words that exactly match words in the orig-

inal), multiplied by a brevity penalty for omit-
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“we sing a song about a farm.”

“i sing about the farm and animals”

“we sang for the farmer and he gave us animals.”

“Someone went to his grandfather’s farm
and played with the animals”

“i can’t sing in the choir because i have to tend
to the animals.”

“twins sing old macdonald has a farm”

“they sang about a farm”

“they sing old mcdonald had a farm.”

“we have a farm with a sheep, a pig and a cow.”

“two people sing old mcdonald had a farm”

“we sang old mcdonald on the farm.”

“they both sing ‘old macdonald had a farm’.”

Figure 3: The linear and ABC layout pictures for the test sentence “We sang Old MacDonald had a

farm.” and some subjects’ guesses. Note the predicted ABC layout omits the ambiguous “had” icon.

ting words. In contrast, METEOR finds a one-to-

one word alignment between the texts that allows

partial matches (after stemming and by consider-

ing WordNet-based synonyms) and optionally ig-

nores stop words. Based on this alignment, uni-

gram precision, recall, and weighted F measure are

computed, and the final METEOR score is obtained

by scaling F to account for word-order preserva-

tion. We computed METEOR using its default pa-

rameters and the stop word list from the Snowball

project (Porter, 2001).

[Results]: We report average METEOR and BLEU

scores, confidence ratings, and response time for

the 4 conditions (native vs. non-native, ABC vs.

linear) in Table 1. The most striking observation

is that native speakers perform better (in terms of

METEOR and BLEU) with the linear layout, while

non-native speakers do better with ABC. 5

To explain this finding, it is worth noting that

SymWriter pictures include function words, whose

icons are abstract but distinct. We speculate that

even though none of our subjects were trained to

recognize these function-word icons, the native

speakers are more accustomed to the English syn-

tactic structure, so they may be able to transliter-

ate those icons back to words. In an ABC lay-

5Using a Mann-Whitney rank sum test, the difference in
native speakers’ METEOR scores is statistically significant
(p = 0.003), though the other differences are not (native
BLEU, p = 0.085; non-native METEOR, p = 0.172; non-
native BLEU, p = 0.170). Nevertheless, we observe some
evidence to support our hypothesis that non-native speak-
ers benefit from the ABC layout, and we intend to conduct
follow-up experiments to test the claim further.

Non-native Native

ABC Linear ABC Linear

METEOR 0.1975 0.1800 0.2955 0.3335

BLEU 0.1497 0.1456 0.2710 0.3011

Conf. 0.50 0.47 0.90 0.89

Time 47.4s 47.8s 38.1s 38.6s

Table 1: User study results.

out, the sentence order is mostly removed, and

some phrases might be omitted due to the O tag.

Thus native speakers do not get as many syntactic

hints. On the other hand, non-native speakers do

not have the same degree of built-in English syn-

tactic knowledge. As such, they do not gain much

from seeing the whole sentence sequence includ-

ing function-word icons. Instead, they may have

benefited from the ABC layout’s added organiza-

tion and potential exclusion of irrelevant icons.

If this reasoning holds, it has interesting impli-

cations for viewers who have lower English liter-

acy: they might take away more meaning from a

semantically structured layout like ABC. Verifying

this is a direction for future work.

Finally, it is interesting that all subjects feel

more confident in their responses to ABC layouts

than linear layouts, and, despite their added com-

plexity, ABC layouts do not require more response

time than linear layouts.
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6 Conclusions

We proposed a semantically enhanced picture lay-

out for pictorial communication. We formulated

our ABC layout prediction problem as sequence

tagging, and trained CRF models with linguistic

features including semantic role labels. A user

study indicated that our ABC layout has the poten-

tial to facilitate picture comprehension for people

with limited literacy. Future work includes incor-

porating ABC layouts into our pictorial communi-

cation system, improving other components, and

verifying our findings with additional user studies.
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Abstract

We propose a data-driven method for au-
tomatically analyzing the morphology of
ancient Greek. This method improves on
existing ancient Greek analyzers in two
ways. First, through the use of a nearest-
neighbor machine learning framework, the
analyzer requires no hand-crafted rules.
Second, it is able to predict novel roots,
and to rerank its predictions by exploiting a
large, unlabelled corpus of ancient Greek.

1 Introduction

The civilization of ancient Greece, from which the
Western world has received much of its heritage,
has justly received a significant amount of schol-
arly attention. To gain a deeper understanding of
the civilization, access to the essays, poems, and
other Greek documents in the original language is
indispensable.

Ancient Greek is a highly inflected Indo-
European language1. A verb, for example, is in-
flected according to its person, number, voice,
tense/aspect and mood. According to (Crane,
1991), “a single verb could have roughly 1,000
forms, and, if we consider that any verb may be
preceded by up to three distinct prefixes, the num-
ber of forms explodes to roughly 5,000,000.” The
inflections are realized by prefixes and suffixes to

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1All Greek words are transcribed into the Roman alpha-
bet in this paper. The acute, grave and circumflex accents
are represented by diacritics, as inó, ò and õ, respectively.
Smooth breathing marks are omitted; rough breathing marks
are signalled byh. Underbars used ine ando represent eta
and omega.

the stem, and sometimes spelling changes within
the stem. These numerous forms can be further
complicated by accents, and by additional spelling
changes at morpheme boundaries for phonological
reasons. The overall effect can yield an inflected
form in which the root2 is barely recognizable.

Indeed, a staple exercise for students of ancient
Greek is to identify the root form of an inflected
verb. This skill is essential; without knowing the
root form, one cannot understand the meaning of
the word, or even look it up in a dictionary.

For Classics scholars, these myriad forms also
pose formidable challenges. In order to search for
occurrences of a word in a corpus, all of its forms
must be enumerated, since words do not frequently
appear in their root forms. This procedure be-
comes extremely labor-intensive for small words
that overlap with other common words (Crane,
1991).

Automatic morphological analysis of ancient
Greek would be useful for both educational and
research purposes. In fact, one of the first analyz-
ers was developed as a pedagogical tool (Packard,
1973). Today, a widely used analyzer is embed-
ded in the Perseus Digital Library (Crane, 1996),
an internet resource utilized by both students and
researchers.

This paper presents an analyzer of ancient Greek
that infers the root form of a word. It intro-
duces two innovations. First,it utilizes a nearest-
neighbor frameworkthat requires no hand-crafted
rules, and provides analogies to facilitate learning.

2The root is also called the “base” or “lexical look-up”
form, since it is the form conventionally used in dictionary en-
tries. For verbs in ancient Greek, the root form is the first per-
son singular present active indicative form. (cf. for English,
it is the infinitive.) For nouns, it is the nominative singular
form. For adjectives, it is the nominative singular masculine
form.
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Person/Num Form Person/Num Form
1st/singular lúo 1st/plural lúomen
2nd/singular lúeis 2nd/plural lúete
3rd/singular lúei 3rd/plural lúousi(n)

Table 1: Paradigm table for the present active in-
dicative verb. It uses as example the verblúo (“to
loosen”), showing its inflections according to per-
son and number.

Second, and perhaps more significantly,it exploits
a large, unlabelled corpus to improve the predic-
tion of novel roots.

The rest of the paper is organized as follows. We
first motivate these innovations (§2) and summa-
rize previous research in morphological analysis
(§3). We then describe the data (§4) and our adap-
tations to the nearest-neighbor framework (§5-6),
followed by evaluation results (§7).

2 Innovations

2.1 Use of Analogy and Nearest Neighbor

Typically, a student of ancient Greek is expected
to memorize a series of “paradigms”, such as the
one shown in Table 1, which can fill several pages
in a grammar book. Although the paradigm table
shows the inflection of only one particular verb,
lúo (“to loosen”), the student needs to apply the
patterns to other verbs. In practice, rather than ab-
stracting the patterns, many students simply mem-
orize these “paradigmatic” verbs, to be used as
analogies for identifying the root form of an un-
seen verb. Suppose the unseen verb isphéreis
(“you carry”); the reasoning would then be, “I
know thatlúeisis the second person singular form
of the rootlúo; similarly, phéreismust be the sec-
ond person singular form ofphéro.”

The use of analogy can be especially useful
when dealing with a large number of rules, for
example with the so-called “contract verbs”. The
stem of a contract verb ends in a vowel; when a
vowel-initial suffix is attached to the stem, spelling
changes occur. For instance, the stemplero- (“to
fill”) combined with the suffix -omen becomes
pler-oũ-men, due to interaction between two omi-
crons at the boundary. While it is possible to derive
these changes from first principles, or memorize
the rules for all vowel permutations (e.g., “o” + “ o”
= “oũ”), it might be easier to recall the spelling
changes seen in a familiar verb (e.g.,pleróo →
pleroũmen), and then use analogy to infer the root

of an unseen verb.
The nearest-neighbor machine learning frame-

work is utilized to provide these analogies. Given
a word in an inflected form (e.g.,phéreis), the algo-
rithm searches for the root form (phéro) among its
“neighbors”, by making substitutions to its prefix
and suffix. Valid substitutions are to be harvested
from pairs of inflected and root forms (e.g.,〈lúeis,
lúo〉) in the training set; these pairs, then, can serve
as analogies to reinforce learning.

Furthermore, these affix substitutions can be
learned automatically, reducing the amount of en-
gineering efforts. They also increase the trans-
parency of the analyzer, showing explicitly how it
derives the root.

2.2 Novel Roots

Ancient Greek, in its many dialects, has been
used from the time of Homer to the Middle
Ages, in texts of a wide range of genres. Even
the most comprehensive dictionaries do not com-
pletely cover its extensive vocabulary. To the best
of our knowledge, all existing analyzers for ancient
Greek require a pre-defined database of stems;
thus, they are likely to run into words with un-
known or novel roots, which they are not designed
to analyze.

Rather than expanding an existing database to
increase coverage, we create a mechanism to han-
dle all novel roots. Since words do not often appear
in their root forms, inferring a novel root from a
surface form is no easy task (Lindén, 2008). We
propose the use of unlabelled data to guide the de-
termination of a novel root.

3 Previous Work

After a brief discussion on morphological analysis
in general, we will review existing analyzers for
ancient Greek in particular.

3.1 Morphological Analysis

A fundamental task in morphological analysis is
the segmentation of a word into morphemes, that
is, the smallest meaningful units in the word. Un-
supervised methods have been shown to perform
well in this task. In the recent PASCAL challenge,
the best results were achieved by (Keshava and
Pitler, 2006). Their algorithm discovers affixes
by considering words that appear as substrings of
other words, and by estimating probabilities for
morpheme boundaries. Another successful ap-
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proach is the use of Minimum Description Length,
which iteratively shortens the length of the mor-
phological grammar (Goldsmith, 2001).

Spelling changes at morpheme boundaries (e.g.,
denybut deni-al) can be captured by orthographic
rules such as “changey- to i- when the suffix is
-al”. Such rules are specified manually in the two-
level model of morphology (Koskenniemi, 1983),
but they can also be induced (Dasgupta, 2007). Al-
lomorphs (e.g., “deni” and “deny”) are also auto-
matically identified in (Dasgupta, 2007), but the
general problem of recognizing highly irregular
forms is examined more extensively in (Yarowsky
and Wicentowski, 2000). They attempt to align ev-
ery verb to its root form, by exploiting a combina-
tion of frequency similarity, context similarity, edit
distance and morphological transformation proba-
bilities, all estimated from an unannotated corpus.
An accuracy of 80.4% was achieved for highly ir-
regular words in the test set.

3.2 Challenges for Ancient Greek

Ancient Greek presents a few difficulties that pre-
vent a naive application of the minimally super-
vised approach in (Yarowsky and Wicentowski,
2000). First, frequency and context analyses are
sensitive to data sparseness, which is more pro-
nounced in heavily inflected languages, such as
Greek, than in English. Many inflected forms do
not appear more than a few times. Second, many
root forms do not appear3 in the corpus. In Finnish
and Swahili, also highly inflected languages, only
40 to 50% of words appear in root forms (Lindén,
2008). The same may be expected of ancient
Greek.

Indeed, for these languages, predicting novel
roots is a challenging problem. This task has
been tackled in (Adler et al., 2008) for modern
Hebrew, and in (Lind́en, 2008) for Finnish. In
the former, features such as lettern-grams and
word-formation patterns are used to predict the
morphology of Hebrew words unknown to an ex-
isting analyzer. In the latter, a probabilistic ap-
proach is used for harvesting prefixes and suf-
fixes in Finnish words, favoring the longer ones.
However, no strategy was proposed for irregular
spelling in stems.

3The root forms of contract verbs, e.g.pleróo, are not even
inflected forms.

Surface Morphological Root
Form Annotation Form
kàı (and) Conjunction káı
pnẽuma(spirit) Noun 3rd decl pnẽuma
theõu (God) Noun 2nd decl théos
epeph́ereto(hover) Verb phéro

Table 2: Sample data from parts of Genesis 1:2
(“and the Spirit of God was hovering over ...”). The
original annotation is more extensive, and only the
portion utilized in this research is shown here.

3.3 Ancient Greek Morphological Analysis

The two most well-known analyzers for ancient
Greek are both rule-based systems, requiringa pri-
ori knowledge of the possible stems and affixes,
which are manually compiled. To give a rough
idea, some 40,000 stems and 13,000 inflections are
known by the MORPHEUSsystem, which will be
described below.

The algorithm in MORPH (Packard, 1973)
searches for possible endings that would result in
a stem in its database. If unsuccessful, it then at-
tempts to remove prepositions and prefixes from
the beginning of the word. Accents, essential for
disambiguation in some cases, are ignored. The
analyzer was applied on Plato’sApologyto study
the distribution of word endings, for the purpose
of optimizing the order of grammar topics to be
covered in an introductory course. Evaluation of
the analyzer stressed this pedagogical perspective,
and the accuracy of the analyses is not reported.

MORPHEUS (Crane, 1991) augments MORPH

with a generation component which, given a stem,
enumerates all possible inflections in different di-
alects, including accents. When accents are con-
sidered during analysis, the precision of the ana-
lyzer improves by a quarter. However, the actual
precision and the test set are not specified.

In this paper, we have opted for a data-driven ap-
proach, to automatically determine the stems and
affixes from training data.

4 Data

4.1 Morphology Data

We used the Septuagint corpus4 prepared by the
Center for Computer Analysis of Texts at the Uni-
versity of Pennsylvania. The Septuagint, dat-
ing from the third to first centuries BCE, is a

4http://ccat.sas.upenn.edu/gopher/text/religion/biblical/
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Part-of-speech Percent
Verbs 68.6%
Adjectives 10.4%
Nouns (1st declension) 5.6%
Nouns (2nd declension masculine)4.3%
Nouns (2nd declension neuter) 2.8%
Nouns (3rd declension) 7.6%
other 0.7%

Table 3: Statistics on the parts-of-speech of the
words in the test set, considering only unique
words.

Greek translation of the Hebrew Bible. The corpus
is morphologically analyzed, and Table 2 shows
some sample data.

The corpus is split into training and test sets.
The training set is made up of the whole Septu-
agint except the first five books. It consists of about
470K words, with 37,842 unique words. The first
five books, also known as the Torah or Pentateuch,
constitute the test set. It contains about 120K
words, of which there are 3,437 unique words not
seen in the training set, and 7,381 unique words
seen in training set. A breakdown of the parts-of-
speech of the test set is provided in Table 3. Proper
nouns, many of which do not decline, are excluded
from our evaluation.

4.2 Unlabelled Data

To guide the prediction of novel roots, we utilize
the Thesaurus Linguae Graecae(Berkowitz and
Squitter, 1986) corpus. The corpus contains more
than one million unique words, drawn from a wide
variety of ancient Greek texts.

4.3 Evaluation

Many common words in the test set are also seen
in the training set. Rather than artificially boosting
the accuracy rate, we will evaluate performance on
unique words rather than all words individually.

Some surface forms have more than one possi-
ble root form. For example, the wordpurõn may
be inflected from the nounpurá (“altar”), or purós
(“wheat”), orpũr (“fire”). It would be necessary to
examine the context to select the appropriate noun,
but morphological disambiguation (Hakkani-Tür
et al., 2002) is beyond the scope of this paper. In
these cases, legitimate root forms proposed by our
analyzer may be rejected, but we pay this price in
return for an automatic evaluation procedure.

5 Nearest-Neighbor Approach

The memory-based machine learning framework
performs well on a benchmark of language learn-
ing tasks (Daelemans, 1999), including morpho-
logical segmentation of Dutch (van den Bosch,
1999). In this framework, feature vectors are
extracted from the training set and stored in a
database of instances, called theinstance base. A
distance metric is then defined. For each test in-
stance, its set of nearest neighbors is retrieved from
the instance base, and the majority label of the set
is returned.

We now adapt this framework to our task, first
defining the distance metric (current section), then
describing the search algorithm for nearest neigh-
bors (§6).

5.1 Distance Metric

Every word consists of a stem, a (possibly empty)
prefix and a (possibly empty) suffix. If two words
share a common stem, one can be transformed to
the other by substituting its prefix and suffix with
their counterparts in the other word. We will call
these substitutions theprefix transformationand
thesuffix transformation.

The “distance” between two words is to be de-
fined in terms of these transformations. It would
be desirable for words that are inflected from the
same root to be near neighbors. A distance met-
ric can achieve this effect by favoring prefix and
suffix transformations that are frequently observed
among words inflected from the same root. We
thus provisionally define “distance” as the sum of
the frequency counts of the prefix and suffix trans-
formations required to turn one word to the other.

5.2 Stems and Affixes

Defining “Stem” To count the frequencies of pre-
fix and suffix transformations, the stem of each
word in the training set must be determined. Ide-
ally, all words inflected from the same root should
share the same stem. Unfortunately, for ancient
Greek, it is difficult to insist upon such a common
stem. In some cases, the stems are completely dif-
ferent5; in others, the common stem is obfuscated

5Each verb can have up to six different stems, known as
the “principal parts”. In extreme cases, a stem may appear
completely unrelated to the root on the surface. For example,
óısoandénegkonare both stems of the rootphéro(“to carry”).
A comparable example in English is the inflected verb form
wentand its root formgo.
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Word Prefix Stem Suffix Prefix Suffix
Transformation Transformation

(root) lúo - lú o (root,1) ǫ ↔ e o ↔ eto
(1) elúeto e lú eto (root,2) ǫ ↔ para o ↔ sai
(2) paralũsai para lũ sai (root,3) ǫ ↔ ek o ↔ th ésontai
(3) ekluth́esontai ek lu th́esontai (1,2) e ↔ para eto ↔ sai

(1,3) e ↔ ek eto ↔ th ésontai
(2,3) para ↔ ek sai ↔ th ésontai

Table 4: The verb rootlúo (“to loosen”) and three of its inflected forms are shown. Each inflected form
is compared with the root form, as well as the other inflected forms. The “stem”, defined as the longest
common substring, is determined for each pair. The prefix and suffix transformations are then extracted.
ǫ represents the empty string.

in surface forms due to spelling changes6.
We resort to a functional definition of “stem” —

the longest common substring of apair of words.
Some examples are shown in Table 4.

Refinements to Definition Three more refine-
ments to the definition of “stem” have been found
to be helpful. First, accents are ignored when de-
termining the longest common substring. Accents
on stems often change in the process of inflection.
These changes are illustrated in Table 4 by the stem
lu, whose letteru has an acute accent, a circumflex
accent, and no accent in the three inflected forms.

Second, a minimum length is required for the
stem. On the one hand, some pairs, such aságo
(“to lead”) andáxo, do have a stem of length one
(“a”). On the other hand, allowing very short
stems can hurt performance, since many spurious
stems may be misconstrued, such as “e” between
phéro andénegkon. The minimum stem length is
empirically set at two for this paper.

Length alone cannot filter out all spurious stems.
For example, for the pairpat́eo(“to walk”) and an
inflected formkateṕatesan, there are two equally
long candidate stems,*ate and pat. The latter
yields affixes such as “-éo” and “-esan”, which are
relatively frequent7. On this basis, the latter stem
is chosen.

Some further ways to reduce the noise are to
require an affix transformation to occur at least
a minimum number of times in the training set,
and to restrict the phonological context in which

6For example, the stemozin the root formózo(“to smell”)
is changed toos in ex́osthesan, an aorist passive form.

7The frequency of each affix is counted in a preliminary
round, with each affix receiving a half count in cases of tied
stem length.

the transformation can be applied8. While signifi-
cantly reducing recall, these additional restrictions
yield only a limited boost in precision.

6 Algorithm

In the training step, a set of prefix and suffix trans-
formations, along with their counts, is compiled
for each part-of-speech. These counts enable us to
compute the distance between any two words, and
hence determine the “nearest neighbor” of a word.

At testing, given an inflected form, its neighbor
is any word to which it can be transformed using
the affix transformations. We first try to find its
nearest neighbor in the training set (§6.1); if no
neighbor is found, a novel root is predicted (§6.2).

6.1 Finding Known Roots

If the input word itself appears in the training set,
we simply look up its morphological analysis.

If the input word is not seen in the training set,
its root form or another inflected form may still be
found. We try to transform the input word to the
nearest such word, i.e., by using the most frequent
prefix and suffix transformations, according to the
distance metric (§5.1).

Irregular Stem Spelling Typically, if there are
no spelling changes in the stem, the input word
can be transformed directly to the root, e.g., from
phéreisto phéro. If the spelling of the stem is sub-
stantially different, it is likely to be transformed
to another inflected form of the root that contains
the same irregular stem. For example, the word
prosex́enegkenbears little resemblance to its root
phéro, but it can be mapped to the wordénegken

8For example, a certain suffix transformation may be valid
only when the stem ends in certain letters.
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in the training set, from which we retrieve its root
form phéro.

Search Order Some affixes are circumfixes; that
is, both the prefix and the suffix must occur to-
gether. For example, the suffix-etocannot be ap-
plied on its own, but must always be used in con-
junction with the prefixe-, to form words such as
elúeto, as shown in Table 4.

Other affixes, however, can freely mix with one
another, and not all combinations are attested in the
training set. This is particularly common when the
prefix contains two or more prepositions. For ex-
ample, the combinationdia-kata- occurs only two
times in the training set, but it can potentially pair
with a large number of different suffixes.

Hence, the search for neighbors proceeds in two
stages. In the first stage (denoted CIRCUMFIX), the
search is restricted to circumfixes, that is, requir-
ing that at least one word-pair in the training set
contain both the prefix and suffix transformations.
This restriction is prone to data sparseness; if no
neighbor is found, the prefix and suffix transfor-
mations are then allowed to be applied separately
in the second stage (denoted PREFIX/SUFFIX).

6.2 Proposing Novel Roots

A word may be derived from a root of which no
inflected form is seen in the training set. Natu-
rally, no neighbor would be found in the previous
step, and a novel root must be proposed. We ap-
ply the prefix and suffix transformations learned in
§5.2, using only circumfixes observed between an
inflected form and a root form. For obvious rea-
sons, the resulting string is no longer required to
be a neighbor, i.e., a word seen in the training set.

Typically, the various transformations produce
many candidate roots. For example, the word
homometrı́ou (“born of the same mother”), a mas-
culine genitive adjective, can be transformed to its
root adjectivehomoḿetrios, but it could equally
well be transformed into a hypothetical neuter
noun,*homoḿetrion. Both are perfectly plausible
roots.

The automatically discovered affix transforma-
tions inevitably contain some noise. When dealing
with known roots, much of the noise is suppressed
because misapplications of these transformations
seldom turn the input word into a real word found
in the training set. When proposing novel roots,
we no longer enjoy this constraint. Although the

distance metric still helps discriminate against
invalid candidates, the increased ambiguity leads
to lower accuracy. We address this issue by
exploiting a large, unlabelled corpus.

Use of Unlabelled CorpusIf a proposed root form
is correct, it should be able to generate some in-
flected forms attested in a large corpus. Intuitively,
the “productivity” of the root form may correlate
with its correctness.

To generate inflected forms from a root, we sim-
ply take the set of affix transformations observed
from inflected forms to roots, and reverse the trans-
formations. Continuing with the above example,
we generate inflected forms for both candidate
roots, the adjectivehomoḿetrios, and the hypo-
thetical neuter noun*homoḿetrion. While a few
inflected forms are generated by both candidates,
three are unique to the adjective —homoḿetrios,
homoḿetrioi andhomoḿetrian — the nominative
masculine singular and plural, and the accusative
feminine singular, respectively. None of these
could have been inflected from a neuter noun.

A straightforward notion of “productivity” of
a root would be simply the number of inflected
forms attested in the large corpus. It can be fur-
ther refined, however, by considering the preva-
lence of the inflected forms. That is, a form gen-
erated with more common affix transformations
should be given greater weight than one gener-
ated with less common ones. Suppose two candi-
date roots, the adjectivetelesph́oros (“bringing to
an end”) and the hypothetical verb*telesphoŕoo,
are being considered. Both can generate the in-
flected formtelesph́orou, the former as the mascu-
line genitive adjective, and the latter as either an
imperfect indicative or present imperative contract
verb. Since the inflection of the adjective is more
frequent in the training set than that of the rela-
tively rare class of contract verbs, the existence of
telesph́orou should lend greater weight to the ad-
jective.

Hence, the “productivity” metric of a novel root
is the number of words in the large corpus that it
can generate with affix transformations, weighted
by the frequencies of those transformations.

7 Experiments

Some statistics on the test set are presented in Ta-
ble 3. Of the 7,381 words that are seen in the train-
ing set, 98.2% received the correct root form. The
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Transformation Type Proportion Accuracy

CIRCUMFIX 77.5% 94.5%
PREFIX/SUFFIX 10.8% 61.2%
Novel Roots 11.7% 50.0%
Overall 100% 85.7%

Table 5: After excluding known words, which at-
tain an accuracy of 98.2%, the performance on
the remaining 3437 unique words in the test set is
shown above. Please see§7 for discussions. Re-
sults for novel roots are presented in further detail
in Table 6.

remaining 1.8% had multiple possible roots; an ex-
amination of the context would be needed for dis-
ambiguation (see comments in§4.3).

Table 5 presents the accuracy of the predicted
roots, after excluding the 7,381 seen words. The
result is broken down according to the type of
transformation; for the “Novel Roots” type, more
detailed results are presented in Table 6.

As discussed in§6.1, the algorithm first
searched with CIRCUMFIX. For 77.5% of the
words, a neighbor was found using this sub-
set of affix transformations. The rest were then
processed using the back-up procedure, PRE-
FIX /SUFFIX, allowing prefix and suffix transfor-
mations culled from different word-pairs. This
procedure found neighbors for 10.8% of the words;
novel roots were hypothesized for the remainder.

Not surprisingly, known roots were more reli-
ably predicted (94.5%) with circumfixes than with
separate prefixes and suffixes (61.2%), but both
categories still achieved higher accuracy than the
challenging task of proposing novel roots (50.0%).
We now take a closer look at the errors for both
known and novel roots.

7.1 Known Roots

There are three main sources of error. The first is
noise in the affix transformations. For example, the
spurious prefix transformationp↔ph was derived
from the pairphéro andperieńegkasan. When ap-
plied onpaśato, along with a suffix transformation,
it yielded the false root formphásko.

A second source can be attributed to incorrect
affix boundaries. For example,ektéınanteswas
misconstrued as having “e- ” rather than the prepo-
sition ek as prefix. This prefix is by itself per-
fectly viable, but “e-” and “-antes” cannot occur
together as a circumfix. The resulting string hap-

Evaluation Method Accuracy
BASELINE 45.0%
TLG RERANK 50.0%
+Ignore accents 55.2%
+Oracle POS 65.5%

Table 6: Results for predicting novel roots, for
the 402 words for whom no neighbor was found.
BASELINE uses the distance metric (§5.1) as be-
fore; TLG RERANK exploits the unlabelled The-
saurus Linguae Graecae corpus to re-rank the top
candidates (§6.2) proposed by BASELINE.

pened to match the rootktéıno, rather than the true
root téıno.

A third source is confusion between parts-of-
speech, most commonly noun and verb. For ex-
ample, the nearest neighbor of the genitive noun
lupõn was the verblupései, yielding the verb root
lupéorather than the nounlúpe.

7.2 Novel Roots

As a baseline, the distance metric (§5.1) was used
alone to rank the novel candidate roots. As seen in
Table 6, performance dropped to 45.0%.

When the Thesaurus Linguae Graecae corpus
was utilized to rerank the novel candidate roots
proposed by the baseline, an absolute gain9 of 5%
was achieved. A further 5.2% of the mistakes
were due to placing the accent incorrectly, such as
ktenótrophosrather thanktenotróphos, mostly on
nouns and adjectives. These mistakes are difficult
to rectify, since multiple positions are often possi-
ble10.

Finally, to measure the extent to which part-of-
speech (POS) confusions are responsible, we per-
formed an experiment in which the gold-standard
POS of each word was supplied to the analyzer
(see “Oracle POS” in Table 6). When deriving
novel roots, only those affix transformations be-
longing to the oracle POS were considered. With
this constraint, accuracy rose to 65.5%.

9The significance level is atp = 0.11, according to Mc-
Nemar’s test. The improvement is not statistically significant,
and may be a reflection of the relatively small test set.

10The accent in an inflected noun retains its position in the
root, unless that position violates certain phonological rules.
In many cases, there is no reliable way to predict the accent
position in the root noun from the position in the inflected
form.
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8 Conclusion

We have proposed a nearest-neighbor machine
learning framework for analyzing ancient Greek
morphology. This framework is data-driven, with
automatic discovery of stems and affixes. The ana-
lyzer is able to predict novel roots. A significant
novelty is the exploitation of a large, unlabelled
corpus to improve performance.

We plan to further improve the derivation of
novel roots by predicting their parts-of-speech
from context, and by incorporating distributional
information (Yarowsky and Wicentowski, 2000).
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Abstract

In this paper, we present a novel morphol-
ogy preprocessing technique for Arabic-
English translation. We exploit the Arabic
morphology-English alignment to learn a
model removing nonaligned Arabic mor-
phemes. The model is an instance of
the Conditional Random Field (Lafferty et
al., 2001) model; it deletes a morpheme
based on the morpheme’s context. We
achieved around two BLEU points im-
provement over the original Arabic trans-
lation for both a travel-domain system
trained on 20K sentence pairs and a news
domain system trained on 177K sentence
pairs, and showed a potential improvement
for a large-scale SMT system trained on 5
million sentence pairs.

1 Introduction

Statistical machine translation (SMT) relies heav-
ily on the word alignment model of the source
and the target language. However, there is a
mismatch between a rich morphology language
(e.g Arabic, Czech) and a poor morphology lan-
guage (e.g English). An Arabic source word of-
ten corresponds to several English words. Pre-
vious research has focused on attempting to ap-
ply morphological analysis to machine translation
in order to reduce unknown words of highly in-
flected languages. Nießen and Ney (2004) rep-
resented a word as a vector of morphemes and
gained improvement over word-based system for

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

German-English translation. Goldwater and Mc-
closky (2005) improved Czech-English translation
by applying different heuristics to increase the
equivalence of Czech and English text.

Specially for Arabic-English translation, Lee
(2004) used the Arabic part of speech and English
parts of speech (POS) alignment probabilities to
retain an Arabic affix, drop it from the corpus or
merge it back to a stem. The resulting system
outperformed the original Arabic system trained
on 3.3 million sentence pairs corpora when using
monotone decoding. However, an improvement
in monotone decoding is no guarantee for an im-
provement over the best baseline achievable with
full word forms. Our experiments showed that an
SMT phrase-based translation using 4 words dis-
tance reordering could gain four BLEU points over
monotone decoding. Sadat and Habash (2006) ex-
plored a wide range of Arabic word-level prepro-
cessing and produced better translation results for
a system trained on 5 million Arabic words.

What all the above methodologies do not pro-
vide is a means to disambiguate morphologi-
cal analysis for machine translation based on the
words’ contexts. That is, for an Arabic word anal-
ysis of the formprefix*-stem-suffix*a morpheme
only is either always retained, always dropped off
or always merged to the stem regardless of its
surrounding text. In the example in Figure (1),
the Arabic word “AlnAfi*h”(“window” in English)
was segmented as “Al nAfi* ap”. The morpheme
“ap” is removed so that “Al nAfi*” aligned to “the
window” of the English sentence. In the sentence
“hl ldyk mqAEd bjwAr AlnAf*h ?” (“do you have
window tables ?” in English) the word “AlnAfi*h”
is also segmented as “Al nAfi* ap”. But in this
sentence, morphological preprocessing should re-
move both “Al” and “ap” so that only the remain-
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nu  riyd  u  |||  mA}id  ap  |||  bi  jAnib  |||  Al  nAfi* ap  |||  .

we  want  to  have  a  table  near  the  window  .

nu  riyd  u  mA}id  ap  bi  jAnib  Al  nAfi* .

nryd   mA}dh   bjAnb   AlnAf*h   .

(c)

(a)

(b)

(d)

Figure 1: (a) Romanization of original Arabic sentence, (b)Output of morphological analysis toolkit—
words are separated by ‘|||’, (c) English translation and its alignment with full morphological analysis
(d) Morphological analysis after removing unaligned morphemes.

ing morpheme “nAfi*” aligned to the word “win-
dow” of the English translation. Thus an appropri-
ate preprocessing technique should be guided by
English translation and bring the word context into
account.

In this paper we describe a context-based mor-
phological analysis for Arabic-English translation
that take full account morphemes alignment to En-
glish text. The preprocessing uses the Arabic mor-
phology disambiguation in (Smith et al., 2005) for
full morphological analysis and learns the remov-
ing morphemes model based on the Viterbi align-
ment of English to full morphological analysis. We
tested the model with two training corpora of 5.2
millions Arabic words(177K sentences) in news
domain and 159K Arabic words (20K sentences)
in travel conversation domain and gain improve-
ment over the original Arabic translation in both
experiments. The system that trained on a sub-
sample corpora of 5 millions sentence pairs cor-
pora also showed one BLEU score improvement
over the original Arabic system on unseen test set.

We will explain our technique in the next section
and briefly review the phrase based SMT model in
section 3. The experiment results will be presented
in section 4.

2 Methodology

We first preprocess the Arabic training corpus and
segment words into morpheme sequences of the
form prefix* stem suffix*. Stems are verbs, adjec-
tives, nouns, pronouns, etc., carrying the content
of the sentence. Prefixes and suffixes are func-
tional morphemes such as gender and case mark-
ers, prepositions, etc. Because case makers do not
exist in English, we remove case marker suffixes
from the morphology output. The output of this
process is afull morphological analysiscorpus.
Even after removing case markers, the token count

of the full morphology corpus still doubles the
original Arabic’s word token count and is approx-
imately1.7 times the number of tokens of the En-
glish corpus. As stated above, using original Ara-
bic for translation introduces more unknown words
in test data and causes multiple English words to
map to one Arabic word. At the morpheme level,
an English word would correspond to a morpheme
in the full morphology corpus but some prefixes
and suffixes in the full morphology corpus may not
be aligned with any English words at all. For ex-
ample, the Arabic article “Al” (“the” in English)
prefixes to both adjectives and nouns, while En-
glish has only one determiner in a simple noun
phrase. Using the full morphological analysis cor-
pus for translation would introduce redundant mor-
phemes in the source side.

The goal of our morphological analysis method
for machine translation isremoving nonaligned
prefixes and suffixes from the full morphology cor-
pus using a data-driven approach. We use the word
alignment output of the full morphology corpus to
the English corpus to delete morphemes in a sen-
tence. If an affix is not aligned to an English word
in the word alignment output, the affix should be
removed from the morphology corpus for better
one-to-one alignment of source and target corpora.
However, given an unseen test sentence, the En-
glish translation of the sentence is not available to
remove affixes based on the word alignment out-
put. We therefore learn a model removing non-
aligned morphemes from the full morphology Ara-
bic training corpus and its alignment to the English
corpus. To obtain consistency between training
corpus and test set, we applied the model to both
Arabic training corpus and test set, obtaining pre-
processed morphology corpora for the translation
task.

In this section, we will explain in detail each
steps of our preprocessing methodology:
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• Apply word segmentation to the Arabic train-
ing corpus to get the full morphological anal-
ysis corpus.

• Annotate the full morphological analysis cor-
pus based on its word alignment to the En-
glish training corpus. We tag a morpheme as
“Deleted” if it should be removed from the
corpus, and “Retained” otherwise.

• Learn the morphology tagger model.

• Apply the model to both Arabic training cor-
pus and Arabic test corpus to get prepro-
cessed corpus for translation.

2.1 Arabic Word Segmentation

Smith et al. (2005) applies a source-channel model
to the problem of morphology disambiguation.
The source model is a uniform model that de-
fines the set of analyses. For Arabic morphology
disambiguation, the source model uses the list of
un-weighted word analyses generated by BAMA
toolkit (Buckwalter, 2004). The channel model
disambiguates the morphology alternatives. It is a
log-linear combination of features, which capture
the morphemes’ context including tri-gram mor-
pheme histories, tri-gram part-of-speech histories
and combinations of the two.

The BAMA toolkit and hence (Smith et al.,
2005) do not specify if a morpheme is an affix or
a stem in the output. Given a segmentation of an
original Arabic word, we considered a morpheme
ai as a stem if its parts of speechpi is either a
noun, pronoun, verb, adjective, question, punctua-
tion, number or abbreviation. A morpheme on the
left of its word’s stem is a prefix and it is a suffix
if otherwise. We removed case marker morphemes
and got the full morphology corpus.

2.2 Annotate Morphemes

To extract the Arabic morphemes that align to
English text, we use English as the source cor-
pus and aligned to Arabic morpheme corpus us-
ing GIZA++ (Och and Ney, 2003) toolkit. The
IBM3 and IBM4 (Brown et al., 1994) word align-
ment models select each word in the source sen-
tence, generate fertility and a list of target words
that connect to it. This generative process would
constrain source words to find alignments in the
target sentence. Using English as source corpus,
the alignment models force English words to gen-
erate their alignments in the Arabic morphemes.

GIZA++ outputs Viterbi alignment for every sen-
tence pair in the training corpus as depicted in (b)
and (c) of Figure (1). In our experiment, only 5%
of English words are not aligned to any Arabic
morpheme in the Viterbi alignment. From Viterbi
English-morpheme alignment output, we annotate
morphemes either to be deleted or retained as fol-
lows:

• Annotate stem morphemes as “Retained”(R),
in dependant of word alignment output.

• Annotate a prefix or a suffix as “Retained” (R)
if it is aligned to an English word.

• Annotate a prefix or a suffix as “Deleted” (D)
if it is not aligned to an English word.

Note that the model does not assume that
GIZA++ outputs accurate word alignments. We
lessen the impact of the GIZA++ errors by only
using the word alignment output of prefix and suf-
fix morphemes.

Furthermore, because the full morphology sen-
tence is longer, each English word could align to a
separate morpheme. Our procedure of annotating
morphemes also constrains morphemes tagged as
“Retained” to be aligned to English words. Thus
if we remove “Deleted” morphemes from the mor-
phology corpus, the reduced corpus and English
corpus have the property of one-to-one mapping
we prefer for source-target corpora in machine
translation.

2.3 Reduced Morphology Model

The reduced morphology corpus would be the
best choice of morphological analysis for machine
translation. Because it is impossible to tag mor-
phemes of a test sentence without the English ref-
erence based on Viterbi word alignment, we need
to learn a morpheme tagging model. The model
estimates the distributions of tagging sequences
given a morphologically analysed sentence using
the previous step’s annotated training data.

The task of tagging morphemes to be either
“Deleted” or “Retained” belongs to the set of se-
quence labelling problems. The conditional ran-
dom fields (CRF) (Lafferty et al., 2001) model has
shown great benefits in similar applications of nat-
ural language processing such as part-of-speech
tagging, noun phrase chunking (Sha and Pereira,
2003), morphology disambiguation(Smith et al.,
2005). We apply the CRF model to our morpheme
tagging problem.
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LetA = {(A,T)} be the full morphology train-
ing corpus whereA = a1|p1 a2|p2 . . . am|pm is a
morphology Arabic sentence,ai is a morpheme in
the sentence andpi is its POS;T = t1 t2 . . . tm is
the tag sequence ofA, eachti is either “Deleted”
or “Retained” . The CRF model estimates param-
eterθ

∗
maximizing the conditional probability of

the sequences of tags given the observed data:

θ
∗ = argmax

θ

∑
(A,T)∈A

(1)

p̃ ((A,T)) log p
(
T|A, θ

)
where p̃ ((A,T)) is the empirical distribution of
the sentence(A,T) in the training data,θ are the
model parameters. The model’s log conditional
probability log p

(
T|A, θ

)
is the linear combina-

tion of feature weights:

log p
(
T|A, θ

)
=

∑
k

θkfk ((Aq,Tq)) (2)

The feature functions{fk} are defined on any sub-
set of the sentenceAq ⊂ A andTq ⊂ T. CRFs
can accommodate many closely related features
of the input. In our morpheme tagging model,
we use morpheme features, part-of-speech features
and combinations of both. The features capture
the local contexts of morphemes. The lexical mor-
pheme features are the combinations of the current
morpheme and up to 2 previous and 2 following
morphemes. The part-of-speech features are the
combinations of the current part of speech and up
to 3 previous part of speeches. The part of speech,
morpheme combination features capture the de-
pendencies of current morphemes and up to its 3
previous parts of speech.

2.4 Preprocessed Data

Given a full morphology sentenceA, we use the
morpheme tagging model learnt as described in the
previous section todecodeA into the most proba-
ble sequence of tagsT∗ = t1 t2 . . . tm.

T∗ = argmax
T

Pr

(
T|A, θ

∗)
(3)

If a ti is “Deleted”, the morphemeai is removed
from the morphology sentenceA. The same pro-
cedure is applied to both training Arabic corpus
and test corpus to get preprocessed data for transla-
tion. We call a morphology sentence after remov-
ing “Deleted” tag areducedmorphology sentence.

In our experiments, we used the freely available
CRF++1 toolkit to train and decode with the mor-
pheme tagging model. The CRF model smoothed
the parameters by assigning them Gaussian prior
distributions.

3 Phrase-based SMT System

We used the open source Moses (Koehn, 2007)
phrase-based MT system to test the impact of the
preprocessing technique on translation results. We
kept the default parameter settings of Moses for
translation model generation. The system used the
“grow-diag-final” alignment combination heuris-
tic. The phrase table consisted of phrase pairs up to
seven words long. The system used a tri-gram lan-
guage model built from SRI (Stolcke, 2002) toolkit
with modified Kneser-Ney interpolation smooth-
ing technique (Chen and Goodman, 1996). By de-
fault, the Moses decoder uses 6 tokens distance re-
ordering windows.

4 Experiment Results

In this section we present experiment results using
our Arabic morphology preprocessing technique.

4.1 Data Sets

We tested our morphology technique on a small
data set of 20K sentence pairs and a medium size
data set of 177K sentence pairs.

4.1.1 BTEC Data

As small training data set we used the BTEC
corpus (Takezawa et al., 2002) distributed by
the International Workshop on Spoken Language
Translation (IWSLT) (Eck and Hori, 2005). The
corpus is a collection of conversation transcripts
from the travel domain. Table 1 gives some de-

Arabic
Eng

Ori Full Reduced
Sentences 19972
Tokens 159K 258K 183K 183K
Types 17084 8207 8207 7298

Table 1: BTEC corpus statistics

tails for this corpus, which consists of nearly 20K
sentence pairs with lower case on the English side.
There is an imbalance of word types and word to-
kens between original Arabic and English. The

1http://crfpp.sourceforge.net/
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original Arabic sentences are on average shorter
than the English sentences whereas the Arabic vo-
cabulary is more than twice the size of the English
vocabulary. The word segmentation reduced the
number of word types in the corpus to be closed
to English side but also increased word tokens
quite substantially. By removing nonaligned mor-
phemes, the reduced corpus is well balanced with
the English corpus.

The BTEC experiments used the 2004 IWSLT
Evaluation Test set as development set and 2005
IWSLT Evaluation Test set as unseen test data.
Table 2 gives the details of the two test sets. Both
of them had 16 reference translations per source
sentence. The English side of the training corpus
was used to build the language model. To optimize
the parameters of the decoder, we performed min-
imum error rate training on IWSLT04 optimizing
for the IBM-BLEU metric (Papineni et al., 2002).

4.1.2 Newswire Corpora

We also tested the impact of our morphology
technique on parallel corpus in the news domain.
The corpora were collected from LDC’s full Ara-
bic news translation corpora and a small portion
of UN data. The details of the data are give in
Table 3. The data consists of 177K sentence pairs,
5.2M words on the Arabic and 6M words on the
English side.

Arabic
Eng

Ori Full Reduced
Sentences 177035
Tokens 5.2M 9.3M 6.2M 6.2M
Types 155K 47K 47K 68K

Table 3: Newswire corpus statistics

We used two test sets from past NIST evalua-
tions as test data. NIST MT03 was used as devel-
opment set for optimizing parameters with respect
to the IBM-BLEU metric, NIST MT06 was used
as unseen test set. Both test sets have 4 references
per test sentence. Table 4 describes the data statis-
tics of the two test sets. All Newswire translation
experiments used the same language model esti-
mated from 200 million words collected from the
Xinhua section of the GIGA word corpus.

4.2 Translation Results

4.2.1 BTEC

We evaluated the machine translation accord-
ing to the case-insensitive BLEU metric. Table 5
shows the BTEC results when translated with de-
fault Moses setting of distance-based reordering
window size 6. The original Arabic word trans-
lation was the baseline of the evaluation. The
second row contains translation scores using the
full morphology translation. Our new technique of
context-based morphological analysis is shown in
the last row.

IWSLT04 IWSLT05
Ori 58.20 54.50
Full 58.55 55.87
Reduced 60.28 56.03

Table 5: BTEC translations results on IBM-BLEU
metrics(Case insensitive and 6 tokens distance re-
ordering window). The boldface marks scores sig-
nificantly higher than the original Arabic transla-
tion scores.

The full morphology translation performed sim-
ilar to the baseline on the development set but
outperformed the baseline on the unseen test set.
The reduced corpus showed significant improve-
ments over the baseline on the development set
(IWSLT04) and gave an additional small improve-
ment over the full morphology score over the un-
seen data (IWSLT05).

So why did the reduced morphology translation
not outperform more significantly the full mor-
phology translation on unseen set IWSLT05? To
analysis this in more detail, we selected good
full morphology translations and compared them
with the corresponding reduced morphology trans-
lations. Figure 2 shows one of these examples.
Typically, the reduced morphology translations

Figure 2: An example of BTEC translation output.

are shorter than both the references and the full
morphology outputs. Table 2 shows that for the
IWSLT05 test set, the ratio of the average En-
glish reference sentence length and the source sen-
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IWSLT04 (Dev set) IWSLT05 (Unseen set)
Arabic

English
Arabic

English
Ori Full Reduced Ori Full Reduced

Sentences 500 8000 506 8096
Words 3261 5243 3732 64896 3253 5155 3713 66286
Avg Sent Length 6.52 10.48 7.46 8.11 6.43 10.19 7.34 8.18

Table 2: BTEC test set statistics

MT03 (Dev set) MT06 (Unseen set)
Arabic

English
Arabic

English
Ori Full Reduced Ori Full Reduced

Sentences 663 2652 1797 7188
Words 16268 27888 18888 79163 41059 71497 48716 222750
Avg Sent Length 24.53 42.06 28.49 29.85 22.85 39.79 27.1 30.98

Table 4: Newswire test set statistics

tence length is slightly higher than the correspond-
ing ratio for IWSLT04. Using the parameters op-
timised for IWSLT04 to translate IWSLT05 sen-
tences would generate hypotheses slightly shorter
than the IWSLT05 references resulting in brevity
penalties in the BLEU metric. The IWSLT05
brevity penalties for original Arabic, reduced mor-
phology and full morphology are 0.969, 0.978 and
0.988 respectively. Note that the BTEC corpus and
test sets are in the travel conversation domain, the
English reference sentences contain a large num-
ber of high frequency words. The full morpho-
logical analysis with additional prefixes and suf-
fixes outputs longer translations containing high
frequency words resulting in a high n-gram match
and lower BLEU brevity penalty. The reduced
translation method could generate translations that
are comparable but do not have the same effect on
BLEU metrics.

4.2.2 Newswire results

Table 6 presents the translation results for the
Newswire corpus. Even though morphology seg-
mentation reduced the number of unseen words,
the translation results of full morphological anal-
ysis are slightly lower than the original Arabic
scores in both development set MT03 and unseen
test set MT06. This is consistent with the result
achieved in previous literature (Sadat and Habash,
2006). Morphology preprocessing only helps with
small corpora, but the advantage decreases for
larger data sets.

Our context dependent preprocessing technique

MT03 MT06
Ori 45.55 32.09
Full 45.30 31.54
Reduced 47.69 34.13

Table 6: Newswire translation results on IBM-
BLEU metrics(Case insensitive and 6 tokens dis-
tance reordering wondow). The boldface marks
scores significantly higher than the original Arabic
translation’s scores.

shows significant improvements on both develop-
ment and unseen test sets. Moreover, while the ad-
vantage of morphology segmentation diminishes
for the full morphology translation, we achieve an
improvement of more than two BLEU points over
the original Arabic translations in both develop-
ment set and unseen test set.

4.3 Unknown Words Reduction

A clear advantage of using morphology based
translation over original word translation is the
reduction in the number of untranslated words.
Table 7 compares the number of unknown Arabic
tokens for original Arabic translation and reduced
morphology translation. In all the test sets, mor-
phology translations reduced the number of un-
known tokens by more than a factor of two.

4.4 The Impact of Reordering Distance Limit

The reordering window length is determined based
on the movements of the source phrases. On an
average, an original Arabic word has two mor-
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Reorder Window 0 2 3 4 5 6 7 8 9

IWSLT04
Ori 57.21 57.92 58.01 58.31 58.16 58.20 58.20 58.12 58.01
Full 56.89 57.54 58.62 58.39 58.32 58.55 58.55 58.55 58.57
Reduced 58.36 59.56 60.05 60.70 60.32 60.28 60.46 60.30 60.55

MT03
Ori 41.75 43.84 45.24 45.61 45.40 45.55 45.21 45.22 45.19
Full 41.45 43.12 44.32 44.71 45.30 45.80 45.88 45.82
Reduced 44.08 45.28 46.50 47.40 47.41 47.69 47.59 47.75 47.79

Table 8: The impact of reordering limits on BTEC ’s development set IWSLT04 and Newswire’s devel-
opment set MT03. The translation scores are IBM-BLEU metric

Test Set Ori Reduced
IWSLT04 242 100
IWSLT05 219 97

MT03 1463 553
MT06 3734 1342

Table 7: Unknown tokens count

phemes. The full morphology translation with a
6-word reordering window has the same impact
as a 3-word reordering when translating the orig-
inal Arabic. To fully benefit from word reorder-
ing, the full morphology translation requires a
longer reorder distance limit. However, in current
phrase based translations, reordering models are
not strong enough to guide long distance source-
word movements. This shows an additional advan-
tage of the nonaligned morpheme removal tech-
nique.

We carried out experiments from monotone de-
coding up to 9 word distance reordering limit for
the two development sets IWSLT04 and MT03.
The results are given in Table 8. The BTEC data
set does not benefit from a larger reordering win-
dow. Using only a 2-word reordering window
the score of the original Arabic translations(57.92)
was comparable to the best score (58.31) obtained
by using a 4-word reordering window. On the
other hand, the reordering limit showed a signifi-
cant impact on Newswire data. The MT03 original
Arabic translation using a 4-word re-ordering win-
dow resulted in an improvement of 4 BLEU points
over monotone decoding. Large Arabic corpora
usually contain data from the news domain. The
decoder might not effectively reorder very long
distance morphemes for these data sets. This ex-
plains why machine translation does not benefit
from word-based morphological segmentation for
large data sets which adequately cover the vocabu-

lary of the test set.

4.5 Large Training Corpora Results

We wanted to test the impact of our preprocess-
ing technique on a system trained on 5 million
sentence pairs (128 million Arabic words). Un-
fortunately, the CRF++ toolkit exceeded memory
limits when executed even on a 24GB server. We
created smaller corpora by sub-sampling the large
corpus for the source side of MT03 and MT06
test sets. The sub-sampled corpus have 500K sen-
tence pairs and cover all source phrases of MT03
and MT06 which can be found in the large cor-
pus. In these experiments, we used a lexical re-
ordering model into translation model. The lan-
guage model was the 5-gram SRI language model
built from the whole GIGA word corpus. Table 9

MT03 MT06
5M Ori 56.22 42.17
Sub-sample Ori 54.54 41.59
Sub-sample Full 51.47 40.84
Sub-sample Reduced 54.78 43.20

Table 9: Translation results of large corpora(Case
insensitive, IBM-BLEU metric). The boldface
marks score significantly higher than the original
Arabic translation score.

presents the translation result of original Arabic
system trained on the full 5M sentence pairs cor-
pus and the three systems trained on the 500K sen-
tence pairs sub-sampled corpus. The sub-sampled
full morphology system scores degraded for both
development set and unseen test set. On devel-
opment set, the sub-sampled reduced morphology
system score was slightly better than baseline. On
the unseen test set, it significantly outperformed
both the baseline on sub-sampled training data and
even outperformed the system trained on the entire
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5M sentence pairs.

5 Conclusion and Future Work

In this paper, we presented a context-dependent
morphology preprocessing technique for Arabic-
English translation. The model significantly out-
performed the original Arabic systems on small
and mid-size corpora and unseen test set on large
training corpora. The model treats morphology
processing task as a sequence labelling problem.
Therefore, other machine learning techniques such
as perceptron (Collins, 2002) could also be applied
for this problem.

The paper also discussed the relation between
the size of the reordering window and morphol-
ogy processing. In future investigations, we plan
to extend the model such that merging morphemes
is included. We also intent to study the impact of
phrase length and phrase extraction heuristics.
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Abstract

Though phrase-based SMT has achieved high
translation quality, it still lacks of generaliza-
tion ability to capture word order differences
between languages. In this paper we describe
a general method for tree-to-string phrase-
based SMT. We study how syntactic trans-
formation is incorporated into phrase-based
SMT and its effectiveness. We design syntac-
tic transformation models using unlexicalized
form of synchronous context-free grammars.
These models can be learned from source-
parsed bitext. Our system can naturally make
use of both constituent and non-constituent
phrasal translations in the decoding phase. We
considered various levels of syntactic analy-
sis ranging from chunking to full parsing.
Our experimental results of English-Japanese
and English-Vietnamese translation showed
a significant improvement over two baseline
phrase-based SMT systems.

1 Introduction

Based on the kind of linguistic information which
is made use of, syntactic SMT can be divided into
four types: tree-to-string, string-to-tree, tree-to-tree,
and hierarchical phrase-based. The tree-to-string ap-
proach (Collins et al., 2005; Nguyen and Shimazu,
2006; Liu et al., 2006 and 2007) supposes that syn-
tax of the source language is known. This approach
can be applied when a source language parser is
available. The string-to-tree approach (Yamada and
Knight, 2001; Galley et al., 2006) focuses on syntactic
modelling of the target language in cases it has syn-
tactic resources such as treebanks and parsers. The
tree-to-tree approach models the syntax of both lan-
guages, therefore extra cost is required. The fourth
approach (Chiang, 2005) constraints phrases under
context-free grammar structure without any require-
ment of linguistic annotation.

In this paper, we present a tree-to-string phrase-
based method which is based on synchronous CFGs.
This method has two important properties: syntactic
transformation is used in the decoding phase includ-
ing a word-to-phrase tree transformation model and
a phrase reordering model; phrases are the basic unit
of translation. Since we design syntactic transforma-
tion models using un-lexicalized synchronous CFGs,
the number of rules is small1. Previous studies on
tree-to-string SMT are different from ours. Collins
et al. Collins et al. (2005) used hand crafted rules to
carry out word reordering in the preprocessing phase
but not decoding phase. Nguyen and Shimazu (2006)
presented a more general method in which lexicalized
syntactic reordering models based on PCFGs can be
learned from source-parsed bitext and then applied in
the preprocessing phase. Liu et al. (2006) changed the
translation unit from phrases to tree-to-string align-
ment templates (TATs) while we do not. TATs was
represented as xRs rules while we use synchronous
CFG rules. In order to overcome the limitation that
TATs can not capture non-constituent phrasal transla-
tions, Liu et al. (2007) proposed forest-to-string rules
while our system can naturally make use of such kind
of phrasal translation by word-to-phrase tree transfor-
mation.

We carried out experiments with two language
pairs English-Japanese and English-Vietnamese. Our
system achieved significant improvements over
Pharaoh, a state-of-the-art phrase-based SMT system.
We also analyzed the dependence of translation qual-
ity on the level of syntactic analysis (shallow or deep).

Figure 1 shows the architecture of our system. The
input of this system is a source-language tree and the
output is a target-language string. This system uses
all features of conventional phrase-based SMT as in
(Koehn et al., 2003). There are two new features in-
cluding a word-to-phrase tree transformation model
and a phrase reordering model. The decoding algo-

1See Section 6.2.
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rithm is a tree-based search algorithm.

Figure 1: A syntax-directed phrase-based SMT archi-
tecture.

2 Translation Model

We use an example of English-Vietnamese translation
to demonstrate the translation process as in Figure 2.
Now we describe a tree-to-string SMT model based
on synchronous CFGs. The translation process is:

Figure 2: The translation process.

T1 → T2 → T3 → T4 (1)

whereT1 is a source tree,T2 is a source phrase tree,
T3 is a reordered source phrase tree, andT4 is a target
phrase tree.

Using the first order chain rule, the join probability
over variables (trees) in graphical representation 1 is
approximately calculated by:

P (T1, T2, T3, T4) = P (T1)×P (T2|T1)×P (T3|T2)×P (T4|T3)
(2)

P (T1) can be omitted since only one syntactic tree
is used. P (T2|T1) is a word-to-phrase tree transfor-
mation model we describe later.P (T3|T2) is a re-
ordering model.P (T4|T3) can be calculated using a
phrase translation model and a language model. This
is the fundamental equation of our study represented
in this paper. In the next section, we will describe how
to transform a word-based CFG tree into a phrase-
based CFG tree.

3 Word-to-Phrase Tree Transformation

3.1 Penn Treebank’s Tree Structure

According to this formalism, a tree is represented by
phrase structure. If we extract a CFG from a tree or
set of trees, there will be two possible rule forms:

• A → α whereα is a sequence of nonterminals
(syntactic categories).

• B → γ whereγ is a terminal symbol (or a word
in this case).

We consider an example of a syntactic tree and a
simple CFG extracted from that tree.

Sentence:”I am a student”
Syntactic tree:(S (NP (NN I)) (VP (VBP am) (NP (DT a) (NN

student))))
Rule set:S→ NP VP; VP→ VBP NP; NP→ NN | DT NN; NN

→ I | student;
VBP→ am; DT→ a

However, we are considering phrase-based transla-
tion. Therefore the right hand side of the second rule
form must be a sequence of terminal symbols (or a
phrase) but not a single symbol (a word). Suppose
that the phrase table contains a phrase”am a student”
which leads to the following possible tree structure:

Phrase segmentation:”I | am a student”
Syntactic tree:(S (NP (NN I)) (VP (VBP am a student)))

Rule set:S→ NP VP; VP→ VBP; NP→ NN; NN→ I; VBP→
am a student

We have to find out some way to transform a CFG
tree into a tree with phrases at leaves. In the next sub-
section we propose such an algorithm.

3.2 An Algorithm for Word-to-Phrase Tree
Transformation

Table 1 represents our algorithm to transform a CFG
tree to a phrase CFG tree. When designing this algo-
rithm, our criterion is to preserve the original struc-
ture as much as possible. This algorithm includes two
steps. There are a number of notions concerning this
algorithm:

• A CFG rule has a head symbol on the right hand
side. Using this information, head child of a
node on a syntactic tree can be determined.
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+ Input: A CFG tree, a phrase segmentation
+ Output: A phrase CFG tree
+ Step 1: Allocate phrases to leaf nodes in a top-down manner: A phrase is allocated to head word of a node if the

phrase contains the head word. This head word is then considered as the phrase head.
+ Step 2: Transform the syntactic tree by replacing leaf nodes by their allocated phrase and removing all nodes whose

span is a substring of phrases.

Table 1: An algorithm to transform a CFG tree to a phrase CFG tree.

• If a node is a pre-terminal node (containing POS
tag), its head word is itself. If a node is an in-
ner node (containing syntactic constituent tag),
its head word is retrieved through the head child.

• Word span of a node is a string of its leaves. For
instance, word span of subtree (NP (PRP$ your)
(NN class)) is ”your class”.

Now we consider an example depicted in Figure 3
and 4. Head children are tagged with functional label
H. There are two phrases: ”is a” and ”in your class”.
After the Step 1, the phrase ”is a” is attached to (VBZ
is). The phrase ”in your class” is attached to (IN in).
In Step 2, the node (V is) is replaced by (V ”is a”) and
(DT a) is removed from its father NP. Similarly, (IN
in) is replaced by (IN ”in your class”) and the subtree
NP on the right is removed.

S

[is]


NP

[Fred]


VP-H

[is]


VBZ-H

NP


[student]

NNP-H


is

NP-H


[student]


DT
 NN-H


PP

[in]


IN-H

NP


[class]


PRP$
 NN-H


Fred


a
 student
 in


your
 class


{is a}


{in your class}


Figure 3: Tree transformation - step 1. Solid arrows
show the allocation process of ”is a”. Dotted arrows
demonstrate the allocation process of ”in your class”

The proposed algorithm has some properties. We
state these properties without presenting proof2.

• Uniqueness:Given a CFG tree and a phrase seg-
mentation, by applying Algorithm 1, one and
only one phrase tree is generated.

2Proofs are simple.

Figure 4: Tree transformation - step 2.

• Constituent subgraph: A phrase CFG tree is
a connected subgraph of input tree if leaves are
ignored.

• Flatness:A phrase CFG tree is flatter than input
tree.

• Outside head:The head of a phrase is always a
word whose head outside the phrase. If there is
more than one word satisfying this condition, the
word at the highest level is chosen.

• Dependency subgraph:Dependency graph of a
phrase CFG tree is a connected subgraph of in-
put tree’s dependency graph if there exist no de-
tached nodes.

The meaning of uniqueness property is that our al-
gorithm is a deterministic procedure. The constituent-
subgraph property will be employed in the next sec-
tion for an efficient decoding algorithm. When a syn-
tactic tree is transformed, a number of subtrees are
replaced by phrases. The head word of a phrase is the
contact point of that phrase with the remaining part
of a sentence. From the dependency point of view, a
head word should depend on an outer word rather than
an inner word. About dependency-subgraph property,
when there is a detached node, an indirect dependency
will become a direct one. In any cases, there is no
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change in dependency direction. We can observe de-
pendency trees in Figure 5. The first two trees are
source dependency tree and phrase dependency tree
of the previous example. The last one corresponds to
the case in which a detached node exists.

Fred
 is


ROOT


student
 in
 your
 class
a


Fred
 is
 a


ROOT


student
 in
 your class


Fred
 is
 a student


ROOT


in
 your class


Figure 5: Dependency trees. The third tree corre-
sponds with phrase segmentation: ”Fred| is a student
| in your class”

3.3 Probabilistic Word-to-Phrase Tree
Transformation

We have proposed an algorithm to create a phrase
CFG tree from a pair of CFG tree and phrase seg-
mentation. Two questions naturally arise: ”is there
a way to evaluate how good a phrase tree is?” and ”is
such an evaluation valuable?” Note that phrase trees
are the means to reorder the source sentence repre-
sented as phrase segmentations. Therefore a phrase
tree is surely not good if no right order can be gen-
erated. Now the answer to the second question is
clear. We need an evaluation method to prevent our
program from generating bad phrase trees. In other
words, good phrase trees should be given a higher pri-
ority.

We define the phrase tree probability as the product
of its rule probability given the original CFG rules:

P (T ′) =
∏
i

P (LHSi → RHS′i|LHSi → RHSi)

(3)
where T ′ is a phrase tree whose CFG rules are
LHSi → RHS′i. LHSi → RHSi are origi-
nal CFG rules. RHS′i are subsequences ofRHSi.
Since phrase tree rules should capture changes made
by the transformation from word to phrase, we use
’+’ to represent an expansion and ’-’ to show an
overlap. These symbol will be added to a nonter-
minal on the side having a change. In the previ-
ous example, since a head noun in the word tree

has been expanded on the right, the correspond-
ing symbol in phrase tree is NN-H+. A nonter-
minal X can become one of the following symbols
X,−X, +X,X−, X+,−X−,−X+,+X−, +X+.

Conditional probabilities are computed in a sepa-
rate training phase using a source-parsed and word-
aligned bitext. First, all phrase pairs consistent with
the word alignment are collected. Then using this
phrase segmentation and syntactic trees we can gener-
ate phrase trees by word-to-phrase tree transformation
and extract rules.

4 Phrase Reordering Model

Reordering rules are represented as SCFG rules
which can be un-lexicalized or source-side lexicalized
(Nguyen and Shimazu, 2006). In this paper, we used
un-lexicalized rules. We used a learning algorithm
as in (Nguyen and Shimazu, 2006) to learn weighted
SCFGs. The training requirements include a bilingual
corpus, a word alignment tool, and a broad coverage
parser of the source language. The parser is a con-
stituency analyzer which can produce parse tree in
Penn Tree-bank’s style. The model is applicable to
language pairs in which the target language is poor
in resources. We used phrase reorder rules whose ’+’
and ’-’ symbols are removed.

5 Decoding

A source sentence can have many possible phrase seg-
mentations. Each segmentation in combination with a
source tree corresponds to a phrase tree. A phrase-tree
forest is a set of those trees. A naive decoding algo-
rithm is that for each segmentation, a phrase tree is
generated and then the sentence is translated. This al-
gorithm is very slow or even intractable. Based on
the constituent-subgraph property of the tree trans-
formation algorithm, the forest of phrase trees will
be packed into a tree-structure container whose back-
bone is the original CFG tree.

5.1 Translation Options

A translation option encodes a possibility to translate
a source phrase (at a leaf node of a phrase tree) to
another phrase in target language. Since our decoder
uses a log-linear translation model, it can exploit var-
ious features of translation options. We use the same
features as (Koehn et al., 2003). Basic information of
a translation option includes:

• source phrase

• target phrase

• phrase translation score (2)
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• lexical translation score (2)

• word penalty

Translation options of an input sentence are col-
lected before any decoding takes place. This allows a
faster lookup than consulting the whole phrase trans-
lation table during decoding. Note that the entire
phrase translation table may be too big to fit into
memory.

5.2 Translation Hypotheses

A translation hypothesis represents a partial or full
translation of an input sentence. Initial hypotheses
correspond to translation options. Each translation
hypothesis is associated with a phrase-tree node. In
other words, a phrase-tree node has a collection of
translation hypotheses. Now we consider basic infor-
mation contained in a translation hypothesis:

• the cost so far

• list of child hypotheses

• left language model state and right language
model state

5.3 Decoding Algorithm

First we consider structure of a syntactic tree. A tree
node contains fields such as syntactic category, child
list, and head child index. A leaf node has an ad-
ditional field of word string. In order to extend this
structure to store translation hypotheses, a new field
of hypothesis collection is appended. A hypothe-
sis collection contains translation hypotheses whose
word spans are the same. Actually, it corresponds to
a phrase-tree node. A hypothesis collection whose
word span is[i1, i2] at a node whose tag isX ex-
presses that:

• There is a phrase-tree node(X, i1, i2).

• There exist a phrase[i1, i2] or

• There exist a subsequence of X’s child list:
(Y1, j0, j1), (Y2, j1+1, j2), ...,(Yn, jn−1+1, jn)
wherej0 = i1 andjn = i2

• Suppose that[i, j] is X’s span, then[i1, i2] is a
valid phrase node’s span if and only if:i1 <= i
or i < i1 <= j and there exist a phrase[i0, i1 −
1] overlapping X’s span at[i, i1 − 1]. A similar
condition is required ofj.

Table 2 shows our decoding algorithm. Step 1 dis-
tributes translation options to leaf nodes using a pro-
cedure similar to Step 1 of algorithm in Table 1. Step

Corpus Size Training Development Testing

Conversation 16,809 15,734 403 672
Reuters 57,778 55,757 1,000 1,021

Table 3: Corpora and data sets.

English Vietnamese
Sentences 16,809
Average sent. len. 8.5 8.0
Words 143,373 130,043
Vocabulary 9,314 9,557

English Japanese
Sentences 57,778
Average sent. len. 26.7 33.5
Words 1,548,572 1,927,952
Vocabulary 31,702 29,406

Table 4: Corpus statistics of translation tasks.

2 helps check valid subsequences in Step 3 fast. Step
3 is a bottom-up procedure, a node is translated if all
of its child nodes have been translated. Step 3.1 calls
syntactic transformation models. After reordered in
Step 3.2, a subsequence will be translated in Step 3.3
using a simple monotonic decoding procedure result-
ing in new translation hypotheses. We used a beam
pruning technique to reduce the memory cost and to
accelerate the computation.

6 Experimental Results

6.1 Experimental Settings

We used Reuters3, an English-Japanese bilingual cor-
pus, and Conversation, an English-Vietnamese corpus
(Table 4). These corpora were split into data sets as
shown in Table 3. Japanese sentences were analyzed
by ChaSen4, a word-segmentation tool.

A number of tools were used in our experiments.
Vietnamese sentences were segmented using a word-
segmentation program (Nguyen et al., 2003). For
learning phrase translations and decoding, we used
Pharaoh (Koehn, 2004), a state-of-the-art phrase-
based SMT system which is available for research
purpose. For word alignment, we used the GIZA++
tool (Och and Ney, 2000). For learning language
models, we used SRILM toolkit (Stolcke, 2002). For
MT evaluation, we used BLEU measure (Papineni et
al., 2001) calculated by the NIST script version 11b.
For the parsing task, we used Charniak’s parser (Char-
niak, 2000). For experiments with chunking (or shal-
low parsing), we used a CRFs-based chunking tool5

to split a source sentence into syntactic chunks. Then
a pseudo CFG rule over chunks is built to generate a
two-level syntactic tree. This tree can be used in the

3http://www2.nict.go.jp/x/x161/members/mutiyama/index.html
4http://chasen.aist-nara.ac.jp/chasen/distribution.html.en
5http://crfpp.sourceforge.net/
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+ Input: A source CFG tree, a translation-option collection
+ Output: The best target sentence
+ Step 1: Allocate translation options to hypothesis collections at leaf nodes.
+ Step 2: Compute overlap vector for all nodes.
+ Step 3: For each node, if all of its children have been translated, then for each valid

sub-sequence of child list, carry out the following steps:
+ Step 3.1: Retrieve transformation rules
+ Step 3.2: Reorder the sub-sequence
+ Step 3.3: Translate the reordered sub-sequence and update corresponding

hypothesis collections

Table 2: A bottom-up dynamic-programming decoding algorithm.

Corpus CFG PhraseCFG W2PTT Reorder
Conversation 2,784 2,684 8,862 2,999
Reuters 7,668 5,479 13,458 7,855

Table 5: Rule induction statistics.

Corpus Pharaoh PB system SD system SD system
(chunking) (full-parsing)

Conversation 35.47 35.66 36.85 37.42
Reuters 24.41 24.20 20.60 25.53

Table 6: BLEU score comparison between phrase-
based SMT and syntax-directed SMT. PB=phrase-
based; SD=syntax-directed

same way as trees produced by Charniak’s parser.
We built a SMT system for phrase-based log-linear

translation models. This system has two decoders:
beam search and syntax-based. We implemented the
algorithm in Section 5 for the syntax-based decoder.
We also implemented a rule induction module and a
module for minimum error rate training. We used the
system for our experiments reported later.

6.2 Rule Induction

In Table 5, we report statistics of CFG rules,
phrase CFG rules, word-to-phrase tree transformation
(W2PTT) rules, and reordering rules. All counted
rules were in un-lexicalized form. Those numbers are
very small in comparison with the number of phrasal
translations (up to hundreds of thousands on our cor-
pora). There were a number of ”un-seen” CFG rules
which did not have a corresponding reordering rule.
A reason is that those rules appeared once or several
times in the training corpus; however, their hierarchi-
cal alignments did not satisfy the conditions for in-
ducing a reordering rule since word alignment is not
perfect (Nguyen and Shimazu, 2006). Another reason
is that there were CFG rules which required nonlocal
reordering. This may be an issue for future research:
a Markovization technique for SCFGs.

6.3 BLEU Scores

Table 6 shows a comparison of BLEU scores be-
tween Pharaoh, our phrase-based SMT system, and

our syntax-directed (SD) SMT system with chunking
and full parsing respectively. On both Conversation
corpus and Reuters corpus: The BLEU score of our
phrase-based SMT system is comparable to that of
Pharaoh; The BLEU score of our SD system with full
parsing is higher than that of our phrase-based sys-
tem. On Conversation corpus, our SD system with
chunking has a higher performance in terms of BLEU
score than our phrase-based system. Using sign test
(Lehmann, 1986), we verified the improvements are
statistically significant. However, on Reuters corpus,
performance of the SD system with chunking is much
lower than the phrase-based system’s. The reason is
that in English-Japanese translation, chunk is a too
shallow syntactic structure to capture word order in-
formation. For example, a prepositional chunk of-
ten includes only preposition and adverb, therefore
such information does not help reordering preposi-
tional phrases.

6.4 The Effectiveness of the W2PTT Model

Without this feature, BLEU scores decreased around
0.5 on both corpora. We now consider a linguistically
motivated example of English-Vietnamese translation
to show that phrase segmentation can be evaluated
through phrase tree scoring. This example was ex-
tracted from Conversation test set.

English sentence:for my wife ’s mother
Vietnamese word order:for mother ’s wife my

Phrase segmentation 1:for my wife| ’s | mother
P1=P(PP→IN+ -NP | PP→IN NP)xP(-NP→-NP NN| NP→NP

NN)xP(-NP→POS| NP→PRP$ NN
POS)=log(0.00001)+log(0.14)+log(0.048)=-5-0.85-1.32=-7.17

Phrase segmentation 2:for | my wife ’s| mother
P2=P(PP→IN NP | PP→IN NP)xP(NP→NP NN| NP→NP

NN) xP(NP→POS| NP→PRP$ NN POS)
=log(0.32)+log(0.57)+log(0.048)=-0.5-0.24-1.32=-2.06

The first phrase segmentation is bad (or even un-
acceptable) since the right word order can not be
achieved from this segmentation by phrase reorder-
ing and word reordering within phrases. The second
phrase segmentation is much better. Source syntax
tree and phrase trees are shown in Figure 6. The first
phrase tree has a much smaller probability (P1=-7.17)
than the second (P2=-2.06).
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Figure 6: Two phrase trees.

Corpus Level-1 Level-2 Level-3 Level-4 Full
Conversation 36.85 36.91 37.11 37.23 37.42
Reuters 20.60 22.76 24.49 25.12 25.53

Table 7: BLEU score with different syntactic levels.
Level-i means syntactic transformation was applied to
tree nodes whose level smaller than or equal to i. The
level of a pre-terminal node (POS tag) is 0. The level
of an inner node is the maximum of its children’s lev-
els.

6.5 Levels of Syntactic Analysis

Since in practice, chunking and full parsing are often
used, in Table 6, we showed translation quality of the
two cases. It is interesting if we can find how syn-
tactic analysis can affect BLEU score at more inter-
mediate levels (Table 7). On the Conversation corpus,
using syntax trees of level-1 is effective in comparison
with baseline. The increase of syntactic level makes a
steady improvement in translation quality. Note that
when we carried out experiments with chunking (con-
sidered as level-1 syntax) the translation speed (in-
cluding chunking) of our tree-to-string system was
much faster than baseline systems’. This is an option
for developing applications which require high speed
such as web translation.

7 Related Works

7.1 A Comparison of Syntactic SMT Methods

To advance the state of the art, SMT system design-
ers have experimented with tree-structured transla-
tion models. The underlying computational models

were synchronous context-free grammars and finite-
state tree transducers which conceptually have a bet-
ter expressive power than finite-state transducers. We
create Tables 8 and 9 in order to compare syntac-
tic SMT methods including ours. The first row is a
baseline phrasal SMT approach. The second column
in Table 8 only describes input types because the out-
put is often string. Syntactic SMT methods are dif-
ferent in many aspects. Methods which make use of
phrases (in either explicit or implicit way) can beat
the baseline approach (Table 8) in terms of BLEU
metric. Two main problems these models aim to deal
with are word order and word choice. In order to ac-
complish this purpose, the underlying formal gram-
mars (including synchronous context-free grammars
and tree transducers) can be fully lexicalized or un-
lexicalized (Table 9).

7.2 Non-constituent Phrasal Translations

Liu et al. (2007) proposed forest-to-string rules to
capture non-constituent phrasal translation while our
system can naturally make use of such kind of phrasal
translation by using word-to-phrase tree transforma-
tion. Liu et al. (2007) also discussed about how
the phenomenon of non-syntactic bilingual phrases
is dealt with in other SMT methods. Galley et al.
(2006) handled non-constituent phrasal translation by
traversing the tree upwards until reaches a node that
subsumes the phrase. Marcu et al. (2006) reported
that approximately 28% of bilingual phrases are non-
syntactic on their English-Chinese corpus. They pro-
posed using a pseudo nonterminal symbol that sub-
sumes the phrase and corresponding multi-headed
syntactic structure. One new xRs rule is required to
explain how the new nonterminal symbol can be com-
bined with others. This technique brought a signif-
icant improvement in performance to their string-to-
tree noisy channel SMT system.

8 Conclusions

We have presented a general tree-to-string phrase-
based method. This method employs a syntax-based
reordering model in the decoding phase. By word-
to-phrase tree transformation, all possible phrases
are considered in translation. Our method does
not suppose a uniform distribution over all possible
phrase segmentations as (Koehn et al., 2003) since
each phrase tree has a probability. We believe that
other kinds of translation unit such as n-gram (Jos
et al., 2006), factored phrasal translation (Koehn and
Hoang, 2007), or treelet (Quirk et al., 2005) can be
used in this method. We would like to consider this
problem as a future study. Moreover we would like to
use n-best trees as the input of our system. A number
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Method Input Theoretical Decoding style Linguistic Phrase Performance
model information usage

Koehn et al. (2003) string FSTs beam search no yes baseline
Yamada and Knight (2001) string SCFGs parsing target no not better
Melamed (2003) string SCFGs parsing both sides no not better
Chiang (2005) string SCFGs parsing no yes better
Quirk et al. (2005) dep. tree TTs parsing source yes better
Galley et al. (2006) string TTs parsing target yes better
Liu et al. (2006) tree TTs tree transf. source yes better
Our work tree SCFGs tree transf. source yes better

Table 8: A comparison of syntactic SMT methods (part 1). FST=Finite State Transducer; SCFG=Synchronous
Context-Free Grammar; TT=Tree Transducer.

Method Rule form Rule function Rule lexicalization level
Koehn et al. (2003) no no no
Yamada and Knight (2001) SCFG rule reorder and function-word ins./del. unlexicalized
Melamed (2003) SCFG rule reorder and word choice full
Chiang (2005) SCFG rule reorder and word choice full
Quirk et al. (2005) Treelet pair word choice full
Galley et al. (2006) xRs rule reorder and word choice full
Liu et al. (2006) xRs rule reorder and word choice full
Our work SCFG rule reorder unlexicalized

Table 9: A comparison of syntactic SMT methods (part 2). xRs is a kind of rule which maps a syntactic pattern
to a string, for example VP(AUX(does), RB(not),x0:VB) → ne, x0, pas. In the column Rule lexicalization
level: full=lexicalization using vocabularies of both source language and target language.

of non-local reordering phenomena such as adjunct
attachment should be handled in the future.
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Abstract

Previous work in referring expression gen-
eration has explored general purpose tech-
niques for attribute selection and surface
realization. However, most of this work
did not take into account: a) stylistic dif-
ferences between speakers; or b) trainable
surface realization approaches that com-
bine semantic and word order information.
In this paper we describe and evaluate sev-
eral end-to-end referring expression gener-
ation algorithms that take into considera-
tion speaker style and use data-driven sur-
face realization techniques.

1 Introduction

Natural language generation (NLG) systems have
typically decomposed the problem of generating
a linguistic expression from a conceptual specifi-
cation into three major steps: content planning,
text planning and surface realization (Reiter and
Dale, 2000). The task in content planning is to
select the information that is to be conveyed to
maximize communication efficiency. The task in
text planning and surface realization is to use the
available linguistic resources (words and syntax) to
convey the selected information using well-formed
linguistic expressions.
During a discourse (whether written or spoken,

monolog or dialog), a number of entities are in-
troduced into the discourse context shared by the
reader/hearer and the writer/speaker. Construct-
ing linguistic references to these entities efficiently
and effectively is a problem that touches on all

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

parts of an NLG system. Traditionally, this prob-
lem is split into two parts. The task of selecting
the attributes to use in referring to an entity is the
attribute selection task, performed during content
planning or sentence planning. The actual con-
struction of the referring expression is part of sur-
face realization.
There now exist numerous general-purpose al-

gorithms for attribute selection (e.g., (Dale and Re-
iter, 1995; Krahmer et al., 2003; Belz and Gatt,
2007; Siddharthan and Copestake, 2004)). How-
ever, these algorithms by-and-large focus on the
algorithmic aspects of referring expression gener-
ation rather than on psycholinguistic factors that
influence language production. For example, we
know that humans exhibit individual differences in
language production that can be quite pronounced
(e.g. (Belz, 2007)). We also know that the
language production process is subject to lexical
priming, which means that words and concepts that
have been used recently are likely to appear again
(Levelt, 1989).
In this paper, we look at attribute selection and

surface realization for referring expression gener-
ation using the TUNA corpus 1, an annotated cor-
pus of human-produced referring expressions that
describe furniture and people. We first explore
the impact of individual style and priming on at-
tribute selection for referring expression genera-
tion. To get an idea of the potential improvement
when modeling these factors, we implemented a
version of full brevity search that uses speaker-
specific constraints, and another version that also
uses recency constraints. We found that using
speaker-specific constraints led to big performance
gains for both TUNA domains, while the use of re-

1http://www.csd.abdn.ac.uk/research/tuna/
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cency constraints was not as effective for TUNA-
style tasks. We then modified Dale and Reiter’s
classic attribute selection algorithm (Dale and Re-
iter, 1995) to model individual differences in style,
and found performance gains in this more greedy
approach as well.
Then, we look at surface realization for re-

ferring expression generation. There are sev-
eral approaches to surface realizations described
in the literature (Reiter and Dale, 2000) rang-
ing from hand-crafted template-based realizers to
data-driven syntax-based realizers (Langkilde and
Knight, 2000; Bangalore and Rambow, 2000).
Template-based realization provides a straightfor-
ward method to fill out pre-defined templates with
the current attribute values. Data-driven syntax-
based methods employ techniques that incorporate
the syntactic relations between words which can
potentially go beyond local adjacency relations.
Syntactic information also helps in eliminating un-
grammatical sentence realizations. At the other ex-
treme, there are techniques that exhaustively gen-
erate possible realizations with recourse to syntax
in as much as it is reflected in local n-grams. Such
techniques have the advantage of being robust al-
though they are inadequate to capture long-range
dependencies. We explore three techniques for
the task of referring expression generation that are
different hybrids of hand-crafted and data-driven
methods.
The layout of this paper is as follows: In Sec-

tion 2, we describe the TUNA data set and the task
of identifying target entities in the context of dis-
tractors. In Section 3, we present our algorithms
for attribute selection. Our algorithms for sur-
face realization are presented in Section 4. Our
evaluation of these methods for attribute selection
and surface realization are presented in Sections 5
and 6.

2 The TUNA Corpus

The TUNA corpus was constructed using a web-
based experiment. Participants were presented
with a sequence of web pages, on each of which
they saw displayed a selection of 7 pictures of ei-
ther furniture (e.g. Figure 1) or people (e.g. Fig-
ure 2) sparsely placed on a 3 row x 5 column
grid. One of the pictures (the target) was high-
lighted; the other 6 objects (the distractors) were
randomly selected from the object database. Par-
ticipants were told that they were interacting with a

computer system to remove all but the highlighted
picture from the screen. They entered a description
of the object using natural language to identify the
object to the computer system.
The section of the TUNA corpus we used was

that provided for the REG 2008 Challenge2. The
training data includes 319 referring expressions in
the furniture domain and 274 in the people domain.
The development data (which we used for testing)
includes 80 referring expressions in the furniture
domain and 68 in the people domain.

Figure 1: Example of data from the furniture do-
main (The red couch on top).

Figure 2: Example of data from the people domain
(The bald subject on the bottom with the white
beard).

3 Attribute Selection Algorithms

Given a set of entities with attributes appropriate
to a domain (e.g., cost of flights, author of a book,

2http://www.nltg.brighton.ac.uk/research/reg08/. Prelimi-
nary versions of these algorithms were used in this challenge
and presented at INLG 2008.
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color of a car) that are in a discourse context, and a
target entity that needs to be identified, the task of
attribute selection is to select a subset of the at-
tributes that uniquely identifies the target entity.
(Note that there may be more than one such at-
tribute set.) The efficacy of attribute selection can
be measured based on the minimality of the se-
lected attribute set as well as its ability to deter-
mine the target entity uniquely. There are varia-
tions however in terms of what makes an attribute
set more preferable to a human. For example, in
a people identification task, attributes of faces are
generally more memorable than attributes pertain-
ing to outfits. In this paper, we demonstrate that
the attribute set is speaker dependent.
In this section, we present two different attribute

selection algorithms. The Full Brevity algorithm
selects the attribute set by exhaustively searching
through all possible attribute sets. In contrast, Dale
and Reiter algorithm orders the attributes based
on a heuristic (motivated by human preference)
and selects the attributes in that order until the tar-
get entity is uniquely determined. We elaborate on
these algorithms below.

Full Brevity (FB) We implemented a version of
full brevity search. It does the following: first,
it constructs AS, the set of attribute sets that
uniquely identify the referent given the distrac-
tors. Then, it selects an attribute set ASu ∈ AS
based on one of the following four criteria: 1) The
minimality (FB-m) criterion selects from among
the smallest elements of AS at random. 2) The
frequency (FB-f) criterion selects the element of
AS that occurred most often in the training data.
3) The speaker frequency (FB-sf) criterion se-
lects the element of AS used most often by this
speaker in the training data, backing off to FB-f if
necessary. This criterion models individual speak-
ing/writing style. 4) Finally, the speaker recency
(FB-sr) criterion selects the element of AS used
most recently by this speaker in the training data,
backing off to FB-sf if necessary. This criterion
models priming.

Dale and Reiter We implemented two variants
of the classic Dale & Reiter attribute selection
(Dale and Reiter, 1995) algorithm. For Dale &
Reiter basic (DR-b), we first build the preferred
list of attributes by sorting the attributes according
to frequency of use in the training data. We keep
separate lists based on the “LOC” condition (if its

value was “+LOC”, the participants were told that
they could refer to the target using its location on
the screen; if it was “-LOC”, they were instructed
not to use location on the screen) and backoff to
a global preferred attribute list if necessary. Next,
we iterate over the list of preferred attributes and
select the next one that rules out at least one en-
tity in the contrast set until no distractors are left.
Dale & Reiter speaker frequency (DR-sf) uses
a different preferred attribute list for each speaker,
backing off to the DR-b preferred list if an attribute
has never been observed in the current speaker’s
preferred attribute list. For the purpose of this task,
we did not use any external knowledge (e.g. tax-
onomies).

4 Surface Realization Approaches

A surface realizer for referring expression genera-
tion transforms a set of attribute-value pairs into a
linguistically well-formed expression. Our surface
realizers, which are all data-driven, involve four
stages of processing: (a) lexical choice of words
and phrases to realize attribute values; (b) genera-
tion of a space of surface realizations (T ); (c) rank-
ing the set of realizations using a language model
(LM ); (d) selecting the best scoring realization.
In general, the best ranking realization (T∗) is de-
scribed by equation 1:

T ∗ = Bestpath(Rank(T,LM)) (1)

We describe three different methods for creating
the search space of surface realizations – Template-
based, Dependency-based and Permutation-based
methods. Although these techniques share the
same method for ranking, they differ in the meth-
ods used for generating the space of possible sur-
face realizations.

4.1 Generating possible surface realizations

In order to transform the set of attribute-value
pairs into a linguistically well-formed expression,
the appropriate words that realize each attribute
value need to be selected (lexical choice) and the
selected words need to be ordered according to
the syntax of the target language (lexical order).
We present different models for approximating the
syntax of the target language. All three models
tightly integrate the lexical choice and lexical re-
ordering steps.
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4.1.1 Template-Based Realizer
In the template-based approach, surface realiza-

tions from our training data are used to infer a set
of templates. In the TUNA data, each attribute in
each referring expression is annotated with its at-
tribute type (e.g. in “the large red sofa” the sec-
ond word is labeled ‘size’, the third ‘color’ and
the fourth ‘type’). We extract the annotated re-
ferring expressions from each trial in the training
data and replace each attribute value with its type
(e.g. “the size color type”) to create a tem-
plate. Each template is indexed by the lexicograph-
ically sorted list of attribute types it contains (e.g.
color size type). If an attribute set is not
found in the training data (e.g. color size)
but a superset of that set is (e.g. color size
type), then the corresponding template(s) may be
used, with the un-filled attribute types deleted prior
to output.
At generation time, we find all possible realiza-

tions (l) (from the training data) of each attribute
value (a) in the input attribute set (AS), and fill in
each possible template (t) with each combination
of the attribute realizations. The space of possible
surface realizations is represented as a weighted
finite-state automaton. The weights are computed
from the prior probability of each template and
the prior probability of each lexical item realizing
an attribute (Equation 2). We have two versions
of this realizer: one with speaker-specific lexi-
cons and templates (Template-S), and one without
(Template). We report results for both.

P (T |AS) =
∑

t

P (t|AS)∗
∏

a∈t

∑

l

P (l|a, t) (2)

4.1.2 Dependency-Based Realizer
To construct our dependency-based realizer, we

first parse all the word strings from the train-
ing data using the dependency parser described
in (Bangalore et al., 2005; Nasr and Rambow,
2004). Then, for every pair of words wi, wj that
occur in the same referring expression (RE) in the
training data, we compute: freq(i < j), the fre-
quency with which wi precedes wj in any RE;
freq(dep(wi, wj) ∧ i < j), the frequency with
which wi depends on and precedes wj in any RE,
and freq(dep(wi, wj)∧j < i), the frequency with
which wi depends on and follows wj in any RE.
At generation time, we find all possible realiza-

tions of each attribute value in the input attribute

set, and for each combination of attribute realiza-
tions, we find the most likely set of dependencies
and precedences given the training data. In other
words, we bin the selected attribute realizations
according to whether they are most likely to pre-
cede, depend on and precede, depend on and fol-
low, or follow, the head word they are closest to.
The result is a set of weighted partial orderings on
the attribute realizations. As with the template-
based surface realizer, we implemented speaker-
specific and speaker-independent versions of the
dependency-based surface realizer. Once again,
we encode the space of possible surface realiza-
tions as a weighted finite-state automaton.

4.1.3 Permute and Rank Realizer
In this method, the lexical items associated with

each attribute value to be realized are treated as a
disjunctive set of tokens. This disjunctive set is
represented as a finite-state automaton with two
states and transitions between them labeled with
the tokens of the set. The transitions are weighted
by the negative logarithm of the probability of the
lexical token (l) being associated with that attribute
value (a): (−log(P (l|a))). These sets are treated
as bags of tokens; we create permutations of these
bags of tokens to represent the set of possible sur-
face realizations.
In general, the number of states of the minimal

permutation automaton of even a linear automaton
(finite-state representation of a string) grows expo-
nentially with the number of words of the string.
Although creating the full permutation automaton
for full natural language generation tasks could
be computationally prohibitive, most attribute sets
in our two domains contain no more than five at-
tributes. So we choose to explore the full permu-
tation space. A more general approach might con-
strain permutations to be within a local window of
adjustable size (also see (Kanthak et al., 2005)).
Figure 3 shows the minimal permutation au-

tomaton for an input sequence of 4 words and a
window size of 2. Each state of the automaton is
indexed by a bit vector of size equal to the number
of words/phrases of the target sentence. Each bit
of the bit vector is set to 1 if the word/phrase in
that bit position is used on any path from the initial
to the current state. The next word for permutation
from a given state is restricted to be within the win-
dow size (2 in our case) positions counting from
the first as-yet uncovered position in that state. For
example, the state indexed with vector “1000” rep-
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Figure 3: Locally constraint permutation automaton for a sentence with 4 positions and a window size
of 2.

resents the fact that the word/phrase at position 1
has been used. The next two (window=2) posi-
tions are the possible outgoing arcs from this state
with labels 2 and 3 connecting to state “1100” and
“1010” respectively. The bit vectors of two states
connected by an arc differ only by a single bit.
Note that bit vectors elegantly solve the problem of
recombining paths in the automaton as states with
the same bit vectors can be merged. As a result, a
fully minimized permutation automaton has only a
single initial and final state.

4.2 Ranking and Recovering a Surface
Realization

These three methods for surface realization create
a space of possible linguistic expressions given the
set of attributes to be realized. These expressions
are encoded as finite-state automata and have to be
ranked based on their syntactic well-formedness.
We approximate the syntactic well-formedness of
an expression by the n-gram likelihood score of
that expression. We use a trigram model trained
on the realizations in the training corpus. This
language model is also represented as a weighted
finite-state automaton. The automaton represent-
ing the space of possible realizations and the one
representing the language model are composed.
The result is an automaton that ranks the possible
realizations according to their n-gram likelihood
scores. We then produce the best-scoring realiza-
tion as the target realization of the input attribute
set.
We introduce a parameter λ which allows us

to control the importance of the prior score rela-
tive to the language model scores. We weight the
finite-state automata according to this parameter as
shown in Equation 3.

T ∗ = Bestpath(λ ∗ T ◦ (1 − λ) ∗ LM) (3)

DICE MASI Acc. Uniq. Min.
Furniture

FB-m .36 .16 0 1 1
FB-f .81 .58 .40 1 0
FB-sf .95 .87 .79 1 0
FB-sr .93 .81 .71 1 0
DR-b .81 .60 .45 1 0
DR-sf .86 .64 .45 1 .04

People
FB-m .26 .12 0 1 1
FB-f .58 .37 .28 1 0
FB-sf .94 .88 .84 1 .01
FB-sr .93 .85 .79 1 .01
DR-b .70 .45 .25 1 0
DR-sf .78 .55 .35 1 0

Overall
FB-m .32 .14 0 1 1
FB-f .70 .48 .34 1 0
FB-sf .95 .87 .81 1 .01
FB-sr .93 .83 .75 1 .01
DR-b .76 .53 .36 1 0
DR-sf .82 .60 .41 1 .02

Table 1: Results for attribute selection

5 Attribute Selection Experiments

Data Preparation The training data were used
to build the models outlined above. The develop-
ment data were then processed one-by-one.

Metrics We report performance using the met-
rics used for the REG 2008 competition. The
MASI metric is a metric used in summarization
that measures agreement between two annotators
(or one annotator and one system) on set-valued
items (Nenkova et al., 2007). Values range from
0 to 1, with 1 representing perfect agreement.
The DICE metric is also a measure of association
whose value varies from 0 (no association) to 1 (to-
tal association) (Dice, 1945). The Accuracy met-
ric is binary-valued: 1 if the attribute set is iden-
tical to that selected by the human, 0 otherwise.
The Uniqueness metric is also binary-valued: 1 if
the attribute set uniquely identifies the target refer-
ent among the distractors, 0 otherwise. Finally, the
Minimality metric is 1 if the selected attribute set
is as small as possible (while still uniquely identi-
fying the target referent), and 0 otherwise. We note

155



that attribute selection algorithms such as Dale &
Reiter’s are based on the observation that humans
frequently do not produce minimal referring ex-
pressions.

Results Table 1 shows the results for variations
of full brevity. As we would expect, all approaches
achieve a perfect score on uniqueness. For both
corpora, we see a large performance jump when
we use speaker constraints for all metrics other
than minimality. However, when we incorporate
recency constraints as well performance declines
slightly. We think this is due to two factors: first,
the speakers are not in a conversation, and self-
priming may have less impact than other-priming;
and second, we do not always have the most recent
prior utterance for a given speaker in the training
data.
Table 1 also shows the results for variations of

Dale & Reiter’s algorithm. When we incorporate
speaker constraints, we again see a performance
jump for most metrics, although compared to the
best possible case (full brevity) there is still room
for improvement.
We conclude that speaker constraints can be suc-

cessfully used in standard attribute selection algo-
rithms to improve performance on this task.
The most relevant previous research is the work

of (Gupta and Stent, 2005), who modified Dale
and Reiter’s algorithm to model speaker adaptation
in dialog. However, this corpus does not involve
dialog so there are no cross-speaker constraints,
only within-speaker constraints (speaker style and
priming).

6 Surface Realization Experiments

Data Preparation We first normalized the train-
ing data to correct misspellings and remove punc-
tuation and capitalization. We then extracted a
phrasal lexicon. For each attribute value we ex-
tracted the count of all realizations of that value in
the training data. We treated locations as a spe-
cial case, storing separately the realizations of x-
y coordinate pairs and single x- or y-coordinates.
We added a small number of realizations by hand
to cover possible attribute values not seen in the
training data.

Realization We ran two realization experiments.
In the first experiment, we used the human-
selected attribute sets in the development data as
the input to realization. If we want to maxi-

λ SED ACC Bleu NIST
Furniture

Permute&Rank 0.01 3.54 0.14 0.311 3.87
Dependency 0.90 4.51 0.09 0.206 3.29
Dependency-S 0.60 4.30 0.11 0.232 3.91
Template 0.10 3.59 0.13 0.328 3.93
Template-S 0.10 2.80 0.28 0.403 4.67

People
Permute&Rank 0.04 4.37 0.10 0.227 3.15
Dependency 0.70 6.10 0.00 0.072 2.35
Dependency-S 0.50 5.84 0.02 0.136 3.05
Template 0.80 3.87 0.07 0.250 3.18
Template-S 0.70 3.79 0.15 0.265 3.59

Overall
Permute&Rank .01/.04 3.92 0.12 0.271 4.02
Dependency 0.9/0.7 5.24 0.05 0.146 3.23
Dependency-S 0.6/0.5 5.01 0.07 0.187 3.98
Template 0.1/0.8 3.77 0.10 0.285 4.09
Template-S 0.1/0.7 3.26 0.22 0.335 4.77

Table 2: Results for realization using speakers’ at-
tribute selection (SED: String Edit Distance, ACC:
String Accuracy)

mize humanlikeness, then using these attribute sets
should give us an idea of the best possible perfor-
mance of our realization methods. In the second
experiment, we used the attribute sets output by
our best-performing attribute selection algorithms
(FB-sf and DR-sf) as the input to realization.

Metrics We report performance of our surface
realizers using the metrics used for the REG 2008
shared challenge and standard metrics used in the
natural language generation and machine trans-
lation communities. String Edit Distance (SED)
is a measure of the number of words that would
have to be added, deleted, or replaced in order to
transform the generated referring expression into
the one produced by the human. As used in the
REG 2008 shared challenge, it is unnormalized, so
its values range from zero up. Accuracy (ACC)
is binary-valued: 1 if the generated referring ex-
pression is identical to that produced by the hu-
man (after spelling correction and normalization),
and 0 otherwise. Bleu is an n-gram based met-
ric that counts the number of 1, 2 and 3 grams
shared between the generated string and one or
more (preferably more) reference strings (Papenini
et al., 2001). Bleu values are normalized and range
from 0 (no match) to 1 (perfect match). Finally,
the NIST metric is a variation on the Bleu met-
ric that, among other things, weights rare n-grams
higher than frequently-occurring ones (Dodding-
ton, 2002). NIST values are unnormalized.

156



SED ACC Bleu NIST
Furniture

FB-sf DR-sf FB-sf DR-sf FB-sf DR-sf FB-sf DR-sf
Permute&Rank 3.97 4.22 0.09 0.06 .291 .242 3.82 3.32
Dependency 4.80 5.03 0.04 0.03 .193 .105 3.32 2.46
Dependency-S 4.71 4.88 0.06 0.04 .201 .157 3.74 3.26
Template 3.89 4.56 0.09 0.05 .283 .213 3.48 3.22
Template-S 3.26 3.90 0.19 0.12 .362 .294 4.41 4.07

People
Permute&Rank 4.75 5.82 0.09 0.03 .171 .110 2.70 2.31
Dependency 6.35 6.91 0.00 0.00 .068 .073 1.81 1.86
Dependency-S 5.94 6.18 0.01 0.00 .108 .113 2.73 2.41
Template 3.62 4.24 0.07 0.04 .231 .138 2.88 1.35
Template-S 3.76 4.38 0.12 0.06 .201 .153 2.76 1.88

Overall
Permute&Rank 4.33 4.96 0.09 0.05 .236 .235 3.73 3.72
Dependency 5.51 6.00 0.02 0.01 .136 .091 2.97 2.50
Dependency-S 5.36 5.67 0.04 0.02 .159 .136 3.77 3.25
Template 3.76 4.41 0.08 0.05 .258 .180 3.69 2.89
Template-S 3.48 4.12 0.16 0.09 .288 .229 4.15 3.58

Table 3: Results for realization with different attribute selection algorithms

Furniture People
FB-sf DR-sf FB-sf DR-sf

Permute&Rank .01 .05 .05 .04
Dependency .9 .9 .9 .1
Dependency-S .2 .2 .4 .4
Template .8 .8 .8 .8
Template-S .6 .8 .8 .8

Table 4: Optimal λ values with different attribute
selection algorithms

Results Our experimental results are shown in
Tables 2 and 3. (These results are the results
obtained with the language model weighting that
gives best performance; the weights are shown in
Tables 2 and 4.) Our approaches work better for
the furniture domain, where there are fewer at-
tributes, than for the people domain. For both
domains, for automatic and human attribute se-
lection, the speaker-dependent Template-based ap-
proach seems to perform the best, then the speaker-
independent Template-based approach, and then
the Permute&Rank approach. However, we find
automatic metrics for evaluating generation qual-
ity to be unreliable. We looked at the output of the
surface realizers for the two examples in Section 2.
The best output for the example in Figure 1 is from
the FB-sf template-based speaker-dependent algo-
rithm, which is the big red sofa. The worst out-
put is from the DR-sf dependency-based speaker-
dependent algorithm, which is on the left red chair
with three seats. The best output for the exam-
ple in Figure 2 is from the FB-sf template-based
speaker-independent algorithm, which is the man
with the white beard. The worst output is from the

FB-sf dependency-based speaker-dependent algo-
rithm, which is beard man white.

Discussion The Template-S approach achieves
the best string edit distance scores, but it is not very
robust. If no examples are found in the training
data that realize (a superset of) the input attribute
set, neither Template approach will produce any
output.
The biggest cause of errors for the Permute and

Reorder approach is missing determiners and miss-
ing modifiers. The biggest cause of errors for the
Dependency approach is missing determiners and
reordered words. The Template approach some-
times has repeated words (e.g. “middle”, where
“middle” referred to both x- and y-coordinates).
Here we report performance using automatic

metrics, but we find these metrics to be unreliable
(particularly in the absence of multiple reference
texts). Also, we are not sure that people would ac-
cept from a computer system output that is very
human-like in this domain, as the human-like out-
put is often ungrammatical and telegraphic (e.g.
“grey frontal table”). We plan to do a human eval-
uation soon to better analyze our systems’ perfor-
mance.

7 Conclusions

When building computational models of language,
knowledge about the factors that influence human
language production can prove very helpful. This
knowledge can be incorporated in frequentist and
heuristic approaches as constraints or features. In
the experiments described in this paper, we used
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data-driven, speaker-aware approaches to attribute
selection and referring expression realization. We
showed that individual speaking style can be use-
fully modeled even for quite ‘small’ generation
tasks, and confirmed that data-driven approaches
to surface realization can work well using a range
of lexical, syntactic and semantic information.
We plan to explore the impact of human visual

search strategies (Rayner, 1998) on the referring
expression generation task. In addition, we are
planning a human evaluation of the generation sys-
tems’ output. Finally, we plan to apply our algo-
rithms to a conversational task.
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Abstract

The Conference on Computational Natu-
ral Language Learning is accompanied ev-
ery year by a shared task whose purpose
is to promote natural language processing
applications and evaluate them in a stan-
dard setting. In 2008 the shared task was
dedicated to the joint parsing of syntactic
and semantic dependencies. This shared
task not only unifies the shared tasks of
the previous four years under a unique
dependency-based formalism, but also ex-
tends them significantly: this year’s syn-
tactic dependencies include more informa-
tion such as named-entity boundaries; the
semantic dependencies model roles of both
verbal and nominal predicates. In this pa-
per, we define the shared task and describe
how the data sets were created. Further-
more, we report and analyze the results and
describe the approaches of the participat-
ing systems.

1 Introduction

In 2004 and 2005 the shared tasks of the Confer-
ence on Computational Natural Language Learn-
ing (CoNLL) were dedicated to semantic role la-
beling (SRL), in a monolingual setting (English).
In 2006 and 2007 the shared tasks were devoted to
the parsing of syntactic dependencies, using cor-
pora from up to 13 languages. The CoNLL-2008
shared task1 proposes a unified dependency-based

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1http://www.yr-bcn.es/conll2008

formalism, which models both syntactic depen-
dencies and semantic roles. Using this formalism,
this shared task merges both the task of syntactic
dependency parsing and the task of identifying se-
mantic arguments and labeling them with semantic
roles. Conceptually, the 2008 shared task can be
divided into three subtasks: (i) parsing of syntactic
dependencies, (ii) identification and disambigua-
tion of semantic predicates, and (iii) identification
of arguments and assignment of semantic roles for
each predicate. Several objectives were addressed
in this shared task:

• SRL is performed and evaluated using a
dependency-based representation for both
syntactic and semantic dependencies. While
SRL on top of a dependency treebank has
been addressed before (Hacioglu, 2004),
our approach has several novelties: (i) our
constituent-to-dependency conversion strat-
egy transforms all annotated semantic argu-
ments in PropBank and NomBank not just a
subset; (ii) we address propositions centered
around both verbal (PropBank) and nominal
(NomBank) predicates.

• Based on the observation that a richer set
of syntactic dependencies improves seman-
tic processing (Johansson and Nugues, 2007),
the syntactic dependencies modeled are more
complex than the ones used in the previous
CoNLL shared tasks. For example, we now
include apposition links, dependencies de-
rived from named entity (NE) structures, and
better modeling of long-distance grammatical
relations.

• A practical framework is provided for the
joint learning of syntactic and semantic de-
pendencies.
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Given the complexity of this shared task, we
limited the evaluation to a monolingual, English-
only setting. The evaluation is separated into two
different challenges: a closed challenge, where
systems have to be trained strictly with informa-
tion contained in the given training corpus, and an
open challenge, where systems can be developed
making use of any kind of external tools and re-
sources. The participants could submit results in
either one or both challenges.

This paper is organized as follows. Section 2
defines the task, including the format of the data,
the evaluation metrics, and the two challenges.
Section 3 introduces the corpora used and our
constituent-to-dependency conversion procedure.
Section 4 summarizes the results of the submit-
ted systems. Section 5 discusses the approaches
implemented by participants. Section 6 analyzes
the results using additional non-official evaluation
measures. Section 7 concludes the paper.

2 Task Definition

In this section we provide the definition of the
shared task, starting with the format of the shared
task data, followed by a description of the eval-
uation metrics used and a discussion of the two
shared task challenges, i.e., closed and open.

2.1 Data Format
The data format used in this shared task was highly
influenced by the formats used in the 2004–2007
shared tasks. The data follows these general rules:

• The files contain sentences separated by a
blank line.

• A sentence consists of one or more tokens and
the information for each token is represented
on a separate line.

• A token consists of at least 11 fields. The
fields are separated by one or more whites-
pace characters (spaces or tabs). Whitespace
characters are not allowed within fields.

Table 1 describes the fields stored for each token
in the closed-track data sets. Columns 1–3 and
5–8 are available at both training and test time.
Column 4, which contains gold-standard part-of-
speech (POS) tags, is not given at test time. The
same holds for columns 9 and above, which con-
tain the syntactic and semantic dependency struc-
tures that the systems should predict.

The PPOS and PPOSS fields were automati-
cally predicted using the SVMTool POS tagger
(Giménez, 2004). To predict the tags in the train-
ing set, a 5-fold cross-validation procedure was
used. The LEMMA and SPLIT LEMMA fields
were predicted using the built-in lemmatizer in
WordNet (Fellbaum, 1998) based on the most fre-
quent sense for the form and part-of-speech tag.

Since NomBank uses a sub-word anal-
ysis in some hyphenated words (such as
[finger]ARG-[pointing]PRED), the data for-
mat represents the parts in hyphenated words as
separate tokens (columns 6–8). However, the
format also represents how the parts originally fit
together before splitting (columns 2–5). Padding
characters (“ ”) are used in columns 2–5 to
ensure the same number of rows for all columns
corresponding to one sentence. All syntactic and
semantic dependencies are annotated relative to
the split word forms (columns 6–8).

Table 2 shows the columns available to the sys-
tems participating in the open challenge: named-
entity labels as in the CoNLL-2003 Shared Task
(Tjong Kim San and De Meulder, 2003) and
from the BBN Wall Street Journal Entity Corpus,2

WordNet supersense tags, and the output of an off-
the-shelf dependency parser (Nivre et al., 2007b).
Columns 1–3 were predicted using the tagger of
Ciaramita and Altun (2006). Because the BBN
corpus shares lexical content with the Penn Tree-
bank, we generated the BBN tags using a 2-fold
cross-validation procedure.

2.2 Evaluation Measures
We separate the evaluation measures into two
groups: (i) official measures, which were used for
the ranking of participating systems, and (ii) addi-
tional unofficial measures, which provide further
insight into the performance of the participating
systems.

2.2.1 Official Evaluation Measures
The official evaluation measures consist of three

different scores: (i) syntactic dependencies are
scored using the labeled attachment score (LAS),
(ii) semantic dependencies are evaluated using a
labeled F1 score, and (iii) the overall task is scored
with a macro average of the two previous scores.
We describe all these scoring measures next.

The LAS score is defined similarly as in the pre-
vious two shared tasks, as the percentage of to-

2LDC catalog number LDC2005T33.
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Number Name Description
1 ID Token counter, starting at 1 for each new sentence.
2 FORM Unsplit word form or punctuation symbol.
3 LEMMA Predicted lemma of FORM.
4 GPOS Gold part-of-speech tag from the Treebank (empty at test time).
5 PPOS Predicted POS tag.
6 SPLIT FORM Tokens split at hyphens and slashes.
7 SPLIT LEMMA Predicted lemma of SPLIT FORM.
8 PPOSS Predicted POS tags of the split forms.
9 HEAD Syntactic head of the current token, which is either a value of ID or zero (0).
10 DEPREL Syntactic dependency relation to the HEAD.
11 PRED Rolesets of the semantic predicates in this sentence.
12. . . ARG Columns with argument labels for each semantic predicate following textual order.

Table 1: Column format in the closed-track data. The columns in the lower part of the table are unseen
at test time and are to be predicted by systems.

Number Name Description
1 CONLL2003 Named entity labels using the tag set from the CoNLL-2003 shared task.
2 BBN NE labels using the tag set from the BBN Wall Street Journal Entity Corpus.
3 WNSS WordNet super senses.
4 MALT HEAD Head of the syntactic dependencies generated by MaltParser.
5 MALT DEPREL Label of syntactic dependencies generated by MaltParser.

Table 2: Column format in the open-track data.

kens for which a system has predicted the correct
HEAD and DEPREL columns (see Table 1). Same
as before, our scorer also computes the unlabeled
attachment score (UAS), i.e., the percentage of to-
kens with correct HEAD, and label accuracy, i.e.,
the percentage of tokens with correct DEPREL.

The semantic propositions are evaluated by con-
verting them to semantic dependencies, i.e., we
create a semantic dependency from every predicate
to all its individual arguments. These dependen-
cies are labeled with the labels of the correspond-
ing arguments. Additionally, we create a seman-
tic dependency from each predicate to a virtual
ROOT node. The latter dependencies are labeled
with the predicate senses. This approach guaran-
tees that the semantic dependency structure con-
ceptually forms a single-rooted, connected (but not
necessarily acyclic) graph. More importantly, this
scoring strategy implies that if a system assigns
the incorrect predicate sense, it still receives some
points for the arguments correctly assigned. For
example, for the correct proposition:

verb.01: ARG0, ARG1, ARGM-TMP

the system that generates the following output for
the same argument tokens:

verb.02: ARG0, ARG1, ARGM-LOC

receives a labeled precision score of 2/4 because
two out of four semantic dependencies are incor-
rect: the dependency to ROOT is labeled 02 in-

stead of 01 and the dependency to the ARGM-TMP
is incorrectly labeled ARGM-LOC. Using this strat-
egy we compute precision, recall, and F1 scores
for both labeled and unlabeled semantic dependen-
cies.

Finally, we combine the syntactic and semantic
measures into one global measure using macro av-
eraging. We compute macro precision and recall
scores by averaging the labeled precision and re-
call for semantic dependencies with the LAS for
syntactic dependencies:3

LMP = Wsem ∗ LPsem + (1−Wsem) ∗ LAS (1)

LMR = Wsem ∗ LRsem + (1−Wsem) ∗ LAS (2)

where LMP is the labeled macro precision and
LPsem is the labeled precision for semantic depen-
dencies. Similarly, LMR is the labeled macro re-
call and LRsem is the labeled recall for semantic
dependencies. Wsem is the weight assigned to the
semantic task.4 The macro labeled F1 score, which
was used for the ranking of the participating sys-
tems, is computed as the harmonic mean of LMP
and LMR.

3We can do this because the LAS for syntactic dependen-
cies is a special case of precision and recall, where the pre-
dicted number of dependencies is equal to the number of gold
dependencies.

4We assign equal weight to the two tasks, i.e., Wsem =
0.5.
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2.2.2 Additional Evaluation Measures
We used several additional evaluation measures

to further analyze the performance of the partici-
pating systems.

The first additional measure used is Exact
Match, which reports the percentage of sentences
that are completely correct, i.e., all the generated
syntactic dependencies are correct and all the se-
mantic propositions are present and correct. While
this score is significantly lower than any of the of-
ficial scores, it will award systems that performed
joint learning or optimization for all subtasks.

In the same spirit but focusing on the seman-
tic subtasks, we report the Perfect Proposition F1

score, where we score entire semantic frames or
propositions. This measure is similar to the PProps
accuracy score from the 2005 shared task (Carreras
and Màrquez, 2005), with the caveat that this year
this score is implemented as an F1 measure, be-
cause predicates are not provided in the test data.
Hence, propositions may be over or under gener-
ated at prediction time.

Lastly, we analyze systems based on the ratio
between labeled F1 score for semantic dependen-
cies and the LAS for syntactic dependencies. In
other words, this measure normalizes the seman-
tic scores relative to the performance of the pars-
ing component. This measure estimates the true
overall performance of the semantic subtasks, in-
dependent of the syntactic parser.5 For example,
this score addresses the situations where the se-
mantic labeled F1 score of one system is artificially
low because the corresponding syntactic compo-
nent does not perform well.

2.3 Closed and Open Challenges

Similarly to the CoNLL-2005 shared task, this
shared task evaluation is separated into two chal-
lenges:

Closed Challenge - systems have to be built
strictly with information contained in the given
training corpus, and tuned with the development
section. In addition, the PropBank and NomBank
lexical frames can be used. These restrictions
mean that constituent-based parsers or SRL sys-
tems can not be used in this challenge because the
constituent-based annotations are not provided in
our training set. The aim of this challenge is to

5A correct evaluation of the stand-alone SRL systems
would require the usage of gold syntactic dependencies, but
these were not provided for the testing corpora.

compare the performance of the participating sys-
tems in a fair environment.

Open Challenge - systems can be developed mak-
ing use of any kind of external tools and resources.
The only condition is that such tools or resources
must not have been developed with the annota-
tions of the test set, both for the input and out-
put annotations of the data. In this challenge,
we are interested in learning methods which make
use of any tools or resources that might improve
the performance. For example, we encourage the
use of semantic information, as provided by NE
recognition or word-sense disambiguation (WSD)
systems (such state-of-the-art annotations are pro-
vided by the organizers, see Table 2). Also, in
this challenge participants are encouraged to use
constituent-based parsers and SRL systems, as
long as these systems were trained only with the
sections of Penn Treebank used in the shared task
training corpus. To encourage the participation of
the groups that are only interested in SRL, the or-
ganizers provide also the output of a state-of-the-
art dependency parser as input in this challenge.
The comparison of different systems in this setting
may not be fair, and thus ranking of systems is not
necessarily important.

3 Data

The corpora used in the shared task evaluation
were generated through a process that merges
several input corpora and converts them from
the constituent-based formalism to dependencies.
This section starts with an introduction of the in-
put corpora used, followed by a description of
the constituent-to-dependency conversion process.
The section concludes with an overview of the
shared task corpora.

3.1 Input Corpora

Input to our merging procedures includes the Penn
Treebank, BBN’s named entity corpus, PropBank
and NomBank. In this section, we will pro-
vide brief descriptions of these annotations in
terms of both form and content. All annotations
are currently being distributed by the Linguistic
Data Consortium, with the exception of NomBank,
which is freely downloadable.6

6http://nlp.cs.nyu.edu/meyers/NomBank.
html
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3.1.1 Penn Treebank 3

The Penn Treebank 3 corpus (Marcus et al.,
1993) consists of hand-coded parses of the Wall
Street Journal (test, development and training) and
a small subset of the Brown corpus (W. N. Fran-
cis and H. Kuĉera, 1964) (test only). These hand
parses are notated in-line and sometimes involve
changing the strings of the input data. For ex-
ample, in file wsj 0309, the token fearlast in the
text corresponds to the two tokens fear and last
in the annotated data. In a similar way, cannot
is regularly split to can and not. It is significant
that the other annotations assume the tokeniza-
tion of the Penn Treebank, as this makes it easier
for us to merge the annotation. The Penn Tree-
bank syntactic annotation includes phrases, parts
of speech, empty category representations of vari-
ous filler/gap constructions and other phenomena,
based on a theoretical perspective similar to that
of Government and Binding Theory (Chomsky,
1981).

3.1.2 BBN Pronoun Coreference and Entity
Type Corpus

BBN’s NE annotation of the Wall Street Journal
corpus (Weischedel and Brunstein, 2005) takes the
form of SGML inline markup of text, tokenized
to be completely compatible with the Penn Tree-
bank annotation, e.g., fearlast and cannot are split
in the same ways. Named entity categories in-
clude: Person, Organization, Location, GPE, Fa-
cility, Money, Percent, Time and Date, based on
the definitions of these categories in MUC (Chin-
chor and Robinson, 1998) and ACE7 tasks. Sub-
categories are included as well. Note however that
from this corpus we only use NE boundaries to
derive NAME dependencies between NE tokens,
e.g., we create a NAME dependency from Mary to
Smith given the NE mention Mary Smith.

3.1.3 Proposition Bank I (PropBank)

The PropBank annotation (Palmer et al., 2005)
classifies the arguments of all the main verbs in the
Penn Treebank corpus, other than be. Arguments
are numbered (ARG0, ARG1, . . .) based on lexical
entries or frame files. Different sets of arguments
are assumed for different rolesets. Dependent con-
stituents that fall into categories independent of
the lexical entries are classified as various types

7http://projects.ldc.upenn.edu/ace/

of ARGM (TMP, ADV, etc.).8 Rather than us-
ing PropBank directly, we used the version created
for the CoNLL-2005 shared task (Carreras and
Màrquez, 2005). PropBank’s pointers to subtrees
are converted into the list of leaves of those sub-
trees, minus the empty categories. On occasion,
arguments of verbs end up being two non-adjacent
substrings. For example, the argument of claims in
the following sentence is indicated in bold: This
sentence, Mary claims, is self-referential. The
CoNLL-2005 format handles this by marking both
strings A1 (This sentence and is self-referential),
but adding a C- prefix to the argument tag on the
second argument. Another difference between the
PropBank annotation and the CoNLL-2005 ver-
sion of it is their treatments of filler gap construc-
tions involving empty categories. PropBank an-
notation includes the whole chain of empty cate-
gories, as well as the antecedent of the empty cate-
gory (the filler of the gap). In contrast, the CoNLL-
2005 version only includes the filler of the gap and
if there is no filler, the argument is omitted, e.g.,
no ARG0 (subject) for leave would be included in
I said to leave because the subject of leave is un-
specified.

3.1.4 NomBank
NomBank annotation (Meyers et al., 2004) uses

essentially the same framework as PropBank to an-
notate arguments of nouns. Differences between
PropBank and NomBank stem from differences
between noun and verb argument structure; differ-
ences in treatment of nouns and verbs in the Penn
Treebank; and differences in the sophistication of
previous research about noun and verb argument
structure. Only the subset of nouns that take ar-
guments are annotated in NomBank and only a
subset of the non-argument siblings of nouns are
marked as ARGM. These limitations were nec-
essary to make the NomBank task consistent and
tractable. In addition, long distance dependencies
of nouns, e.g., the relation between Mary and walk
in Mary took dozens of walks is handled as fol-
lows: Mary is marked as the ARG0 of walk and
took + dozens + of is marked as a support chain
in NomBank. In contrast, verbal long distance de-
pendencies can be handled by means of empty cat-
egories in the Penn Treebank, e.g., the relation be-

8PropBank I is used here. Later versions of PropBank
mark instances of be in addition to other verbs. PropBank’s
use of the terms roleset and ARGM correspond approximately
to sense and adjunct in common usage.
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tween John and walked in John seemed t to walk.
Support chains are needed because nominal long
distance dependencies are not captured under the
Penn Treebank’s system of empty categories.

3.2 Conversion to Dependencies
3.2.1 Syntactic Dependencies

There exists no large-scale dependency tree-
bank for English, and we thus had to construct a
dependency-annotated corpus automatically from
the Penn Treebank (Marcus et al., 1993). Since
dependency syntax represents grammatical struc-
ture by means of labeled binary head–dependent
relations rather than phrases, the task of the con-
version procedure is to identify and label the
head–dependent pairs. The idea underpinning
constituent-to-dependency conversion algorithms
(Magerman, 1994; Collins, 1999; Yamada and
Matsumoto, 2003) is that head–dependent pairs are
created from constituents by selecting one word in
each phrase as the head and setting all other as its
dependents. The dependency labels are then in-
ferred from the phrase–subphrase or phrase–word
relations.

Our conversion procedure (Johansson and
Nugues, 2007) differs from this basic approach by
exploiting the rich structure of the constituent for-
mat used in Penn Treebank 3:

• Grammatical function labels that often can be
directly used in the dependency framework.

• Long-distance grammatical relations repre-
sented by means of empty categories and sec-
ondary edges, which can be used to create (of-
ten nonprojective) dependency links.

Of the grammatical function tags available in the
Treebank, we removed the HLN, NOM, TPC, and
TTL tags since they represent structural properties
of single phrases rather than binary relations. For
compatibility between the WSJ and Brown cor-
pora, we removed the ETC, UNF, and IMP tags
from Brown and the CLR tag from WSJ.

Algorithms 1 and 2 show the constituent-to-
dependency conversion algorithm and function la-
beling, respectively. The first steps apply structural
transformations to the constituent trees. Next, a
head word is assigned to each constituent. After
this, grammatical functions are inferred, allowing
a dependency tree to be created.

To find head children (used in
assign-heads), a system of rules is used

Algorithm 1: Pseudocode for constituent-to-
dependency conversion.

procedure constituents-to-dependencies(T )
import-glarf(T )
reattach-traces(T )
split-small-clauses(T )
assign-heads(T.root)
assign-functions(T )
return create-dependency-tree(T )

procedure import-glarf(T )
Import a GLARF surface dependency graph G
for each multi-word name N inG

for each token d inN
Set the function tag of d to NAME

for each dependency link h→L d inG
if L ∈ { APPOSITE, A-POS, N-POS, POST-HON, Q-POS,

RED-RELATIVE, SUFFIX, T-POS, TITLE }
or if h and d are inside a split word

Set the function tag of d to L in T
if h and d are part of a larger constituent

Add an NX constituent to T that brackets h and d

procedure reattach-traces(T )
for each empty category t in T

if t is linked to a constituent C via a secondary edge label L
and L ∈ { *ICH*, *T*, *RNR* }
disconnect C
disconnect the secondary edge
attach C to the parent of t

procedure split-small-clauses(T )
for each verb phrase C in T

if C has a child S and the phrase label of S is S
and S is not preceded by a ‘‘ or , tag
and S has a subject child s

disconnect s
attach s to C
set the function tag of s to OBJ
set the function tag of S to OPRD

procedure assign-heads(N)
for each child C ofN
assign-heads(C)

if is-coordinated(N)
e← index of first CC or CONJP or , or :

else
e← index of last child of N

find head child H between 1 and e according to head rules (Table 3)
N.head← H.head

procedure is-coordinated(N)
ifN has the label UCP return True
ifN has a CC or CONJP child which is not leftmost return True
ifN has a , or : child c, and c is not leftmost or rightmost or
crossed by an apposition link, return True
else return False

procedure create-dependency-tree(T )
D ← {}
for each token t in T

let C be the highest constituent that t is the head of
let P be the parent of C
let L be the function tag of C
D ← D ∪ P.head→L t

returnD

(Table 3). The first column in the table indicates
the phrase type, the second is the search direction,
and the third is a priority list of phrase types to
look for. For instance, to find the head of an S
phrase, we look from right to left for a VP. If
no VP is found, look for anything with a PRD
function tag, and so on.

Moreover, since the grammatical structure in-
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ADJP ← NNS QP NN $ ADVP JJ VBN VBG ADJP JJR NP JJS DT
FW RBR RBS SBAR RB

ADVP → RB RBR RBS FW ADVP TO CD JJR JJ IN NP JJS NN
CONJP → CC RB IN
FRAG → (NN* | NP) W* SBAR (PP | IN) (ADJP | JJ) ADVP

RB
INTJ ← *
LST → LS :
NAC, NP, NX, WHNP ← (NN* | NX) NP-ε JJR CD JJ JJS RB QP NP
PP, WHPP → IN TO VBG VBN RP FW
PRN → S* N* W* PP|IN ADJP|JJ* ADVP|RB*
PRT → RP
QP ← $ IN NNS NN JJ RB DT CD NCD QP JJR JJS
RRC → VP NP ADVP ADJP PP
S ← VP *-PRD S SBAR ADJP UCP NP
SBAR ← S SQ SINV SBAR FRAG IN DT
SBARQ ← SQ S SINV SBARQ FRAG
SINV ← VBZ VBD VBP VB MD VP *-PRD S SINV ADJP NP
SQ ← VBZ VBD VBP VB MD *-PRD VP SQ
UCP → *
VP → VBD VBN MD VBZ VB VBG VBP VP *-PRD ADJP NN NNS

NP
WHADJP ← CC WRB JJ ADJP
WHADVP → CC WRB
X → *

Table 3: Head rules.

Algorithm 2: Pseudocode for the function la-
beling procedure.

procedure assign-functions(T )
for each constituent C in T

if C has no function tag from Penn or GLARF
L← infer-function(C)
Set the function tag of C to L

procedure infer-function(C)
let c be the head of C, P the parent of C, and p the head of P
if C is an object return OBJ
if C is PRN return PRN
if h is punctuation return P
if C is coordinated with P return COORD
if C is PP, ADVP, or SBAR and P is VP return ADV
if C is PRT and P is VP return PRT
if C is VP and P is VP, SQ, or SINV return VC
if C is TO and P is VP return IM
if P is SBAR and p is IN return SUB
if P is VP, S, SBAR, SBARQ, SINV, or SQ and C is RB return ADV
if P is NP, NX, NAC, or WHNP return NMOD
if P is ADJP, ADVP, WHADJP, or WHADVP return AMOD
if P is PP or WHPP return PMOD
else return DEP

side noun phrases (NP) is under-specified in the
Penn Treebank, we imported dependencies in-
side NPs and hyphenated words from a version
of the Penn Treebank mapped into GLARF, the
Grammatical and Logical Argument Representa-
tion Framework (Meyers et al., 2007).

The parts of GLARF’s NP analysis that are most
relevant to this task include: (i) identifying ap-
posites (APPO, e.g., that book depends on gift in
Mary’s gift, a book about cheese; (ii) the iden-
tification of name boundaries taken from BBN’s

NE annotation, e.g., identifying that Smith de-
pends on Mary which depends on appointment
in the Mary Smith appointment; (iii) identifying
TITLE and POSTHON dependencies, e.g., deter-
mining that Ms. and III depend on Mary in Ms.
Mary Smith III. These identifications were car-
ried out by hand-coded rules that have been fine
tuned as part of GLARF, over the past several
years. For example, identifying apposition con-
structions requires identifying that both the head
and the apposite can stand alone – proper nouns
(John Smith), plural nouns (books), and singular
common nouns with determiners (the book) are
stand-alone cases, whereas singular nouns without
determiners (green book) do not qualify.

We split Treebank tokens at a hyphen (-) or a
forward slash (/) if the segments on either side of
these delimiters are: (a) a word in a dictionary
(COMLEX Syntax or any of the dictionaries avail-
able on the NOMLEX website); (b) part of a mark-
able Named Entity;9 or (c) a prefix from the list:
co, pre, post, un, anti, ante, ex, extra, fore, non,
over, pro, re, super, sub, tri, bi, uni, ultra. For ex-
ample, York-based was split into 3 segments: (1)
York, (2) - and (3) based.

9The CoNLL-2008 website contains a Named Entity To-
ken gazetteer to aid in this segmentation.
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3.2.2 Semantic Dependencies

When encoding the semantic dependencies, it
was necessary to convert the underlying con-
stituent analysis of PropBank and NomBank into
a dependency analysis. Because semantic predi-
cates are already assigned to individual tokens in
both PropBank (the version used for the CoNLL-
2005 shared task) and NomBank, constituent-to-
dependency conversion is thus necessary only for
semantic arguments. Conceptually, this conver-
sion can be handled using similar heuristics as de-
scribed in Section 3.2.1. However, in order to
avoid replicating this effort and to ensure compat-
ibility between syntactic and semantic dependen-
cies, we decided to generate semantic dependen-
cies using only argument boundaries and the syn-
tactic dependencies generated in Section 3.2.1, i.e.,
ignoring syntactic constituents. Given this input,
we identify the head of a semantic argument using
the following heuristic:

The head of a semantic argument is as-
signed to the token inside the argument
boundaries whose head is a token out-
side the argument boundaries.

This heuristic works remarkably well: over 99%
of the PropBank arguments in the training corpus
have a single token whose head is located outside
of the argument boundaries. As a simple example,
consider the following annotated text: [sold]PRED
[1214 cars]ARG1 [in the U.S.]ARGM-LOC. Us-
ing the above heuristic, the head of the ARG1 ar-
gument is set to cars, because it has an OBJ de-
pendency to sold, and the head of the ARGM-
LOC argument is set to in, because it modifies sold
through a LOC dependency.

While this heuristic processes the vast majority
of arguments, there are several cases that require
special treatment. We discuss these situations in
the remainder of this section.

Arguments with several syntactic heads
For 0.7% of the semantic arguments, the above
heuristic detects several syntactic heads for the
given boundary. For example, in the text [it]ARG0
[expects]PRED [its U.S. sales to remain steady
at about 1200 cars]ARG1, the above heuris-
tic assigns two syntactic heads to ARG1: sales,
which modifies expects through an OBJ depen-
dency, and to, which modifies expects through a
PRD dependency. These situations are caused

by the constituent-to-dependency conversion pro-
cess described in Section 3.2.1, which in some
cases interprets syntax differently than the orig-
inal Treebank annotation, e.g., the raising phe-
nomenon for the PRD dependency in the above
example. In such cases, we split the original argu-
ment into a sequence of discontinuous arguments,
e.g., the ARG1 in the above example becomes [its
U.S. sales]ARG1 [to remain steady at about 1200
cars]C-ARG1.

Merging discontinuous arguments
While in the above case we split arguments, there
are situations where we can merge arguments that
were initially discontinuous in PropBank or Nom-
Bank. This typically happens when the Prop-
Bank/NomBank predicate is infixed inside one of
its arguments. For example, in the text [Million-
dollar conferences]ARG1 were [held]PRED [to
chew on subjects such as... ]C-ARG1, PropBank
lists multiple constituents as aggregately filling the
ARG1 slot of held. These cases are detected au-
tomatically because the least common ancestor of
the argument pieces is actually one of the argument
segments. In the above example, to chew on sub-
jects such as... depends on Million-dollar confer-
ences because to modifies conferences through a
NMOD dependency. In these situations, we treat
the least common ancestor, e.g., conferences in the
above text, as the true argument. This heuristic al-
lowed us to merge 1665 (or 0.6% of total) argu-
ments that were initially discontinuous in the Prop-
Bank training corpus.

Empty categories
PropBank and NomBank both encode chains of
empty categories. As with the 2005 shared task
(Carreras and Màrquez, 2005), we used the head
of the antecedent of empty categories as arguments
rather than empty categories. Furthermore, empty
category arguments with no antecedents were ig-
nored.10 For example, given The man wanted t to
make a speech, we assume that the A0 of make and
speech is man, rather than the chain consisting of
the empty category represented as t and man.

Annotation disagreements
NomBank and Penn Treebank annotators some-
times disagree about constituent structure. Nom-

10Under our approach to filler gap constructions, the filler
is a shared argument (as in Relational Grammar, most Feature
Structure and Dependency Grammar frameworks), in con-
trast with the Penn Treebank’s empty category antecedent ap-
proach (more closely resembling the various Chomskian ap-
proaches).
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Label Freq. Description
NMOD 324834 Modifier of nominal
P 135260 Punctuation
PMOD 115988 Modifier of preposition
SBJ 89371 Subject
OBJ 66677 Object
ROOT 49178 Root
ADV 47379 General adverbial
NAME 41138 Name-internal link
VC 35250 Verb chain
COORD 31140 Coordination
DEP 29456 Unclassified
TMP 26305 Temporal adverbial or nominal modifier
CONJ 24522 Second conjunct (dependent on conjunction)
LOC 18500 Locative adverbial or nominal modifier
AMOD 17868 Modifier of adjective or adverbial
PRD 16265 Predicative complement
APPO 16163 Apposition
IM 16071 Infinitive verb (dependent on infinitive marker to)
HYPH 14073 Token part of a hyphenated word (dependent on a preceding part of the hyphenated word)
HMOD 13885 Token inside a hyphenated word (dependent on the head of the hyphenated word)
SUB 12995 Subordinated clause (dependent on subordinating conjuction)
OPRD 11707 Predicative complement of raising/control verb
SUFFIX 10548 Possessive suffix (dependent on possessor)
DIR 6145 Adverbial of direction
TITLE 5917 Title (dependent on name)
MNR 4753 Adverbial of manner
POSTHON 4377 Posthonorific modifier of nominal
PRP 4013 Adverbial of purpose or reason
PRT 3235 Particle (dependent on verb)
LGS 3115 Logical subject of a passive verb
EXT 2374 Adverbial of extent
PRN 2176 Parenthetical
EXTR 658 Extraposed element in cleft
DTV 496 Dative complement (to) in dative shift
PUT 271 Complement of the verb put
BNF 44 Benefactor complement (for) in dative shift
VOC 24 Vocative

Table 4: Statistics for atomic syntactic labels.

Bank annotators are in effect assuming that the
constituents provided form a phrase. In this case,
the constituents are adjacent to each other. For ex-
ample, consider the NP the human rights discus-
sion. In this case, the Penn Treebank would treat
each of the four words the, human, rights, discus-
sion as daughters of a single NP node. However,
NomBank would treat human rights as a single
ARG1 of discussion. Since noun noun modifica-
tion constructions are head final, we can easily de-
termine (via GLARF) that rights is the markable
dependent of discussion.

Support chains
Finally, NomBank’s encoding of support chains is
handled as chains of dependencies in the data (al-
though these are not scored). For example, given
Mary took dozens of walks, where Mary is the
ARG0 of walks, the support chain took + dozens +
of is represented as a sequence of dependencies: of
depends on Mary, dozens depends on of and took

depends on dozens. Each of these dependencies is
labeled SU.

3.3 Overview of Corpora

The syntactic dependency types are divided into
atomic types that consist of a single label, and non-
atomic types consisting of more than one label.
There are 38 atomic and 70 non-atomic labels in
the corpus. There are three types of non-atomic
labels: those consisting of a PRD or OPRD con-
catenated with an adverbial label such as LOC or
TMP; gapping labels such as GAP-SBJ; and com-
bined adverbial tags such as LOC-TMP.

Table 4 shows statistics for the atomic syntac-
tic dependencies: label type, the frequency of the
label in the complete corpus, and a description of
the label. Table 5 shows the corresponding statis-
tics for non-atomic dependencies, excluding gap-
ping dependencies. The non-atomic labels are rare,
which made it difficult to learn these relations ef-
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Label Frequency
LOC-PRD 798
PRD-TMP 51
PRD-PRP 45
LOC-OPRD 31
DIR-PRD 4
MNR-PRD 3
LOC-TMP 2
MNR-TMP 1
LOC-MNR 1
DIR-OPRD 1

Table 5: Statistics for non-atomic syntactic labels
excluding gapping labels.

Label Frequency
GAP-SBJ 116
GAP-OBJ 102
DEP-GAP 83
GAP-TMP 69
GAP-PRD 66
GAP-LGS 44
GAP-LOC 42
DIR-GAP 37
GAP-PMOD 22
GAP-VC 20
EXT-GAP 16
ADV-GAP 15
GAP-NMOD 13
GAP-LOC-PRD 6
DTV-GAP 6
AMOD-GAP 6
GAP-MNR 5
GAP-PRP 4
EXTR-GAP 3
GAP-SUB 1
GAP-PUT 1
GAP-OPRD 1

Table 6: Statistics for non-atomic labels containing
a gapping label.

fectively. Table 6 shows the table for non-atomic
labels containing a gapping label.

A dependency link wi → wj is said to be pro-
jective if all words occurring betweenwi and wj in
the surface word order are dominated bywi (where
dominance is the transitive closure of the direct
link relation). Nonprojective links are impossible
to handle for the search procedures in many types
of dependency parsers. It has been previously ob-
served that the majority of dependencies in all lan-
guages are projective, and this is particularly true
for English – in the complete corpus, only 4118
links (0.4%) are nonprojective. 3312 sentences, or
7.6%, contain at least one nonprojective link.

Table 7 shows statistics for different types of
nonprojective links: nonprojectivity caused by
wh-movement, such as in Where are you going?
or What have you done?; split clauses such as

Type Frequency
wh-movement 1709
Split clause 734
Split noun phrase 590
Other 1085

Table 7: Statistics for nonprojective links.

POS Frequency
NN 68477
NNS 30048
VBD 24106
VB 23650
VBN 19339
VBG 14245
VBZ 10883
VBP 6330
Other 83

Table 8: Statistics for predicates, by POS tags.

Even to make love, he says, you need experience;
split noun phrases such as hold a hearing tomor-
row on the topic; and all other types of nonprojec-
tive links.

Lastly, Tables 8 and 9 summarizes statistics for
semantic predicates and roles. Table 8 shows the
number of non-support predicates with a given
POS tag in the whole corpus (we used GPOS or
PPOSS for predicates inside hyphenated words).
The last line shows the number of predicates with
a POS tag that does not start with NN or VB. This
last table entry is generated by POS tagger mis-
takes when producing the PPOSS tags, or by errors
in our NomBank/PropBank conversion software.11

Nevertheless, the overall picture given by the table
indicates that predicates are almost perfectly dis-
tributed between nouns and verbs: there are 98525
nominal and 98553 verbal predicates.

Table 9 shows the number of arguments with a
given role label. For brevity we list only labels that
are instantiated at least 10 times in the whole cor-
pus. The total number of arguments labeled with a
role label with frequency lower than 10 is listed
in the last line in the table. The table indicates
that, while the top three most common role labels
are “core” labels (A1, A0, A2), modifier arguments
(AM-*) account for approximately 20% of the total
number of arguments. On the other hand, discon-
tinuous arguments are not common: only 0.7% of
the total number of arguments have a continuation
label (C-*).

11In very few situations, we select incorrect head tokens for
multi-word predicates.
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Label Frequency
A1 161409
A0 109437
A2 51197
AM-TMP 25913
AM-MNR 13080
AM-LOC 11409
A3 10269
AM-MOD 9986
AM-ADV 9496
AM-DIS 5369
R-A0 4432
AM-NEG 4097
A4 3281
C-A1 3118
R-A1 2565
AM-PNC 2445
AM-EXT 1428
AM-CAU 1346
AM-DIR 1318
R-AM-TMP 797
R-A2 307
R-AM-LOC 246
R-AM-MNR 155
A5 91
AM-PRD 78
C-A0 70
C-A2 65
R-AM-CAU 50
C-A3 37
R-A3 29
C-AM-MNR 24
C-AM-ADV 20
AM-REC 16
AA 14
R-AM-PNC 12
C-AM-EXT 11
C-AM-TMP 11
C-A4 11
Frequency < 10 70

Table 9: Statistics for semantic roles.

4 Submissions and Results

Nineteen groups submitted test runs in the closed
challenge and five groups participated in the open
challenge. Three of the latter groups participated
only in the open challenge, and two of these sub-
mitted results only for the semantic subtask. These
results are summarized in Tables 10 and 11.

Table 10 summarizes the official results – i.e.,
results at evaluation deadline – for the closed chal-
lenge. Note that several teams corrected bugs
and/or improved their systems and they submit-
ted post-evaluation scores (accounted in the shared
task website). The table indicates that most of the
top results cluster together: three systems had a
labeled macro F1 score on the WSJ+Brown cor-
pus around 82 points (che, ciaramita, and zhao);
five systems scored around 79 labeled macro F1

points (yuret, samuelsson, zhang, henderson, and

watanabe). Remarkably, the top-scoring system
(johansson) is in a class of its own, with scores
2–3 points higher than the next system. This is
most likely caused by the fact that Johansson and
Nugues (2008) implemented a thorough system
that addressed all facets of the task with state-of-
the-art methods: second-order parsing model, ar-
gument identification/classification models sepa-
rately tuned for PropBank and NomBank, rerank-
ing inference for the SRL task, and, finally, joint
optimization of the complete task using meta-
learning (more details in Section 5).

Table 11 lists the official results in the open chal-
lenge. The results in this challenge are lower than
in the closed challenge, but this was somewhat
to be expected considering that there were fewer
participants in this challenge and none of the top
five groups in the closed challenge submitted re-
sults in the open challenge. Only one of the sys-
tems that participated in both challenges (zhang)
improved the results submitted in the closed chal-
lenge. Zhang et al. (2008) achieved this by ex-
tracting features for their semantic subtask mod-
els both from the parser used in the closed chal-
lenge and a secondary parser that was trained on
a different corpus. The improvements measured
were relatively small for the in-domain WSJ cor-
pus (0.2 labeled macro F1 points) but larger for the
out-of-domain Brown corpus (approximately 1 la-
beled macro F1 point).

Tables 10 and 11 indicate that in both chal-
lenges the results on the out-of-domain corpus
(Brown) are much lower than the results measured
in-domain (WSJ). The difference is around 7–8
LAS points for the syntactic subtask and 12–14 la-
beled F1 points for semantic dependencies. Over-
all, this yields a drop of approximately 10 labeled
macro F1 points for most systems. This perfor-
mance decrease on out-of-domain corpora is con-
sistent with the results reported in CoNLL-2005
on SRL (using the same Brown corpus). These
results indicate that domain adaptation is a prob-
lem that is far from being solved for both syntactic
and semantic analysis of text. Furthermore, as the
scores on the syntactic and semantic subtasks in-
dicate, domain adaptation becomes even harder as
the task to be solved gets more complex.

We describe the participating systems in the next
section. Then, in Section 6, we revert to result
analysis using different evaluation measures and
different views of the data.
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Labeled Macro F1 Labeled Attachment Score Labeled F1

(complete task) (syntactic dependencies) (semantic dependencies)
WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown

johansson 84.86 (1) 85.95 75.95 89.32 (1) 90.13 82.81 80.37 (1) 81.75 69.06
che 82.66 (2) 83.78 73.57 86.75 (5) 87.51 80.73 78.52 (2) 80.00 66.37
ciaramita 82.06 (3) 83.25 72.46 86.60 (11) 87.47 79.67 77.50 (3) 79.00 65.24
zhao 81.44 (4) 82.62 71.78 86.66 (8) 87.52 79.83 76.16 (4) 77.67 63.69
yuret 79.84 (5) 80.97 70.55 86.62 (10) 87.39 80.46 73.06 (5) 74.54 60.62
samuelsson 79.79 (6) 80.92 70.49 86.63 (9) 87.36 80.77 72.94 (6) 74.47 60.18
zhang 79.32 (7) 80.41 70.48 87.32 (2) 88.14 80.80 71.31 (7) 72.67 60.16
henderson 79.11 (8) 80.19 70.34 86.91 (4) 87.78 80.01 70.97 (8) 72.26 60.38
watanabe 79.10 (9) 80.30 69.29 87.18 (3) 88.06 80.17 70.84 (9) 72.37 58.21
morante 78.43 (10) 79.52 69.55 86.07 (12) 86.88 79.58 70.51 (10) 71.88 59.23
li 78.35 (11) 79.38 70.01 86.69 (6) 87.42 80.8 69.95 (11) 71.27 59.17
baldridge 77.49 (12) 78.57 68.53 86.67 (7) 87.42 80.64 67.92 (14) 69.35 55.95
chen 77.00 (13) 77.95 69.23 84.47 (16) 85.20 78.58 69.45 (12) 70.62 59.81
lee 76.90 (14) 77.96 68.34 84.82 (15) 85.69 77.83 68.71 (13) 69.95 58.63
sun 76.28 (15) 77.10 69.58 85.75 (13) 86.37 80.75 66.61 (15) 67.62 58.26
choi 71.23 (16) 72.22 63.44 77.56 (17) 78.58 69.46 64.78 (16) 65.72 57.4
trandabat 63.45 (17) 64.21 57.41 85.21 (14) 85.96 79.24 40.63 (17) 41.36 34.75
lluis 63.29 (18) 63.74 59.65 71.95 (18) 72.30 69.14 54.52 (18) 55.09 49.95
neumann 19.93 (19) 20.13 18.14 16.25 (19) 16.22 16.47 22.36 (19) 22.86 17.94

Table 10: Official results in the closed challenge (post-evaluation scores are available on the shared
task website). Teams are denoted by the last name of the first author of the corresponding paper in
the proceedings or the last name of the person who registered the team if no paper was submitted.
Italics indicate that there is no corresponding paper in the proceedings. Results are sorted in descending
order of the labeled macro F1 score on the WSJ+Brown corpus. The number in parentheses next to the
WSJ+Brown scores indicates the system rank in the corresponding task.

Labeled Macro F1 Labeled Attachment Score Labeled F1

(complete task) (syntactic dependencies) (semantic dependencies)
WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown

vickrey – – – – – – 76.17 (1) 77.38 66.23
riedel – – – – – – 74.59 (2) 75.72 65.38
zhang 79.61 (1) 80.61 71.45 87.32 (1) 88.14 80.80 71.89 (3) 73.08 62.11
li 77.84 (2) 78.87 69.51 86.69 (2) 87.42 80.80 68.99 (4) 70.32 58.22
wang 76.19 (3) 78.39 59.89 84.56 (3) 85.50 77.06 67.12 (5) 70.41 42.67

Table 11: Official results in the open challenge (post-evaluation scores are available on the shared task
website). Teams are denoted by the last name of the first author of the corresponding paper in the
proceedings or the last name of the person who registered the team if no paper was submitted. Italics
indicate that there is no corresponding paper in the proceedings. Results are sorted in descending order of
the labeled F1 score for semantic dependencies on the WSJ+Brown corpus. The number in parentheses
next to the WSJ+Brown scores indicates the system rank in the corresponding task.

5 Approaches

Table 5 summarizes the properties of the sys-
tems that participated in the closed the open chal-
lenges. The second column of the table high-
lights the overall architectures. We used + to in-
dicate that the components are sequentially con-
nected. The lack of a + sign indicates that the cor-
responding tasks are performed jointly. For exam-
ple, Riedel and Meza-Ruiz (2008) perform pred-
icate and argument identification and classifica-
tion jointly, whereas Ciaramita et al. (2008) im-
plemented a pipeline architecture of three compo-
nents. We use the || to indicate that several differ-

ent architectures that span multiple subtasks were
deployed in parallel.

This summary of system architectures indicates
that it is common that systems combine sev-
eral components in the semantic or syntactic sub-
tasks – e.g., nine systems jointly performed pred-
icate/argument identification and classification –
but only four systems combined components be-
tween the syntactic and semantic subtasks: Hen-
derson et al. (2008), who implemented a generative
history-based model (Incremental Sigmoid Belief
Networks with vectors of latent variables) where
syntactic and semantic structures are separately
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generated but using a synchronized derivation (se-
quence of actions); Samuelsson et al. (2008),
who, within an ensemble-based architecture, im-
plemented a joint syntactic-semantic model using
MaltParser with labels enriched with semantic in-
formation; Lluı́s and Màrquez, who used a modi-
fied version of the Eisner algorithm to jointly pre-
dict syntactic and semantic dependencies; and fi-
nally, Sun et al. (2008), who integrated depen-
dency label classification and argument identifi-
cation using a maximum-entropy Markov model.
Additionally, Johansson and Nugues (2008), who
had the highest ranked system in the closed chal-
lenge, integrate syntactic and semantic analysis in
a final reranking step, which maximizes the joint
syntactic-semantic score in the top k solutions. In
the same spirit, Chen et al. (2008) search in the
top k solutions for the one that maximizes a global
measure, in this case the joint probability of the
complete problem. These joint learning strategies
are summarized in the Joint Learning/Opt. col-
umn in the table. The system of Riedel and Meza-
Ruiz (2008) deserves a special mention: even
though Riedel and Meza-Ruiz did not implement
a syntactic parser, they are the only group that per-
formed the complete SRL subtask – i.e., predicate
identification and classification, argument identifi-
cation and classification – jointly, simultaneously
for all the predicates in a sentence. They imple-
mented a joint SRL model using Markov Logic
Networks and they selected the overall best solu-
tion using inference based on the cutting-plane al-
gorithm.

Although some of the systems that implemented
joint approaches obtained good results, the top
five systems in the closed challenge are essen-
tially systems with pipeline architectures. Further-
more, Johansson and Nugues (2008) and Riedel
and Meza-Ruiz (2008) showed that joint learn-
ing/optimization improves the overall results, but
the improvement is not large. These initial ef-
forts indicate at least that the joint modeling of this
problem is not a trivial task.

The D Arch. and D Inference columns summa-
rize the parsing architectures and the correspond-
ing inference strategies. Similar to last year’s
shared task (Nivre et al., 2007), the vast majority of
parsing models fall in two classes: transition-based
(“trans” in the table) or graph-based (“graph”)
models. By and large, transition-based models use
a greedy inference strategy, whereas graph-based

models used different Maximum Spanning Tree
(MST) algorithms: Carreras (2007) – MSTC , Eis-
ner (2000) – MSTE , or Chu-Liu/Edmonds (Mc-
Donald et al., 2005; Chu and Liu, 1965; Edmonds,
1967) – MSTCL/E . More interestingly, most of
the best systems used some strategy to mitigate
parsing errors. In the top three systems in the
closed challenge, two (che and ciaramita) used
parser combination through voting and/or stacking
of different models (see the D Comb. column).
Samuelsson et al. (2008) perform a MST infer-
ence with the bag of all dependencies output by
the individual MALT parser variants. Johansson
and Nugues (2008) use a single parsing model, but
this model is extended with second-order features.

The PA Arch. and PA Inference columns sum-
marize the architectures and inference strategies
used for the identification and classification of
predicates and arguments. The columns indicate
that most systems modeled the SRL problem as a
token-by-token classification problem (“class” in
the table) with a corresponding greedy inference
strategy. Some systems (e.g., yuret, samuelsson,
henderson, lluis) incorporate SRL within parsing,
in which case we report the corresponding parsing
architecture and inference approach. Vickrey and
Koller (2008) simplify the sentences to be labeled
using a set of hand-crafted rules before deploying
a classification model on top of a constituent-based
representation. Unlike in the case of parsing, few
systems (yuret, samuelssson, and morante) com-
bine several PA models and the combination is lim-
ited to simple voting strategies (see the PA Comb.
column).

Finally, the ML Methods column lists the Ma-
chine Learning (ML) methods used. The column
indicates that maximum entropy (ME) was the
most popular method (12 distinct systems relied
on it). Support Vector Machines (SVM) (eight sys-
tems) and the Perceptron algorithm (three systems)
were also popular ML methods.

6 Analysis

Section 4 summarized the results in the closed
and open challenges using the official evaluation
measures. In this section, we analyze the sub-
mitted runs using different evaluation measures,
e.g., Exact Match or Perfect Proposition F1 scores,
and different views of the data, e.g., only non-
projective dependencies or NomBank versus Prop-
Bank frames.
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Exact Match Perfect Proposition F1

(complete task) (semantic dependencies)
closed WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown
johansson 12.46 (1) 12.46 12.68 54.12 (1) 56.12 36.90
che 10.37 (2) 10.21 11.50 48.05 (2) 50.15 30.90
ciaramita 9.27 (3) 9.04 10.80 46.05 (3) 48.05 28.61
zhao 9.20 (4) 9.00 10.56 43.19 (4) 45.23 26.14
henderson 8.11 (5) 7.75 10.33 39.24 (5) 40.64 27.51
watanabe 7.79 (6) 7.54 9.39 36.44 (6) 38.09 22.72
yuret 7.65 (7) 7.33 9.62 34.61 (9) 36.13 21.78
zhang 7.40 (8) 7.46 7.28 34.96 (8) 36.25 24.22
li 7.12 (9) 6.71 9.62 32.08 (10) 33.45 20.62
samuelsson 6.94 (10) 6.62 8.92 35.20 (7) 36.96 20.22
chen 6.83 (11) 6.46 9.15 31.02 (12) 32.08 22.14
lee 6.69 (12) 6.29 9.15 31.40 (11) 32.52 22.18
morante 6.44 (13) 6.04 8.92 30.41 (14) 31.97 17.49
sun 5.38 (14) 4.96 7.98 30.43 (13) 31.51 21.40
baldridge 5.24 (15) 4.92 7.28 25.35 (15) 26.57 15.26
choi 3.33 (16) 3.50 2.58 24.77 (16) 25.71 17.37
trandabat 3.26 (17) 3.08 4.46 6.59 (18) 6.81 4.76
lluis 2.55 (18) 1.96 6.10 16.07 (17) 16.46 13.00
neumann 0.11 (19) 0.12 0.23 0.30 (19) 0.31 0.20
open
vickrey – – – 44.94 (1) 46.68 30.28
riedel – – – 42.77 (2) 44.18 31.15
zhang 8.14 (1) 8.04 8.92 35.46 (3) 36.74 24.84
li 6.90 (2) 6.46 9.62 29.91 (4) 31.30 18.41
wang 5.17 (3) 5.12 5.63 18.63 (5) 20.31 7.09

Table 13: Exact Match and Perfect Proposition F1 scores for runs submitted in the closed and open
challenges. The closed-challenge systems are sorted in descending order of Exact Match scores on
the WSJ+Brown corpus. Open-challenge submissions are sorted in descending order of the Perfect
Proposition F1 score. The number in parentheses next to the WSJ+Brown scores indicates the system
rank according to the corresponding scoring measure.

6.1 Exact Match and Perfect Propositions

Table 13 lists the Exact Match and Perfect Propo-
sition F1 scores for test runs submitted in both
challenges. Both these scores measure the capac-
ity of a system to correctly parse structures with
granularity much larger than a simple dependency,
i.e., entire sentences for Exact Match and complete
propositions for Perfect Proposition F1 (see Sec-
tion 2.2.2 for a formal definition of these evalua-
tion measures). The table indicates that these val-
ues are much smaller than the scores previously
reported, e.g., labeled macro F1. This is to be
expected: the probability of an incorrectly parsed
unit (sentence or proposition) is much larger given
its granularity. However, the main purpose of this
analysis is to investigate if systems that focused
on joint learning or optimization performed bet-
ter than others with respect to these global mea-
sures. This indeed seems to be the case for at
least two systems. The system of Johansson and
Nugues (2008), which jointly optimizes the la-
beled F1 score (for semantic dependencies) and
then the labeled macro F1 score (for the complete

task), increases its distance from the next ranked
system: its Perfect Proposition F1 score is over
6 points higher than the score of the second sys-
tem in Table 13. The system of Henderson et
al. (2008), which was designed for joint learning
of the complete task, improves its rank from eighth
to fifth compared to the official results (Table 10).

6.2 Nonprojectivity

Table 14 shows the unlabeled F1 scores for pre-
diction of nonprojective syntactic dependencies.
Since nonprojectivity is quite rare, many teams
chose to ignore this issue. The table shows only
those systems that submitted well-formed depen-
dency trees, and whose output contained at least
one nonprojective link. The small number of non-
projective links in the training set makes it hard to
learn to predict such links, and this is also reflected
in the figures. In general, the figures for nonpro-
jective wh-movements and split clauses are higher,
and they are also the most common types. Also,
they are detectable by fairly simple patterns, such
as the presence of a wh-word or a pair of commas.
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System All wh-mov. SpCl SpNP
choi 25.43 49.49 45.47 8.72
lee 46.26 50.30 64.84 20.69
nugues 46.15 58.96 59.26 11.32
samuelsson 24.47 38.15 0 9.83
titov 42.32 50.56 48.71 0
zhang 13.39 5.71 12.33 7.3

Table 14: Unlabeled F1-measures for nonprojec-
tive links. Results are given for all links, wh-
movements, split clauses, and split noun phrases.

6.3 Normalized SRL Performance
Table 6.3 lists the scores for the semantic sub-
task measured as the ratio of the labeled F1 score
and LAS. As previously mentioned, this score es-
timates the performance of the SRL component
independent of the performance of the syntactic
parser. This analysis is not a substitute for the
actual experiment where the SRL components are
evaluated using correct syntactic information but,
nevertheless, it indicates several interesting facts.
First, the ranking of the top three systems in Ta-
ble 10 changes: the system of Che et al. (2008)
is now ranked first, and the system of Johansson
and Nugues (2008) is second. This shows that Che
et al. have a relatively stronger SRL component,
whereas Johansson and Nugues developed a bet-
ter parser. Second, several other systems improved
their ranking compared to Table 10: e.g., chen
from position thirteenth to ninth and choi from six-
teenth to eighth. This indicates that these systems
were penalized in the official ranking mainly due
to the relative poor performance of their parsers.

Note that this experiment is relevant only for
systems that implemented pipeline architectures,
where the semantic components are in fact sep-
arated from the syntactic ones; this excludes the
systems that blended syntax with SRL: henderson,
sun, and lluis. Furthermore, systems that had sig-
nificantly lower scores in syntax will receive an un-
reasonable boost in ranking according to this mea-
sure. Fortunately, there was only one such outlier
in this evaluation (neumann), shown in gray in the
table.

6.4 PropBank versus NomBank
Table 16 lists the labeled F1 scores for semantic
dependencies for two different views of the test-
ing data sets: for propositions centered around ver-
bal predicates, i.e., from PropBank, and for propo-
sitions centered around nominal predicates, i.e.,
from NomBank.

Labeled F1 / LAS
closed WSJ+Brown WSJ Brown
neumann 137.60 (1) 140.94 108.93
che 90.51 (2) 91.42 82.21
johansson 89.98 (3) 90.70 83.40
ciaramita 89.49 (4) 90.32 81.89
zhao 87.88 (5) 88.75 79.78
yuret 84.35 (6) 85.30 75.34
samuelsson 84.20 (7) 85.24 74.51
choi 83.52 (8) 83.63 82.64
chen 82.22 (9) 82.89 76.11
morante 81.92 (10) 82.73 74.43
zhang 81.67 (11) 82.45 74.46
henderson 81.66 (12) 82.32 75.47
watanabe 81.26 (13) 82.18 72.61
lee 81.01 (14) 81.63 75.33
li 80.69 (15) 81.53 73.23
baldridge 78.37 (16) 79.33 69.38
sun 77.68 (17) 78.29 72.15
lluis 75.77 (18) 76.20 72.24
trandabat 47.68 (19) 48.12 43.85
open
zhang 82.33 82.91 76.87
li 79.58 80.44 72.05
wang 79.38 82.35 55.37

Table 15: Ratio of the labeled F1 score for seman-
tic dependencies and LAS for syntactic dependen-
cies. Systems are sorted in descending order of this
ratio score on the WSJ+Brown corpus. We only
show systems that participated in both the syntac-
tic and semantic subtasks.

The table indicates that, generally, systems per-
formed much worse on nominal predicates than
on verbal predicates. This is to be expected con-
sidering that there is significant body of previ-
ous work that analyzes the SRL problem on Prop-
Bank, but minimal work for NomBank. On aver-
age, the difference between the labeled F1 scores
for verbal predicates and nominal predicates on the
WSJ+Brown corpus is 7.84 points. Furthermore,
the average difference between labeled F1 scores
on the Brown corpus alone is 12.36 points. This in-
dicates that the problem of SRL for nominal predi-
cates is more sensitive to domain changes than the
equivalent problem for verbal predicates. Our con-
jecture is that, because there is very little syntac-
tic structure between nominal predicates and their
arguments, SRL models for nominal predicates se-
lect mainly lexical features, which are more brittle
than syntactic or other non-lexicalized features.

Remarkably, there is one system (baldridge)
which performed better on the WSJ+Brown for
nominal predicates than verbal predicates. Un-
fortunately, this group did not submit a system-
description paper so it is not clear what was their
approach.
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Labeled F1 Labeled F1

(verbal predicates) (nominal predicates)
closed WSJ+Brown WSJ Brown WSJ+Brown WSJ Brown
johansson 84.45 (1) 86.37 71.87 74.32 (2) 75.42 60.13
che 80.46 (2) 82.17 69.33 75.18 (1) 76.64 56.87
ciaramita 80.15 (3) 82.09 67.62 73.17 (4) 74.42 57.69
zhao 77.67 (4) 79.40 66.38 73.28 (3) 74.69 54.81
samuelsson 76.17 (5) 78.03 64.00 68.13 (7) 69.58 49.24
yuret 75.91 (6) 77.88 63.02 68.81 (5) 69.98 53.58
zhang 74.82 (7) 76.62 63.15 65.61 (11) 66.82 50.18
li 74.36 (8) 76.14 62.92 62.61 (14) 63.76 47.09
henderson 73.80 (9) 75.40 63.36 66.26 (10) 67.44 50.73
watanabe 73.06 (10) 75.02 60.34 67.15 (8) 68.37 50.92
sun 72.97 (11) 74.45 63.50 58.68 (15) 59.73 45.75
morante 72.81 (12) 74.36 62.72 66.50 (9) 67.92 47.97
lee 72.34 (13) 74.15 60.49 62.83 (13) 63.66 52.18
chen 72.02 (14) 73.49 62.46 65.02 (12) 66.14 50.48
choi 70.00 (15) 71.28 61.71 56.16 (16) 57.19 44.05
baldridge 67.02 (16) 68.64 56.50 68.57 (6) 69.78 52.96
lluis 62.42 (17) 63.49 55.49 42.15 (17) 42.81 34.22
trandabat 42.88 (18) 43.79 37.06 37.14 (18) 37.89 27.50
neumann 22.87 (19) 23.53 18.24 21.7 (19) 22.04 17.14
open
vickrey 78.41 (1) 79.75 69.57 71.86 (1) 73.29 53.25
riedel 77.13 (2) 78.72 66.75 70.25 (2) 71.03 60.17
zhang 75.00 (3) 76.62 64.44 66.76 (3) 67.79 53.76
li 73.74 (4) 75.57 62.05 61.24 (5) 62.38 46.36
wang 67.50 (5) 70.34 49.72 66.53 (4) 69.83 28.96

Table 16: Labeled F1 scores for frames centered around verbal and nominal predicates. The number in
parentheses next to the WSJ+Brown scores indicates the system rank in the corresponding data set.

Systems can mitigate the inherent differences
between verbal and nominal predicates with dif-
ferent models for the two sub-problems. This was
indeed the approach taken by two out of the top
three systems (johansson and che). Johansson and
Nugues (2008) developed different models for ver-
bal and nominal predicates and implemented sep-
arate feature selection processes for each model.
Che et al. (2008) followed the same method but
they also implemented separate domain constraints
for inference for the two models.

7 Conclusion

The previous four CoNLL shared tasks popular-
ized and, without a doubt, boosted research in se-
mantic role labeling and dependency parsing. This
year’s shared task introduces a new task that es-
sentially unifies the problems addressed in the past
four years under a unique, dependency-based for-
malism. This novel task is attractive both from
a research perspective and an application-oriented
perspective:

• We believe that the proposed dependency-
based representation is a better fit for many
applications (e.g., Information Retrieval, In-
formation Extraction) where it is often suffi-

cient to identify the dependency between the
predicate and the head of the argument con-
stituent rather than extracting the complete ar-
gument constituent.

• It was shown that the extraction of syntac-
tic and semantic dependencies can be per-
formed with state-of-the-art performance in
linear time (Ciaramita et al., 2008). This can
give a significant boost to the adoption of this
technology in real-world applications.

• We hope that this shared task will motivate
several important research directions. For ex-
ample, is the dependency-based representa-
tion better for SRL than the constituent-based
formalism? Does joint learning improve syn-
tactic and semantic analysis?

• Surface (string related patterns, syntax, etc.)
linguistic features can often be detected with
greater reliability than deep (semantic) fea-
tures. In contrast, deep features can cover
more ground because they regularize across
differences in surface strings. Machine learn-
ing systems can be more effective by using
evidence from both deep and surface features
jointly (Zhao, 2005).

175



Even though this shared task was more complex
than the previous shared tasks, 22 different teams
submitted results in at least one of the challenges.
Building on this success, we hope to expand this
effort in the future with evaluations on multiple
languages and on larger out-of-domain corpora.
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Abstract

We propose a solution to the challenge
of the CoNLL 2008 shared task that uses
a generative history-based latent variable
model to predict the most likely derivation
of a synchronous dependency parser for
both syntactic and semantic dependencies.
The submitted model yields 79.1% macro-
average F1 performance, for the joint task,
86.9% syntactic dependencies LAS and
71.0% semantic dependencies F1. A larger
model trained after the deadline achieves
80.5% macro-average F1, 87.6% syntac-
tic dependencies LAS, and 73.1% seman-
tic dependencies F1.

1 Introduction

Successes in syntactic tasks, such as statistical
parsing and tagging, have recently paved the way
to statistical learning techniques for levels of se-
mantic representation, such as recovering the log-
ical form of a sentence for information extraction
and question-answering applications (e.g. (Wong
and Mooney, 2007)) or jointly learning the syntac-
tic structure of the sentence and the propositional
argument-structure of its main predicates (Musillo
and Merlo, 2006; Merlo and Musillo, 2008). In
this vein, the CoNLL 2008 shared task sets the
challenge of learning jointly both syntactic depen-
dencies (extracted from the Penn Treebank (Mar-
cus et al., 1993) ) and semantic dependencies (ex-
tracted both from PropBank (Palmer et al., 2005)

∗c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

0Authors in alphabetical order.

and NomBank (Meyers et al., 2004) under a uni-
fied representation.

We propose a solution that uses a generative
history-based model to predict the most likely
derivation of a synchronous dependency parser for
both syntactic and semantic dependencies. Our
probabilistic model is based on Incremental Sig-
moid Belief Networks (ISBNs), a recently pro-
posed latent variable model for syntactic struc-
ture prediction, which has shown very good be-
haviour for both constituency (Titov and Hender-
son, 2007a) and dependency parsing (Titov and
Henderson, 2007b). The ability of ISBNs to in-
duce their features automatically enables us to ex-
tend this architecture to learning a synchronous
parse of syntax and semantics without modifica-
tion of the main architecture. By solving the
problem with synchronous parsing, a probabilistic
model is learnt which maximises the joint proba-
bility of the syntactic and semantic dependencies
and thereby guarantees that the output structure is
globally coherent, while at the same time building
the two structures separately. This extension of the
ISBN architecture is therefore applicable to other
problems where two independent, but related, lev-
els of representation are being learnt, such as sta-
tistical machine translation.

Currently the largest model we have trained
achieves 80.5% macro-average F1 performance for
the joint task, 87.6% syntactic dependencies LAS,
and 73.1% semantic dependencies F1.

2 The Probability Model

Our probability model is a joint generative model
of syntactic and semantic dependencies. The
two dependency structures are specified as the se-
quence of actions for a synchronous parser, which
requires each dependency structure to be projec-
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tivised separately.

2.1 Synchronous derivations

The derivations for syntactic dependency trees are
the same as specified in (Titov and Henderson,
2007b), which are based on the shift-reduce style
parser of (Nivre et al., 2006). The derivations use a
stack and an input queue. There are actions for cre-
ating a leftward or rightward arc between the top of
the stack and the front of the queue, for popping a
word from the stack, and for shifting a word from
the queue to the stack. The derivations for seman-
tic dependency graphs use virtually the same set
of actions, but impose fewer constraints on when
they can be applied, due to the fact that a word in
a semantic dependency graph can have more than
one parent. An additional action predicates was
introduced to label a predicate with sense s.

Let Td be a syntactic dependency tree with
derivation D1

d, ..., D
md
d , and Ts be a semantic de-

pendency graph with derivation D1
s , ..., D

ms
s . To

define derivations for the joint structure Td, Ts,
we need to specify how the two derivations are
synchronised, and in particular make the impor-
tant choice of the granularity of the synchronisa-
tion step. Linguistic intuition would perhaps sug-
gest that syntax and semantics are connected at the
clause level – a big step size – while a fully in-
tegrated system would synchronise at each pars-
ing decision, thereby providing the most commu-
nication between these two levels. We choose to
synchronise the construction of the two structures
at every word – an intermediate step size. This
choice is simpler, as it is based on the natural to-
tal order of the input, and it avoids the problems
of the more linguistically motivated choice, where
chunks corresponding to different semantic propo-
sitions would be overlapping.

We divide the two derivations into the chunks
between shifting each word onto the stack,

ct
d = D

bt
d

d , ..., D
et
d

d and ct
s = D

bt
s

s , ..., D
et
s

s ,

where D
bt
d−1

d = D
bt
s−1

s = shiftt−1 and

D
et
d+1

d = D
et
s+1

s = shiftt. Then the actions of
the synchronous derivations consist of quadruples
Ct = (ct

d, switch, ct
s, shiftt), where switch means

switching from syntactic to semantic mode. This
gives us the following joint probability model,
where n is the number of words in the input.

P (Td, Ts) = P (C1, . . . , Cn)
=
∏

t P (Ct|C1, . . . , Ct−1)
(1)

The probability of each synchronous derivation
chunk Ct is the product of four factors, related to
the syntactic level, the semantic level and the two
synchronising steps.

P (Ct|C1, . . . , Ct−1) =
P (ct

d|C1, . . . , Ct−1)×
P (switch|ct

d, C
1, . . . , Ct−1)×

P (ct
s|switch, ct

d, C
1, . . . , Ct−1)×

P (shiftt|ct
d, c

t
s, C

1, . . . , Ct−1)

(2)

These synchronous derivations C1, . . . , Cn only
require a single input queue, since the shift opera-
tions are synchronised, but they require two sepa-
rate stacks, one for the syntactic derivation and one
for the semantic derivation.

The probability of ct
d is decomposed into deriva-

tion action Di probabilities, and likewise for ct
s.

P (ct
d|C1, . . . , Ct−1)

=
∏

iP (Di
d|D

bt
d

d ,. . ., Di−1
d , C1,. . ., Ct−1)

(3)

The actions are also sometimes split into a se-
quence of elementary decisions Di = di

1, . . . , d
i
n,

as discussed in (Titov and Henderson, 2007a).

2.2 Projectivisation of dependencies
These derivations can only specify projective
syntactic or semantic dependency graphs. Ex-
ploratory data analysis indicates that many in-
stances of non-projectivity in the complete graph
are due to crossings of the syntactic and seman-
tic graphs. The amount of non-projectivity of the
joint syntactic-semantic graph is approximately
7.5% non-projective arcs, while summing the non-
projectivity within the two separate graphs results
in only roughly 3% non-projective arcs.

Because our synchronous derivations use two
different stacks for the syntactic and semantic de-
pendencies, respectively, we only require each in-
dividual graph to be projective. As with many de-
pendency parsers (Nivre et al., 2006; Titov and
Henderson, 2007b), we handle non-projective (i.e.
crossing) arcs by transforming them into non-
crossing arcs with augmented labels.1 Because
our syntactic derivations are equivalent to those of
(Nivre et al., 2006), we use their HEAD methods
to projectivise the syntactic dependencies.

Although our semantic derivations use the same
set of actions as the syntactic derivations, they dif-
fer in that the graph of semantic dependencies need

1During testing, these projectivised structures are then
transformed back to the original format for evaluation.
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not form a tree. The only constraints we place on
the set of semantic dependencies are imposed by
the use of a stack, which excludes crossing arcs.
Given two crossing arcs, we try to uncross them
by changing an endpoint of one of the arcs. The
arc (p, a), where p is a predicate and a is an argu-
ment, is changed to (p, h), where h is the syntactic
head of argument a. Its label r is then changed to
r/d where d is the syntactic dependency of a on
h. This transformation may need to be repeated
before the arcs become uncrossed. The choice of
which arc to transform is done using a greedy al-
gorithm and a number of heuristics, without doing
any global optimisation across the data.

This projectivisation method is similar to the
HEAD method of (Nivre et al., 2006), but has two
interesting new characteristics. First, syntactic de-
pendencies are used to projectivise the semantic
dependencies. Because the graph of semantic roles
is disconnected, moving across semantic arcs is of-
ten not possible. This would cause a large number
of roles to be moved to ROOT. Second, our method
changes the semantic argument of a given pred-
icate, whereas syntactic dependency projectivisa-
tion changes the head of a given dependent. This
difference is motivated by a predicate-centred view
of semantic dependencies, as it avoids changing a
predicate to a node which is not a predicate.

3 The Learning Architecture

The synchronous derivations described above are
modelled with an Incremental Sigmoid Belief Net-
work (ISBN) (Titov and Henderson, 2007a). IS-
BNs are dynamic Bayesian Networks which incre-
mentally specify their model structure based on the
partial structure being built by a derivation. They
have previously been applied to constituency and
dependency parsing. In both cases the derivations
were based on a push-down automaton, but ISBNs
can be directly applied to any automaton. We suc-
cessfully apply ISBNs to a two-stack automaton,
without changing the machine learning methods.

3.1 The Incremental Sigmoid Belief Networks

ISBNs use vectors of latent variables to represent
properties of parsing history relevant to the next
decisions. Latent variables do not need to be anno-
tated in the training data, but instead get induced
during learning. As illustrated by the vectors Si

in figure 1, the latent feature vectors are used to
estimate the probabilities of derivation actions Di.

s

SS

DD

S

i−c

i−c i−1

i−1

i

i
j

Di dk
i

Figure 1: An ISBN for estimating
P (di

k|history(i, k)) – one of the elementary
decisions. Variables whose values are given in
history(i, k) are shaded, and latent and current
decision variables are unshaded.

Latent variable vectors are connected to variables
from previous positions via a pattern of edges de-
termined by the previous decisions. Our ISBN
model distinguishes two types of latent states: syn-
tactic states, when syntactic decisions are consid-
ered, and semantic states, when semantic decision
are made. Different patterns of interconnections
are used for different types of states. We use the
neural network approximation (Titov and Hender-
son, 2007a) to perform inference in our model.

As also illustrated in figure 1, the induced latent
variables Si at state i are statistically dependent on
both pre-defined features of the derivation history
D1, . . . , Di−1 and the latent variables for a finite
set of relevant previous states Si′ , i′ < i. Choos-
ing this set of relevant previous states is one of the
main design decisions in building an ISBN model.
By connecting to a previous state, we place that
state in the local context of the current decision.
This specification of the domain of locality deter-
mines the inductive bias of learning with ISBNs.
Thus, we need to choose the set of local (i.e. con-
nected) states in accordance with our prior knowl-
edge about which previous decisions are likely to
be particularly relevant to the current decision.

3.2 Layers and features

To choose previous relevant decisions, we make
use of the partial syntactic and semantic depen-
dency structures which have been decided so far
in the parse. Specifically, the current latent state
vector is connected to the most recent previous la-
tent state vectors (if they exist) whose configura-
tion shares a node with the current configuration,
as specified in Table 1. The nodes are chosen be-
cause their properties are thought to be relevant to
the current decision. Each row of the table indi-
cates which nodes need to be identical, while each

180



Closest Current Syn-Syn Srl-Srl Syn-Srl
Input Input + + +
Top Top + + +
RDT Top + +
LDT Top + +
HT Top + +
LDN Top + +
Input Top +

Table 1: Latent-to-latent variable connections. In-
put= input queue; Top= top of stack; RDT= right-
most right dependent of top; LDT= leftmost left
dependent of top; HT= Head of top; LDN= left-
most dependent of next (front of input).

column indicates whether the latent state vectors
are for the syntactic or semantic derivations. For
example, the first row indicates edges between the
current state and a state which had the same in-
put as the current state. The three columns indi-
cate that this edge holds within syntactic states,
within semantic states, and from syntactic to se-
mantic states. The fourth cell of the third row, for
example, indicates that there is an edge between
the current semantic state on top of the stack and
the most recent semantic state where the rightmost
dependent of the current top of the semantic stack
was at the top of the semantic stack.

Each of these relations has a distinct weight ma-
trix for the resulting edges in the ISBN, but the
same weight matrix is used at each position where
the relation applies. Training and testing times
scale linearly with the number of relations.

The pre-defined features of the parse history
which also influence the current decision are spec-
ified in table 2. The model distinguishes argument
roles of nominal predicates from argument roles of
verbal predicates.

3.3 Decoding
Given a trained ISBN as our probability esti-
mator, we search for the most probable joint
syntactic-semantic dependency structure using a
beam search. Most pruning is done just after each
shift operation (when the next word is predicted).
Global constraints (such as label uniqueness) are
not enforced by decoding, but can be learnt.

For the system whose results we submitted, we
then do a second step to improve on the choice
of syntactic dependency structure. Because of the
lack of edges in the graphical model from seman-
tic to syntactic states, it is easy to marginalise out
the semantic structure, giving us the most proba-
ble syntactic dependency structure. This syntactic
structure is then combined with the semantic struc-

State Stack Syntactic step features
LEX POS DEP

Input + +
Top syn + +
Top - 1 syn +
HT syn +
RDT syn +
LDT syn +
LDN syn +
State Stack Semantic step features

LEX POS DEP SENSE
Input + + +
Top sem + + +
Top - 1 sem + +
HT sem + +
RDT sem +
LDT sem +
LDN sem +
A0-A5 of Top sem +
A0-A5 of Input sem +

Table 2: Pre-defined features. syn=syntactic stack;
sem=semantic stack. Input= input queue; Top=
top of stack; RDT= rightmost dependent of top;
LDT= leftmost dependent of Top; HT= Head of
top; LDN= leftmost dependent of next (front of
input); A0-A5 of Top/Input= arguments of top of
stack / input.

ture from the first stage, to get our submitted re-
sults. This second stage does not maximise perfor-
mance on the joint syntactic-semantic dependency
structure, but it better fits the evaluation measure
used to rank systems.

4 Experiments and Discussion

The experimental set-up common for all the teams
is described in the introduction (Surdeanu et al.,
2008). The submitted model has latent variable
vectors of 60 units, and a word frequency cut-off
of 100, resulting in a small vocabulary of 1083
words. We used a beam of size 15 to prune deriva-
tions after each shift operation to obtain the joint
structure, and a beam of size 40 when perform-
ing the marginalisation. Training took approxi-
mately 2.5 days on a standard PC with 3.0 GHz
Pentium4 CPU. It took approximately 2 hours to
parse the entire testing set (2,824 sentences) and
an additional 3 hours to perform syntactic parsing
when marginalising out the semantic structures.2

Shortly after the submission deadline, we trained a
‘large’ model with a latent variable vector of size
80, a word frequency cut-off of 20, and additional
latent-to-latent connections from semantics to syn-
tax of the same configuration as the last column

2A multifold speed-up with a small decrease in accuracy
can be achieved by using a small beam.
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Syn Semantic Overall
LAS P R F1 P R F1

Submitted
D 86.1 78.8 64.7 71.1 82.5 75.4 78.8
W 87.8 79.6 66.2 72.3 83.7 77.0 80.2
B 80.0 66.6 55.3 60.4 73.3 67.6 70.3
WB 86.9 78.2 65.0 71.0 82.5 76.0 79.1

Joint inference
D 85.5 78.8 64.7 71.1 82.2 75.1 78.5

Large, joint inference
D 86.5 79.9 67.5 73.2 83.2 77.0 80.0
W 88.5 80.4 69.2 74.4 84.4 78.8 81.5
B 81.0 68.3 57.7 62.6 74.7 69.4 71.9
WB 87.6 79.1 67.9 73.1 83.4 77.8 80.5

Table 3: Scores on the development set and the
final testing sets (percentages). D= development
set; W=WSJ; B=Brown; WB=WSJ+Brown;

of table 1. This model took about 50% longer in
training and testing.

In table 3, we report results for the marginalised
inference (‘submitted’) and joint inference for the
submitted model, and the results for joint inference
with the ‘large’ model. The larger model improves
on the submitted results by almost 1.5%, a signifi-
cant improvement. If completed earlier, this model
would have been fifth overall, second for syntactic
LAS, and fifth for semantic F1.

To explore the relationship between the two
components of the model, we removed the edges
between the syntax and the semantics in the sub-
mitted model. This model’s performance drops by
about 3.5% for semantic role labelling, thereby in-
dicating that the latent annotation of parsing states
helps semantic role labelling. However, it also
indicates that there is much room for improve-
ment in developing useful semantic-specific fea-
tures, which was not done for these experiments
simply due to constraints on development time.

To test whether joint learning degrades the ac-
curacy of the syntactic parsing model, we trained a
syntactic parsing model with the same features and
the same pattern of interconnections as used for the
syntactic states in our joint model. The resulting
labelled attachment score was non-significantly
lower (0.2%) than the score for the marginalised
inference with the joint model. This result sug-
gests that, though the latent variables associated
with syntactic states in the joint model were trained
to be useful in semantic role labelling, this did not
have a negative effect on syntactic parsing accu-
racy, and may even have helped.

Finally, an analysis of the errors on the develop-
ment set for the submitted model paints a coherent
picture. We find attachment of adjuncts particu-

larly hard. For dependency labels, we make the
most mistakes on modification labels, while for se-
mantic labels, we find TMP, ADV, LOC, and PRN
particularly hard. NomBank arcs are not learnt as
well as PropBank arcs: we identify PropBank SRL
arguments at F1 70.8% while Nombank arguments
reach 58.1%, and predicates at accuracy 87.9% for
PropBank and 74.9% for NomBank.

5 Conclusions

While still preliminary, these results indicate that
synchronous parsing is an effective way of build-
ing joint models on separate structures. The gen-
erality of the ISBN design used so far suggests
that ISBN’s latent feature induction extends well to
estimating very complex probability models, with
little need for feature engineering. Nonetheless,
performance could be improved by task-specific
features, which we plan for future work.
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Abstract

This paper presents our contribution in the

closed track of the 2008 CoNLL Shared

Task (Surdeanu et al., 2008). To tackle the

problem of joint syntactic–semantic anal-

ysis, the system relies on a syntactic and

a semantic subcomponent. The syntactic

model is a bottom-up projective parser us-

ing pseudo-projective transformations, and

the semantic model uses global inference

mechanisms on top of a pipeline of clas-

sifiers. The complete syntactic–semantic

output is selected from a candidate pool

generated by the subsystems.

The system achieved the top score in the

closed challenge: a labeled syntactic accu-

racy of 89.32%, a labeled semantic F1 of

81.65, and a labeled macro F1 of 85.49.

1 Introduction: Syntactic–Semantic

Analysis

Intuitively, semantic interpretation should help

syntactic disambiguation, and joint syntactic–

semantic analysis has a long tradition in linguis-

tic theory. This motivates a statistical modeling of

the problem of finding a syntactic tree ŷsyn and a

semantic graph ŷsem for a sentence x as maximiz-
ing a function F that scores the joint syntactic–
semantic structure:

〈ŷsyn, ŷsem〉 = arg max
ysyn,ysem

F (x, ysyn, ysem)

The dependencies in the feature representation

used to compute F determine the tractability of the
search procedure needed to perform the maximiza-

tion. To be able to use complex syntactic features

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

such as paths when predicting semantic structures,

exact search is clearly intractable. This is true even

with simpler feature representations – the problem

is a special case of multi-headed dependency anal-

ysis, which is NP-hard even if the number of heads

is bounded (Chickering et al., 1994).

This means that we must resort to a simplifica-

tion such as an incremental method or a reranking

approach. We chose the latter option and thus cre-

ated syntactic and semantic submodels. The joint

syntactic–semantic prediction is selected from a

small list of candidates generated by the respective

subsystems.

2 Syntactic Submodel

We model the process of syntactic parsing of

a sentence x as finding the parse tree ŷsyn =
arg maxy F (x, y) that maximizes a scoring func-
tion F . The learning problem consists of fitting
this function so that the cost of the predictions is

as low as possible according to a cost function ρ.
In this work, we consider linear scoring functions

of the following form:

F (x, y) = w · Ψ(x, y)

where Ψ(x, y) is a numeric feature representation
of the pair (x, y) andw a vector of feature weights.
We defined the syntactic cost ρ as the sum of link
costs, where the link cost was 0 for a correct de-

pendency link with a correct label, 0.5 for a correct

link with an incorrect label, and 1 for an incorrect

link.

A widely used framework for fitting the weight

vector is the max-margin model (Taskar et al.,

2003), which is a generalization of the well-

known support vector machines to general cost-

based prediction problems. Since the large num-

ber of training examples and features in our case

make an exact solution of the max-margin opti-

mization problem impractical, we used the on-

line passive–aggressive algorithm (Crammer et al.,
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2006), which approximates the optimization pro-

cess in two ways:

• The weight vector w is updated incremen-
tally, one example at a time.

• For each example, only the most violated con-
straint is considered.

The algorithm is a margin-based variant of the per-

ceptron (preliminary experiments show that it out-

performs the ordinary perceptron on this task). Al-

gorithm 1 shows pseudocode for the algorithm.

Algorithm 1 The Online PA Algorithm

input Training set T = {(xt, yt)}Tt=1

Number of iterations N
Regularization parameter C

Initialize w to zeros
repeat N times
for (xt, yt) in T
let ỹt = arg maxy F (xt, y) + ρ(yt, y)

let τt = min
“
C, F (xt,ỹt)−F (xt,yt)+ρ(yt,ỹt)

‖Ψ(x,yt)−Ψ(x,ỹt)‖2
”

w ← w + τt(Ψ(x, yt)−Ψ(x, ỹt))
returnwaverage

We used a C value of 0.01, and the number of
iterations was 6.

2.1 Features and Search

The feature function Ψ is a second-order edge-
factored representation (McDonald and Pereira,

2006; Carreras, 2007). The second-order repre-

sentation allows us to express features not only of

head–dependent links, but also of siblings and chil-

dren of the dependent. This feature set forces us

to adopt the expensive search procedure by Car-

reras (2007), which extends Eisner’s span-based

dynamic programming algorithm (1996) to allow

second-order feature dependencies. Since the cost

function ρ is based on the cost of single links, this
procedure can also be used to find the maximizer

of F (xi, yij)+ρ(yi, yij), which is needed at train-
ing time. The search was constrained to disallow

multiple root links.

2.2 Handling Nonprojective Links

Although only 0.4% of the links in the training set

are nonprojective, 7.6% of the sentences contain at

least one nonprojective link. Many of these links

represent long-range dependencies – such as wh-

movement – that are valuable for semantic pro-

cessing. Nonprojectivity cannot be handled by

span-based dynamic programming algorithms. For

parsers that consider features of single links only,

the Chu-Liu/Edmonds algorithm can be used in-

stead. However, this algorithm cannot be gen-

eralized to the second-order setting – McDonald

and Pereira (2006) proved that this problem is NP-

hard, and described an approximate greedy search

algorithm.

To simplify implementation, we instead opted

for the pseudo-projective approach (Nivre and

Nilsson, 2005), in which nonprojective links are

lifted upwards in the tree to achieve projectivity,

and special trace labels are used to enable recovery

of the nonprojective links at parse time. The use

of trace labels in the pseudo-projective transfor-

mation leads to a proliferation of edge label types:

from 69 to 234 in the training set, many of which

occur only once. Since the running time of our

parser depends on the number of labels, we used

only the 20 most frequent trace labels.

3 Semantic Submodel

Our semantic model consists of three parts:

• A SRL classifier pipeline that generates a list
of candidate predicate–argument structures.

• A constraint system that filters the candidate
list to enforce linguistic restrictions on the

global configuration of arguments.

• A global classifier that rescores the predicate–
argument structures in the filtered candidate

list.

Rather than training the models on gold-

standard syntactic input, we created an automati-

cally parsed training set by 5-fold cross-validation.

Training on automatic syntax makes the semantic

classifiers more resilient to parsing errors, in par-

ticular adjunct labeling errors.

3.1 SRL Pipeline

The SRL pipeline consists of classifiers for predi-

cate identification, predicate disambiguation, sup-

port identification (for noun predicates), argument

identification, and argument classification. We

trained one set of classifiers for verb predicates

and another for noun predicates. For the pred-

icate disambiguation classifiers, we trained one

subclassifier for each lemma. All classifiers in the

pipeline were L2-regularized linear logistic regres-

sion classifiers, implemented using the efficient

LIBLINEAR package (Lin et al., 2008). For multi-

class problems, we used the one-vs-all binarization
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method, which makes it easy to prevent outputs not

allowed by the PropBank or NomBank frame.

Since our classifiers were logistic, their output

values could be meaningfully interpreted as prob-

abilities. This allowed us to combine the scores

from subclassifiers into a score for the complete

predicate–argument structure. To generate the can-

didate lists used by the global SRL models, we ap-

plied beam search based on these scores using a

beam width of 4.

The features used by the classifiers are listed in

Tables 1 and 2. In the tables, the features used

by the classifiers for noun and verb predicates are

indicated by N and V, respectively. We selected the

feature sets by greedy forward subset selection.

Feature PredId PredDis

PREDWORD N,V N,V

PREDLEMMA N,V N,V

PREDPARENTWORD/POS N,V N,V

CHILDDEPSET N,V N,V

CHILDWORDSET N,V N,V

CHILDWORDDEPSET N,V N,V

CHILDPOSSET N,V N,V

CHILDPOSDEPSET N,V N,V

DEPSUBCAT N,V N,V

PREDRELTOPARENT N,V N,V

Table 1: Classifier features in predicate identifica-

tion and disambiguation.

Feature Supp ArgId ArgCl

PREDPARENTWORD/POS N N,V

CHILDDEPSET N N,V N,V

PREDLEMMASENSE N N,V N,V

VOICE V V

POSITION N N,V N,V

ARGWORD/POS N N,V N,V

LEFTWORD/POS N N,V

RIGHTWORD/POS N N,V N,V

LEFTSIBLINGWORD/POS N,V

RIGHTSIBLINGWORD/POS N N

PREDPOS N N,V V

RELPATH N N,V N,V

POSPATH N

RELPATHTOSUPPORT N N

VERBCHAINHASSUBJ V V

CONTROLLERHASOBJ V N

PREDRELTOPARENT N N,V N,V

FUNCTION N,V

Table 2: Classifier features in argument identifica-

tion and classification and support detection.

Features Used in Predicate Identification and

Disambiguation

PREDWORD, PREDLEMMA. The lexical form

and lemma of the predicate.

PREDPARENTWORD and PREDPARENTPOS.

Form and part-of-speech tag of the parent

node of the predicate.

CHILDDEPSET, CHILDWORDSET, CHILD-

WORDDEPSET, CHILDPOSSET, CHILD-

POSDEPSET. These features represent the

set of dependents of the predicate using

combinations of dependency labels, words,

and parts of speech.

DEPSUBCAT. Subcategorization frame: the con-

catenation of the dependency labels of the

predicate dependents.

PREDRELTOPARENT. Dependency relation be-

tween the predicate and its parent.

Features Used in Argument Identification and

Classification

PREDLEMMASENSE. The lemma and sense

number of the predicate, e.g. give.01.

VOICE. For verbs, this feature is Active or Pas-

sive. For nouns, it is not defined.

POSITION. Position of the argument with respect

to the predicate: Before, After, or On.

ARGWORD and ARGPOS. Lexical form and

part-of-speech tag of the argument node.

LEFTWORD, LEFTPOS, RIGHTWORD, RIGHT-

POS. Form/part-of-speech tag of the left-

most/rightmost dependent of the argument.

LEFTSIBLINGWORD, LEFTSIBLINGPOS,

RIGHTSIBLINGWORD, RIGHTSIBLING-

POS. Form/part-of-speech tag of the

left/right sibling of the argument.

PREDPOS. Part-of-speech tag of the predicate.

RELPATH. A representation of the complex

grammatical relation between the predicate

and the argument. It consists of the sequence

of dependency relation labels and link direc-

tions in the path between predicate and argu-

ment, e.g. IM↑OPRD↑OBJ↓.
POSPATH. An alternative view of the grammat-

ical relation, which consists of the POS tags

passed when moving from predicate to argu-

ment, e.g. VB↑TO↑VBP↓PRP.
RELPATHTOSUPPORT. The RELPATH from the

argument to a support chain.

VERBCHAINHASSUBJ. Binary feature that is set

to true if the predicate verb chain has a sub-

ject. The purpose of this feature is to resolve

verb coordination ambiguity as in Figure 1.

CONTROLLERHASOBJ. Binary feature that is

true if the link between the predicate verb

chain and its parent is OPRD, and the parent

has an object. This feature is meant to resolve

control ambiguity as in Figure 2.

185



FUNCTION. The grammatical function of the ar-

gument node. For direct dependents of the

predicate, this is identical to the RELPATH.

I

SBJ

eat drinkyouand

COORD SBJ

CONJ
ROOT

SBJ COORD

ROOT

drinkandeatI

CONJ

Figure 1: Coordination ambiguity: The subject I is

in an ambiguous position with respect to drink.

I to

IMSBJ

want sleephim

OBJ

OPRD
ROOT

IM

sleepI

SBJ

want

ROOT

to

OPRD

Figure 2: Subject/object control ambiguity: I is in

an ambiguous position with respect to sleep.

3.2 Linguistically Motivated Global

Constraints

The following three global constraints were used

to filter the candidates generated by the pipeline.

CORE ARGUMENT CONSISTENCY. Core argu-

ment labels must not appear more than once.

DISCONTINUITY CONSISTENCY. If there is a la-

bel C-X, it must be preceded by a label X.

REFERENCE CONSISTENCY. If there is a label

R-X and the label is inside a relative clause, it

must be preceded by a label X.

3.3 Global SRL Model

Toutanova et al. (2005) have showed that a

global model that scores the complete predicate–

argument structure can lead to substantial perfor-

mance gains. We therefore created a global SRL

classifier using the following global features in ad-

dition to the features from the pipeline:

CORE ARGUMENT LABEL SEQUENCE. The

complete sequence of core argument labels.

The sequence also includes the predicate and

voice, for instance A0+break.01/Active+A1.

MISSING CORE ARGUMENT LABELS. The set

of core argument labels declared in the Prop-

Bank/NomBank frame that are not present in

the predicate–argument structure.

Similarly to the syntactic submodel, we trained

the global SRL model using the online passive–

aggressive algorithm. The cost function ρ was

defined as the number of incorrect links in the

predicate–argument structure. The number of it-

erations was 20 and the regularization parameter

C was 0.01. Interestingly, we noted that the global
SRL model outperformed the pipeline even when

no global features were added. This shows that the

global learning model can correct label bias prob-

lems introduced by the pipeline architecture.

4 Syntactic–Semantic Integration

Our baseline joint feature representation contained

only three features: the log probability of the syn-

tactic tree and the log probability of the semantic

structure according to the pipeline and the global

model, respectively. This model was trained on the

complete training set using cross-validation. The

probabilities were obtained using the multinomial

logistic function (“softmax”).

We carried out an initial experiment with a more

complex joint feature representation, but failed to

improve over the baseline. Time prevented us from

exploring this direction conclusively.

5 Results

The submitted results on the development and test

corpora are presented in the upper part of Table 3.

After the submission deadline, we corrected a bug

in the predicate identification method. This re-

sulted in improved results shown in the lower part.

Corpus Syn acc Sem F1 Macro F1

Development 88.47 80.80 84.66
Test WSJ 90.13 81.75 85.95
Test Brown 82.81 69.06 75.95
Test WSJ + Brown 89.32 80.37 84.86

Development 88.47 81.86 85.17
Test WSJ 90.13 83.75 86.61
Test Brown 82.84 69.85 76.34
Test WSJ + Brown 89.32 81.65 85.49

Table 3: Results.

5.1 Syntactic Results

Table 4 shows the effect of adding second-order

features to the parser in terms of accuracy as well

as training and parsing time on a Mac Pro, 3.2

GHz. The training times were measured on the

complete training set and the parsing time and ac-

curacies on the development set. Similarly to Car-

reras (2007), we see that these features have a very

large impact on parsing accuracy, but also that the

parser pays dearly in terms of efficiency as the

search complexity increases fromO(n3) toO(n4).
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Since the low efficiency of the second-order parser

restricts its use to batch applications, we see an in-

teresting research direction to find suitable com-

promises between the two approaches, for instance

by sacrificing the exact search procedure.

System Training Parse Labeled Unlabeled

1st order 65 min 28 sec 85.78 89.51
2nd order 60 hours 34 min 88.33 91.43

Table 4: Impact of second-order features.

Table 5 shows the dependency types most af-

fected by the addition of second-order features to

the parser when ordered by the increase in F1. As

can be seen, they are all verb adjunct categories,

which demonstrates the effect of grandchild fea-

tures on PP attachment and labeling.

Label ∆R ∆P ∆F1

TMP 14.7 12.9 13.9
DTV 0 19.9 10.5
LOC 7.8 12.3 9.9
PRP 12.4 6.7 9.6
DIR 5.9 7.2 6.5

Table 5: Labels affected by second-order features.

5.2 Semantic Results

To assess the effect of the components in the se-

mantic submodel, we tested their performance on

the top-scoring parses from the syntactic model.

Table 6 shows the results. The baseline system

consists of the SRL pipeline only (P). Adding lin-

guistic constraints (C) results in a more precision-

oriented system with slightly lower recall, but sig-

nificantly higher F1. Even higher performance is

obtained when adding the global SRL model (G).

System P R F1

P 80.74 77.98 79.33
P+C 82.42 77.66 79.97
P+C+G 83.64 78.14 80.40

Table 6: SRL results on the top-scoring parse trees.

5.3 Syntactic–Semantic Integration

The final experiment concerned the integration of

syntactic and semantic analysis. In this setting,

the system chooses the output that maximizes the

joint syntactic–semantic score, based on the top N
syntactic trees. Table 7 shows the results on the

development set. We see that syntactic–semantic

integration improves both syntactic accuracy and

semantic F1. This holds for the constraint-based

SRL system as well as for the full system.

Sem model N Syn acc Sem F1 Macro F1

P+C 1 88.33 79.97 84.17
P+C 16 88.42 80.42 84.44

P+C+G 1 88.33 80.40 84.39
P+C+G 16 88.47 80.80 84.66

Table 7: Syntactic–semantic integration.

6 Conclusion

We have described a system1 for syntactic and se-

mantic dependency analysis based on PropBank

and NomBank, and detailed the implementation

of its subsystems. Crucial to our success was the

high performance of the syntactic parser, which

achieved a high accuracy. In addition, we recon-

firmed the benefits of global inference in semantic

analysis: both constraint-based and learning-based

methods resulted in improvements over a baseline.

Finally, we showed that integration of syntactic

and semantic analysis is beneficial for both sub-

tasks. We hope that this shared task will spur fur-

ther research that leads to new feature representa-

tions and search procedures to handle the problem

of joint syntactic and semantic analysis.
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Abstract

This paper describes a system that jointly
parses syntactic and semantic dependen-
cies, presented at the CoNLL-2008 shared
task (Surdeanu et al., 2008). It combines
online Peceptron learning (Collins, 2002)
with a parsing model based on the Eisner
algorithm (Eisner, 1996), extended so as
to jointly assign syntactic and semantic la-
bels. Overall results are 78.11 global F1,
85.84 LAS, 70.35 semantic F1. Official re-
sults for the shared task (63.29 global F1;
71.95 LAS; 54.52 semantic F1) were sig-
nificantly lower due to bugs present at sub-
mission time.

1 Introduction

The main goal of this work was to construct a joint
learning architecture for syntactic-semantic pars-
ing and to test whether the syntactic and semantic
layers can benefit each other from the global train-
ing and inference.

All the components of our system were built
from scratch for this shared task. Due to strong
time limitations, our design decisions were biased
towards constructing a simple and feasible system.
Our proposal is a first order linear model that re-
lies on an online averaged Perceptron for learning
(Collins, 2002) and an extended Eisner algorithm
for the joint parsing inference.

Systems based on Eisner algorithm (Carreras et
al., 2006; Carreras, 2007) showed a competitive
performance in the syntactic parsing of the English
language in some past CoNLL shared tasks. Also,

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

we believe that extending the Eisner algorithm to
jointly parse syntactic and semantic dependencies
it is a natural step to follow.

Note that syntactic and semantic tasks are re-
lated but not identical. Semantic dependencies can
take place between words loosely related by the
syntactic structure. Another difficulty is that state
of the art SRL systems (Surdeanu et al., 2007)
strongly rely on features extracted from the syn-
tactic tree. The joint model grows syntactic and
semantic structures at the same time, so features
extracted from the syntactic tree (e.g., a syntactic
path between a modifier and a distant predicate)
are not available or expensive to compute within
the Eisner algorithm. We overcome this problem
again with a very simple (though not elegant) solu-
tion, consisting of introducing a previous syntactic
parsing step.

2 System architecture

This section briefly describes the main components
of our system: 1) Preprocessing, 2) Syntactic pars-
ing, 3) Predicate identification, 4) Joint syntactic-
semantic parsing, and 5) Postprocessing.

In preprocessing, the training corpus is traversed
and feature extraction performed. Main features
are borrowed from pre-existing well-known sys-
tems (see next subsection). The initial syntactic
parsing is based on an Eisner parser trained with
Perceptron and it is merely intended to allow the
extraction of syntactic-based features for all the
following phases (which share exactly the same
feature set extracted from these parse trees). Pred-
icate identification recognizes predicates by apply-
ing SVM classifiers1 and a set of simple heuristic
rules. The joint syntactic-semantic parsing phase

1We used SVM-light (see www.joachims.org for details).
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is the core module of this work. It simultaneously
derives the syntactic and semantic dependencies
by using a first order Eisner model, extended with
semantic labels and trained with averaged Percep-
tron. Finally, postprocessing simply selects the
most frequent sense for each predicate.

2.1 Preprocessing and feature extraction
All features in our system are calculated in the pre-
processing phase. We use the features described
in McDonald et al. (2005) and Carreras et al.
(2006) as input for the syntactic parsing phase, ex-
cept for the dynamic features from Carreras et al.
(2006). The joint syntactic-semantic parser uses
all the previous features and also specific features
for semantic parsing from Xue and Palmer (2004)
and Surdeanu et al. (2007). The features have been
straightforwardly adapted to the dependency struc-
ture used in this shared task, by substituting any
reference to a syntactic constituent by the head of
that constituent. About 5M features were extracted
from the training corpus. The number of features
was reduced to ∼222K using a frequency thresh-
old filter. A detailed description of the feature set
can be found at Lluı́s (Forthcoming 2008).

2.2 Syntactic parsing
Our system uses the Eisner algorithm combined
with an online averaged Pereceptron. We define
the basic model, which is also the starting point
for the joint model. Let L be the set of syntactic
labels, x = x1, . . . , xn a sentence with n words,
and Y(x) the set of all possible projective depen-
dency trees for x.

A dependency tree y ∈ Y(x) is a labeled tree
with arcs of the form 〈h,m, l〉 that is rooted on
an artificial node, 0, added for this purpose. The
head, h, and modifier, m, for a dependency index
words in the sentence and can take values in 0 ≤
h ≤ n and 1 ≤ m ≤ n. l ∈ L is the label of the
dependency.

The dependency parser (dp) is interested in find-
ing the best scored tree for a given sentence x:

dp(x,w) = arg max
y∈Y(x)

score tree(y, x,w)

Using an arc-based first order factorization, the
function score tree(y, x,w) is defined as the sum-
mation of scores of the dependencies in y:∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x,w) ,

where w is the weight vector of the parser, com-
puted using an online perceptron. The weight vec-
tor w can be seen as a concatenation of |L| weight
vectors of d components, one for each of the la-
bels: w = (w(1), . . . ,w(l), . . . ,w(|L|)). A func-
tion φ is assumed to extract features from a de-
pendency 〈h,m, l〉 and from the whole sentence x.
This function represents the extracted features as a
d-dimensional vector.

With all these elements, the score of a depen-
dency 〈h,m, l〉 is computed as a linear function:

score(〈h,m, l〉 , x,w) = φ (〈h,m, l〉 , x) ·w(l)

2.3 Predicate identification
We identified as verb predicates all verbs exclud-
ing the auxiliaries and the verb to be. These simple
rules based on the POS and lemma of the tokens
are enough to correctly identify almost all verb
predicates. With regard to noun predicates, we di-
rectly identified as predicates the lemmas which
appeared always as predicates with a minimum fre-
quency in the training corpus. The remaining noun
predicates were identified by a degree-2 polyno-
mial SVM. This classifier was trained with the
same features used in subsequent phases, but ex-
cluding those requiring identified predicates.

2.4 Joint syntactic and semantic Parsing
The previously described basic parsing model will
be extended to jointly assign semantic dependency
labels. Let S be the set of semantic labels. Note
that at this point, a sentence x has a set of q words
already identified as predicates. We will refer to
them as p1, . . . , pq, where pi ∈ {1, . . . , n}. We
consider that each dependency has a set of se-
mantic tags lsem p1 , . . . , lsem pq one for each sen-
tence predicate pi. Also, we consider an extra
no-argument label in the set of semantic labels S.
Thus, an extended dependency ds is defined as:

ds =
〈
h,m, lsyn, lsem p1 , . . . , lsem pq

〉
,

where lsyn denotes the syntactic label for the de-
pendency.

Again, the best parse tree is that maximizing the
score of a first order factorization:

dp(x,w, y′) = arg max
y∈Y(x)

score tree(y, x,w, y′)

score tree(y, x,w, y′) =

=
∑

〈h,m,l〉∈y

score(〈h,m, l〉 , x,w, y′) ,
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where the dependency label is now extended to
l = 〈lsyn, lsem p1 , . . . , lsem pq〉 and y′ denotes the
precomputed syntax tree. The score of a syntactic-
semantic dependency is:

score
(〈h,m, l〉 , x,w, y′) =

syntactic score (h,m, lsyn, x,w) +

sem score
(
h,m, lsem p1 , . . . , lsem pq , x,w, y

′)
The syntactic score is computed as described in the
basic model. Finally, the semantic scoring func-
tion computes the semantic score as the sum of the
semantic scores for each predicate semantic label:

sem score
(
h,m, lsem p1 , . . . , lsem pq , x,w, y

′) =

∑
lsem pi

φsem (〈h,m, lsem pi〉 , x, y′) ·w(lsem pi )

q

Note that each sentence x has a different number
of predicates q. To avoid an excessive weight of
the semantic component in the global score and a
bias towards sentences with many predicates, the
score is normalized by the number of predicates in
the sentence.

Figure 1 shows an example of a sen-
tence fragment with syntactic and seman-
tic dependencies. The three predicates
of the sentence are already identified:
{p1 = completed, p2 = announced, p3 =
acquisition}. All dependencies are of the
form d = 〈h,m, lsyn, lsem p1 , lsem p2 , lsem p3〉.
Note that semantic labels express semantic
relations between a modifier and a predicate
that can be anywhere in the sentence. The
semantic labeling is not restricted to predicates
that are the head of the modifier. In this ex-
ample, the correct output for the dependency
previously-announced is h = announced,
m = previously, lsyn = AMOD, lsem p1 = null,
lsem p2 = AM-TMP, lsem p3 = null.

The above described factorization allows the
parser to simultaneously assign syntactic and
semantic labels and also to maximize a joint
syntactic-semantic score of the tree. Note that the
semantic scoring function φsem extracts features
from the modifier, the head and the predicate of the
parsed dependencies. The proposed model allows
to capture interactions between syntax and seman-
tics not only because the syntactic and semantic
scores are combined but also because the semantic
scoring function relies on features extracted from

the head-modifier-predicate relations. Thus, the
semantic scoring function depends on the syntactic
dependency being built, and, in reverse, the seman-
tic score can modify the dependency chosen.

Regarding implementation issues, note that we
compute |L|+ |S| · q scores to assign q + 1 labels
to a given dependency. The scores are computed
independently for each label. Otherwise, interac-
tions among these labels, would raise the num-
ber of possible combined labels to an exponential
number, |L| · |S|q, making the exhaustive evalu-
ation infeasible in practice. Also related to effi-
ciency, we apply syntactic and semantic filters in
order to reduce the number of score evaluations.
In particular, the set of assignable labels is filtered
by the POS of the head and modifier (discarding
all labels not previously seen in the training corpus
between words with the same POS). Another fil-
ter removes the core arguments not present in the
frame file of each predicate. This strategy allowed
us to significantly improve efficiency without any
loss in accuracy.

2.5 Postprocess

A simple postprocess assigns the most frequent
sense to each identified predicate. Frequencies
were computed from the training corpus. Ex-
periments performed combining the best and sec-
ond output of the joint parser and enforcing do-
main constraints via ILP (Punyakanok et al., 2004)
showed no significant improvements.

3 Experiments and Results

All the experiments reported here were done using
the full training corpus, and results are presented
on the development set. The number of features
used by the syntactic parser is ∼177K. The joint
parser uses∼45K additional features for recogniz-
ing semantic dependencies.

Figure 2 shows the learning curves from epoch
1 to 17 for several subsystems and variants. More
specifically, it includes LAS performance on syn-
tactic parsing, both for the individual parser and
for the syntactic annotation coming from the joint
syntactic-semantic parser. For the latter, also the
F1 score on semantic dependencies and global
F1 results are presented. We can observe that
the syntactic LAS scores for the syntactic and
joint parsers are very similar, showing that there
is no loss in syntactic performance when using
the joint syntactic-semantic strategy. Overall re-
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Figure 1: Syntactic and semantic dependencies.

sults are quite stable from epoch 4 (syntax slightly
decreases but semantics slightly increases). The
overall results on the test set (78.11 global F1,
85.84 LAS, 70.35 semantic F1) were computed by
using 5 epochs of training, the optimal on the de-
velopment set.
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F1 sem joint

F1 global joint

Figure 2: Learning curves for the syntactic-only
and joint parsers.

The global F1 result on the WSJ test corpus is
79.16, but these results drop 9.32 F1 points on
the out-of-domain Brown corpus. Also, a signif-
icant performance drop is observed when mov-
ing from verb argument classification (74.58 F1,
WSJ test) to noun argument classification (56.65
F1, WSJ test). Note that the same features were
used for training noun and verb argument classi-
fiers. These results point out that there is room for
improvement on noun argument classification. Fi-
nally, a comparison to a simple equivalent pipeline
architecture, consisting of applying the syntactic
base parser followed by an independent classifica-

tion of semantic dependencies (using exactly the
same features) revealed that the joint model out-
performed the pipeline by 4.9 F1 points in the an-
notation of semantic dependencies.

Regarding efficiency, the proposed architecture
is really feasible. About 0.7GB of memory is re-
quired for the syntactic parser and 1.5GB for the
joint parser. Most of these memory needs are due
to the filters used. The filters allowed for a reduc-
tion of the computational cost by a factor of 5 with
no loss in accuracy. These filters have almost no
effect on the theoretical upper bound discarding
the correct labels for only 0.2% of the syntactic de-
pendencies and 0.44% of the semantic arguments
in the development corpus. The semantic exten-
sion of the Eisner algorithm requires only a new
table with backpointers for each predicate. Using a
single processor of an amd64 Athlon x2 5000+, the
syntactic parser can be trained at 0.2 s/sentence,
and the joint parser at 0.3 s/sentence. Efficiency at
test times is only slightly better.

4 Discussion

We have presented a novel joint approach to per-
form syntactic and semantic parsing by extend-
ing Eisner’s algorithm. Our model allows to cap-
ture syntactic-semantic interactions as the com-
puted syntactic-semantic score is globally opti-
mized. The computational cost of the new setting
is admissible in practice, leading to fairly efficient
parsers, both in time and memory requirements.

Results obtained with the presented joint ap-
proach are promising, though not outstanding in
the context of the CoNLL-2008 shared task. We
believe that there is room for substantial improve-
ment since many of the current system components
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are fairly simple. For instance, higher order ex-
tensions to the Eisner algorithm and well-known
tricks for dealing with non-projective structures
can be incorporated in our model. Also, we plan
to incorporate other subtasks in the training of the
joint model, such as predicate identification and ar-
gument recognition.

One of the potential drawbacks of our current
approach is the need for a syntactic parsing pre-
ceding the joint model. This previous parse is
simply included to permit the extraction of syntax
based features. These features (including the syn-
tactic path) could be dynamically computed when
performing the joint parsing in the cases in which
the predicate coincides with the head of the modi-
fier being processed. These cases account for only
63.6% of the training corpus arguments. If a pred-
icate is located in a sibling sentence span, the dy-
namic programming algorithm has not yet chosen
which of the possible spans will be included in
the final parse tree. Also, the predicate can be
located at a lower level within the current span.
These cases would require to recompute the score
of the current span because syntactic path features
are not available. The resulting cost would be pro-
hibitive and approximate search needed. Our pre-
vious parsing phase is just an efficient and simple
solution to the feature extraction problem in the
joint model.

As previously seen, the joint model showed a
similar syntactic performance and clearly better
semantic performance than an equivalent pipeline
system, showing that some degree of syntactic-
semantic overlap is exploitable. Regarding the for-
mer, there is only a moderate degree (63.6%) of
direct overlap between the syntactic head-modifier
and semantic predicate-modifier relations. If the
semantic score is highly dependent on a correct
head the resulting increased score could benefit the
choosing of a correct dependency. Otherwise, joint
scores can introduce a significant amount of noise.
All in all, further research is required in this direc-
tion.
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Abstract

This paper presents our system for the
Open Track of the CoNLL 2008 Shared
Task (Surdeanu et al., 2008) in Joint De-
pendency Parsing1 and Semantic Role La-
belling. We use Markov Logic to define
a joint SRL model and achieve a semantic
F-score of 74.59%, the second best in the
Open Track.

1 Introduction

Many SRL systems use a two-stage pipeline that
first extracts possible argument candidates (argu-
ment identification) and then assigns argument
labels to these candidates (argument classifica-
tion) (Xue and Palmer, 2004). If we also con-
sider the necessary previous step of identifying
the predicates and their senses (predicate identi-
fication) this yields a three-stage pipeline: predi-
cate identification, argument identification and ar-
gument classification.

Our system, on the other hand, follows a joint
approach in the spirit of Toutanova et al. (2005)
and performs the above steps collectively . We de-
cided to use Markov Logic (ML, Richardson and
Domingos, 2005), a First Order Probabilistic Lan-
guage, to develop a global probabilistic model of
SRL. By using ML we are able to incorporate the
dependencies between the decisions of different
stages in the pipeline and the well-known global
correlations between the arguments of a predi-
cate (Punyakanok et al., 2005). And since learning

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1Note that in this work we do not consider the parsing
task; instead we use the provided dependencies of the open
track datatsets.

and inference methods were already implemented
in the ML software we use, only minimal engineer-
ing efforts had to be done.

In contrast to the work of Toutanova et al. (2005)
our system applies online learning to train its pa-
rameters and exact inference to predict a collective
role labelling. Moreover, we jointly label the argu-
ments of all predicates in a sentence. This allows
us, for example, to require that certain tokens have
to be an argument of some predicates in the sen-
tence.

In this paper we also investigate the impact of
different levels of interaction between the layers of
the joint SRL model. We find that a probabilis-
tic model which resembles a traditional bottom-up
pipeline (though jointly trained and globally nor-
malised) performs better than the complete joint
model on the WSJ test set and worse on the Brown
test set. The worst performance is observed when
no interaction between SRL stages is allowed.

In terms of semantic F-score (74.59%) our sub-
mitted results are the second best in the Open
Track of the Shared Task. Our error analysis in-
dicates that a) the training regime can be improved
and b) nominalizations are difficult to handle for
the model as it is.

In the next sections we will first briefly intro-
duce Markov Logic. Then we present the Markov
Logic model we used in our final submission. We
present and analyse our results in section 4 before
we conclude in Section 5.

2 Markov Logic

Markov Logic (ML, Richardson and Domingos,
2005) is a Statistical Relational Learning language
based on First Order Logic and Markov Networks.
It can be seen as a formalism that extends First
Order Logic to allow formulae that can be vi-
olated with some penalty. From an alternative

193



point of view, it is an expressive template language
that uses First Order Logic formulae to instantiate
Markov Networks of repetitive structure.

Let us describe Markov Logic by considering
the predicate identification task. In Markov Logic
we can model this task by first introducing a set
of logical predicates2 such as isPredicate(Token)
or word(Token,Word). Then we specify a set of
weighted first order formulae that define a distribu-
tion over sets of ground atoms of these predicates
(or so-called possible worlds).

Ideally, the distribution we define with these
weighted formulae assigns high probability to pos-
sible worlds where SRL predicates are correctly
identified and a low probability to worlds where
this is not the case. For example, a suitable set of
weighted formulae would assign a high probability
to the world3

{word (1,Haag) , word(2, plays),
word(3, Elianti), isPredicate(2)}

and a low one to

{word (1,Haag) , word(2, plays),
word(3, Elianti), isPredicate(3)}

In Markov Logic a set M = {(φ,wφ)}φ of
weighted first order formulae is called a Markov
Logic Network (MLN). It assigns the probability

p (y) =
1
Z

exp

 ∑
(φ,w)∈M

w
∑

c∈C
nφ

fφ
c (y)

 (1)

to the possible world y. Here fφ
c is a feature func-

tion that returns 1 if in the possible world y the
ground formula we get by replacing the free vari-
ables in φ by the constants in c is true and 0 oth-
erwise. Cnφ is the set of all tuples of constants we
can replace the free variables in φ with. Z is a nor-
malisation constant. Note that this distribution cor-
responds to a Markov Network where nodes rep-
resent ground atoms and factors represent ground
formulae.

For example, if M contains the formula φ

word
(
x,′ take′

)⇒ isPredicate (x)

then its corresponding log-linear model has,
among others, a feature fφ

t1 for which x in φ has
2In the cases were is not obvious whether we refer to SRL

or ML predicates we add the prefix SRL or ML, respectively.
3“Haag plays Elianti” is a segment of a sentence in train-

ing corpus.

been replaced by the constant t1 and that returns 1
if

word
(
1,′ take′

)⇒ isPredicate (1)

is true in y and 0 otherwise.
We will refer predicates such as word as ob-

served because they are known in advance. In con-
trast, isPredicate is hidden because we need to in-
fer it at test time.

2.1 Learning
An MLN we use to model the collective SRL task
is presented in section 3. We learn the weights as-
sociated this MLN using 1-best MIRA (Crammer
and Singer, 2003) Online Learning method.

2.2 Inference
Assuming that we have an MLN, a set of weights
and a given sentence then we need to predict
the choice of predicates, frame types, arguments
and role labels with maximal a posteriori prob-
ability. To this end we apply a method that
is both exact and efficient: Cutting Plane Infer-
ence (CPI, Riedel, 2008) with Integer Linear Pro-
gramming (ILP) as base solver. We use it for infer-
ence at test time as well as during the MIRA online
learning process.

3 Model

We define five hidden predicates for the three
stages of the task. For predicate identification, we
use the predicates isPredicate and sense. isPred-
icate(p) indicates that the word in the position p
is an SRL predicate while sense(p,e) signals that
predicate in position p has the sense e.

For argument identification, we use the predi-
cates isArgument and hasRole. The atom isArgu-
ment(a) signals that the word in the position a is
a SRL argument of some (unspecified) SRL predi-
cate while hasRole(p,a) indicates that the token at
position a is an argument of the predicate in posi-
tion p.

Finally, for the argument classification stage we
define the predicate role. Here role(p,a,r) corre-
sponds to the decision that the argument in the po-
sition a has the role r with respect to the predicate
in the position p.

3.1 Local formulae
We define a set of local formulae. A formula is lo-
cal if its groundings relate any number of observed
ground atoms to exactly one hidden ground atom.
For example, a grounding of the local formula

lemma(p, +l1)∧lemma(a,+l2) ⇒ hasRole(p, a)
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Figure 1: Factor graph for the local formula in sec-
tion 3.1.

can be seen in the Markov Network of Figure 1. It
connects a hidden hasRole ground atom to two ob-
served lemma ground atoms. Note that the “+” pre-
fix for variables indicates that there is a different
weight for each possible pair of lemmas (l1, l2).

For the hasRole and role predicates we defined
local formulae that aimed to reproduce the stan-
dard features used in previous work (Xue and
Palmer, 2004). This also required us to develop
dependency-based versions of the constituent-
based features such as the syntactic path between
predicate and argument, as proposed by Xue and
Palmer (2004).

The remaining hidden predicates, isPredicate,
isArgument and sense, have local formulae that
relate their ground atoms to properties of a con-
textual window around the token the atom corre-
sponds to. For this we used the information pro-
vided in the closed track training corpus of the
shared task (i.e. both versions of lemma and POS
tags plus a coarse version of the POS tags).

Instead of describing the local feature set in
more detail we refer the reader to our MLN model
files.4 They can be used both as a reference and
as input to our Markov Logic Engine5, and thus al-
low the reader to easily reproduce our results. We
believe that this is another advantage of explicitly
separating model and algorithms by using first or-
der probabilistic logic languages.

3.2 Global formulae

Global formulae relate several hidden ground
atoms. We use them for two purposes: to en-
sure consistency between the decisions of all SRL
stages and to capture some of our intuition about
the task. We will refer to formulae that serve the
first purpose as structural constraints.

For example, a structural constraint is given by

4http://thebeast.googlecode.com/svn/
mlns/conll08

5http://thebeast.googlecode.com

the (deterministic) formula

role(p, a, r) ⇒ hasRole(p, a)

which ensures that, whenever the argument a is
given a label r with respect to the predicate p, this
argument must be an argument of a as denoted by
hasRole(p,a). Note that this formula by itself mod-
els the traditional “bottom-up” argument identifi-
cation and classification pipeline: it is possible to
not assign a role r to an predicate-argument pair
(p, a) proposed by the identification stage; how-
ever, it is impossible to assign a role r to token
pairs (p, a) that have not been proposed as poten-
tial arguments.

One example of another class of structural con-
straints is

hasRole(p, a) ⇒ ∃r.role(p, a, r)

which, by itself, models an inverted or “top-down”
pipeline. In this architecture the argument classi-
fication stage can assign roles to tokens that have
not been proposed by the argument identification
stage. However, it must assign a label to any token
pair the previous stage proposes. Figure 2 illus-
trates the structural formulae we use in form of a
Markov Network.

The formulae we use to ensure consistency be-
tween the remaining hidden predicates are omitted
for brevity as they are very similar to the bottom-
up and top-down formulae we presented above.

For the SRL predicates that perform a labelling
task (role and sense) we also need a structural con-
straint which ensures that not more than one label
is assigned. For instance,

(role(p, a, r1) ∧ r1 6= r2 ⇒ ¬role(p, a, r2))

forbids two different semantic roles for a pair of
words.

The global formulae that capture our intuition
about the task itself can be further divided into two
classes. The first one uses deterministic or hard
constraints such as

role (p, a1, r) ∧ ¬mod (r) ∧ a1 6= a2 ⇒
¬role (p, a2, r)

which forbids cases where distinct arguments of
a predicate have the same role unless the role de-
scribes a modifier.

The second class of global formulae is soft or
nondeterministic. For instance, the formula

lemma(p, +l) ∧ ppos(a,+p)
∧hasRole(p, a) ⇒ sense(p, +f)
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Figure 2: Markov Network that illustrates the
structural constraints we use.

is a soft global formula. It captures the observation
that the sense of a verb or noun depends on the type
of its arguments. Here the type of an argument
token is represented by its POS tag.

4 Results

We only submitted results for the Open Track of
the Shared Task. Moreover, we focused on SRL
and did not infer dependencies; instead we used
the MALT dependencies parses provided in the
Open Track dataset. Our submission was ranked
second out of five with a semantic F1-score of
74.59%.6

After submission we also set up additional ex-
periments to evaluate different types and degrees
of connectivity between the decisions made by our
model. To this end we created four new models:
a model that omits top-down structural constraints
and thus resembles a (globally trained) bottom-
up pipeline (Up); a model that does not contain
bottom-up structural constraints and thus resem-
bles a top-down architecture (Down); a model
in which stages are not connected at all (Iso-
lated); and finally, a model in which additional
global formulae are omitted and the only remain-
ing global formulae are structural (Structural). The
results we submitted were generated using the full
model (Full).

Table 1 summarises the results for each of these
models. We report the F-scores for the WSJ and
Brown test corpora provided for the task. In addi-
tion we show training and test times for each sys-
tem.

There are four findings we take from this. First,
and somewhat surprisingly, the jointly trained
bottom-up model (Up) performs substantially bet-

6While we did use information of the open dataset we do
believe that it is possible to train a stacked parsing-SRL sys-
tem that would perform similarily. If so, our system would
have the 5th best semantic scores among the 20 participants
of the closed track.

Model WSJ Brown Train Test
Time Time

Full 75.72% 65.38% 25h 24m
Up 76.96% 63.86% 11h 14m
Down 73.48% 59.34% 22h 23m
Isolated 60.49% 48.12% 11h 14m
Structural 74.93% 64.23% 22h 33m

Table 1: F-scores for different models.

ter than the full model on the WSJ test corpus. We
will try to give an explanation for this result in
the next section. Second, the bottom-up model is
twice as fast compared to both the full and the top-
down model. This is due to the removal of formu-
lae with existential quantifiers that would result in
large clique sizes of the ground Markov Network.
Third, the isolated model performs extremely poor,
particularly for argument classification. Here fea-
tures defined for the role predicate can not make
any use of the information in previous stages. Fi-
nally, the additional global formulae do improve
performance, although not substantially.

4.1 Analysis

A substantial amount of errors in our submitted re-
sults (Full) can be attributed to the seemingly ran-
dom assignment of the very low frequency label
“R-AA” (appears once in the training set) to token
pairs that should either have a different role or no
role at all. Without these false positives, precision
would increase by about 1%. Interestingly, this
type of error completely disappears for the bottom-
up model (Up) and thus seem to be crucial in order
understand why this model can outperform the full
model.

We believe that this type of error is an artifact of
the training regime. For the full model the weights
of the role predicate only have ensure that the right
(true positive) role is the relative winner among
all roles. In the bottom-up model they also have
to make sure that their cumulative weight is non-
negative – otherwise simply not assigning a role
r for (p, a) would increase the score even if has-
Role(p,a) is predicted with high confidence. Thus
more weight is shifted towards the correct roles.
This helps the right label to win more likely over
the “R-AA” label, whose weights have rarely been
touched and are closer to zero.

Likewise, in the bottom-up model the total
weight of the hasRole features of a wrong (false
positive) candidate token pair must be nonpositive.
Otherwise picking the wrong candidate would in-
crease overall score and no role features can re-
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ject this decision because the corresponding struc-
tural constraints are missing. Thus more weight
is shifted away from false positive candidates, re-
sulting in a higher precision of the hasRole pred-
icate. This also means that less wrong candidates
are proposed, for which the “R-AA” role is more
likely to be picked because its weights have hardly
been touched.

However, it seems that by increasing precision
in this way, we decrease recall for out-of-domain
data. This leads to a lower F1 score for the bottom-
up model on the Brown test set.

Another prominent type of errors appear for
nominal predicates. Our system only recovers only
about 80% of predicates with “NN”, “NNS” and
“NNP” tags (and classifies about 90% of these with
the right predicate sense). Argument identification
and classification performs equally bad. For exam-
ple, for the “A0” argument of “VB” predicates we
get an F-score of 82.00%. For the “A0” of “NN”
predicates F-score is 65.92%. The features of our
system are essentially taken from the work done on
PropBank predicates and we did only little work
to adapt these to the case of nominal predicates.
Putting more effort into designing features specific
to the case of nominal predicates might improve
this situation.

5 Conclusion

We presented a Markov Logic Network that jointly
performs predicate identification, argument identi-
fication and argument classification for SRL. This
network achieves the second best semantic F-
scores in the Open Track of the CoNLL shared
task.

Experimentally we show that results can be fur-
ther improved by using an MLN that resembles a
conventional SRL bottom-up pipeline (but is still
jointly trained and globally normalised) instead
of a fully connected model. We hypothesise that
when training this model more weight is shifted
away from wrong argument candidates and more
weight is shifted towards correct role labels. This
results in higher precision for argument identifica-
tion and better accuracy for argument classifica-
tion.

Possible future work includes better treatment
of nominal predicates, for which we perform quite
poorly. We would also like to investigate the im-
pact of linguistically motivated global formulae
more thoroughly. So far our model benefits from
them, albeit not substantially.
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Abstract

In this paper we present our syntactic and
semantic dependency parsing system par-
ticipated in both closed and open compe-
titions of the CoNLL 2008 Shared Task.
By combining the outcome of two state-of-
the-art syntactic dependency parsers, we
achieved high accuracy in syntactic de-
pendencies (87.32%). With MRSes from
grammar-based HPSG parsers, we achieved
significant performance improvement on
semantic role labeling (from 71.31% to
71.89%), especially in the out-domain
evaluation (from 60.16% to 62.11%).

1 Introduction

The CoNLL 2008 shared task (Surdeanu et al.,
2008) provides a unique chance of comparing dif-
ferent syntactic and semantic parsing techniques
in one unified open competition. Our contribution
in this joint exercise focuses on the combination
of different algorithms and resources, aiming not
only for state-of-the-art performance in the com-
petition, but also for the dissemination of the learnt
lessons to related sub-fields in computational lin-
guistics.

The so-called hybrid approach we take has two
folds of meaning. For syntactic dependency pars-
ing, we build our system based on state-of-the art
algorithms. Past CoNLL share task results have
shown that transition-based and graph-based algo-
rithms started from radically different ideas, yet
achieved largely comparable results. One of the
question we would like investigate is whether the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

combination of the two approach on the output
level leads to even better results.

For the semantic role labeling (SRL) task, we
would like to build a system that allows us to test
the contribution of different linguistic resources.
To our special interest is to examine the deep
linguistic parsing systems based on hand-crafted
grammars. During the past decades, various large
scale linguistic grammars have been built, some
of which achieved both broad coverage and high
precision. In combination with other advances
in deep linguistic processing, e.g. efficient pars-
ing algorithms, statistical disambiguation models
and robust processing techniques, several systems
have reached mature stage to be deployed in ap-
plications. Unfortunately, due to the difficulties
in cross-framework evaluation, fair comparison of
these systems with state-of-the-art data-driven sta-
tistical parsers is still hard to achieve. More impor-
tantly, it is not even clear whether deep linguistic
analysis is necessary at all for tasks such as shallow
semantic parsing (also known as SRL). Drawing
a conclusion on this latter point with experiments
using latest deep parsing techniques is one of our
objective.

The remainder of the paper is structure as fol-
lows. Section 2 introduces the overall system ar-
chitecture. Section 3 explains the voting mecha-
nism used in the syntactic parser. Section 4 de-
scribes in detail the semantic role labeling com-
ponent. Section 5 presents evaluation results and
error analysis. Section 6 concludes the paper.

2 System Architecture

As shown in Figure 1, our system is a two-stage
pipeline. For the syntactic dependencies, we apply
two state-of-the-art dependency parsers and com-
bined their results based on a voting model. For
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Figure 1: System Architecture

the semantic roles, we extracted features from the
previous stage, combined with deep parsing results
(in MRS), and use statistical classification models
to make predictions. In particular, the second part
can be further divided into four stages: predicate
identification (PI), argument identification (AI), ar-
gument classification (AC), and predicate classi-
fication (PC). Maximum entropy-based machine
learning techniques are used in both components
which we will see in detail in the following sec-
tions.

3 Syntactic Dependency Parsing

For obtaining syntactic dependencies, we have
combined the results of two state-of-the-art depen-
dency parsers: the MST parser (McDonald et al.,
2005) and the MaltParser (Nivre et al., 2007).

The MST parser formalizes dependency parsing
as searching for maximum spanning trees (MSTs)
in directed graphs. A major advantage of their
framework is the ability to naturally and efficiently
model both projective and non-projective parses.
To learn these structures they used online large-
margin learning that empirically provides state-of-
the-art performance.

The MaltParser is a transition-based incremental
dependency parser, which is language-independent
and data-driven. It contains a deterministic algo-
rithm, which can be viewed as a variant of the ba-
sic shift-reduce algorithm. The learning method
they applied is support vector machine and experi-
mental evaluation confirms that the MaltParser can
achieve robust, efficient and accurate parsing for a

wide range of languages.
Since both their parsing algorithms and machine

learning methods are quite different, we decide to
take advantages of them. After a comparison be-
tween the results of the two parsers1, we find that,

1. The MST parser is better at the whole struc-
ture. In several sentences, the MaltParser was
wrong at the root node, but the MST parser is
correct.

2. The MaltParser is better at some dependency
labels (e.g. TMP, LOC, etc.).

These findings motivate us to do a voting based
on both outputs. The features considered in the
voting model are as follows:

• Dependency path: two categories of depen-
dency paths are considered as features: 1)
the POS-Dep-POS style and 2) the Dep-Dep
style. The former consists of part-of-speech
(POS) tags and dependency relations appear-
ing in turns; and the latter only contains de-
pendency relations. The maximum length of
the dependency path is three dependency re-
lations.

• Root attachments: the number of tokens at-
tached to the ROOT node by the parser in one
sentence

• Sentence length: the number of tokens in
each input sentence

• Projectivity: whether the parse is projective
or not

With these features, we apply a statistical model
to predict, for each sentence, we choose the pars-
ing result from which parser. The voted result will
be our syntactic dependency output and be passed
to the later stages.

4 Semantic Role Labeling

4.1 Overview

The semantic role labeling component of our sys-
tem is comprised of a pipeline model with four

1In this experiment, we use second order features and the
projective decoder for the MST parser trained with 10 iter-
ations, and Arc-eager algorithm with a quadric polynomial
kernel for the MaltParser.
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sub-components that performs predicate identi-
fication (PI), argument identification (AI), argu-
ment classification (AC) and predicate classifica-
tion (PC) respectively. The output in previous
steps are taken as input information to the follow-
ing stages. All these components are essentially
based on a maximum entropy statistical classifier,
although with different task-specific optimizations
and feature configurations in each step. Depending
on the available information from the input data
structure, the same architecture is used for both
closed and open challenge runs, with different fea-
ture types. Note that our system does not make use
of or predict SU chains.

Predicate Identification The component makes
binary prediction on each input token whether it
forms a predicate in the input sentence. This pre-
dictor precedes other components because it is a
relatively easy task (comparing to the following
components). Also, making this prediction early
helps to cut down the search space in the follow-
ing steps. Based on the observation on the training
data, we limit the PI predictor to only predict for
tokens with certain POS types (POSes marked as
predicates for at least 50 times in the training set).
This helps to significantly improve the system effi-
ciency in both training and prediction time without
sacrificing prediction accuracy.

It should be noted that the prediction of nominal
predicates are generally much more difficult (based
on CoNLL 2008 shared task annotation). The PI
model achieved 96.32 F-score on WSJ with verbal
predicates, but only 84.74 on nominal ones.

Argument Identification After PI, the argu-
ments to the predicted predicates are identified
with the AI component. Similar to the approach
taken in Hacioglu (2004), we use a statistical clas-
sifier to select from a set of candidate nodes in a
dependency tree. However, instead of selecting
from a set of neighboring nodes from the predicate
word 2, we define the concept of argument path as
a chain of dependency relations from the predicate
to the argument in the dependency tree. For in-
stance, an argument path [ | ] indicates that
if the predicate is syntactically depending as  on
a node which has a  child, then the  node

2Hacioglu (2004) defines a tree-structured family of a
predicate as a measure of locality. It is a set of dependency
relation nodes that consists of the predicate’s parent, chil-
dren, grandchildren, siblings, siblings’ children and siblings’
grandchildren with respect to its dependency tree

(sibling to the predicate) is an argument candidate.
While Hacioglu (2004)’s approach focus mainly
on local arguments (with respect to the syntactic
dependencies), our approach is more suitable of
capturing long distance arguments from the pred-
icate. Another minor difference is that we allow
predicate word to be its own argument (which is
frequently the case for nominal predicates) with an
empty argument path [ | ].

The set of effective argument paths are obtained
from the training set, sorted and filtered according
to their frequencies, and used in testing to obtain
the candidate arguments. By setting a frequency
threshold, we are able to select the most useful
argument paths. The lower the threshold is, the
higher coverage one might get in finding candi-
date arguments, accompanied with a higher aver-
age candidate number per predicate and potentially
a more difficult task for the statistical classifier.
By experimenting with different frequency thresh-
olds on the training set, we established a frequency
threshold of 40, which guarantees candidate argu-
ment coverage of 95%, and on average 5.76 candi-
dates per predicate. Given that for the training set
each predicate takes on average 2.13 arguments,
the binary classifier will have relatively balanced
prediction classes.

Argument Classification For each identified ar-
gument, an argument label will be assigned during
the argument classification step. Unlike the binary
classifiers in previous two steps, AC uses a multi-
class classifier that predicts from the inventory of
argument labels. For efficiency reasons, we only
concern the most frequent 25 argument labels.

Predicate Classification The final step in the
SRL component labels the predicted predicate with
a predicate name. Due to the lack of lexical
resources in the closed competition, this step is
scheduled for the last, in order to benefit from the
predictions made in the previous steps. Unlike the
previous steps, the statistical model used in this
step is a ranking model. We obtained a list of can-
didate frames and corresponding rolesets from the
provided PropBank and NomBank data. Each pre-
dicted predicate is mapped onto the potential role-
sets it may take. When the frame for the predicate
word is missing from the list, or there is only one
candidate roleset for it, the predicate name is as-
signed deterministically (word stem concatenated
with “.01” for frame missing predicates, the unam-
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biguous roleset name when there is only one can-
didate). When there are more than one candidate
rolesets, a ranking model is trained to select the
most probable roleset for a given predicate given
the syntactic and semantic context.

4.2 Features

The feature types used in our SRL component are
summarized in Table 1, with the configurations of
our submitted “closed” and “open” runs marked.
Numerous different configurations with these fea-
ture types have been experimented on training and
development data. The results show that feature
types 1–14 are the best performing ones. Fea-
tures related to the siblings of the predicate only
introduce minor performance variation. We also
find the named entity labels does not lead to im-
mediate improvement of SRL performance. The
WordNet sense feature does achieve minor perfor-
mance increase on PI and PC, although the signif-
icant remains to be further examined. Based on
the pipeline model, we find it difficult to achieve
further improvement by incorporate more features
types from provided annotation. And the vari-
ance of SRL performance with different open fea-
tures is usually less than 1%. To clearly show the
contribution of extra external resources, these less
contributing features (siblings, named entity labels
and WordNet sense) are not used in our submitted
“open” runs.

MRSes as features to SRL As a novel point of
our SRL system, we incorporate parsing results
from a linguistic grammar-based parsing system
in our “open” competition run. In this experi-
ment, we used English Resource Grammar (ERG,
Flickinger (2000)), a precision HPSG grammar for
English. For parsing, we used PET (Callmeier,
2001), an efficient HPSG parser, together with ex-
tended partial parsing module (Zhang et al., 2007)
for maximum robustness. The grammar is hand-
crafted and the disambiguation models are trained
on Redwoods treebanks. They present general lin-
guistic knowledge, and are not tuned for the spe-
cific domains in this competition.

While the syntactic analysis of the HPSG gram-
mar is largely different from the dependency anno-
tation used in this shared task, the semantic rep-
resentations do share a similar view on predicate-
argument structures. ERG uses as its semantic
representation the Minimal Recursion Semantics
(MRS, Copestake et al. (2005)), a non-recursive flat

structure that is suitable for underspecifying scope
ambiguities. A predicate-argument backbone of
MRS can be extracted by identifying shared vari-
ables between elementary predications (s).

In order to align the HPSG parser’s I/O with
CoNLL’s annotation, extensive mapping scripts
are developed to preprocess the texts, and extract
backbone from output MRSes. The unknown word
handling techniques (Zhang and Kordoni, 2005)
are used to overcome lexical gaps. Only the best
analysis is used for MRS extraction. Without par-
tial parsing, the ERG achieves around 70% of raw
coverage on the training data. When partial pars-
ing is used, almost all the sentences received ei-
ther full or partial analysis (except for several cases
where computational resources are exhausted), and
the SRL performance improves by ∼0.5%.

5 Results

Among 20+ participant groups, our system ranked
seventh in the “closed” competition, and first in
the “open” challenge. The performance of the syn-
tactic and semantic components of our system are
summarized in Table 2.

In-Domain Out-Domain
Lab. Unlab. Lab. Unlab.

Syntactic Dep. 88.14% 90.78% 80.80% 86.12%

SR
L Closed 72.67% 82.68% 60.16% 76.98%

Open 73.08% 83.04% 62.11% 78.48%

Table 2: Labeled and unlabeled attachment scores
in syntactic dependency parsing and F1 score for
semantic role labeling.

The syntactic voting and semantic labeling parts
of our system are implemented in Java together
with a few Perl scripts. Using the open source
TADM for parameter estimation, our the voting
component take no more than 1 minute to train and
10 seconds to run (on WSJ testset). The SRL com-
ponent takes about 1 hour for training, and no more
than 30 seconds for labeling (WSJ testset).

Result analysis shows that the combination of
the two state-of-the-art parsers delivers good syn-
tactic dependencies (ranked 2nd). Error analysis
shows most of the errors are related to preposi-
tions. One category is the syntactic ambiguity of
pp-attachment, e.g. in “when trading was halted
in Philip Morris”, “in” can be attached to either
“trading” or “halted”. The other category is the
LOC and TMP tags in phrases like “at the end of
the day”, “at the point of departure”, etc.
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PI ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � �
AI ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � � � � �
AC ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � � � � �
PC ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ × × � � �

Table 1: Feature types used in semantic role labeling sub-components. Feature types marked with × are
used in the “closed” run; feature types marked with � are used in the “open” run; feature types marked
with ⊗ are used in both runs. P denotes predicate; A denotes semantic argument.

The results on semantic role labeling show,
sometimes, even with syntactic errors of
LOC/TMP tags, the semantic role labeler can
still predict AM-LOC/AM-TMP correctly, which
indicates the robustness of our hybrid approach.
By comparing our “closed” and “open” runs, the
MRS features do introduce a clear performance
improvement. The performance gain is even
more significant in out-domain test, showing that
the MRS features from ERG are indeed much less
domain dependent. Another example worth men-
tioning is that, in the sentence “Scotty regarded the
ear and the grizzled hair around it with a moment
of interest”, it is extremely difficult to know that
“Scotty” is a semantic role of “interest”.

Also, we are the only group that submitted runs
for both tracks, and achieved better performance
in open competition. Although the best ways of
integrating deep linguistic processing techniques
remain as an open question, the achieved results
at least show that hand-crafted grammars like ERG
do provide heterogeneous linguistic insights that
can potentially find their usage in data-driven NLP
tasks as such.

6 Conclusion

In this paper, we described our hybrid system
on both syntactic and semantic dependencies la-
beling. We built a voting model to combine
the results of two state-of-the-art syntactic depen-
dency parsers, and a pipeline model to combine
deep parsing results for SRL. The experimental re-
sults showed the advantages of our hybrid strat-
egy, especially on the cross-domain data set. Al-
though the optimal ways of combining deep pro-
cessing techniques remains to be explored, the

performance gain achieved by incorporating hand-
crafted grammar outputs shows a promising direc-
tion of study for both fields.
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Abstract

This paper describes our system to carry
out the joint parsing of syntactic and se-
mantic dependencies for our participation
in the shared task of CoNLL-2008. We il-
lustrate that both syntactic parsing and se-
mantic parsing can be transformed into a
word-pair classification problem and im-
plemented as a single-stage system with
the aid of maximum entropy modeling.
Our system ranks the fourth in the closed
track for the task with the following per-
formance on the WSJ+Brown test set:
81.44% labeled macro F1 for the overall
task, 86.66% labeled attachment for syn-
tactic dependencies, and 76.16% labeled
F1 for semantic dependencies.

1 Introduction

The joint parsing of syntactic and semantic depen-
dencies introduced by the shared task of CoNLL-
08 is more complicated than syntactic dependency
parsing or semantic role labeling alone (Surdeanu
et al., 2008). For semantic parsing, in particu-
lar, a dependency-based representation is given but
the predicates involved are unknown, and we also
have nominal predicates besides the verbal ones.
All these bring about more difficulties for learning.
This paper presents our research for participation
in the CoNLL-2008 shared task, with a highlight
on our strategy to select learning framework and
features for maximum entropy learning.

∗This study is supported by CERG grant 9040861 (CityU
1318/03H) and CityU Strategic Research Grant 7002037.

∗c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

The rest of the paper is organized as follows.
The next section presents the technical details of
our system and Section 3 its evaluation results.
Section 4 looks into a few issues concerning our
forthcoming work for this shared task, and Section
5 concludes the paper.

2 System Description

For the sake of efficiency, we opt for the maximum
entropy model with Gaussian prior as our learning
model for both the syntactic and semantic depen-
dency parsing. Our implementation of the model
adopts L-BFGS algorithm for parameter optimiza-
tion as usual (Liu and Nocedal, 1989). No addi-
tional feature selection techniques are applied.

Our system consists of three components to deal
with syntactic and semantic dependency parsing
and word sense determination, respectively. Both
parsing is formulated as a single-stage word-pair
classification problem, and the latter is carried out
by a search through the NomBank (Meyers et al.,
2004) or the PropBank (Palmer et al., 2005)1.

2.1 Syntactic Dependency Parsing
We use a shift-reduce scheme to implement syn-
tactic dependency parsing as in (Nivre, 2003). It
takes a step-wised, history- or transition-based ap-
proach. It is basically a word-by-word method
with a projective constraint. In each step, the clas-
sifier checks a word pair, e.g., TOP, the top of a
stack for processed words, and, NEXT, the first
word in the unprocessed word sequence, in order
to determine if a dependent label should be as-
signed to them. Besides two arc-building actions,
a shift action and a reduce action are also defined
to meet the projective constraint, as follows.

1These two dictionaries that we used are downloaded from
CoNLL-2008 official website.
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Notation Meaning
s Clique in the top of stack
s−1,... The first clique below the top of stack, etc.
i, i+1,... The first (second) clique in the unprocessed

sequence, etc.
dprel Dependent label
h Head
lm Leftmost child
rm Rightmost child
rn Right nearest child
form Word form
lemma Word lemma
pos Predicted PoS tag
sp Y Split Y , which may be form, lemma or pos.
. ’s, e.g., ‘s.dprel’ means dependent label

of the clique in the top of stack
/ Feature combination, i.e., ‘s.pos/i.pos’

means s.pos and i.pos together as a
feature function.

p The current predicate candidate
a The current argument candidate

Table 1: Feature Notations

1. Left-arc: Add an arc from NEXT to TOP and
pop the stack.

2. Right-arc: Add an arc from TOP to NEXT
and push NEXT onto the stack.

3. Reduce: Pop TOP from the stack.

4. Shift: Push NEXT onto the stack.

We implement a left-to-right arc-eager parsing
model in a way that the parser scan through an in-
put sequence from left to right and the right depen-
dents are attached to their heads as soon as possible
(Hall et al., 2007). To construct a single-stage sys-
tem, we extend the left-/right-arc actions to their
correspondent multi-label actions as necessary. In-
cluding 32 left-arc and 66 right-arc actions, alto-
gether a 100-class problem is yielded for the pars-
ing action classification for this shared task.

Since only projective sequences can be handled
by the shift-reduce scheme, we apply the pseudo-
projective transformation introduced by (Nivre and
Nilsson, 2005) to projectivize those non-projective
sequences. Our statistics show that only 7.6% se-
quences and less than 1% dependencies in the cor-
pus provided for training are non-projective. Thus,
we use a simplified strategy to projectivize an input
sequence. Firstly, we simply replace the head of a
non-projective dependency by its original head’s
head but without any additional dependent label
encoding for the purpose of deprojectivizing the
output during decoding. Secondly, if the above
standard projectivization step cannot eliminate all

Basic Extension
x.sp Y itself, its previous two and next two Y s, and

all bigrams within the five-clique window,
(x is s or i, and Y is form, lemma or pos.)

x.Y (x is s or i, and Y is form, lemma or pos.)
x.Y /i.Y (x is s or s−1 and Y is pos, sp lemma

or sp pos)
s.h.sp form
s.dprel
s.lm.dprel
s.rn.dprel
i.lm.sp pos
s.lm.dprel/s.dprel
s.lm.sp pos/s.sp pos
s.h.sp pos/s.sp pos
x.sp pos|rootscore (x is s or i.)
s.sp pos/i.sp pos|pairscore
s.curroot.sp pos/i.sp pos

Table 2: Features for Syntactic Parsing

non-projective dependencies in a sequence, then
the word with the shortest sequence (rather than
dependent tree) distance to the original head will
be chosen as the head of a non-projective depen-
dency. In practice, the above two-step projectiviza-
tion procedure can eliminate all non-projective de-
pendencies in all sequences. Our purpose here is to
provide as much data as possible for training, and
only projective sequences are input for training and
output for decoding.

While memory-based and margin-based learn-
ing approaches such as support vector machines
are popularly applied to shift-reduce parsing, our
work provides evidence that the maximum en-
tropy model can achieve a comparative perfor-
mance with the aid of a suitable feature set. With
feature notations in Table 1, we use a feature set as
shown in Table 2 for syntactic parsing.

Here, we explain ‘rootscore’, ‘pairscore’ and
curroot in Table 2. Both rootscore and pairscore
return the log frequency for an event in the training
corpus. The former counts a given split PoS occur-
ring as ROOT, and the latter two split PoS’s com-
bination associated with a dependency label. The
feature curroot returns the root of a partial parsing
tree that includes a specified node.

2.2 Semantic Dependency Parsing

Assuming no predicates overtly known, we keep
using a word-pair classifier to perform semantic
parsing through a single-stage processing. Specif-
ically, we specify the first word in a word pair as
a predicate candidate (i.e., a semantic head, and
noted as p in our feature representation) and the
next as an argument candidate (i.e., a semantic de-
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Basic Extension
x.sp Y itself, its previous and next cliques, and

all bigrams within the three-clique window.
(Y is form or lemma.)a

x.sp pos itself, its previous and next two cliques, and
all bigrams within the five-clique window.

x.Y (Y is form, lemma or pos.)
p.Y /i.Y (Y is sp lemma or sp pos.)

a is the same as p
x.is Verb or Noun
bankAdvice

b a.h.sp form
x.dprel
x.lm.dprel
p.rm.dprel
p.lm.sp pos
a.lm.dprel/a.dprel
a.lm.sp pos/a.sp pos
a.sp Y/a.dprel (Y is lemma or pos.)
x.sp lemma/x.h.sp form
p.sp lemma/p.h.sp pos
p.sp pos/p.dprel
a.preddirc

p.voice/a.preddird

x.posSeqe

x.dprelSeqf

a.dpTreeLevelg

a/p|dpRelation
a/p|SharedPosPath
a/p|SharedDprelPath
a/p|x.posPath
a/p|x.dprelPath
a/p|dprelPath

ax is p or a throughout the whole table.
bThis and the following features are all concerned with a

known syntactic dependency tree.
cpreddir: the direction to the current predicate candidate.
dvoice: if the syntactic head of p is be and p is not ended

with -ing, then p is passive.
eposSeq: PoS tag sequence of all syntactic children
fdprelSeq: syntactic dependent label sequence of all syn-

tactic children
gdpTreeLevel: the level in the syntactic parse tree, counted

from the leaf node.

Table 3: Features for Semantic Parsing

pendent, and noted as a). We do not differenti-
ate between nominal and verbal predicates and our
system handles them in in exactly the same way.
If decoding outputs show that no arguments can
be found for a predicate candidate in the decoding
output, then this candidate will be naturally dis-
carded from the output predicate list.

When no constraint available, however, all word
pairs in the an input sequence must be considered,
leading to very poor efficiency in computation for
no gain in effectiveness. Thus, the training sample
needs to be pruned properly.

For predicate, only nouns and verbs are consid-
ered possible candidates. That is, all words with-
out a split PoS in these two categories are filtered

out. Many prepositions are also marked as pred-
icate in the training corpus, but their arguments’
roles are ‘SU’, which are not counted the official
evaluation.

For argument, a dependency version of the prun-
ing algorithm in (Xue and Palmer, 2004) is used to
find, in an iterative way, the current syntactic head
and its siblings in a parse tree in a constituent-
based representation. In this representation, the
head of a phrase governs all its sisters in the tree,
as illustrated in the conversion of constituents to
dependencies in (Lin, 1995). In our implementa-
tion, the following equivalent algorithm is applied
to select argument candidates from a syntactic de-
pendency parse tree.

Initialization: Set the given predicate candi-
date as the current node;

(1) The current node and all of its syntactic chil-
dren are selected as argument candidates.

(2) Reset the current node to its syntactic head
and repeat step (1) until the root is reached.

This algorithm can cover 98.5% arguments while
reducing about 60% of the training samples, ac-
cording to our statistics. However, this is achieved
at the price of including a syntactic parse tree as
part of the input for semantic parsing.

The feature set listed in Table 3 is adopted for
our semantic parsing, some of which are borrowed
from (Hacioglu, 2004). Among them, dpTreeRela-
tion returns the relationship of a and p in a syntac-
tic parse tree. Its possible values include parent,
sibling, child, uncle, grand parent
etc. Note that there is always a path to the ROOT in
the syntactic parse tree for either a or p. Along the
common part of these two paths, SharedDprelPath
returns the sequence of dependent labels collected
from each node, and SharedPosPath returns the
corresponding sequence of PoS tags. x.dprelPath
and x.posPath return the PoS tag sequence from x
to the beginnings of SharedDprelPath and Shared-
PosPath, respectively. a/p|dprelPath returns the
concatenation of a.dprelPath and p.dprelPath.

We may have an example to show how the fea-
ture bankAdvice works. Firstly, the current pro-
cessed semantic role labels and argument candi-
date direction are checked. Specifically, they are
the arguments A0 and A1 that have been marked
before the predicate candidate p and the current ar-
gument identification direction after p. Secondly,
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UAS LAS Label-Acc.
Development 88.78 85.85 91.14

WSJ 89.86 87.52 92.47
Brown 85.03 79.83 86.71

WSJ+Brown 89.32 86.66 91.83

Table 4: The Results of Syntactic Parsing (%)

Data Precision Recall F-score
Development 79.76 72.25 75.82

Label. WSJ 80.57 74.97 77.67
Brown 66.28 61.29 63.69

WSJ+Brown 79.03 73.49 76.16
Development 89.58 81.15 85.16

Unlab. WSJ 89.48 83.26 86.26
Brown 83.14 76.88 79.89

WSJ+Brown 88.79 82.57 85.57

Table 5: The Results of Semantic Parsing (%)

each example2 of p in NomBank or PropBank that
depends on the split PoS tag of p is checked if
it partially matches the current processed role la-
bels. If a unique example exists in this form, e.g.,
Before:A0-A1; After:A3, then this feature
returns A3 as feature value. If no matched or mul-
tiple matched examples exist, then this feature re-
turns a default value.

2.3 Word Sense Determination

The shared task of CoNLL-2008 for word sense
disambiguation task is to determine the sense of an
output predicate. Our system carries out this task
by searching for a right example in the given Nom-
Bank or PropBank. The semantic role set scheme
of each example for an output predicate is checked.
If a scheme is found to match the output seman-
tic role set of a predicate, then the corresponding
sense for the first match is chosen; otherwise the
system outputs ‘01’ as the default sense.

3 Evaluation Results

Our evaluation is carried out on a 64-bit ubuntu
Linux installed server with double dual-core AMD
Opteron processors of 2.8GHz and 8GB memory.
The full training set for CoNLL-2008 is used to
train the maximum entropy model. The training
for the syntactic parser costs about 200 hours and

2The term “example” means a chunk in NomBank
or PropBank, which demonstrates how semantic roles
occur around a specified predicate. For example, for
a sense item of the predicate access in PropBank,
we first have <arg n="0">a computer</arg>
<rel>access</rel> <arg n="1">its
memory</arg>, and then a role set scheme for this
sense as Before:A0;After:A1.

Data Precision Recall F-score
Development 82.80 79.05 80.88

Label. WSJ 84.05 81.25 82.62
Macro Brown 73.05 70.56 71.78

WSJ+Brown 82.85 80.08 81.44
Development 89.18 84.97 87.02

Unlab. WSJ 89.67 86.56 88.09
Macro Brown 84.08 80.96 82.49

WSJ+Brown 89.06 85.94 87.47
Development 83.69 80.71 82.17

Label. WSJ 85.07 82.88 83.96
Micro Brown 75.14 73.09 74.10

WSJ+Brown 83.98 81.80 82.88
Development 89.06 85.90 87.45

Unlab. WSJ 89.72 87.42 88.56
Micro Brown 84.38 82.07 83.21

WSJ+Brown 89.14 86.83 87.97

Table 6: Overall Scores (%)

4.1GB memory and that for the semantic parser
costs about 170 hours and 4.9GB memory. The
running time in each case is the sum of all running
time for all threads involved. When a parallel opti-
mization technique is applied to speedup the train-
ing, the time can be reduced to about 1/3.5 of the
above.

The official evaluation results for our system are
presented in Tables 4, 5 and 6. Following the
official guideline of CoNLL-2008, we use unla-
beled attachment score (UAS), labeled attachment
score (LAS) and label accuracy to assess the per-
formance of syntactic dependency parsing. For
semantic parsing, the unlabeled scores metric the
identification performance and the labeled scores
the overall performance of semantic labeling.

4 To Do

Although we are unable to follow our plan to do
more than what we have done for this shared task,
because of the inadequate computational resource
and limited time, we have a number of techniques
in our anticipation to bring in further performance
improvement.

While expecting to accomplish the joint infer-
ence of syntactic and semantic parsing, we only
have time to complete a system with the former to
enhance the latter. But we did have experiments in
the early stage of our work to show that a syntactic
dependency parser can make use of available se-
mantic dependency information to enhance its per-
formance by 0.5-1% 3.

Most errors in our syntactic parsing are related

3We used the outputs of a semantic parser, either predicted
or gold-standard, as features for syntactic parsing.
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to the dependencies of comma and prepositions.
We need to take care of them, for PP attachment
is also crucial to the success of semantic parsing.
Extra effort is paid, as illustrated in previous work
such as (Xue and Palmer, 2004), to handle such
cases, especially when a PP is involved. We find in
our data that about 1% arguments occur as a grand-
child of a predicate through PP attachment.

Syntactic parsing contributes crucially to the
overall performance of the joint parsing by pro-
viding a solid basis for further semantic parsing.
Thus there is reason to believe that improvement
of syntactic dependency parsing can be more in-
fluential than that of semantic parsing to the overall
improvement. Only one model was used for syn-
tactic parsing in our system, in contrast to the exist-
ing work using an ensemble technique for further
performance enhancement, e.g., (Hall et al., 2007).
Again, the latter means much more computational
cost should be taken.

Though it was not done before submission dead-
line, we also tried to enhance the semantic parsing
with some more sophisticated inputs from the syn-
tactic parsing. One is predicted syntactic parsed
tree input that may be created by cross-validation
rather than the gold-standard syntactic input that
our submitted semantic parser was actually trained
on. Another is the n-best outputs of the syntactic
parser. However, only the single-best output of the
syntactic parser was actually used.

5 Conclusion

As presented in the above sections, our system to
participate in the CoNLL-2008 shared task is im-
plemented as two single-stage maximum entropy
learning. We have tackled both syntactic and se-
mantic parsing as a word-pair classification prob-
lem. Despite the simplicity of this approach, our
system has produced promising results.
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Gülsen Eryiǧit, Beáta Megyesi, Mattias Nils-
son, and Markus Saers. 2007. Single malt or
blended? a study in multilingual parser optimiza-
tion. In Proceedings of the CoNLL Shared Task
Session of EMNLP-CoNLL 2007, pages 933–939,
Prague, Czech, June.

Lin, Dekang. 1995. A dependency-based method for
evaluating broad-coverage parser. In Proceedings
of the Fourteenth International Joint Conference on
Artificial Intelligence (IJCAI-95), pages 1420–1425,
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Abstract

We describe the system submitted to
the closed challenge of the CoNLL-2008
shared task on joint parsing of syntactic
and semantic dependencies. Syntactic de-
pendencies are processed with the Malt-
Parser 0.4. Semantic dependencies are
processed with a combination of memory-
based classifiers. The system achieves
78.43 labeled macro F1 for the complete
problem, 86.07 labeled attachment score
for syntactic dependencies, and 70.51 la-
beled F1 for semantic dependencies.

1 Introduction

In this paper we describe the system submitted to
the closed challenge of the CoNLL-2008 shared
task on joint parsing of syntactic and semantic de-
pendencies (Surdeanu et al., 2008). Compared to
the previous shared tasks on semantic role label-
ing, the innovative feature of this one is that it
consists of extracting both syntactic and seman-
tic dependencies. The semantic dependencies task
comprises labeling the semantic roles of nouns and
verbs and disambiguating the frame of predicates.

The system that we present extracts syntactic
and semantic dependencies independently. Syn-
tactic dependencies are processed with the Malt-
Parser 0.4 (Nivre, 2006; Nivre et al., 2007). Se-
mantic dependencies are processed with a combi-
nation of memory-based classifiers.

Memory-based language processing (Daele-
mans and van den Bosch, 2005) is based on the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

idea that NLP problems can be solved by stor-
ing solved examples of the problem in their literal
form in memory, and applying similarity-based
reasoning on these examples in order to solve new
ones. Keeping literal forms in memory has been
argued to provide a key advantage over abstracting
methods in NLP that ignore exceptions and sub-
regularities (Daelemans et al., 1999).

Memory-based algorithms have been previously
applied to semantic role labeling. Van den
Bosch et al. (2004) participated in the CoNLL-
2004 shared task with a system that extended
the basic memory-based learning method with
class n-grams, iterative classifier stacking, and
automatic output post-processing. Tjong Kim
Sang et al. (2005) participated in the CoNLL-
2005 shared task with a system that incorporates
spelling error correction techniques. Morante and
Busser (2007) participated in the SemEval-2007
competition with a semantic role labeler for Span-
ish based on gold standard constituent syntax.
These systems use different types of constituent
syntax (shallow parsing, full parsing). We are
aware of two systems that perform semantic role
labeling based on dependency syntax previous to
the CoNLL-2008 shared task. Hacioglu (2004)
converts the data from the CoNLL-2004 shared
task into dependency trees and uses support vector
machines. Morante (2008) describes a memory-
based semantic role labeling system for Spanish
based on gold standard dependency syntax.

We developed a memory-based system for the
CoNLL-2008 shared task in order to evaluate the
performance of this methodology in a completely
new semantic role labeling setting.

The paper is organised as follows. In Section 2
the system is described, Section 3 contains an anal-
ysis of the results, and Section 4 puts forward some
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conclusions.

2 System description

The system processes syntactic and semantic de-
pendencies independently. The syntactic depen-
dencies are processed with the MaltParser 0.4. The
semantic dependencies are processed with a cas-
cade of memory-based classifiers. We use the
IB1 classifier as implemented in TiMBL (version
6.1.2) (Daelemans et al., 2007), a supervised in-
ductive algorithm for learning classification tasks
based on the k-nearest neighbor classification rule
(Cover and Hart, 1967). In IB1, similarity is de-
fined by computing (weighted) overlap of the fea-
ture values of a test instance and a memorized ex-
ample. The metric combines a per-feature value
distance metric with global feature weights that
account for relative differences in discriminative
power of the features.

2.1 Syntactic dependencies

The MaltParser 0.41 (Nivre, 2006; Nivre et al.,
2007) is an inductive dependency parser that uses
four essential components: a deterministic algo-
rithm for building labeled projective dependency
graphs; history-based feature models for predict-
ing the next parser action; support vector ma-
chines for mapping histories to parser actions;
and graph transformations for recovering non-
projective structures.

The learner type used was support vector ma-
chines, with the same parameter options re-
ported by (Nivre et al., 2006). The parser
algorithm used was Nivre, with the options
and model (eng.par) for English as specified
on http://w3.msi.vxu.se/users/jha/conll07/. The
tagset.pos, tagset.cpos and tagset.dep were ex-
tracted from the training corpus.

2.2 Semantic dependencies

The semantics task consists of finding the predi-
cates, assigning a PropBank or a NomBank frame
to them and extracting their semantic role depen-
dencies. Because of lack of resources, we did not
have time to develop a word sense disambiguation
system. So, predicates were assigned the frame
‘.01’ by default.

The system handles the semantic role labeling
task in three steps: predicate identification, seman-

1Web page of MaltParser 0.4:
http://w3.msi.vxu.se/∼nivre/research/MaltParser.html.

tic dependency classification, and combination of
classifiers.

2.2.1 Predicate identification
In this phase, a classifier predicts if a word is a

predicate or not. The IB1 algorithm was param-
eterised by using overlap as the similarity metric,
information gain for feature weighting, using 7 k-
nearest neighbors, and weighting the class vote of
neighbors as a function of their inverse linear dis-
tance. The instances represent all nouns and verbs
in the corpus and they have the following features:

• Word form, lemma, part of speech (POS), the three last

letters of the word, and the lemma and POS of the five

previous and five next words. To obtain the previous

word we perform a linear left-to-right search. This is

how previous has to be interpreted further on when fea-

tures are described.

The accuracy of the classifier on the develop-
ment test is 0.9599 (4240/4417) for verbs and
0.8981 (9226/10272) for nouns.

2.2.2 Semantic dependency classification
In this phase, three groups of multi-class clas-

sifiers predict in one step if there is a dependency
between a word and a predicate, and the type of
dependency, i.e. semantic role.

Group 1 (G1) consists of two classifiers: one
for predicates that are nouns and another for pred-
icates that are verbs. The instances represent a
predicate-word combination. The predicates are
those that have been classified as such in the previ-
ous phase. As for the combining words, determin-
ers and certain combinations are excluded based
on the fact that they never have a role in the train-
ing corpus.

The IB1 algorithm was parameterised by using
overlap as the similarity metric, information gain
for feature weighting, using 11 k-nearest neigh-
bors, and weighting the class vote of neighbors as
a function of their inverse linear distance. The fea-
tures of the noun classifier are:

• About the predicate: word form. About the combining

word: word form, POS, dependency type, word form

of the two previous and two next words. Chain of POS

types between the word and the predicate. Distance be-

tween the word and the predicate. Binary feature indi-

cating if the word depends on the predicate. Six chains

of POS tags between the word and its three previous and

three next predicates in relation to the current predicate.
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The features of the verb classifier are:

• The same as for the noun classifier and additionally:

POS of the word next to the current combining word,

binary feature indicating if the combining word de-

pends on the predicate previous to the current predicate,

binary feature indicating if the predicate previous to the

combining word is located before or after the current

predicate.

The verb classifier achieves an overall accuracy
of 0.9244 (80805/87412), and the noun classifier,
0.9173 (69836/76132) in the development set.

Group 2 (G2) consists also of two classifiers:
one for predicates that are nouns and another for
predicates that are verbs. The instances represent
combinations of word-predicate, but the test cor-
pus contains only those instances that G1 has clas-
sified as having a role.

The IB1 algorithm was parameterised in the
same way as for G1, except that it computes 7 k-
nearest neighbors instead of 11. The two classifiers
use the same features:

• About the predicate: word form, chain of lemmas of the

syntactic siblings, chain of lemmas of the syntactic chil-

dren. About the combining word: word form, POS, de-

pendency type, word form of the two previous and the

two next words, POS+type of dependency and lemma

of the syntactic father, chain of dependency types and

chain of lemmas of the syntactic children. Chain of

POS types between word and predicate, distance and

syntactic dependency type between word and predicate.

The verb classifier achieves an overall accuracy
of 0.5656 (4160/7355), and the noun classifier,
0.5017 (2234/4452) in the development set.

Group 3 (G3) consists of one classifier. Like
G2, instances represent combinations of word-
predicate, but the test corpus contains only those
instances that G1 has classified as having a role..
The IB1 algorithm was parameterised in the same
way as for G2. It uses the following features:

About the predicate: lemma, POS, POS of the 3 previous

and 3 next predicates. About the combining word: lemma,

POS, and dependency type, POS of the 3 previous and 3 next

words. Distance between the predicate and the word. A bi-

nary feature indicating if the combining word is located be-

fore or after the predicate.

The classifier achieves an overall accuracy of
0.5527 (6526/11807).

2.2.3 Combination of classifiers
In this phase the three groups of classifiers are

combined in a simple way: if G2 and G3 agree
in classifying a semantic dependency, their solu-
tion is chosen, else the solution of G1 is chosen.
This system combination choice is explained by
the fact that G1 has a higher accuracy than G2 and
G3 when the three classifiers are applied to the de-
velopment set. G2 and G3 are used to eliminate
overgeneration of roles by G1.

The performance of the system in the develop-
ment corpus with only the G1 classifiers is 66.07
labeled F1. The combined system achieves a
10.8% error reduction, with 69.75 labeled F1.

3 Results

The results of the system are shown in Table 1.
We will focus on commenting on the semantic
scores. The system scores 71.88 labeled F1 in the
in-domain corpus (WSJ) and 59.23 in the out-of-
domain corpus (Brown). Unlabeled F1 in the WSJ
corpus is almost 10% higher than labeled F1. La-
beled precision is 12.40% higher than labeled re-
call.

WSJ BROWN
SYNTACTIC SCORES
Labeled attachment score 86.88 79.58
Unlabeled attachment score 89.37 84.85
Label accuracy score 91.48 86.00
SEMANTIC SCORES
Labeled precision 78.61 65.25
Labeled recall 66.21 54.23
Labeled F1 71.88 59.23
Unlabeled precision 89.13 83.61
Unlabeled recall 75.08 69.48
Unlabeled F1 81.50 75.89
OVERALL MACRO SCORES
Labeled macro precision 82.74 72.41
Labeled macro recall 76.54 66.90
Labeled macro F1 79.52 69.55
Unlabeled macro precision 89.25 84.23
Unlabeled macro recall 82.22 77.16
Unlabeled macro F1 85.59 80.54

Table 1: Results of the system in the WSJ and
BROWN corpora expressed in %.

3.1 Discussion
The performance of the semantic role labeler is af-
fected considerably by the performance of the first
classifier for predicate detection. The system can-
not recover from the predicates that are missed in
this phase. Experiments without the first classifier
and with gold standard predicates (detection and
classification) result in 80.89 labeled F1, 9.01 %
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higher than the results of the system with predi-
cate detection. We opted for identifying predicates
as a first step in order to reduce the number of
training instances for the second phase, classifica-
tion of semantic dependencies. For the same rea-
son, we opted for selecting only nouns and verbs
as instances, aware of the fact that we would miss
a very low number of predicates with other cate-
gories. The results of predicate identification can
be improved by setting up a combined system, in-
stead of a single classifier, and by incorporating a
system for frame disambiguation.

Equally important would be to find better fea-
tures for the identification of noun predicates,
since the features used generalise better for verbs
than for nouns. Table 2 shows that the system is
better at identifying verbs than it is at identifying
nouns.

Total F1 Pred. F1 Pred.
Id.&Cl. Id.

CC 3 - -
CD 1 - -
IN 3 - -
JJ 16 - -
NN 3635 77.57 85.59
NNP 10 30.77 38.46
NNS 1648 75.47 83.65
PDT 2 - -
RP 4 - -
VB 1278 79.28 98.87
VBD 1320 85.44 99.24
VBG 742 77.05 94.41
VBN 985 76.43 92.08
VBP 343 78.60 97.81
VBZ 504 80.94 97.36
WP 2 - -
WRB 2 - -

Table 2: Predicate (Pred.) identification (Id.) and
classification (Cl.) in the WSJ corpus expressed in
%.

A characteristic of the semantic role labeler is
that recall is considerably lower than precision
(12.40 %). This can be further analysed with the
data shown in Table 3.

Except for the dependency VB*+AM-NEG,
precision is higher than recall for all semantic de-
pendencies. We run the semantic role labeler with
gold standard predicates and with gold standard
syntax and predicates. The difference between pre-
cision and recall is around 10 % in both cases,
which confirms that low recall is a characteristic
of the semantic role labeler, probably caused by
the fact that the features do not generalise good
enough. The semantic role labeler with gold stan-

Dependency Total Recall Prec. F1
NN*+A0 2339 42.41 77.80 54.90
NN*+A1 3757 61.17 78.32 68.69
NN*+A2 1537 45.48 82.24 58.57
NN*+A3 349 50.14 88.38 63.98
NN*+AM-ADV 32 9.38 37.50 15.01
NN*+AM-EXT 33 18.18 85.71 30.00
NN*+AM-LOC 232 30.60 63.96 41.40
NN*+AM-MNR 344 34.59 79.87 48.27
NN*+AM-NEG 35 2.86 100.00 5.56
NN*+AM-TMP 492 54.88 83.33 66.18
VB*+A0 3509 68.99 82.63 75.20
VB*+A1 4844 74.24 83.28 78.50
VB*+A2 1085 55.94 69.21 61.87
VB*+A3 169 41.42 79.55 54.48
VB*+A4 99 74.75 88.10 80.88
VB*+AM-ADV 488 38.93 59.19 46.97
VB*+AM-CAU 70 50.00 70.00 58.33
VB*+AM-DIR 81 29.63 57.14 39.02
VB*+AM-DIS 315 52.70 74.11 61.60
VB*+AM-EXT 32 50.00 59.26 54.24
VB*+AM-LOC 355 52.11 57.10 54.49
VB*+AM-MNR 335 46.57 61.18 52.88
VB*+AM-MOD 539 92.21 95.95 94.04
VB*+AM-NEG 227 94.71 90.34 92.47
VB*+AM-PNC 113 33.63 54.29 41.53
VB*+AM-TMP 1068 64.51 80.40 71.58
VB*+C-A1 192 65.10 74.85 69.64
VB*+R-A0 222 65.77 87.43 75.07
VB*+R-A1 155 49.68 73.33 59.23
VB*+R-AM-LOC 21 23.81 71.43 35.71
VB*+R-AM-TMP 52 46.15 66.67 54.54

Table 3: Semantic dependencies identification and
classification in the WSJ corpus for dependencies
with more than 20 occurences expressed in %.

dard predicates scores 86.06 % labeled precision
and 76.32 % labeled recall. The semantic role
labeler with gold standard predicates and syntax
scores 89.20 % precision and 79.47 % recall.

Table 3 also shows that the unbalance between
precision and recall is higher for dependencies of
nouns than for dependencies of verbs, and that
both recall and precision are higher for dependen-
cies from verbs. Thus, the system performs better
for verbs than for nouns. This is in part caused
by the fact that more noun predicates than verb
predicates are missed in the predicate identifica-
tion phase. The scores of the the semantic role
labeler with gold standard predicates show lower
differences in F1 between verbs and nouns.

The fact that the semantic role labeler performs
3.16 % labeled F1 better with gold standard syntax
(compared to the system with gold standard syntax
and predicates) confirms that gold standard syntax
provides useful information to the system.

Additionally, the difference in performance be-
tween the semantic role labeler presented to the
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competition and the semantic role labeler with
gold standard predicates (9.01 % labeled F1) sug-
gests that, although the results of the system are
encouraging, there is room for improvement, and
improvement should focus on increasing the recall
scores.

4 Conclusions

In this paper we have presented a system submitted
to the closed challenge of the CoNLL-2008 shared
task on joint parsing of syntactic and semantic de-
pendencies. We have focused on describing the
part of the system that extracts semantic dependen-
cies, a combination of memory-based classifiers.
The system achieves a semantic score of 71,88 la-
beled F1. Results show that the system is con-
siderably affected by the first phase of predicate
identification, that the system is better at extract-
ing the semantic dependencies of verbs than those
of nouns, and that recall is substantially lower than
precision. These facts suggest that, although the
results are encouraging, there is room for improve-
ment.
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Abstract 

We present a puristic approach for com-

bining dependency parsing and semantic 

role labeling. In a first step, a data-driven 

strict incremental deterministic parser is 

used to compute a single syntactic de-

pendency structure using a MEM trained 

on the syntactic part of the CoNLL 2008 

training corpus. In a second step, a cas-

cade of MEMs is used to identify predi-

cates, and, for each found predicate, to 

identify its arguments and their types. All 

the MEMs used here are trained only 

with labeled data from the CoNLL 2008 

corpus. We participated in the closed 

challenge, and obtained a labeled macro 

F1 for WSJ+Brown of 19.93 (20.13 on 

WSJ only, 18.14 on Brown). For the syn-

tactic dependencies we got similar bad 

results (WSJ+Brown=16.25, WSJ= 16.22, 

Brown=16.47), as well as for the seman-

tic dependencies (WSJ+Brown=22.36, 

WSJ=22.86, Brown=17.94). The current 

results of the experiments suggest that 

our risky puristic approach of following a 

strict incremental parsing approach to-

gether with the closed data-driven per-

spective of a joined syntactic and seman-

tic labeling was actually too optimistic 

and eventually too puristic. 

The CoNLL 2008 shared task on joint parsing of 

syntactic and semantic dependencies (cf. Sur-

deanu, 2008) offered to us an opportunity to ini-

tiate, implement and test new ideas on large-

scale data-driven incremental dependency pars-

ing. The topic and papers of the ACL-2004 

workshop “Incremental Parsing: Bringing Engi-
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neering and Cognition Together” (accessible at 

http://aclweb.org/anthology-new/W/W04/#0300) 

present a good recent overview into the field of 

incremental processing from both an engineering 

and cognitive point of view. 

Our particular interest is the exploration and 

development of strict incremental deterministic 

strategies as a means for fast data-driven depend-

ency parsing of large-scale online natural lan-

guage processing. By strict incremental process-

ing we mean, that the parser receives a stream of 

words w1 to wn word by word in left to right or-

der, and that the parser only has information 

about the current word wi, and the previous 

words w1 to wi-1.
1
 By deterministic processing we 

mean that the parser has to decide immediately 

and uniquely whether and how to integrate the 

newly observed word wi with the already con-

structed (partial) dependency structure without 

the possibility of revising its decision at later 

stages. The strategy is data-driven in the sense 

that the parsing decisions are made on basis of a 

statistical language model, which is trained on 

the syntactic part of the CoNLL 2008 training 

corpus. The whole parsing strategy is based on 

Nivre (2007), but modifies it in several ways, see 

sec. 2 for details. 

Note that there are other approaches of incre-

mental deterministic dependency parsing that 

assume that the complete input string of a sen-

tence is already given before parsing starts and 

that this additional right contextual information 

is also used as a feature source for language 

modeling, e.g., Nivre (2007). 

In light of the CoNLL 2008 shared task, this 

actually means that, e.g., part-of-speech tagging 

and lemmatization has already been performed 

                                                 
1
 Note that in a truly strict incremental processing 

regime the input to the NLP system is actually a 

stream of signals where even the sentence segmenta-

tion is not known in advance. Since in our current 

system, the parser receives a sentence as given input, 

we are less strict as we could be. 
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for the complete sentence before incremental 

parsing starts, so that this richer source of infor-

mation is available for defining the feature space. 

Since, important word-based information espe-

cially for a dependency analysis is already 

known for the whole sentence before parsing 

starts, and actually heavily used during parsing, 

one might wonder, what the benefit of such a 

weak incremental parsing approach is compared 

to a non-incremental approach. Since, we 

thought that such an incremental processing per-

spective is a bit too wide (especially when con-

sidering the rich input of the CoNLL 2008 shared 

task), we wanted to explore a strict incremental 

strategy. 

Semantic role labeling is considered as a post-

process that is applied on the output of the syn-

tactic parser. Following Hacioglu (2004), we 

consider the labeling of semantic roles as a clas-

sification problem of dependency relations into 

one of several semantic roles. However, instead 

of post-processing a dependency tree firstly into 

a sequence of relations, as done by Hacioglu 

(2004), we apply a cascade of statistical models 

on the unmodified dependency tree in order to 

identify predicates, and, for each found predicate, 

to identify its arguments and their types. All the 

language models used here are trained only with 

labeled data from the CoNLL 2008 corpus; cf. 

sec. 3 for more details. 

Both, the syntactic parser and the semantic 

classifier are language independent in the sense 

that only information contained in the given 

training corpus is used (e.g., PoS tags, depend-

ency labels, information about direction etc.), but 

no language specific features, e.g., no PropBank 

frames nor any other external language and 

knowledge specific sources. 

The complete system has been designed and 

implemented from scratch after the announce-

ment of the CoNLL 2008 shared task. The main 

goal of our participation was therefore actually 

on being able to create some initial software im-

plementation and baseline experimentations as a 

starting point for further research in the area of 

data-driven incremental deterministic parsing. 

In the rest of this brief report, we will describe 

some more details of the syntactic and semantic 

component in the next two sections, followed by 

a description and discussion of the achieved re-

sults. 

1 Syntactic Parsing 

Our syntactic dependency parser is a variant of 

the incremental non-projective dependency 

parser described in Nivre (2007). Nivres’ parser 

is incremental in the sense, that although the 

complete list of words of a sentence is known, 

construction of the dependency tree is performed 

strictly from left to right. It uses Treebank-

induced classifiers to deterministically predict 

the actions of the parser. The classifiers are 

trained using support vector machines (SVM). A 

further interesting property of the parser is its 

capability to derive (a subset of) non-projective 

structures directly. The core idea here is to ex-

ploit a function permissible(i, j, d) that returns 

true if and only if the dependency links i → j and 

j → i have a degree less than or equal to d given 

the dependency graph built so far. A degree d=0 

gives strictly projective parsing, while setting 

d=∞ gives unrestricted non-projective parsing; cf. 

Nivre (2007) for more details. The goal of this 

function is to restrict the call of a function link(i, 

j) which is a nondeterministic operation that adds 

the arc i → j, the arc j → i, or does nothing at all. 

Thus the smaller the value of d is the fewer links 

can be drawn. 

The function link(i, j) is directed by a trained 

SVM classifier that takes as input the feature rep-

resentation of the dependency tree built so far 

and the (complete) input x = w1, …, wn and out-

puts a decision for choosing exactly one of the 

three possible operations.  

We have modified Nivres algorithm as follows: 

1. Instead of using classifiers learned by 

SVM, we are using classifiers based on 

Maximum Entropy Models (MEMs), cf. 

(Manning and Schütze, 1999).
2
 

2. Instead of using the complete input x, we 

only use the prefix from w1 up to the cur-

rent word wi. In this way, we are able to 

model a stricter incremental processing 

regime. 

3. We are using a subset of feature set de-

scribed in Nivre (2007).
3
 In particular, 

we had to discard all features from 

Nivre’s set that refer to a word right to 

the current word in order to retain our 

                                                 
2
 We are using the opennlp.maxent package available 

via http://maxent.sourceforge.net/. 
3
 We mean here all features that are explicitly de-

scribed in Nivre (2007). He also mentions the use of 

some additional language specific features, but they 

are not further described, and, hence not known to us. 
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strict incremental behavior. Additionally, 

we added the following features: 

a. Has j more children in the current 

dependency graph compared with 

the average number of children of 

element of same POS. 

b. Analogously for node i 

c. Distance between i and j 

Although some results – for example Wang et 

al. (2006) – suggest that SVMs are actually more 

suitable for deterministic parsing strategies than 

MEMs, we used MEMs instead of SVM basi-

cally for practical reasons: 1) we already had 

hands-on experience with MEMs, 2) training 

time was much faster than SVM, and 3) the theo-

retical basis of MEMs should give us enough 

flexibility for testing with different sets of fea-

tures. 

Initial experiments applied on the same cor-

pora as used by Nivre (2007), soon showed that 

our initial prototype is certainly not competitive 

in its current form. For example, our best result 

on the TIGER Treebank of German (Brants et al., 

2002) is 53.6% (labeled accuracy), where Nivre 

reports 85.90%; cf. Volokh (2008) and sec. 4 for 

more details 

Anyway, we decided to use it as a basis for the 

CoNLL 2008 shared task and to combine it with 

a component for semantic role labeling at least to 

get some indication of “what went wrong”. 

2 Semantic Role Labeling 

On the one hand, it is clear that we should expect 

that our current version of the strict incremental 

deterministic parsing regime still returns too er-

roneous dependency analysis. On the other hand, 

we decided to apply semantic role labeling on the 

parser’s output. Hence, the focus was set towards 

a robust strictly data-driven approach. 

Semantic role labeling is modeled as a se-

quence of classifiers that follow the structure of 

predicates, i.e., firstly candidate predicates are 

identified and then the arguments are looked up. 

Predicate and argument identification both 

proceed in two steps: first determine whether a 

word can be a predicate or argument (or not), and 

then, each found predicate (argument) is typed. 

More precisely, semantic role labeling receives 

the output of the syntactic parser and performs 

the following steps in that order: 

1. Classify each word as being a predicate 

or not using a MEM-based classifier. 

2. Assign to each predicate its reading. Cur-

rently, this is done on basis of the fre-

quency readings as determined from the 

corpus (for unknown words, we simply 

assign the reading .01 to the lemma if the 

whole word was classified as a predicate). 

3. For each predicate identified in a sen-

tence, classify each word as argument for 

this predicate or not using a MEM-based 

classifier. 

4. For each argument identified for each 

predicate, assign its semantic role using a 

MEM-based classifier. 

For step 1 the following features are used for 

word wi: 1) word form, 2) word lemma, 3) POS, 

4) dependency type, 5) number of dependent 

elements in subtree of wi, 6) POS of parent, 7) 

dependency type of parent, 8) children or parent 

of word belong to prepositions, and 9) parent is 

predicate. 

For step 3 the same features are used as in step 

1, but 5) (for arguments the number of children is 

not important) and two additional features are 

used: 10) left/right of predicate (arguments are 

often to the right of its predicate), and 11) dis-

tance to predicate (arguments are not far from the 

predicate). Finally, for step 4 the same features 

are used as in step 1, but 5) and 9). 

3 Experiments 

As mentioned above, we started the develop-

ment of the system from scratch with a very 

small team (actually only one programmer). 

Therefore we wanted to focus on certain aspects, 

totally abandoning our claims for achieving de-

cent results for the others. One of our major 

goals was the construction of correct syntactic 

trees and the recognition of the predicate-

argument structure - a subtask which mainly cor-

responds to the unlabeled accuracy. For that rea-

son we reduced the scale of our experiments 

concerning such steps as dependency relation 

labeling, determining the correct reading for the 

predicates or the proper type of the arguments. 

Unfortunately only the labeled accuracy was 

evaluated at this year’s task, which was very 

frustrating in the end. 

3.1 Syntactic Dependencies 

For testing the strict incremental dependency 

parser we used the CoNLL 2008 shared task 

training and development set. Our best syntactic 

score that we could achieve on the development 

data was merely unlabeled attachment score 

(UAL) of 45.31%. However, as mentioned in sec. 

2, we used a set of features proposed by Nivre, 
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which contains 5 features relying on the depend-

ency types. Since we couldn’t develop a good 

working module for this part of the task due to 

the lack of time, we couldn’t exploit these fea-

tures.  

Note that for this experiment and all others re-

ported below, we used the default settings of the 

opennlp MEM trainer. In particular this means 

that 100 iterations were used in all training runs 

and that for all experiments no tuning of parame-

ters and smoothing was done, basically because 

we had no time left to exploit it in a sensible way. 

These parts will surely be revised and improved 

in the future. 

3.2 Semantic Dependencies 

As we describe in the sec. 3 our semantic module 

consists of 4 steps. For the first step we achieve 

the F-score of 76.9%. Whereas the verb predi-

cates are recognized very well (average score for 

every verb category is almost 90%), we do badly 

with the noun categories. Since our semantic 

module depends on the input produced by the 

syntactic parser, and is influenced by its errors, 

we also did a test assuming a 100% correct parse. 

In this scenario we could achieve the F-score of 

79.4%. 

We have completely neglected the second step 

of the semantic task. We didn’t even try to do the 

feature engineering and to train a model for this 

assignment, basically because of time con-

straints. Neither did we try to include some in-

formation about the predicate-argument structure 

in order to do better on this part of the task. The 

simple assignment of the statistically most fre-

quent reading for each predicate reduced the ac-

curacy from 76.9% down to 69.3%. In case of 

perfect syntactic parse the result went down from 

79.4% to 71.5%. 

Unfortunately the evaluation software doesn’t 

provide the differentiation between the unlabeled 

and labeled argument recognition, which corre-

sponds to our third and fourth steps respectively. 

Whereas we put some effort on identifying the 

arguments, we didn’t focus on their classifica-

tion. Therefore the overall best labeled attach-

ment score for our system is 29.38%, whereas 

the unlabeled score is 50.74%. Assuming the 

perfect parse the labeled score is 32.67% and the 

unlabeled score is 66.73%. In our further work 

we will try to reduce this great deviation between 

both results. 

3.3 Runtime performance 

One of the main strong sides of the strict incre-

mental approach is its runtime performance. 

Since we are restricted in our feature selection 

to the already seen space to the left of the current 

word, both the training and the application of our 

strategy are done fast.  

The training of our MEMs for the syntactic 

part requires 62 minutes. The training of the 

models for our semantic components needs 31 

minutes. The test run of our system for the test 

data from the Brown corpus (425 sentences with 

7207 tokens) lasted 1 minute and 18 seconds. 

The application on the WSJ test data (2399 sen-

tences with 57676 tokens) took 20 minutes and 

42 seconds. The experiments have been per-

formed on a computer with one Intel Pentium 

1,86 Ghz processor and 1GB memory. 

4 Results and Discussion 

The results of running our current version on the 

CoNLL 2008 shared task test data were actually 

a knockdown blow. We participated in the closed 

challenge, and obtained for the complete problem 

a labeled macro F1 for WSJ+Brown of 19.93 

(20.13 on WSJ only, 18.14 on Brown). For the 

syntactic dependencies we got similar bad results 

(WSJ+Brown = 16.25, WSJ = 16.22, Brown = 

16.47), as well as for the semantic dependencies 

(WSJ+Brown = 22.36, WSJ = 22.86, Brown = 

17.94).  

We see at least the following two reasons for 

this disastrous result: On the one hand we fo-

cused on the construction of correct syntactic 

trees and the recognition of the predicate-

argument structure which were only parts of the 

task. On the other hand we stuck to our strict in-

cremental approach, which greatly restricted the 

scope of development of our system. 

Whereas the labeling part, which was so far 

considerably neglected, will surely be improved 

in the future, the strict incremental strategy in its 

current form will probably have to be revised. 

4.1 Post-evaluation experiments 

We have already started beginning the im-

provement of our parsing system, and we briefly 

discuss our current findings. On the technical 

level we already found a software bug that at 

least partially might explain the unexpected high 

difference in performance between the results 

obtained for the development set and the test set. 

Correcting this error now yields an UAL of 

53.45% and an LAL of 26.95% on the syntactic 
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part of the Brown test data which is a LAL-

improvement of about 10%. 

On the methodological level we are studying 

the effects of relaxing some of the assumptions 

of our strict incremental parsing strategy. In or-

der to do so, we developed a separate model for 

predicting the unlabeled edges and a separate 

model for labeling them. In both cases we used 

the same features as described in sec. 2, but 

added features that used a right-context in order 

to take into account the PoS-tag of the N-next 

words viz. N=5 for the syntactic parser and N=3 

for the labeling case. Using both models during 

parsing interleaved, we obtained UAL=65.17% 

and LAL=28.47% on the development set.  

We assumed that the low LAL might have 

been caused by a too narrow syntactic context. In 

order to test this assumption, we decoupled the 

prediction of the unlabeled edges and their label-

ing, such that the determination of the edge la-

bels is performed after the complete unlabeled 

dependency tree is computed. Labeling of the 

dependency edges is then simply performed by 

running through the constructed parse trees as-

signing each edge the most probable dependency 

type. This two-phase strategy achieved an LAL 

of 60.44% on the development set, which means 

an improvement of about 43%. Applying the 

two-phase parser on the WSJ test data resulted in 

UAL=65.22% and LAL=62.83%; applying it on 

the Brown test data resulted in UAL=66.50% and 

LAL=61.11%, respectively. 

Of course, these results are far from being op-

timal. Thus, beside testing and improving our 

parser on the technical level, we will run further 

experiments for different context sizes, exploit-

ing different settings of parameters of the classi-

fier and feature values, and eventually testing 

other ML approaches. The focus here will be on 

the development of unlabeled edge models, be-

cause it seems that an improvement here is sub-

stantial for an overall improvement. For exam-

ple, applying the decoupled edge labeling model 

directly on the given unlabeled dependency trees 

of the development set (i.e. we assume an UAL 

of 100%) gave as an LAL of 92.88%. 

Beside this, we will also re-investigate inter-

leaved strategies of unlabeled edge and edge la-

beling prediction as a basis for (mildly-) strict 

incremental parsing. Here, it might be useful to 

relax the strict linear control regime by exploring 

beam search strategies, e.g. along the lines of 

Collins and Roark (2004). 

5 Conclusion 

We have presented a puristic approach for 

joint dependency parsing and semantic role la-

beling. Since, the development of our approach 

has been started from scratch, we didn’t manage 

to deal with all problems. Our focus was on set-

ting up a workable backbone, and then on trying 

to do as much feature engineering as possible. 

Our bad results on the CoNLL 2008 suggest that 

our current strategy was a bit too optimistic and 

risky, and that the strict incremental deterministic 

parsing regime seemed to have failed in its cur-

rent form. We are now in the process of analysis 

of “what went wrong”, and have already indi-

cated some issues in the paper. 
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Abstract

A Maximum Entropy Model based system
for discriminative learning of syntactic and
semantic dependencies submitted to the
CoNLL-2008 shared task (Surdeanu, et al.,
2008) is presented in this paper. The sys-
tem converts the dependency learning task
to classification issues and reconstructs the
dependent relations based on classification
results. Finally F1 scores of 86.69, 69.95
and 78.35 are obtained for syntactic depen-
dencies, semantic dependencies and the
whole system respectively in closed chal-
lenge. For open challenge the correspond-
ing F1 scores are 86.69, 68.99 and 77.84.

1 Introduction

Given sentences and corresponding part-of-speech
of each word, the learning of syntactic and seman-
tic dependency contains two separable goals: (1)
building a dependency tree that defines the syn-
tactic dependency relationships between separated
words; (2) specifying predicates (no matter verbs
or nouns) of the sentences and labeling the seman-
tic dependents for each predicate.

In this paper a discriminative parser is pro-
posed to implement maximum entropy (ME) mod-
els (Berger, et al., 1996) to address the learning
task. The system is divided into two main subsys-
tems: syntactic dependency parsing and semantic
dependency labeling. The former is used to find a
well-formed syntactic dependency tree that occu-
pies all the words in the sentence. If edges are
added between any two words, a full-connected

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

graph is constructed and the dependency tree could
be found using a maximum spanning tree (MST)
algorithm (McDonald, et al., 2005). The latter fo-
cuses on separable predicates whose semantic de-
pendents could be determined using classification
tools, such as ME models 1 etc..

We participated in both closed and open chal-
lenge of the CoNLL-2008 shared task (Surdeanu,
et al., 2008). Results are reported on both develop-
ment and test sets in this paper.

2 System Description

2.1 Syntactic Parsing

The goal of syntactic parsing is to create a la-
beled syntactic dependency parse y for input sen-
tence x including words and their parts of speech
(POS). Inspired by the parsing model that imple-
ments maximum spanning tree (MST) algorithm
to induce the dependency parsing tree (McDonald,
et al., 2005), the system employs the same frame-
work. The incorporated features are defined over
parts of speech of words occurring between and
around a possible head-dependent relation.

Suppose G = (V, E) is a directed graph, where
V is the set of vertices denoting the words in sen-
tence x and E is the set of directed edges between
any two vertices with some scores. The MST al-
gorithm is to find the most probable subgraph of G
that satisfies tree constraints over all vertices. The
score function of the parsing tree y is defined as

s(y) =
∑

(i,j)∈y
s(i, j) (1)

where (i, j) ∈ y indicates an edge in y from word
i to word j and s(i, j) denotes its score. Suppose Y

1http://homepages.inf.ed.ac.uk/s0450736/maxent.html
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wi wj

pi pj

(wi, pi) (wj , pj)
(wi, wj) (pi, pj)
(wi, pj) (wj , pi)
(wi, wj , pi) (wi, wj , pj)
(pi, pj , wi) (pi, pj , wj)
(wi, wj , pi, pj) (pi, pk, pj), i < k < j

(pi, pi+1, pj−1, pj) (pi−1, pi, pj−1, pj)
(pi, pi+1, pj , pj+1) (pi−1, pi, pj , pj+1)

Table 1: Features for syntactic parsing.

is the set of syntactic dependency labels, the score
function of edges is defined as

s(i, j) = maxl∈YPr(l|x, i, j) (2)

ME models are used to calculate the value of
Pr(l|x, i, j), where the features are extracted from
input sentence x. Given i and j as the subscripts
of words in the sentence and word i is the parent
of word j, the features can be illustrated in table
1. wi and pi are denoted as the ith word and the
ith part of speech respectively in the sentence. The
tuples define integrated features, such as (wi, pi)
indicates the feature combining the ith word and
ith part of speech. Besides these features, the dis-
tant between word i and word j in sentence x is
considered as a single feature. The distant is also
combined with features in table 1 to produce com-
plex features.

2.2 Semantic Dependency Labeling

Semantic dependencies are always concerning
with specific predicates. Unlike syntactic depen-
dencies, semantic dependency relationships usu-
ally can not be represented as a tree. Thus, the
method used for semantic dependency labeling
is somewhat different from syntactic dependency
parsing. The work of semantic labeling can be di-
vided into two stages: predicate tagging and de-
pendents recognizing.

2.2.1 Predicate Tagging

According to PropBank (Palmer, et al., 2005)
and NomBank (Meyers, et al., 2004), predicates
usually have several rolesets corresponding to dif-
ferent meanings. For example, the verb abandon
has three rolesets marked as ordinal numbers 01,
02 and 03 as described below.

wi pi

pi−1 pi+1

(pi−1, pi) (pi, pi+1)
(pi−2, pi) (pi, pi+2)
(pi−3, pi) (pi, pi+3)
(pi−1, pi, pi+1) (wi, pi)
(wi, pi−1, pi) (wi, pi, pi+1)
(wi, pi−2, pi) (wi, pi, pi+2)
(wi, pi−3, pi) (wi, pi, pi+3)
(wi, pi−1, pi, pi+1)

Table 2: Features used for predicate tagging.

<frameset>
<predicate lemma=“abandon”>
<roleset id=“abandon.01” name=“leave
behind” vncls=“51.2”>
. . .
</roleset>
<roleset id=“abandon.02”
name=“exchange” vncls=“51.2”>
. . .
</roleset>
<roleset id=“abandon.03”
name=“surrender, give over” vncls=“-
”>
. . .
</roleset>
</predicate>
</frameset>

The goal of this part is to identify the predicates
in the sentences and to determine the roleset for
each of them. It should be cleared that the ordi-
nal numbers are only used to distinguish different
meanings of a predicate. However, if these num-
bers are treated as tags for predicates, some statisti-
cal properties will be obtained as illustrated in Fig-
ure 1. As can be seen, the distribution of the train
data would be quite informative for representing
the distribution of other three data sets. Based on
this idea, a classification framework is introduced
for predicate tagging.

Suppose the tag set is chosen to be T =
{01, 02, ..., 22} according to the horizontal axis of
Figure 1 and 00 is added to indicate that the ex-
amining word is not a predicate. Suppose ti is a
variable indicating the tag of word at position i in
sentences x. ME models are implemented to tag
the predicates.

ti = argmaxt∈ T Pr(t|x, i) (3)
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Figure 1: Distribution of the ordinal numbers of
predicates on different data sets. 01 - 21 are at-
tached with the predicates in the corpus and 22
stands for ‘SU’.

The features for predicate tagging are listed in ta-
ble 2, where the symbols share the same mean-
ing as in table 1. Experiments show that this pure
statistic processing method is effective for predi-
cate tagging.

2.2.2 Dependents Recognizing
This subtask depends deeply on the results of

syntactic parsing and predicate tagging described
earlier in the system. Predicate tagging identifies
central words and syntactic parsing provides syn-
tactic features for its dependents identification and
classification.

Generally speaking, given a specific predicate in
a sentence, only a few of words are associated as its
semantic dependents. By statistical analysis a list
of part of speech tuples that are appearing to be se-
mantic dependency are collected. All other tuples
are filtered out to improve system performance.

Suppose (p, d) is a couple of predicate and one
of its possible dependents, T is the dependency
tree generated by syntactic parsing, L is the set of
semantic dependency labels. The dependents can
be recognized by using a classification model, ME
models are chosen as before.

l(p,d) = argmaxl∈LPr(l|p, d, T ) (4)

Besides the semantic dependency labels, null is in-
cluded as a special tag to indicate that there is no
semantic dependency between p and d. As a result,
dependents identification (binary classification)
and dependents tagging (multi-classification) can

be solved together within one multi-classification
framework.

The selected features are listed below.

1. Predicate Features

• Lemma and POS of predicate, pred-
icate’s parent in syntactic dependency
tree.

• Voice active or passive.
• Syntactic dependency label of edge be-

tween predicate and its parent.
• POS framework POS list of predicate’s

siblings, POS list of predicate’s children.
• Syntactic dependency framework syn-

tactic dependency label list of the edges
between predicate’s parent and its sib-
lings.

• Parent framework syntactic depen-
dency label list of edges connecting to
predicate’s parent.

2. Dependent Features

• Lemma and POS of dependent, depen-
dent’s parent.

• POS framework POS list of depen-
dent’s siblings.

• Number of children of dependent’s par-
ent.

3. In Between Features

• Position of dependent according to
predicate: before or after.

• POS pair of predicate and dependent.
• Family relation between predicate and

dependent: ancestor or descendant.
• Path length between predicate and de-

pendent.
• Path POS POS list of all words appear-

ing on the path from predicate to depen-
dent.

• Path syntactic dependency label list of
dependency label of edges of path be-
tween predicate and dependent.

3 Experiment results

The classification models were trained using all the
training data. The detailed information are shown
in table 3. All experiments ran on 32-bit Intel(R)
Pentium(R) D CPU 3.00GHz processors with 2.0G
memory.
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Feature Number Training Time
Syn. 7,488,533 30h
Prd. 1,484,398 8h
Sem. 3,588,514 12h

Table 3: Details of ME models. Syn. is for syntac-
tic parsing, Prd. is for predicate tagging and Sem.
is for semantic dependents recognizing.

Syntactic Semantic Overall
devel 85.29 69.60 77.49
brown 80.80 59.17 70.01

wsj 87.42 71.27 79.38
brown+wsj 86.69 69.95 78.35

(a) Closed Challenge
Syntactic Semantic Overall

devel 85.29 68.45 76.87
brown 80.80 58.22 69.51

wsj 87.42 70.32 78.87
brown+wsj 86.69 68.99 77.84

(b) Open Challenge

Table 4: Scores for joint learning of syntactic and
semantic dependencies.

3.1 Closed Challenge

The system for closed challenge is designed as a
two-stage parser: syntactic parsing and semantic
dependency labeling as described previously. Ta-
ble 4(a) shows the results on different corpus. As
shown in table 4(a), the scores of semantic depen-
dency labeling are quite low, that are influencing
the overall scores. The reason could be inferred
from the description in section 2.2.2 since seman-
tic dependent labeling inherits the errors from the
output of syntactic parsing and predicate tagging.
Following evaluates each part independently.

Besides the multiple classification model de-
scribed in table 3, a binary classification model
was built based on ME for predicate tagging. The
binary model can’t distinguish different rolesets of
predicate, but can identify which words are predi-
cates in sentences. The precision and recall for bi-
nary model are 90.80 and 88.87 respectively, while
for multiple model, the values are 84.60 and 85.60.

For semantic dependent labeling, experiments
were performed under conditions that the gold syn-
tactic dependency tree and predicates list were
given as input. The semantic scores became 80.09,
77.08 and 82.25 for devel, brown and wsj respec-
tively. This implies that the error of syntactic pars-

ing and predicate tagging could be probably aug-
mented in semantic dependent labeling. In order to
improve the performance of the whole system, the
deep dependence between the two stages should be
broken up in future research.

3.2 Open Challenge
In open challenge, the same models are used for
syntactic parsing and predicate tagging as in closed
challenge and two other models are trained for se-
mantic dependent labeling. Suppose Mmst, Mmalt

and Mchunk are denoted as these three semantic
models, where Mmst is the model used in closed
challenge, Mmalt is trained on the syntactic de-
pendency tree provided by the open corpus with
the same feature set as Mmst, and Mchunk is
trained using features extracted from name entity
and wordnet super senses results provided by the
open corpus.

Considering a possible dependent given a spe-
cific predicate, the feature set used for Mchunk

contains only six elements:

• Whether the dependent is in name entity
chunk: True or False.

• Name entity label of the dependent.

• Whether the dependent is in BBN name entity
chunk: True or False.

• BBN name entity label of the dependent.

• Whether the dependent is in wordnet super
sense chunk: True or False.

• Wordnet super sense label of the dependent.

After implementing these three models on se-
mantic dependents recognizing, the results were
merged to generate the scores described in table
4(b).

The merging strategy is quite simple. Given a
couple of predicate and dependent (p, d), the sys-
tem produces three semantic dependency labels
denoting as lmst, lmalt and lchunk, the result la-
bel is chosen to be most frequent semantic label
among the three.

Comparing the scores of open challenge and
closed challenge, it can be found that the score of
the former is less than the latter, which is quite
strange since more resources were used in open
challenge. To examine the influences of differ-
ent semantic dependents recognizing models, each
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Mmst Mmalt Mchunk

devel 69.60 64.48 41.72
brown 59.17 56.52 34.04

wsj 71.27 66.40 41.83

Table 5: Semantic scores of different models.

model was implemented in the closed challenge
and the results are shown in table 5. Specially,
model Mchunk generated too low scores and gave a
heavy negative influence on the final results. Find-
ing a good way to combine several results requires
further research.

4 Conclusions

This paper have presented a simple discriminative
system submitted to the CoNLL-2008 shared task
to address the learning task of syntactic and se-
mantic dependencies. The system was divided into
syntactic parsing and semantic dependents label-
ing. Maximum spanning tree was used to find
a syntactic dependency tree in the full-connected
graph constructed over the words of a sentence.
Maximum entropy models were implemented to
classify syntactic dependency edges, predicates
and their semantic dependents. A brief analysis
has also been given on the results of both closed
challenge and open challenge.
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Abstract

This paper describes the two algorithms
we developed for the CoNLL 2008 Shared
Task “Joint learning of syntactic and se-
mantic dependencies”. Both algorithms
start parsing the sentence using the same
syntactic parser. The first algorithm
uses machine learning methods to identify
the semantic dependencies in four stages:
identification and labeling of predicates,
identification and labeling of arguments.
The second algorithm uses a generative
probabilistic model, choosing the seman-
tic dependencies that maximize the proba-
bility with respect to the model. A hybrid
algorithm combining the best stages of
the two algorithms attains 86.62% labeled
syntactic attachment accuracy, 73.24% la-
beled semantic dependency F1 and 79.93%
labeled macro F1 score for the combined
WSJ and Brown test sets1.

1 Introduction

In this paper we describe the system we developed
for the CoNLL 2008 Shared Task (Surdeanu et al.,
2008). Section 2 describes our approach for iden-
tifying syntactic dependencies. For semantic role
labeling (SRL), we pursued two independent ap-
proaches. Section 3 describes our first approach,
where we treated predicate identification and la-
beling, and argument identification and labeling as

c©2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1These numbers are slightly higher than the official results
due to a small bug in our submission.

four separate machine learning problems. The fi-
nal program consists of four stages, each stage tak-
ing the answers from the previous stage as given
and performing its own identification or labeling
task based on a model generated from the train-
ing set. Section 4 describes our second approach
where we used a generative model based on the
joint distribution of the predicate, the arguments,
their labels and the syntactic dependencies con-
necting them. Section 5 summarizes our results
and suggests possible improvements.

2 Syntactic dependencies

We used a non-projective dependency parser based
on spanning tree algorithms. The parameters were
determined based on the experimental results of
the English task in (McDonald et al., 2005), i.e. we
used projective parsing and a first order feature set
during training. Due to the new representation of
hyphenated words in both training and testing data
of our shared task and the absence of the gold part
of speech (GPOS) column in the test data, the for-
mat of the CoNLL08 shared task is slightly differ-
ent from the format of the CoNLL05 shared task,
which is supported by the McDonald’s parser. We
reformatted the data accordingly. The resulting la-
beled attachment score on the test set is 87.39% for
WSJ and 80.46% for Brown.

3 The 4-stage discriminative approach

Our first approach to SRL consists of four distinct
stages: (1) predicate identification, (2) predicate
labeling, (3) argument identification, and (4) argu-
ment labeling.

A discriminative machine learning algorithm is
trained for each stage using the gold input and out-
put values from the training set. The following sec-
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tions describe the machine learning algorithm, the
nature of its input/output, and the feature selection
process for each stage. The performance of each
stage is compared to a most frequent class base-
line and analyzed separately for the two test sets
and for nouns and verbs. In addition we look at the
performance given the input from the gold data vs.
the input from the previous stage.

3.1 Predicate identification

The task of this stage is to determine whether a
given word is a nominal or a verb predicate using
the dependency-parsed input. As potential predi-
cates we only consider words that appear as a pred-
icate in the training data or have a corresponding
PropBank or NomBank XML file. The method
constructs feature vectors for each occurrence of
a target word in the training and test data. It as-
signs class labels to the target words in the training
data depending on whether a target word is a pred-
icate or not, and finally classifies the test data. We
experimented with combinations of the following
features for each word in a2k + 1 word window
around the target: (1)POS(W): the part of speech
of the word, (2)DEP(W, HEAD(W)): the syntac-
tic dependency of the word, (3)LEMMA (W): the
lemma of the word, (4)POS(HEAD(W)): the part
of speech of the syntactic head.

We empirically selected the combination that
gives the highest accuracy in terms of the precision
and recall scores on the development data. The
method achieved its highest score when we used
features 1-3 for the target word and features 1-2 for
the neighbors in a [-3 +3] word window. TiMBL
(Daelemans et al., 2004) was used as the learning
algorithm.

Table 1 (4-stage, All1) shows the results of our
learning method on the WSJ and Brown test data.
The noun and verb results are given separately
(Verb1, Noun1). To distinguish the mistakes com-
ing from parsing we also give the results of our
method after the gold parse (4-stage-gold). Our re-
sults are significantly above the most frequent class
baseline which gives 72.3% on WSJ and 65.3% on
Brown.

3.2 Predicate labeling

The task of the second stage is deciding the correct
frame for a word given that the word is a predicate.
The input of the stage is 11-column data, where the
columns contain part of speech, lemma and syn-
tactic dependency for each word. The first stage’s

decision for the frame is indicated by a string in
the predicate column. The output of the stage is
simply the replacement of that string with the cho-
sen frame of the word. The chosen frame of the
word may be word.X, where X is a valid number
in PropBank or NomBank.

The statistics of the training data show that by
picking the most frequent frame, the system can
pick the correct frame in a large percent of the
cases. Thus we decided to use the most frequent
frame baseline for this stage. If the word is never
seen in the training, first frame of the word is
picked as default.

In the test phase, the results are as the follow-
ing; in the Brown data, assuming that the stage 1
is gold, the score is 80.8%, noting that 11% of the
predicates are not seen in the training phase. In
WSJ, the score based on gold input is 88.3%, and
only 5% of the predicates are not seen in the train-
ing phase. Table 1 gives the full results for Stage 2
(4-stage, Verb2, Noun2, All2).

3.3 Argument identification

The input data at this stage contains the syntac-
tic dependencies, predicates and their frames. We
look at the whole sentence for each predicate and
decide whether each word should be an argument
of that predicate or not. We mark the words we
choose as arguments indicating which predicate
they belong to and leave the labeling of the ar-
gument type to the next stage. Thus, for each
predicate-word pair we have a yes/no decision to
make.

As input to the learning algorithm we experi-
mented with representations of the syntactic de-
pendency chain between the predicate and the
argument at various levels of granularity. We
identified the syntactic dependency chain between
the predicate and each potential argument using
breadth-first-search on the dependency tree. We
tried to represent the chain using various subsets
of the following elements: the argument lemma
and part-of-speech, the predicate frame and part-
of-speech, the parts-of-speech and syntactic de-
pendencies of the intermediate words linking the
argument to the predicate.

The syntactic dependencies leading from the ar-
gument to the predicate can be in the head-modifier
or the modifier-head direction. We marked the di-
rection associated with each dependency relation
in the chain description. We also experimented

224



with using fine-grained and coarse-grained parts of
speech. The coarse-grained part of speech consists
of the first two characters of the Penn Treebank
part of speech given in the training set.

We used a simple learning algorithm: choose
the answer that is correct for the majority of the
instances with the same chain description from
the training set. Not having enough detail in the
chain description leaves crucial information out
that would help with the decision process, whereas
having too much detail results in bad classifica-
tions due to sparse data. In the end, neither the ar-
gument lemma, nor the predicate frame improved
the performance. The best results were achieved
with a chain description including the coarse parts
of speech and syntactic dependencies of each word
leading from the argument to the predicate. The
results are summarized in Table 1 (4-stage, Verb3,
Noun3, All3).

3.4 Argument labeling

The task of this stage is choosing the correct argu-
ment tag for a modifier given that it is modifying
a particular predicate. Input data format has ad-
ditional columns indicating which words are argu-
ments for which predicates. There are 54 possible
values for a labeled argument. As a baseline we
take the most frequent argument label in the train-
ing data (All1) which gives 37.8% on the WSJ test
set and 33.8% on the Brown test set.

The features to determine the correct label of an
argument are either lexical or syntactic. In a few
cases, they are combined. The following list gives
the set we have used. Link is the type of the syntac-
tic dependency. Direction is left or right, depend-
ing the location of the head and the modifier in the
sentence. LastLink is the type of the dependency
at the end of the dependency chain and firstLink
is type of the dependency at the beginning of the
dependency chain.

Feature1 : modifierStem + headStem
Feature2 : modifierStem + coarsePosModifier +

headStem + coarsePosHead + direction
Feature3 : coarsePosModifier + headPos +

firstLink + lastLink + direction
Feature4: modifierStem + coarsePosModifier
The training phase includes building simple his-

tograms based on four features. Feature1 and Fea-
ture2 are sparser than the other two features and
are better features as they include lexical informa-
tion. Last two features are less sparse, covering

most of the development data, i.e. their histograms
give non-zero values in the development phase. In
order to match all the instances in the development
and use the semantic information, a cascade of the
features is implemented similar to the one done by
Gildea and Jurafsky(2002), although no weighting
and a kind of back-off smoothing is used. First,
a match is searched in the histogram of the first
feature, if not found it is searched in the following
histogram. After a match, the most frequent argu-
ment with that match is returned. Table 1 gives the
performance (4-stage, Verb4, Noun4, All4).

4 The generative approach

One problem with the four-stage approach is that
the later stages provide no feedback to the earlier
ones. Thus, a frame chosen because of its high
prior probability will not get corrected when we
fail to find appropriate arguments for it. A gen-
erative model, on the other hand, does not suffer
from this problem. The probability of the whole
assignment, including predicates, arguments, and
their labels, is evaluated together and the highest
probability combination is chosen.

4.1 The generative model

Figure 1: The graphical model depicting the con-
ditional independence assumptions.

Our generative model specifies the distribution
of the following random variables:P is the lemma
(stem+pos) of a candidate predicate.F is the
frame chosen for the predicate (could be null).Ai
is the argument label of wordi with respect to a
given predicate (could be null).Wi is the lemma
(stem+pos) of wordi. Li is the syntactic depen-
dency chain leading from wordi to the given pred-
icate (similar to Section 3.3).

We consider each word in the sentence as a can-
didate predicate and use the joint distribution of the
above variables to find the maximum probabilityF
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WSJ Verb1 Verb2 Verb3 Verb4 Noun1 Noun2 Noun3 Noun4 All1 All2 All3 All4
4-stage 97.1 85.5 85.7 71.7 84.6 78.4 61.1 49.4 90.6 81.8 76.6 63.5
generative 96.1 88.4 83.4 74.0 82.8 79.5 69.8 63.2 89.0 83.6 77.4 69.2
4-stage-gold 97.4 88.3 95.2 82.7 85.2 92.7 70.5 81.9 91.1 90.5 86.0 82.4
generative-gold 96.3 92.6 91.1 88.0 83.4 95.5 80.7 86.9 89.4 94.0 86.7 87.5
hybrid 97.1 89.3 85.7 74.7 84.6 80.9 70.9 64.0 90.6 84.9 79.5 70.2

Brown Verb1 Verb2 Verb3 Verb4 Noun1 Noun2 Noun3 Noun4 All1 All2 All3 All4
4-stage 93.0 74.5 78.9 59.0 74.4 58.6 52.3 38.8 86.0 68.6 72.8 54.3
generative 91.4 71.7 76.1 60.0 70.8 59.3 54.0 45.3 83.1 66.6 69.6 55.7
4-stage-gold 93.0 80.8 93.7 73.2 75.7 80.3 70.1 70.5 86.5 80.8 88.2 72.4
generative-gold 91.6 80.6 85.8 78.05 71.2 85.9 70.5 75.1 83.5 82.6 81.8 77.1
hybrid 93.0 73.3 78.9 60.4 74.4 62.9 57.6 47.5 86.0 69.3 73.4 57.0

Table 1: The F1 scores for different datasets, models, stages, and predicate parts of speech. The “Verb”
in the column heading indicates verbal predicates, “Noun” indicates nominal predicates, “All” indicates
all predicates. The numbers 1-4 in column headings indicate the 4 stages: (1) predicate identification, (2)
predicate labeling, (3) argument identification, (4) argument labeling. The gold results assume perfect
output from the previous stages. The highest number in each column is marked with boldface.

andAi labels givenP , Wi, andLi. The graphical
model in Figure 1 specifies the conditional inde-
pendence assumptions we make. Equivalently, we
take the following to be proportional to the joint
probability of a particular assignment:

Pr(F |P )
∏
i

Pr(Ai|F ) Pr(Wi|FAi) Pr(Li|FAi)

4.2 Parameter estimation

To estimate the parameters of the generative model
we used the following methodology:

For Pr(F |P ) we use the maximum likelihood
estimate from the training data. As a consequence,
frames that were never observed in the training
data have zero probability. One exception is lem-
mas which have not been observed in the training
data, for which each frame is considered equally
likely.

For Pr(Ai|F ) we also use the maximum like-
lihood estimate and normalize it using sentence
length. For a given argument label we find the
expected number of words in a sentence with that
label for frameF . We divide this expected num-
ber with the length of the given sentence to find
Pr(Ai|F ) for a single word. Any leftover prob-
ability is given to the null label. If the sentence
length is shorter than the expected number of ar-
guments, all probabilities are scaled down propor-
tionally.

For the remaining two termsPr(Li|F,Ai) and
Pr(Wi|F,Ai) using the maximum likelihood esti-
mate is not effective because of data sparseness.
The arguments in the million word training data
contain about 16,000 unique words and 25,000

unique dependency chains. To handle the sparse-
ness problem we smoothed these two estimates us-
ing the part-of-speech argument distribution, i.e.
Pr(Li|POS, Ai) and Pr(Wi|POS, Ai), wherePOS

represents the coarse part of speech of the predi-
cate.

5 Results and Analysis

Table 1 gives the F1 scores for the two models
(4-stage and generative), presented separately for
noun and verb predicates and the four stages of
predicate identification/labeling, argument identi-
fication/labeling. In order to isolate the perfor-
mance of each stage we also give their scores with
gold input. The rest of this section analyzes these
results and suggests possible improvements.

A hybrid algorithm: A comparison of the two
algorithms show that the 4-stage approach is su-
perior in predicate and verbal-argument identifica-
tion and the generative algorithm is superior in the
labeling of predicates and arguments and nominal-
argument identification. This suggests a hybrid al-
gorithm where we restrict the generative model to
take the answers for the better stages from the 4-
stage algorithm (Noun1, Verb1, Verb3) as given.
Tables 1 and 2 present the results for the hybrid
algorithm compared to the 4-stage and generative
models.

Parsing performance: In order to see the effect
of syntactic parsing performance, we ran the hy-
brid algorithm starting with the gold parse. The
labeled semantic score went up to 78.84 for WSJ
and 67.20 for Brown, showing that better parsing
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Data/algorithm Unlabeled Labeled
WSJ 4-stage 81.15 69.44
WSJ generative 81.01 73.66
WSJ hybrid 82.94 74.74
Brown 4-stage 76.91 58.76
Brown generative 73.76 59.05
Brown hybrid 77.22 60.80

Table 2: Semantic scores for the 4-stage, genera-
tive, and hybrid algorithms

can add about 4-6% to the overall performance.

Syntactic vs lexical features: Our algorithms
use two broad classes of features: information
from the dependency parse provides syntactic ev-
idence, and the word pairs themselves provide se-
mantic evidence for a possible relation. To iden-
tify their relative contributions, we experimented
with two modifications of the generative algo-
rithm: gen-l does not use thePr(Wi|FAi) term
andgen-wdoes not use thePr(Li|FAi) term.gen-
l, using only syntactic information and the pred-
icate, gets a labeled semantic score of 70.97 for
WSJ and 58.83 for Brown, a relatively small de-
crease. In contrastgen-w, using only lexical infor-
mation gets 43.06 for WSJ and 33.17 for Brown
causing almost a 40% decrease in performance.

On the other hand, we find that the lexical fea-
tures are essential for certain tasks. In labeling the
arguments of nominal predicates, finding an exact
match for the lexical pair guarantees a 90% accu-
racy. If there is no exact match, the 4-stage algo-
rithm falls back on a syntactic match, which only
gives a 75% accuracy.

Future work: The hybrid algorithm shows the
strengths and weaknesses of our two approaches.
The generative algorithm allows feedback from the
later stages to the earlier stages and the 4-stage ma-
chine learning approach allows the use of better
features. One way to improve the system could be
by adding feedback to the 4-stage algorithm (later
stages can veto input coming from previous ones),
or adding more features to the generative model
(e.g. information about neighbor words when pre-
dictingF ). More importantly, there is no feedback
between the syntactic parser and the semantic role
labeling in our systems. Treating both problems
under the same framework may lead to better re-
sults.

Another property of both models is the indepen-

dence of the argument label assignments from each
other. Even though we try to control the number of
arguments of a particular type by adjusting the pa-
rameters, there are cases when we end up with no
assignments for a mandatory argument or multiple
assignments where only one is allowed. A more
strict enforcement of valence constraints needs to
be studied.

The use of smoothing in the generative model
was critical, it added about 20% to our final F1
score. This raises the question of finding more
effective smoothing techniques. In particular, the
jump from specific frames to coarse parts of speech
is probably not optimal. There may be interme-
diate groups of noun and verb predicates which
share similar semantic or syntactic argument dis-
tributions. Identifying and using such groups will
be considered in future work.
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Abstract

This paper describes our system for syn-
tactic and semantic dependency parsing
to participate the shared task of CoNLL-
2008. We use a pipeline approach, in
which syntactic dependency parsing, word
sense disambiguation, and semantic role
labeling are performed separately: Syn-
tactic dependency parsing is performed
by a tournament model with a support
vector machine; word sense disambigua-
tion is performed by a nearest neighbour
method in a compressed feature space by
probabilistic latent semantic indexing; and
semantic role labeling is performed by
a an online passive-aggressive algorithm.
The submitted result was 79.10 macro-
average F1 for the joint task, 87.18% syn-
tactic dependencies LAS, and 70.84 se-
mantic dependencies F1. After the dead-
line, we constructed the other configura-
tion, which achieved 80.89 F1 for the joint
task, and 74.53 semantic dependencies F1.
The result shows that the configuration of
pipeline is a crucial issue in the task.

1 Introduction

This paper presents the description of our system
in CoNLL-2008 shared task. We split the shared
task into five sub-problems – syntactic dependency
parsing, syntactic dependency label classification,
predicate identification, word sense disambigua-
tion, and semantic role labeling. The overview
of our system is illustrated in Figure 1. Our de-

c⃝ 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

Figure 1: Overview of the System

pendency parsing module is based on a tourna-
ment model (Iida et al., 2003), in which a depen-
dency attachment is estimated in step-ladder tour-
nament matches. The relative preference of the at-
tachment is modeled by one-on-one match in the
tournament. Iwatate et al. (Iwatate et al., 2008)
initially proposed the method for Japanese depen-
dency parsing, and we applied it to other languages
by relaxing some constraints (Section 2.1). Depen-
dency label classification is performed by a linear-
chain sequential labeling on the dependency sib-
lings like McDonald’s schemata (McDonald et al.,
2006). We use an online passive-aggressive al-
gorithm (Crammer et al., 2006) for linear-chain
sequential labeling (Section 2.2). We also use
the other linear-chain sequential labeling method
to annotate whether each word is a predicate or
not (Section 2.3). If an identified predicate has
more than one sense, a nearest neighbour classifier
disambiguates the word sense candidates (Section
2.4). We use an online passive-aggressive algo-
rithm again for the semantic role labeling (Section
2.5). The machine learning algorithms used in sep-
arated modules are diverse due to role sharing.1

1Unlabeled dependency parsing was done by Iwatate, de-
pendency label classification and semantic role labeling was
done by Watanabe, predicate identification and word sense
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We attempt to construct a framework in which
each module passes k-best solutions and the last
semantic role labeling module performs rerank-
ing of the k-best solutions using the overall infor-
mation. Unfortunately, we couldn’t complete the
framework before the deadline of the test run. Our
method is not a “joint learning” approach but a
pipeline approach.

2 Methods

2.1 Unlabeled Dependency Parsing

The detailed description of the tournament model-
based Japanese dependency parsing is found in
(Iwatate et al., 2008). The original Iwatate’s pars-
ing algorithm was for Japanese, which is for a
strictly head-final language. We adapt the algo-
rithm to English in this shared task. The tour-
nament model chooses the most likely candidate
head of each of the focused words in a step-
ladder tournament. For a given word, the al-
gorithm repeats to compare two candidate heads
and finds the most plausible head in the series
of a tournament. On each comparison, the win-
ner is chosen by an SVM binary classifier with
a quadratic polynomial kernel2. The model uses
different algorithms for training example gener-
ation and parsing. Figures 2 and 3 show train-
ing example generation and parsing algorithm, re-
spectively. Time complexity of both algorithms is
O(n2) for the number of words in an input sen-
tence. Below, we present the features for SVM

// N: # of tokens in input sentence
// true_head[j]: token j’s head at
// training data
// gen(j,i1,i2,LEFT): generate an example
// where token j is dependent of i1
// gen(j,i1,i2,RIGHT): generate an example
// where token j is dependent of i2
// Token 0 is the virtual ROOT.

for j = 1 to N-1 do
h = true_head[j];
for i = 0 to h-1 do

if i!=j then gen(j,i,h,RIGHT);

for i = h+1 to N do
if i!=j then gen(j,h,i,LEFT);

end-for;

Figure 2: Pseudo Code of Training Example Gen-
eration

disambiguation was done by Asahara, and all tasks were su-
pervised by Matsumoto.

2We use TinySVM as an SVM classifier. chasen.org/
∼taku/software/TinySVM/

// N: # of tokens in input sentence
// head[]: (analyzed-) head of tokens
// classify(j,i1,i2): ask SVM
// which candidate (i1 or i2) is
// more likely for head of j.
// return LEFT if i1 wins.
// return RIGHT if i2 wins.
// cands.push_back(k): add token index k
// to the end of cands.
// cands.erase(i): remove i-th element
// from cands.

for j = 1 to N do
cands = [];
for i = 0 to N do

if i!=j then cands.push_back(i);
end-for;

while cands.size() > 1 do
if classify(j,cands[0],

cands[1]) = LEFT then
cands.erase(1);

else
cands.erase(0);

end-if;
end-while;

head[j] = cands[0];
end-for;

Figure 3: Pseudo Code of Parsing Algorithm

in our tournament model. The FORM, LEMMA,
GPOS(for training), PPOS(for testing, instead of
GPOS), SPLIT FORM, SPLIT LEMMA, PPOSS
in the following tokens were used as the features:

• Dependent, candidate1, candidate2

• Immediately-adjacent tokens of dependent, candidate1,
candidate2, respectively

• All tokens between dependent-candidate1, dependent-
candidate2, candidate1-candidate2, respectively

We also used the distance feature: distance (1 or
2-5 or 6+ tokens) between dependent-candidate1,
dependent-candidate2, and candidate1-candidate2.
Features corresponding to the candidates, includ-
ing the distance feature, have a prefix that indicates
its side: “L-”(the candidate appears on left-hand-
side of the dependent) or “R-”(appears on right-
hand-side of the dependent). Training an SVM
model with all examples is time-consuming, and
split the examples by the dependent GPOS for
training (PPOS for testing, instead of GPOS3) to
run SVM training in parallel. Since the number of
examples with the dependent PPOS:IN, NN, NNP

3We cannot use GPOS for testing due to the shared task
regulation.
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is still large, we used only first 1.5 million exam-
ples for the dependent GPOS. Note that, the algo-
rithm does not check the well-formedness of de-
pendency trees 4.

2.2 Dependency Label Classification

This phase labels a dependency relation label to
each word in a parse tree produced in the preced-
ing phase. (McDonald et al., 2006) suggests that
edges of head xi and its dependents xj1, ..., xjM

are highly correlated, and capturing these corre-
lation improves classification accuracy. In their
approach, edges of a head and its dependents
ei,j1, ..., ei,jM are classified sequentially, and then
Viterbi algorithm is performed to find the highest
scoring label sequence. We take a similar approach
with some simplification. In our system, each edge
is classified deterministically, and the previous de-
cision is used as a feature for the subsequent clas-
sification.

We use an online passive aggressive algorithm
(Crammer et al., 2006) 5 for dependency label clas-
sification since it converges fast, gives good per-
formance and can be implemented easily. The fea-
tures used in this phase are primarily similar to that
of (McDonald et al., 2006).

Word features: SPLIT LEMMA, PPOS, affix (lengths 2
and 3) of the head and the dependent.

Position: Position relation between the head and the depen-
dent (Is the head anterior to dependent?). Is the word
top of the sentence? Is the word last of the sentence?

Context features: SPLIT LEMMA, PPOS, affix (lengths 2
and 3) of the nearest left/right word. SPLIT LEMMA
and PPOS bigram (ww, wp, pw, pp) of the head and the
dependent (window size 5).

Sibling features: SPLIT LEMMA, PPOS, affix (lengths 2
and 3) of the dependent’s nearest left and right siblings
in the dependency tree.

Other features: The number of dependent’s children.

Whether the dependent and the dependent’s grand

parent SPLIT LEMMA/PPOS are the same. The

previous classification result (previous label).

2.3 Predicate Identification

This phase solves which word can be a predi-
cate. In the predicate spotting, the linear-chain

4We tried to make a k-best cascaded model among the
modules. The latter module can check the well-formedness
of the tree. The current implementation skips this well-
formedness checking.

5We use PA algorithm among PA, PA-I and PA-II in
(Crammer et al., 2006).

CRF (Lafferty et al., 2001) annotates whether the
word is a predicate or not. The FORM, LEMMA
(itself, and whether the LEMMA is registered in
the PropBank/NomBank frames), SPLIT FORM,
SPLIT LEMMA, PPOSS within 5 token window
size are used as the features. We also use bigram
features within 3 token window size and trigram
features within 5 token window size for FORM,
LEMMA, SPLIT FORM, SPLIT LEMMA, and
PPOSS. The main reason why we use a sequence
labeling method for predicate identification was
to relax the effect of the tagging error of PPOS
and PPOSS. However, we will show later that this
module aggravates the total performance.

2.4 Word Sense Disambiguation

For the word sense disambiguation, we use 1-
nearest neighbour method in a compressed fea-
ture space by probabilistic latent semantic index-
ing (PLSI). We trained the word sense disambigua-
tion model from the example sentences in the train-
ing/development data and PropBank/NomBank
frames. The metric in the nearest neighbour
method is based on the occurrence of LEMMA
in the example sentences. However, the exam-
ples in the PropBank/NomBank do not contain the
lemma information. To lemmatize the words in
the PropBank/NomBank, we compose a lemma-
tizer from the FORM-LEMMA table in the train-
ing and development.6 Since the metric space
is very sparse, PLSI (Hofmann, 1999) is used to
reduce the metric space dimensions. We used
KL-divergence between two examples of P (di|zk)
of P (di, wj) =

∑
k P (di|zk)P (wj |zk)P (zk) as

hemi-metric for the nearest neighbour method7,
in which di ∈ D is an example sentence in the
training/devel/test data and PropBank/NomBank
frames; wj ∈ W is LEMMA; and zk ∈ Z is a
latent class. We use |Z| = 100, which gave the
best performance in the development data. Note,
we transductively used the test data for the PLSI
modeling within the test run period.

2.5 Semantic Role Labeling

While semantic role labeling task is generally per-
formed by two phases: argument identification and
argument classification, we did not divide the task

6We are not violating the closed track regulation to build
the lemmatizer. If a word in the PropBank/NomBank is not in
the training/development data, we give up lemmatization.

7We use DKL =
∑

k
P (dinput data|zk)log

P (dinput data|zk)

P (d1-nearest data|zk)

as hemi-metric. It is a non-commutative measure.
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into the two phases. That is, argument candidates
are directly assigned a particular semantic role la-
bel. We did not employ any candidate filtering pro-
cedure, so argument candidates consist of words in
any predicate-word pair. The argument candidates
that have no roles are assigned “NONE” label. For
the reason that described in Section 2.2 (fast con-
vergence and good performance), we use an on-
line passive aggressive algorithm for learning the
semantic role classifiers.

Useful features for argument classification of
verb and noun predicates are different. For exam-
ple, voice (active or passive) is essential for verb
predicate’s argument classification. On the other
hand, presence of a genitive word is useful for
noun predicate’s argument classification. For this
reason, we created two models: argument classifier
for verb predicates and that for noun predicates.

Semantic frames are useful information for se-
mantic role classification. Generally, obligatory
arguments not included in semantic frames do not
appear in actual texts. For this reason, we use
PropBank/NomBank semantic frames for seman-
tic role pruning. Suppose semantic roles in the se-
mantic frame are Fi = {A0, A1, A2, A3}. Since
obligatory arguments are {A0...AA}, the remain-
ing arguments {A4, A5, AA} are removed from
label candidates.

For verb predicates, the features used in our sys-
tem are based on (Hacioglu, 2004). We also em-
ployed some other features proposed in (Gildea
and Jurafsky, 2002; Pradhan et al., 2004b). For
noun predicates, the features are primarily based
on (Pradhan et al., 2004a). The features that we
defined for semantic role labeling are as follows:

Word features: SPLIT LEMMA and PPOS of the predicate,
dependent and dependent’s head, and its conjunctions.

Dependency label: The dependency label between the argu-
ment candidate and the its head.

Family: The position of the argument candidate with respect
to the predicate position over the dependency tree (e.g.,
child, sibling).

Position: The position of the head of the dependency relation
with respect to the predicate position in the sentence.

Pattern: The left-to-right chain of the PPOS/dependency la-
bels of the predicate’s children.

Context features: PPOS of the nearest left/right word.

Path features: SPLIT LEMMA, PPOS and dependency la-
bel paths between the predicate and the argument can-
didate, and its path bi-gram.

Distance: The number of paths between the predicate and
the argument candidate.

Voice: Voice of the predicate (active or passive) and voice-
position conjunction (for verb predicates).

Is predicate plural: Whether the predicate is singular or
plural (for noun predicates).

Genitives between the predicate and the argument: Is

there a genitive word between the predicate and the

argument? (for noun predicates)

3 Results

Table 1 shows the result of our system. The pro-
posed method was effective in dependency pars-
ing (rank 3rd), but was not good in semantic role
labeling (rank 9th). One reason of the result of
semantic role labeling could be usages of Prop-
Bank/NomBank frames. We did not achieve the
maximum use of the resources, hence the design of
features and the choice of learning algorithm may
not be optimal.

Figure 4: Overview of the Modified System

The other reason is the design of the pipeline.
We changed the design of the pipeline after the
test run. The overview of the modified system
is illustrated in Figure 4. After the syntactic de-
pendency parsing, we limited the predicate can-
didates as verbs and nouns by PPOSS, and fil-
tered the argument candidates by Xue’s method
(Xue and Palmer, 2004). Next, the candidate pair
of predicate-argument was classified by an online
passive-aggressive algorithm as shown in Section
2.5. Finally, the word sense of the predicate is de-
termined by the module in Section 2.4. The new
result is scores with ∗ in Table 1. The result means
that the first design was not the best for the task.
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Problem All WSJ Brown Rank
Complete Problem 79.10 (80.89∗) 80.30 (82.06∗) 69.29 (71.32∗) 9th
Semantic Dependency 70.84 (74.53∗) 72.37 (76.01∗) 58.21 (62.41∗) 9th

Semantic Role Labeling 67.92 (72.31∗) 69.31 (73.62∗) 56.42 (61.64∗) -
Predicate Identification & Word Sense Disambiguation 77.20 (79.17∗) 79.02 (80.99∗) 62.10 (64.03∗) -

Syntactic Dependency (Labeled) 87.18 88.06 80.17 3rd
Syntactic Label Accuracy 91.63 92.31 86.26 -
Unlabeled Syntactic Dependency Unlabeled 90.20 90.73 85.94 -

The scores with ∗ mark are our post-evaluation results.

Table 1: The Results – Closed Challenge
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Abstract

In this paper, we describe a syntactic and
semantic dependency parsing system sub-
mitted to the shared task of CoNLL 2008.
The proposed system consists of five mod-
ules: syntactic dependency parser, predi-
cate identifier, local semantic role labeler,
global role sequence candidate generator,
and role sequence selector. The syntac-
tic dependency parser is based on Malt
Parser and the sequence candidate gen-
erator is based on CKY style algorithm.
The remaining three modules are imple-
mented by using maximum entropy classi-
fiers. The proposed system achieves 76.90
of labeled F1 for the overall task, 84.82 of
labeled attachment, and 68.71 of labeled
F1 on the WSJ+Brown test set.

1 Introduction

In the framework of the CoNLL08 shared task
(Surdeanu et al., 2008), a system takes POS tagged
sentences as input and produces sentences parsed
for syntactic and semantic dependencies as output.
A syntactic dependency is represented by an ID
of head word and a dependency relation between
the head word and its modifier in a sentence. A
Semantic dependency is represented by predicate
rolesets and semantic arguments for each predi-
cate.

The task combines two sub-tasks: syntactic
dependency parsing and semantic role labeling.
Among the sub-tasks, we mainly focus on the se-
mantic role labeling task. Compared to previous

c© 2008. Licensed under theCreative Commons
Attribution-Noncommercial-Share Alike 3.0 Unportedli-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

CoNLL 2004 and 2005 shared tasks (Carreras and
Màrquez, 2004; Carreras and Màrquez, 2005) and
other semantic role labeling research, major dif-
ferences of our semantic role labeling task are 1)
considering nominal predicates and 2) identify-
ing roleset of predicates. Based on our observa-
tion that verbal predicate and nominal predicate
have have different characteristics, we decide to
build diffent classification modeles for each pred-
icate types. The modeles use same features but,
their statistical parameters are different. In this
paper, maximum entropy1 is used as the classifi-
cation model, but any other classification models
such as Naive Bayse, SVM, etc. also can be used.
To identify roleset, we investigate a roleset match
scoring method which evaluate how likely a roleset
is matched with the given predicate.

2 System Description

The proposed system sequentially performs syn-
tactic dependency parsing, predicate identification,
local semantic role classification, global sequence
generation, and roleset information based selec-
tion.

2.1 Syntactic Dependency Parsing

In the proposed system, Malt Parser (Nivre et
al., 2007) is adopted as the syntactic dependency
parser. Although the training and test set of
CoNLL08 use non-projective dependency gram-
mar, we decide to use projective parsing algorithm,
Nivre arc-standard, and projective/non-
projective conversion functions that Malt Parser
provides. The reason is that non-projective parsing
shows worse performance than projective parsing
with conversion in our preliminary experiment.

1We use Zhang Le’s MaxEnt toolkit, http://homepages.
inf.ed.ac.uk/s0450736/maxenttoolkit.html
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We projectize the non-projective training sen-
tences in the training set to generate projective sen-
tences. And then, the parser is trained with the
transformed sentences. Finally, the parsing result
is converted into non-projective structure by using
a function of Malt Parser.

2.2 Predicate Identification

Unlike previous semantic role labeling task (Car-
reras and Màrquez, 2004; Carreras and Màrquez,
2005), predicates of sentences are not provided
with input in the CoNLL08. It means that a sys-
tem needs to identify which words in a sentence
are predicates.

We limit predicate candidates to the words that
exist in the frameset list of Propbank and Nom-
bank. Propbank and Nombank provide lists of
about 3,100 verbal predicates and about 4,400
nominal predicates. After dependency parsing,
words which are located in the frameset list are se-
lected as predicate candidates. The predicate iden-
tifier determines if a candidate is a predicate or not.
The identifier is implemented by using two maxi-
mum entropy models, the one is for verbal predi-
cates and the other is for nominal predicates. The
following features are used for predicate identifi-
cation:

Common Features
For Predicate Identification
- Lemma of Previous Word
- Lemma of Current Word
- Lemma of Next Word
- POS of Previous Word
- POS of Current Word
- POS of Next Word
- Dependency Label of Previous Word
- Dependency Label of Current Word
- Dependency Label of Next Word

Additional Features for Verbal Predicate
- Lemma + POS of Current Word
- Trigram Lemma of Previous, Current,
and Next Word

Additional Features for Nominal Predicate
- Lemma of Head of Current Word
- POS of Head of Current Word
- Dependency Label of Head of Current Word

Verbal predicate identifier shows 87.91 of F1 and
nominal predicate identifier shows 81.58 of F1.

Through a brief error analysis, we found that main
bottle neck for verbal predicate is auxiliary verb
be andhave.

2.3 Local Semantic Role Labeling

Prediate identification is followed by argument la-
beling. For the given predicate, the system first
eliminates inappropriate argument candidates. The
argument identification uses different strategies for
verbs, nouns, and other predicates.

The argument classifier extracts features and la-
bels semantic roles.None is used to indicate that
a word is not a semantic argument. The classifier
also uses different maximum entropy models for
verbs, nouns, and other predicates

2.3.1 Argument Candidate Identification

As mentioned by Pradhan et al. (2004), ar-
gument identification poses a significant bottle-
neck to improving performance of Semantic Role
Labeling system. We tried an algorithm moti-
vated from Hacioglu (2004) which defined atree-
structured family membershipof a predicate to
identify more probable argument candidates and
prune the others. However, we find that it works
for verb and other predicate type, but does not
work properly for noun predicate type. The main
reason is due to the characteristics of arguments
of noun predicates. First of all, a noun predicate
can be an argument for itself, whereas a verb pred-
icate cannot be. Secondly, dependency relation
paths from a noun predicate to its arguments are
usually shorter than a verb predicate. Although
some dependency relation paths are long, they ac-
tually involve non-informative relations like IN,
MD, or TO. Finally, major long distance relation
paths could be identified by several path patterns
acquired from the corpus.

Based on the above analysis, we specify a new
argument identification strategy for nominal pred-
icate type. The argument identifier regards a pred-
icate and its nearest neighbors - its parent and chil-
dren - as argument candidates. However, if the
POS tag of a nearest neighbor is IN, MD, or TO, it
will be ignored and the next nearest candidates will
be used. Moreover, several patterns (three consec-
utive nouns, adjective and two consecutive nouns,
two nouns combined with conjunction, and etc.)
are applied to find long distance argument candi-
dates.
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2.3.2 Argument Classification

For argument classification, various features
have been used. Primarily, we tested a set of fea-
tures suggested by Hacioglu (2004). The voice of
the predicate, left and right words, its POS tag for
a predicate, and lexical clues for adjunctive argu-
ments also have been tested. Based on the type
of predicate (i.e. verb predicate, noun predicate,
and other predicate) three classification models are
trained by using maximum entropy with the fol-
lowing same features:

Features for Argument Classification
- Dependen Relation Type
- Family Membership
- Position
- Lemma of Head Word
- POS of Head Word
- Path
- POS Pattern of Predicate’s Children
- Relation Pattern of Predicate’s Children
- POS Pattern of Predicate’s Siblings
- Relation Pattern of Predicate’s Siblings
- POS of candidate
- Lemma of Left Word of Candidate
- POS of Left Word of Candidate
- Lemma of Right Word of Candidate
- POS of Right Word of Candidate

The classifier produces a list of possible seman-
tic roles and its probabilities for each word in the
given sentence.

2.4 Global Semantic Role Sequence
Generation

For local semantic role labeling, we assume that
semantic roles of words are independent of each
other. Toutanova et al. (2005) and Surdeanu et
al. (2007) show that global constraint and opti-
mization are important in semantic role labeling.
We use CKY-based dynamic programming strat-
egy, similar to Surdeanu et al. (2007), to verify
whether role sequences satisfy global constraint
and generate candidates of global semantic role se-
quences.

In this paper, we just use one constraint: no
duplicate arguments are allowed for verbal pred-
icates. For verbal predicates, CKY module builds
a list of all kinds of combinations of semantic roles
augmented with their probabilities. While building
the list of semantic role sequences, it removes the

sequences that violate the global constraint. The
output of CKY module is the list of semantic role
sequences satisfying the global constraint.

2.5 Global Sequence Selection using Roleset
Information

Finally, we need to select the most likely semantic
role sequence. In addition, we need to identify a
roleset for a predicate. We perform these tasks by
finding a role sequence and roleset maximizing a
score on the following formula:

α · c + β · rf + γ · mc (1)

where,c, rf , mc are role sequence score, relative
frequence of roleset, and matching score with role-
set respectively.α, β, γ are tuning parameters of
each factor and decided empirically by using de-
velopment set. In this paper, we setα, β, γ to 0.5,
0.3, 0.2, respectively.

The role sequence score is calculated in the
global semantic role sequence generation ex-
plained in Section 2.4. The relative frequency of a
roleset means how many times the roleset occurred
in the training set compared to the total occurrence
of the predicate. It can be easily estimated by
MLE.

The remaining problem is how to calculate the
matching score. We use maximum entropy models
as binary classifiers which outputmatchandnot-
matchand use probability ofmatchas matching
score. The features used for the roleset matching
classifiers are based on following intuitions:

• If core roles (e.g., A0, A2, etc) defined in
a roleset occur in a given role sequence, it
seems to be the right roleset for the role se-
quence.

• If matched core roles are close to or have de-
pendency relations with a predicate, it seems
to be the right roleset.

• If a roleset has a particle and the predicate of
a sentence also has that particle, it seems to
be the right roleset. For example, thelemma
of predicate node for the rolesetcut.05
in frameset file ”cut.xml.gz” iscut back, so
the particle of cut.05 isback. If the predicate
of a sentence also has particle ’back’, it seems
to be the right roleset.

• If example node of a roleset in frameset file
has a functional word for certain core role that
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also exists in a given sentence, it seems to be
the right roleset. For example, example node
is defined as follows2:

<roleset id="cut.09" ...>
<example>
<text>
As the building’s new owner,
Chase will have its work cut
out for it.
</text>
<arg n="1">its work</arg>
<rel>cut out</rel>
<arg n="2" f="for">it</arg>

</example>
</roleset>

Here, semantic role A2 has functional word
for. If a given role sequence has A2 and its
word is ’for’, than this role sequence probably
matches that roleset.

Based on these intuitions, we use following fea-
tures for roleset matching:

• Core Role Matching Count The number of
core roles exist in both roleset definition and
given role sequence

• Distance of Matched Core RoleDistance
between predicate and core role which ex-
ists in both roleset and given role sequence.
We use number of word and dependency path
length as a distance

• Indication for Same Particle It becomes
yes if given predicate and roleset have same
particle. (otherwiseno)

• Indication for Same Functional Word It be-
comesyes if one of core argument is same to
the functional word of roleset. (otherwiseno)

To train the roleset match classifiers, we extract
semantic role sequence and its roleset from train-
ing data as a positive example. And then, we gen-
erate negative examples by changing its roleset to
other roleset of that predicate. For example, the
above sentence in<text> node3 becomes a pos-
itive example forcut.09 and negative examples
for other roleset such ascut.01, cut.02, etc.

2Some nodes are omitted to simplify the definition of ex-
ample.

3Of cause, we assume that this sentence exist in training
corpus. So, we will extract it from corpus, not from frameset
file.

WSJ+Brown WSJ Brown
LM 76.90 77.96 68.34
LA 84.82 85.69 77.83
LF 68.71 69.95 58.63

Table 1: System performance. LM, LA, LF means
macro labeled F1 for the overall task, labeled at-
tachment for syntactic dependencies, and labeled
F1 for semantic dependencies, respectively

Labeled Prec. Labeled Rec. Labeled F1
88.68 73.89 80.28

Table 2: Performance of Local Semantic Role La-
beler n WSJ test set. Gold parsing result, correct
predicates, and correct rolesets are used.

3 Experimental Result

We have tested our system with the test set and
obtained official results as shown in Table 1. We
have also experimented on each module and ob-
tained promising results.

We have tried to find the upper bound of the
local semantic role labeling module. Table 2
shows the performance when gold syntactic pars-
ing result, correct predicates, and correct rolesets
are given. Comparing to phrase structure parser
based semantic role labelings such as Pradhan et
al. (2005) and Toutanova et al. (2005), our local
semantic role labeler needs to enhance the perfor-
mance. We will try to add some lexical features or
chunk features in future works.

Next, we have analyzed the effect of roleset
based selector. Table 3 shows the effect of match-
ing score and relative frequency which are the
weighted factor of selection described in section
2.5. Here, baseline means that it selects a role se-
quence which has the highest score in CKY mod-
ule and roleset is chosen randomly. The results
show that roleset matching score and relative fre-
quency of roleset are effective to choose the correct
role sequence and identify roleset.

4 Conclusion

In this paper, we have described a syntactic and
semantic dependency parsing system with five dif-
ferent modules. Each module is developed with
maximum entropy classifiers based on different
predicate types. In particular, dependency relation
compression method and extracted path patterns
are used to improve the performance in the argu-
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Prec. Rec. F1
Baseline (c) 69.34 58.42 63.41
+ mc 71.40 60.20 65.32
+ rf 75.94 63.98 69.45
+ mc, rf 76.46 64.45 69.95

Table 3: Semantic scores of global sequence selec-
tion in WSJ test set.mc, rf means matching score
and relative frequency, respectively

ment candidate identification. The roleset match-
ing method is devised to select the most appropri-
ate role sequence and to identify the correct role-
set.

However, the current features for roleset match-
ing seem to be not enough and other useful features
are expected to be found in the future work. There
is also a room for improving the method to inte-
grate the role sequence score, matching score, and
the relative frequency.
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Abstract

We describe our CoNLL 2008 Shared Task
system in this paper. The system includes
two cascaded components: a syntactic and
a semantic dependency parsers. A first-
order projective MSTParser is used as our
syntactic dependency parser. In order to
overcome the shortcoming of the MST-
Parser, that it cannot model more global in-
formation, we add a relabeling stage after
the parsing to distinguish some confusable
labels, such as ADV, TMP, and LOC. Be-
sides adding a predicate identification and
a classification stages, our semantic de-
pendency parsing simplifies the traditional
four stages semantic role labeling into two:
a maximum entropy based argument clas-
sification and an ILP-based post inference.
Finally, we gain the overall labeled macro
F1 = 82.66, which ranked the second posi-
tion in the closed challenge.

1 System Architecture

Our CoNLL 2008 Shared Task (Surdeanu et al.,
2008) participating system includes two cascaded
components: a syntactic and a semantic depen-
dency parsers. They are described in Section 2
and 3 respectively. Their experimental results are
shown in Section 4. Section 5 gives our conclusion
and future work.

2 Syntactic Dependency Parsing

MSTParser (McDonald, 2006) is selected as our
basic syntactic dependency parser. It views the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

syntactic dependency parsing as a problem of
finding maximum spanning trees (MST) in di-
rected graphs. MSTParser provides the state-of-
the-art performance for both projective and non-
projective tree banks.

2.1 Features
The score of each labeled arc is computed through
the Eq. (1) in MSTParser.

score(h, c, l) = w · f(h, c, l) (1)

where node h represents the head node of the arc,
while node c is the dependent node (or child node).
l denotes the label of the arc.

There are three major differences between our
feature set and McDonald (2006)’s:

1) We use the lemma as a generalization feature
of a word, while McDonald (2006) use the word’s
prefix.

2) We add two new features: “bet-pos-h-same-
num” and “bet-pos-c-same-num”. They represent
the number of nodes which locate between node h
and node c and whose POS tags are the same with
h and c respectively.

3) We use more back-off features than McDon-
ald (2006) by completely enumerating all of the
possible combinatorial features.

2.2 Relabeling
By observing the current results of MSTParser on
the development data, we find that the performance
of some labels are far below average, such as ADV,
TMP, LOC. We think the main reason lies in that
MSTParser only uses local features restricted to a
single arc (as shown in Eq. (1)) and fails to use
more global information. Consider two sentences:
“I read books in the room.” and “I read books in
the afternoon.”. It is hard to correctly label the arc
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Deprel Total Mislabeled as

NMOD 8,922 NAME [0.4], DEP [0.4], LOC [0.1],
AMOD [0.1]

OBJ 1,728 TMP [0.5], ADV [0.4], OPRD[0.3]
ADV 1,256 TMP [2.9], LOC [2.3], MNR [1.8],

DIR [1.5]
NAME 1,138 NMOD [2.2]
VC 953 PRD [0.9]
DEP 772 NMOD [4.0]
TMP 755 ADV [9.9], LOC [6.5]
LOC 556 ADV [12.6], NMOD [7.9], TMP [5.9]
AMOD 536 ADV [2.2]
PRD 509 VC [4.7]
APPO 444 NMOD [2.5]
OPRD 373 OBJ [4.6]
DIR 119 ADV [18.5]
MNR 109 ADV [28.4]

Table 1: Error Analysis of Each Label

between “read” and “in” unless we know the object
of “in”.

We count the errors of each label, and show the
top ones in Table 1. “Total” refers to the total num-
ber of the corresponding label in the development
data. The column of “Mislabeled as” lists the la-
bels that an arc may be mislabeled as. The number
in brackets shows the percentage of mislabeling.
As shown in the table, some labels are often con-
fusable with each other, such as ADV, LOC and
TMP.

2.3 Relabeling using Maximum Entropy
Classifier

We constructed two confusable label set which
have a higher mutual mislabeling proportion:
(NMOD, LOC, ADV, TMP, MNR, DIR) and (OBJ,
OPRD). A maximum entropy classifier is used to
relabel them.

Features are shown in Table 2. The first column
lists local features, which contains information of
the head node h and the dependent node c of an arc.
“+ dir dist” means that conjoining existing features
with arc direction and distance composes new fea-
tures. The second column lists features using the
information of node c’s children. “word c c” rep-
resents form or lemma of one child of the node
c. “dir c” and “dist c” represents the direction and
distance of the arc which links node c to its child.
The back-off technique is also used on these fea-
tures.

Local features (+ dir dist) Global features (+ dir c dist c)

word h word c word h word c word c c

Table 2: Relabeling Feature Set (+ dir dist)

3 Semantic Dependency Parsing

3.1 Architecture
The whole procedure is divided into four separate
stages: Predicate Identification, Predicate Classifi-
cation, Semantic Role Classification, and Post In-
ference.

During the Predicate Identification stage we ex-
amine each word in a sentence to discover target
predicates, including both noun predicates (from
NomBank) and verb predicates (from PropBank).
In the Predicate Classification stage, each predi-
cate is assigned a certain sense number. For each
predicate, the probabilities of a word in the sen-
tence to be each semantic role are predicted in the
Semantic Role Classification stage. Maximum en-
tropy model is selected as our classifiers in these
stages. Finally an ILP (Integer Linear Program-
ming) based method is adopted for post infer-
ence (Punyakanok et al., 2004).

3.2 Predicate Identification
The predicate identification is treated as a binary
classification problem. Each word in a sentence is
predicted to be a predicate or not to be. A set of
features are extracted for each word, and an opti-
mized subset of them are adopted in our final sys-
tem. The following is a full list of the features:

DEPREL (a1): Type of relation to the parent.
WORD (a21), POS (a22), LEMMA (a23),

HEAD (a31), HEAD POS (a32), HEAD LEMMA
(a33): The forms, POS tags and lemmas of a word
and it’s headword (parent) .

FIRST WORD (a41), FIRST POS (a42),
FIRST LEMMA (a43), LAST WORD (a51),
LAST POS (a52), LAST LEMMA (a53): A
corresponding “constituent” for a word consists
of all descendants of it. The forms, POS tags and
lemmas of both the first and the last words in the
constituent are extracted.

POS PAT (a6): A “POS pattern” is produced for
the corresponding constituent as follows: a POS
bag is produced with the POS tags of the words
in the constituent except for the first and the last
ones, duplicated tags removed and the original or-
der ignored. Then we have the POS PAT feature
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by combining the POS tag of the first word, the
bag and the POS tag of the last word.

CHD POS (a71), CHD POS NDUP (a72),
CHD REL (a73), CHD REL NDUP (a74): The
POS tags of the child words are joined to-
gether to form feature CHD POS. With adja-
cently duplicated tags reduced to one, feature
CHD POS NDUP is produced. Similarly we can
get CHD REL and CHD REL NDUP too, with
the relation types substituted for the POS tags.

SIB REL (a81), SIB REL NDUP (a82),
SIB POS (a83), SIB POS NDUP (a84): Sibling
words (including the target word itself) and the
corresponding dependency relations (or POS tags)
are considered as well. Four features are formed
similarly to those of child words.

VERB VOICE (a9): Verbs are examined for
voices: if the headword lemma is either “be” or
“get”, or else the relation type is “APPO”, then the
verb is considered passive, otherwise active.

Also we used some “combined” features which
are combinations of single features. The final op-
timized feature set is (a1, a21, a22, a31, a32, a41,
a42, a51, a52, a6, a72, a73, a74, a81, a82, a83,
a1+a21, a21+a31, a21+a6, a21+a74, a73+a81,
a81+a83).

3.3 Predicate Classification

After predicate identification is done, the resulting
predicates are processed for sense classification. A
classifier is trained for each predicate that has mul-
tiple senses on the training data (There are totally
962 multi-sense predicates on the training corpus,
taking up 14% of all) In additional to those fea-
tures described in the predicate identification sec-
tion, some new ones relating to the predicate word
are introduced:

BAG OF WORD (b11), BAG OF WORD O
(b12): All words in a sentence joined, namely
“Bag of Words”. And an “ordered” version is in-
troduced where each word is prefixed with a letter
“L”, “R” or “T” indicating it’s to the left or right of
the predicate or is the predicate itself.

BAG OF POS O (b21), BAG OF POS N
(b22): The POS tags prefixed with “L”, “R” or
“T” indicating the word position joined together,
namely “Bag of POS (Ordered)”. With the
prefixed letter changed to a number indicating
the distance to the predicate (negative for being
left to the predicate and positive for right), an-
other feature is formed, namely “Bag of POS

(Numbered)”.
WIND5 BIGRAM (b3): 5 closest words from

both left and right plus the predicate itself, in total
11 words form a “window”, within which bigrams
are enumerated.

The final optimized feature set for the task of
predicate classification is (a1, a21, a23, a71, a72,
a73, a74, a81, a82, a83, a84, a9, b11, b12, b22, b3,
a71+a9).

3.4 Semantic Role Classification

In our system, the identification and classifica-
tion of semantic roles are achieved in a single
stage (Liu et al., 2005) through one single classi-
fier (actually two, one for noun predicates, and the
other for verb predicates). Each word in a sentence
is given probabilities to be each semantic role (in-
cluding none of the these roles) for a predicate.
Features introduced in addition to those of the pre-
vious subsections are the following:

POS PATH (c11), REL PATH (c12): The “POS
Path” feature consists of POS tags of the words
along the path from a word to the predicate. Other
than “Up” and “Down”, the “Left” and “Right” di-
rection of the path is added. Similarly, the “Re-
lation Path” feature consists of the relation types
along the same path.

UP PATH (c21), UP REL PATH (c22): “Up-
stream paths” are parts of the above paths that stop
at the common ancestor of a word and the predi-
cate.

PATH LEN (c3): Length of the paths
POSITION (c4): The relative position of a word

to the predicate: Left or Right.
PRED FAMILYSHIP (c5): “Familyship rela-

tion” between a word and the predicate, being one
of “self”, “child”, “descendant”, “parent”, “ances-
tor”, “sibling”, and “not-relative”.

PRED SENSE (c6): The lemma plus sense
number of the predicate

As for the task of semantic role classification,
the features of the predicate word in addition to
those of the word under consideration can also
be used; we mark features of the predicate with
an extra ‘p’. For example, the head word of
the current word is represented as a31, and the
head word of the predicate is represented as pa31.
So, with no doubt for the representation, our fi-
nal optimized feature set for the task of seman-
tic role classification is (a1, a23, a33, a43, a53,
a6, c11, c12, c21, c3, c4, c6, pa23, pa71, pa73,
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pa83, a1+a23+a33, a21+c5, a23+c12, a33+c12,
a33+c22, a6+a33, a73+c5, c11+c12, pa71+pa73).

3.5 ILP-based Post Inference
The final semantic role labeling result is gener-
ated through an ILP (Integer Linear Programming)
based post inference method. An ILP problem is
formulated with respect to the probability given by
the above stage. The final labeling is formed at the
same time when the problem is solved.

Let W be the set of words in the sentence, and
R be the set of semantic role labels. A virtual label
“NULL” is also added to R, representing “none of
the roles is assigned”.

For each word w ∈ W and semantic role label
r ∈ R we create a binary variable vwr ∈ (0, 1),
whose value indicates whether or not the word w
is labeled as label r. pwr denotes the possibil-
ity of word w to be labeled as role r. Obviously,
when objective function f =

∑
w,r log(pwr · vwr)

is maximized, we can read the optimal labeling for
a predicate from the assignments to the variables
vwr. There are three constrains used in our system:

C1: Each relation should be and only be la-
beled with one label (including the virtual label
“NULL”), i.e.: ∑

r

vwr = 1

C2: Roles with a small probability should never
be labeled (except for the virtual role “NULL”).
The threshold we use in our system is 0.3, which
is optimized from the development data. i.e.:

vwr = 0, if pwr < 0.3 and r 6= “NULL”

C3: Statistics shows that the most roles (ex-
cept for the virtual role “NULL”) usually appear
only once for a predicate, except for some rare ex-
ception. So we impose a no-duplicated-roles con-
straint with an exception list, which is constructed
according to the times of semantic roles’ duplica-
tion for each single predicate (different senses of a
predicate are considered different) and the ratio of
duplication to non-duplication.∑

r vwr ≤ 1,
if < p, r > /∈ {< p, r > |p ∈ P, r ∈ R;

dpr

cpr−dpr
> 0.3 ∧ dpr > 10}

(2)

where P is the set of predicates; cpr denotes the
count of words in the training corpus, which are

Predicate Type Predicate Label

Noun president.01 A3
Verb match.01 A1
Verb tie.01 A1
Verb link.01 A1
Verb rate.01 A0
Verb rate.01 A2
Verb attach.01 A1
Verb connect.01 A1
Verb fit.01 A1
Noun trader.01 SU

Table 3: No-duplicated-roles constraint exception
list (obtained by Eq. (2))

labeled as r ∈ R for predicate p ∈ P ; while dpr

denotes something similar to cpr, but what taken
into account are only those words labeled with r,
and there are more than one roles within the sen-
tence for the same predicate. Table 3 lists the com-
plete exception set, which has a size of only 10.

4 Experiments

The original MSTParser1 is implemented in Java.
We were confronted with memory shortage when
trying to train a model with the entire CoNLL 2008
training data with 4GB memory. Therefore, we
rewrote it with C++ which can manage the mem-
ory more exactly. Since the time was limited, we
only rewrote the projective part without consider-
ing second-order parsing technique.

Our maximum entropy classifier is implemented
with Maximum Entropy Modeling Toolkit2. The
classifier parameters: gaussian prior and iterations,
are tuned with the development data for different
stages respectively.

lp solve 5.53 is chosen as our ILP problem
solver during the post inference stage.

The training time of the syntactic and the se-
mantic parsers are 22 and 5 hours respectively, on
all training data, with 2.0GHz Xeon CPU and 4G
memory. While the prediction can be done within
10 and 5 minutes on the development data.

4.1 Syntactic Dependency Parsing
The experiments on development data show that
relabeling process is helpful, which improves the

1http://sourceforge.net/projects/mstparser
2http://homepages.inf.ed.ac.uk/s0450736/maxent

toolkit.html
3http://sourceforge.net/projects/lpsolve
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Precision (%) Recall (%) F1

Pred Identification 91.61 91.36 91.48
Pred Classification 86.61 86.37 86.49

Table 4: The performance of predicate identifica-
tion and classification

Precision (%) Recall (%) F1

Simple 81.02 76.00 78.43
ILP-based 82.53 75.26 78.73

Table 5: Comparison between different post infer-
ence strategies

LAS performance from 85.41% to 85.94%. The fi-
nal syntactic dependency parsing performances on
the WSJ and the Brown test data are 87.51% and
80.73% respectively.

4.2 Semantic Dependency Parsing

The semantic dependency parsing component is
based on the last syntactic dependency parsing
component. All stages of the system are trained
with the closed training corpus, while predicted
against the output of the syntactic parsing.

Performance for predicate identification and
classification is given in Table 4, wherein the clas-
sification is done on top of the identification.

Semantic role classification and the post infer-
ence are done on top of the result of predicate iden-
tification and classification. The final performance
is presented in Table 5. A simple post inference
strategy is given for comparison, where the most
possible label (including the virtual label “NULL”)
is select except for those duplicated non-virtual la-
bels with lower probabilities (lower than 0.5). Our
ILP-based method produces a gain of 0.30 with re-
spect to the F1 score.

The final semantic dependency parsing perfor-
mance on the development and the test (WSJ and
Brown) data are shown in Table 6.

Precision (%) Recall (%) F1

Development 82.53 75.26 78.73
Test (WSJ) 82.67 77.50 80.00
Test (Brown) 64.38 68.50 66.37

Table 6: Semantic dependency parsing perfor-
mances

4.3 Overall Performance
The overall macro scores of our syntactic and se-
mantic dependency parsing system are 82.38%,
83.78% and 73.57% on the development and two
test (WSJ and Brown) data respectively, which is
ranked the second position in the closed challenge.

5 Conclusion and Future Work

We present our CoNLL 2008 Shared Task system
which is composed of two cascaded components:
a syntactic and a semantic dependency parsers,
which are built with some state-of-the-art methods.
Through a fine tuning features and parameters, the
final system achieves promising results. In order
to improve the performance further, we will study
how to make use of more resources and tools (open
challenge) and how to do joint learning between
syntactic and semantic parsing.
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Abstract

This paper describes a system to solve
the joint learning of syntactic and seman-
tic dependencies. An directed graphical
model is put forward to integrate depen-
dency relation classification and semantic
role labeling. We present a bilayer di-
rected graph to express probabilistic re-
lationships between syntactic and seman-
tic relations. Maximum Entropy Markov
Models are implemented to estimate con-
ditional probability distribution and to do
inference. The submitted model yields
76.28% macro-average F1 performance,
for the joint task, 85.75% syntactic depen-
dencies LAS and 66.61% semantic depen-
dencies F1.

1 Introduction

Dependency parsing and semantic role labeling are
becoming important components in many kinds of
NLP applications. Given a sentence, the task of de-
pendency parsing is to identify the syntactic head
of each word in the sentence and classify the rela-
tion between the dependent and its head; the task
of semantic role labeling consists of analyzing the
propositions expressed by some target predicates.
The integration of syntactic and semantic parsing
interests many researchers and some approaches
has been proposed (Yi and Palmer, 2005; Ge and
Mooney, 2005). CoNLL 2008 shared task pro-
poses the merging of both syntactic dependencies
and semantic dependencies under a unique unified
representation (Surdeanu et al., 2008). We explore

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

the integration problem and evaluate our approach
using data provided on CoNLL 2008.

This paper explores the integration of depen-
dency relation classification and semantic role la-
beling, using a directed graphical model that is also
known as Bayesian Networks. The directed graph
of our system can be seen as one chain of obser-
vations with two label layers: the observations are
argument candidates; one layer’s label set is syn-
tactic dependency relations; the other’s is semantic
dependency relations. To estimate the probability
distribution of each arc and do inference, we im-
plement a Maximum Entropy Markov Model (Mc-
Callum et al., 2000). Specially, a logistic regres-
sion model is used to get the conditional probabil-
ity of each arc; dynamic programming algorithm
is applied to solve the ”argmax” problem.

2 System Description

Our DP-SRL system consists of 5 stages:

1. dependency parsing;

2. predicate prediction;

3. syntactic dependency relation classification
and semantic dependency relation identifica-
tion;

4. semantic dependency relation classification;

5. semantic dependency relation inference.

2.1 Dependency Parsing
In dependency parsing stage, MSTParser1 (Mc-
Donald et al., 2005), a dependency parser that
searches for maximum spanning trees over di-
rected graphs, is used. we use MSTParser’s default

1http://www.seas.upenn.edu/ strctlrn/MSTParser/MSTParser.html
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Lemma and its POS tag
Number of children
Sequential POS tags of children
Lemma and POS of Neighboring words
Lemma and POS of parent
Is the word in word list of NomBank
Is the word in word list of PropBank
Is POS of the word is VB* or NN*

Table 1: Features used to predict target predicates

parameters to train a parsing model. In the third
stage of our system, dependency relations between
argument candidates and target predicates are up-
dated, if there are dependency between the candi-
dates and the predicates.

2.2 Predicate Prediction

Different from CoNLL-2005 shared task, the tar-
get predicates are not given as input. Our system
formulates the predicate predication problem as a
two-class classification problem using maximum
entropy classifier MaxEnt2 (Berger et al., 1996).
Table 1 lists features used. We use a empirical
threshold to filter words: if the ”being target” prob-
ability of a word is greater than 0.075, it is seen as
a target predicate. This strategy achieves a 79.96%
precision and a 98.62% recall.

2.3 Syntactic Dependency Relation
Classification and Semantic Dependency
Relation Identification

We integrate dependency parsing and semantic
role labeling to some extent in this stage. Some de-
pendency parsing systems prefer two-stage archi-
tecture: unlabeled parsing and dependency clas-
sification (Nivre et al., 2007). Previous semantic
role labeling approaches also prefer two-stage ar-
chitecture: argument identification and argument
classification. Our system does syntactic relations
classification and semantic relations identification
at the same time. Specially, using a pruning al-
gorithm, we collect a set of argument candidates;
then we classify dependency relations between ar-
gument candidates and the predicates and predict
whether a candidate is an argument. A directed
graphical model is used to represent the relations
between syntactic and semantic relations.

2http://homepages.inf.ed.ac.uk/s0450736/maxent toolkit.h
tml

Lemma, POS tag voice of predicates
POS pattern of predicate’s children
Is the predicate from NomBank or PropBank
Predicate class. This information is extracted
form frame file of each predicate.
Position: whether the candidate is before or
after the predicate
Lemma and POS tag of the candidate
Lemma and POS of Neighboring words of the
candidate
Lemma and POS of sibling words of the
candidate
Length of the constituent headed by the
candidate
Lemma and POS of the left and right most
words of the constituent of the candidate
Punctuation before and after the candidate
POS path: the chain of POS from candidate to
predicate
Single Character POS path: each POS in a path
is clustered to a category defined by its
first character
POS Pattern (string of POS tags) of all
candidates
Single Character POS Pattern of all candidates

Table 2: Features used for semantic role labeling

2.4 Semantic Dependency Relation
Classification

This stage assigns the final argument labels to the
argument candidates supplied from the previous
stage. A multi-class classifier is trained to classify
the types of the arguments supplied by the previous
stage. Table 2 lists the features used. It is clear that
the general type of features used here is strongly
based on previous work on the SRL task (Gildea
and Jurafsky, 2002; Pradhan et al., 2005; Xue and
Palmer, 2004). Different from CoNLL-2005, the
sense of predicates should be labeled as a part of
the task. Our system assigns 01 to all predicates.
This is a harsh tactic since it do not take the lin-
guistic meaning of the argument-structure into ac-
count.

2.5 Semantic Dependency Relation Inference

The purpose of inference stage is to incorporate
some prior linguistic and structural knowledge,
such as ”each predicate takes at most one argument
of each type.” We use the inference process intro-
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duced by (Punyakanok et al., 2004; Koomen et al.,
2005). The process is modeled as an integer Lin-
ear Programming Problem (ILP). It takes the pre-
dicted probability over each type of the arguments
as inputs, and takes the optimal solution that max-
imizes the linear sum of the probability subject to
linguistic constraints as outputs. The constraints
are a subset of constraints raised by Koomen et al.
(2005) and encoded as following: 1) No overlap-
ping or embedding arguments; 2) No duplicate ar-
gument classes for A0-A5; 3) If there is an R-arg
argument, then there has to be an arg argument;
4) If there is a C-arg argument, there must be an
arg argument; moreover, the C-arg argument must
occur after arg; 5) Given the predicate, some argu-
ment types are illegal. The list of illegal argument
types is extracted from framefile.

The ILP process can improve SRL performance
on constituent-based parsing (Punyakanok et al.,
2004). In our experiment, it also works on
dependency-based parsing.

3 Bilayer Maximum Entropy Markov
Models

3.1 Sequentialization

The sequentialization of a argument-structure is si-
miliar to the pruning algorithm raised by (Xue and
Palmer, 2004). Given a constituent-based parsing
tree, the recursive pruning process starts from a tar-
get predicate. It first collects the siblings of the
predicate; then it moves to the parent of the pred-
icate, and collects the siblings of the parent. In
addition, if a constituent is a prepositional phrase,
its children are also collected.

Our system uses a similar pruning algorithm to
filter out very unlikely argument candidates in a
dependency-based parsing tree. Given a depen-
dency parsing tree, the pruning process also starts
from a target predicate. It first collects the depen-
dents of the predicate; then it moves to the parent
of the predicate, and collects all the dependents
again. Note that, the predicate is also taken into
account. If the target predicate is a verb, the pro-
cess goes on recursively until it reaches the root.
The process of a noun target ends when it sees a
PMOD, NMOD, SBJ or OBJ dependency relation.
If a preposition is returned as a candidate, its child
is also collected. When the predicate is a verb, the
set of constituents headed by survivors of our prun-
ing algorithm is a superset of the set of survivors of
the previous pruning algorithm on the correspond-

Figure 1: Directed graphical Model of The system

ing constituent-based parsing tree. This pruning
algorithm will recall 99.08% arguments of verbs,
and the candidates are 3.75 times of the real argu-
ments. If the stop relation such as PMOD of a noun
is not taken into account, the recall is 97.67% and
the candidates is 6.28 times of arguments. If the
harsh stop condition is implemented, the recall is
just 80.29%. Since the SRL performance of nouns
is very low, the harsh pruning algorithm works bet-
ter than the original one.

After pruning, our system sequentializes all ar-
gument candidates of the target predicate accord-
ing to their linear order in the given sentence.

3.2 Graphical Model

Figure 1 is the directed graph of our system.
There is a chain of candidates x = (x0 =
BOS, x1, ..., xn) in the graph which are observa-
tions. There are two tag layers in the graph: the up
layer is information of semantic dependency rela-
tions; the down layer is information of syntactic
dependency relations.

Given x, denote the corresponding syntactic de-
pendency relations d = (d0 = BOS, d1, ..., dn)
and the corresponding semantic dependency rela-
tions s = (s0 = BOS, s1, ..., sn). Our system
labels the syntactic and semantic relations accord-
ing to the conditional probability in argmax fla-
vor. Formally, labels the system assigned make
the score p(d, s|x) reaches its maximum. We de-
compose the probability p(d, s|x) according to the
directed graph modeled as following:

p(d, s|x) = p(s1|s0, d1;x)p(d1|s0, d0;x) · · ·
p(si+1|si, di+1;x)p(di+1|si, di;x) · · ·
p(sn|sn−1, dn;x)p(dn|sn−1, dn−1;x)

=
n∏

i=1

p(si|si−1, di;x)p(di|si−1, di−1;x)

245



Lemma, POS tag voice of predicates
POS pattern of predicate’s children
Lemma and POS tag of the candidate
Lemma and POS of Neighboring words of the
candidate
Lemma and POS of sibling words of the
candidate
Length of the constituent headed by the
candidate
Lemma and POS of the left and right most
words of the constituent of the candidate
Conjunction of lemma of candidates and
predicates; Conjunction of POS of candidates
and predicates
POS Pattern of all candidates

Table 3: Features used to predict syntactic depen-
dency parsing

3.3 Probability Estimation
The system defines the conditional probability
p(si|si−1, di;x) and p(di|si−1, di−1;x) by using
the maximum entropy (Berger et al., 1996) frame-
work Denote the tag set of syntactic dependency
relations D and the tag set of semantic dependency
relations S. Formally, given a feature map φs and
a weight vector ws,

pws(si|si−1, di;x) =
exp{ws · φs(x, si, si−1, di)}

Zx,si−1,di;ws

where,

Zx,si−1,di;ws =
∑
s∈S

exp{ws · φs(x, s, si−1, di)}

Similarly, given a feature map φd and
a weight vector wd, (pwd

(di) is short for
pwd

(di|si−1, di−1;x)

pwd
(di) =

exp{wd · φd(x, di, si−1, di−1)}
Zx,si−1,di−1;wd

where,

Zx,si−1,di−1;wd
=
∑
d∈D

exp{wd · φd(x, d, si−1, di−1)}

For different characteristic properties between
syntactic parsing and semantic parsing, different
feature maps are taken into account. Table 2

lists the features used to predict semantic depen-
dency relations, whereas table 3 lists the features
used to predict the syntactic dependency relations.
The features used for syntactic dependency rela-
tion classification are strongly based on previous
works (McDonald et al., 2006; Nakagawa, 2007).

We just integrate syntactic dependency Rela-
tion classification and semantic dependency rela-
tion here. If one combines identification and clas-
sification of semantic roles as one multi-class clas-
sification, the tag set of the second layer can be
substituted by the tag set of semantic roles plus a
NULL (”not an argument”) label.

3.4 Inference

The ”argmax problem” in structured prediction is
not tractable in the general case. However, the bi-
layer graphical model presented in form sections
admits efficient search using dynamic program-
ming solution. Searching for the highest probabil-
ity of a graph depends on the factorization chosen.
According to the form of the global score

p(d, s|x) =
n∏

i=1

p(si|si−1, di;x)p(di|si−1, di−1;x)

, we define forward probabilities αt(s, d) to be the
probability of semantic relation being s and syn-
tactic relation being d at time t given observation
sequence up to time t. The recursive dynamic pro-
gramming step is

αt+1(d, s) = arg max
d∈D,s∈S

∑
d′∈D,s′∈S

αt(d′, s′) ·

p(si|si−1, di;x)p(di|si−1, di−1;x)

Finally, to compute the globally most proba-
ble assignment (d̂, ŝ) = arg maxd,s p(d, s|x), a
Viterbi recursion works well.

4 Results

We trained our system using positive examples
extracted from all training data of CoNLL 2008
shared task. Table 4 shows the overall syntactic
parsing results obtained on the WSJ test set (Sec-
tion 23) and the Brown test set (Section ck/01-03).
Table 5 shows the overall semantic parsing results
obtained on the WSJ test set (Section 23) and the
Brown test set (Section ck/01-03).
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Test Set UAS LAS Label Accuracy
WSJ 89.25% 86.37% 91.25%
Brown 86.12% 80.75% 87.14%

Table 4: Overall syntactic parsing results
Task Precision Recall Fβ=1

WSJ ID 73.76% 85.24% 79.08
ID&CL 63.07% 72.88% 67.62

Brown ID 70.77% 80.50% 75.32
ID&CL 54.74% 62.26% 58.26

Table 5: Overall semantic parsing results

Test WSJ Precision(%) Recall(%) Fβ=1

SRL of Verbs
All 73.53 73.28 73.41
Core-Arg 78.83 76.93 77.87
AM-* 62.51 64.83 63.65

SRL of Nouns
All 62.06 45.49 52.50
Core-Arg 61.47 46.56 52.98
AM-* 66.19 39.93 49.81

Table 6: Semantic role labeling results on verbs
and nouns. Core-Arg means numbered argument.

Table 6 shows the detailed semantic parsing re-
sults obtained on the WSJ test set (Section 23)
of verbs and nouns respectively. The comparison
suggests that SRL on NomBank is much harder
than PropBank.
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Abstract

Our system for the CoNLL 2008 shared
task uses a set of individual parsers, a set of
stand-alone semantic role labellers, and a
joint system for parsing and semantic role
labelling, all blended together. The system
achieved a macro averaged labelled F1-
score of 79.79 (WSJ 80.92, Brown 70.49)
for the overall task. The labelled attach-
ment score for syntactic dependencies was
86.63 (WSJ 87.36, Brown 80.77) and the
labelled F1-score for semantic dependen-
cies was 72.94 (WSJ 74.47, Brown 60.18).

1 Introduction

This paper presents a system for the CoNLL 2008
shared task on joint learning of syntactic and se-
mantic dependencies (Surdeanu et al., 2008), com-
bining a two-step pipelined approach with a joint
approach.

In the pipelined system, eight different syntac-
tic parses were blended, yielding the input for two
variants of a semantic role labelling (SRL) system.
Furthermore, one of the syntactic parses was used
with an early version of the SRL system, to pro-
vide predicate predictions for a joint syntactic and
semantic parser. For the final submission, all nine
syntactic parses and all three semantic parses were
blended.

The system is outlined in Figure 1; the dashed
arrow indicates the potential for using the predi-

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

Process

Parse + SRL

Process8 MaltParsers

Parser Blender

Process2 Pipelined SRLs

SRL Blender

Joint Parser/SRL

Possible
Iteration

Figure 1: Overview of the submitted system.

cate prediction to improve the joint syntactic and
semantic system.

2 Dependency Parsing

The initial parsing system was created using Malt-
Parser (Nivre et al., 2007) by blending eight dif-
ferent parsers. To further advance the syntactic ac-
curacy, we added the syntactic structure predicted
by a joint system for syntactic and semantic depen-
dencies (see Section 3.4) in the blending process.

2.1 Parsers

The MaltParser is a dependency parser genera-
tor, with three parsing algorithms: Nivre’s arc
standard, Nivre’s arc eager (see Nivre (2004)
for a comparison between the two Nivre algo-
rithms), and Covington’s (Covington, 2001). Both
of Nivre’s algorithms assume projectivity, but
the MaltParser supports pseudo-projective parsing
(Nilsson et al., 2007), for projectivization and de-
projectivization.
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WSJ Brown
Best single parse 85.22% 78.37%
LAS weights 87.00% 80.60%
Learned weights 87.36% 80.77%

Table 1: Labelled attachment score on the two test
sets of the best single parse, blended with weights
set to PoS labelled attachment score (LAS) and
blended with learned weights.

Four parsing algorithms (the two Nivre al-
gorithms, and Covington’s projective and non-
projective version) were used, creating eight
parsers by varying the parsing direction, left-to-
right and right-to-left. The latter was achieved by
reversing the word order in a pre-processing step
and then restoring it in post-processing. For the fi-
nal system, feature models and training parameters
were adapted from Hall et al. (2007).

2.2 Blender

The single parses were blended following the pro-
cedure of Hall et al. (2007). The parses of each
sentence were combined into a weighted directed
graph. The Chu-Liu-Edmonds algorithm (Chu and
Liu, 1965; Edmonds, 1967) was then used to find
the maximum spanning tree (MST) of the graph,
which was considered the final parse of the sen-
tence. The weight of each graph edge was calcu-
lated as the sum of the weights of the correspond-
ing edges in each single parse tree.

We used a simple iterative weight updating algo-
rithm to learn the individual weights of each single
parser output and part-of-speech (PoS) using the
development set. To construct an initial MST, the
labelled attachment score was used. Each single
weight, corresponding to an edge of the hypoth-
esis tree, was then iteratively updated by slightly
increasing or decreasing the weight, depending on
whether it belonged to a correct or incorrect edge
as compared to the reference tree.

2.3 Results

The results are summarized in Table 1; the parse
with LAS weights and the best single parse
(Nivre’s arc eager algorithm with left-to-right pars-
ing direction) are also included for comparison.

3 Semantic Role Labelling

The SRL system is a pipeline with three chained
stages: predicate identification, argument identifi-
cation, and argument classification. Predicate and

argument identification are treated as binary clas-
sification problems. In a simple post-processing
predicate classification step, a predicted predicate
is assigned the most frequent sense from the train-
ing data. Argument classification is treated as a
multi-class learning problem, where the classes
correspond to the argument types.

3.1 Learning and Parameter Optimization
For learning and prediction we used the freely
available support vector machine (SVM) imple-
mentation LIBSVM (version 2.86) (Chang and
Lin, 2001). The choice of cost and kernel parame-
ter values will often significantly influence the per-
formance of the SVM classifier. We therefore im-
plemented a parameter optimizer based on the DI-
RECT optimization algorithm (Gablonsky, 2001).
It iteratively divides the search space into smaller
hyperrectangles, sampling the objective function
in the centroid of each hyperrectangle, and select-
ing those hyperrectangles that are potentially opti-
mal for further processing. The search space con-
sisted of the SVM parameters to optimize and the
objective function was the cross-validation accu-
racy reported by LIBSVM.

Tests performed during training for predicate
identification showed that the use of runtime opti-
mization of the SVM parameters for nonlinear ker-
nels yielded a higher average F1-score effective-
ness. Surprisingly, the best nonlinear kernels were
always outperformed by the linear kernel with de-
fault settings, which indicates that the data is ap-
proximately linearly separable.

3.2 Filtering and Data Set Splitting
To decrease the number of instances during train-
ing, all predicate and argument candidates with
PoS-tags that occur very infrequently in the
training set were filtered out. Some PoS-tags
were filtered out for all three stages, e.g. non-
alphanumerics, HYPH, SYM, and LS. This ap-
proach was effective, e.g. removing more than half
of the total number of instances for predicate pre-
diction.

To speed up the SVM training and allow for
parallelization, each data set was split into several
bins. However, there is a trade-off between speed
and accuracy. Performance consistently deterio-
rated when splitting into smaller bins. The final
system contained two variants, one with more bins
based on a combination of PoS-tags and lemma
frequency information, and one with fewer bins

249



based only on PoS-tag information. The three
learning tasks used different splits. In general, the
argument identification step was the most difficult
and therefore required a larger number of bins.

3.3 Features

We implemented a large number of features (over
50)1 for the SRL system. Many of them can be
found in the literature, starting from Gildea and
Jurafsky (2002) and onward. All features, except
bag-of-words, take nominal values, which are bi-
narized for the vectors used as input to the SVM
classifier. Low-frequency feature values (except
for Voice, Initial Letter, Number of Words, Rela-
tive Position, and the Distance features), below a
threshold of 20 occurrences, were given a default
value.

We distinguish between single node and node
pair features. The following single node features
were used for all three learning tasks and for both
the predicate and argument node:2

• Lemma, PoS, and Dependency relation (DepRel) for
the node itself, the parent, and the left and right sibling

• Initial Letter (upper-case/lower-case), Number of
Words, and Voice (based on simple heuristics, only for
the predicate node during argument classification)

• PoS Sequence and PoS bag-of-words (BoW) for the
node itself with children and for the parent with chil-
dren

• Lemma and PoS for the first and last child of the node

• Sequence and BoW of Lemma and PoS for content
words

• Sequence and BoW of PoS for the immediate children’s
content words

• Sequence and BoW of PoS for the parent’s content
words and for the parent’s immediate children

• Sequence and BoW of DepRels for the node itself, for
the immediate children, and for the parent’s immediate
children

All extractors of node pair features, where the pair
consists of the predicate and the argument node,
can be used both for argument identification and
argument classification. We used the following
node pair features:

• Relative Position (the argument is before/after the pred-
icate), Distance in Words, Middle Distance in DepRels

• PoS Full Path, PoS Middle Path, PoS Short Path

1Some features were discarded for the final system based
on Information Gain, calculated using Weka (Witten and
Frank, 2005).

2For all features using lemma or PoS the (predicted) split
value is used.

The full path feature contains the PoS-tag of the ar-
gument node, all dependency relations between the
argument node and the predicate node and finally
the PoS-tag of the predicate node. The middle path
goes to the lowest common ancestor for argument
and predicate (this is also the distance calculated
by Middle Distance in DepRels) and the short path
only contains the dependency relation of the argu-
ment and predicate nodes.

3.4 Joint Syntactic and Semantic Parsing

When considering one predicate at a time, SRL be-
comes a regular labelling problem. Given a pre-
dicted predicate, joint learning of syntactic and se-
mantic dependencies can be carried out by simulta-
neously assigning an argument label and a depen-
dency relation. This is possible because we know
a priori where to attach the argument, since there
is only one predicate candidate3. The MaltParser
system for English described in Hall et al. (2007)
was used as a baseline, and then optimized for this
new task, focusing on feature selection.

A large feature model was constructed, and
backward selection was carried out until no fur-
ther gain could be observed. The feature model of
MaltParser consists of a number of feature types,
each describing a starting point, a path through the
structure so far, and a column of the node arrived
at. The number of feature types was reduced from
37 to 35 based on the labelled F1-score.

As parsing is done at the same time as argu-
ment labelling, different syntactic structures risk
being assigned to the same sentence, depending
on which predicate is currently processed. This
means that several, possibly different, parses have
to be combined into one. In this experiment, the
head and the dependency label were concatenated,
and the most frequent one was used. In case of
a tie, the first one to appear was used. The like-
lihood of the chosen labelling was also used as a
confidence measure for the syntactic blender.

3.5 Blending and Post-Processing

Combining the output from several different sys-
tems has been shown to be beneficial (Koomen
et al., 2005). For the final submission, we com-
bined the output of two variants of the pipelined
SRL system, each using different data splits, with

3The version of the joint system used in the submission
was based on an early predicate prediction. More accurate
predicates would give a major improvement for the results.
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Test set Pred PoS Labelled F1 Unlabelled F1

WSJ All 82.90 90.90
NN* 81.12 86.39
VB* 85.52 96.49

Brown All 67.48 85.49
NN* 58.34 75.35
VB* 73.24 91.97

Table 2: Semantic predicate results on the test sets.

the SRL output of the joint system. A simple uni-
form weight majority vote heuristic was used, with
no combinatorial constraints on the selected argu-
ments. For each sentence, all predicates that were
identified by a majority of the systems were se-
lected. Then, for each selected predicate, its ar-
guments were picked by majority vote (ignoring
the systems not voting for the predicate). The best
single SRL system achieved a labelled F1-score
of 71.34 on the WSJ test set and 57.73 on the
Brown test set, compared to 74.47 and 60.18 for
the blended system.

As a final step, we filtered out all verbal and
nominal predicates not in PropBank or NomBank,
respectively, based on the predicted PoS-tag and
lemma. Each lexicon was expanded with lemmas
from the training set, due to predicted lemma er-
rors in the training data. This turned out to be a
successful strategy for the individual systems, but
slightly detrimental for the blended system.

3.6 Results

Semantic predicate results for WSJ and Brown can
be found in Table 2. Table 4 shows the results for
identification and classification of arguments.

4 Analysis and Conclusions

In general, the mixed and blended system performs
well on all tasks, rendering a sixth place in the
CoNLL 2008 shared task. The overall scores for
the submitted system can be seen in Table 3.

4.1 Parsing

For the blended parsing system, the labelled at-
tachment score drops from 87.36 for the WSJ test
set to 80.77 for the Brown test set, while the unla-
belled attachment score only drops from 89.88 to
86.28. This shows that the system is robust with
regards to the overall syntactic structure, even if
picking the correct label is more difficult for the
out-of-domain text.

The parser has difficulties finding the right head
for punctuation and symbols. Apart from errors re-

WSJ + Brown WSJ Brown
Syn + Sem 79.79 80.92 70.49
Syn 86.63 87.36 80.77
Sem 72.94 74.47 60.18

Table 3: Syntactic and semantic scores on the test
sets for the submitted system. The scores, from top
to bottom, are labelled macro F1, labelled attach-
ment score and labelled F1.

garding punctuation, most errors occur for IN and
TO. A majority of these problems are related to as-
signing the correct dependency. This is not surpris-
ing, since these are categories that focus on form
rather than function.

There is no significant difference in score for left
and right dependencies, presumably because of the
bi-directional parsing. However, the system over-
predicts dependencies to the root. This is mainly
due to the way MaltParser handles tokens not be-
ing attached anywhere during parsing. These to-
kens are by default assigned to the root.

4.2 SRL
Similarly to the parsing results, the blended SRL
system is less robust with respect to labelled F1-
score, dropping from 74.47 on the WSJ test set to
60.18 on the Brown test set. The corresponding
drop in unlabelled F1-score is from 82.90 to 75.49.

The simple method of picking the most com-
mon sense from the training data works quite well,
but the difference in domain makes it more diffi-
cult to find the correct sense for the Brown corpus.
In the future, a predicate classification module is
needed. For the WSJ corpus, assigning the most
common predicate sense works better with nomi-
nal than with verbal predicates, while verbal pred-
icates are handled better for the Brown corpus.

In general, verbal predicate-argument structures
are handled better than nominal ones, for both
test sets. This is not surprising, since nominal
predicate-argument structures tend to vary more in
their composition.

Since we do not use global constraints for the
argument labelling (looking at the whole argument
structure for each predicate), the system can out-
put the same argument label for a predicate several
times. For the WSJ test set, for instance, the ra-
tio of repeated argument labels is 5.4% in the sys-
tem output, compared to 0.3% in the gold standard.
However, since there are no confidence scores for
predictions it is difficult to handle this in the cur-
rent system.
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PPOSS(pred) + ARG WSJ F1 Brown F1

NN* + A0 61.42 38.99
NN* + A1 67.07 53.10
NN* + A2 57.02 26.19
NN* + A3 63.08 (16.67)
NN* + AM-ADV 4.65 (-)
NN* + AM-EXT 44.78 (40.00)
NN* + AM-LOC 49.45 (-)
NN* + AM-MNR 53.51 21.82
NN* + AM-NEG 79.37 (46.15)
NN* + AM-TMP 67.23 (25.00)
VB* + A0 81.72 73.58
VB* + A1 81.77 67.99
VB* + A2 60.91 50.67
VB* + A3 61.49 (14.28)
VB* + A4 77.84 (40.00)
VB* + AM-ADV 47.49 30.33
VB* + AM-CAU 55.12 (35.29)
VB* + AM-DIR 41.86 37.14
VB* + AM-DIS 71.91 37.04
VB* + AM-EXT 60.38 (-)
VB* + AM-LOC 55.69 37.50
VB* + AM-MNR 49.54 36.25
VB* + AM-MOD 94.85 82.42
VB* + AM-NEG 93.45 77.08
VB* + AM-PNC 50.00 (62.50)
VB* + AM-TMP 69.59 49.07
VB* + C-A1 70.76 55.32
VB* + R-A0 83.68 70.83
VB* + R-A1 68.87 51.43
VB* + R-AM-LOC 38.46 (25.00)
VB* + R-AM-TMP 56.82 (58.82)

Table 4: Semantic argument results on the two
test sets, showing arguments with more than 20
instances in the gold test set (fewer instances for
Brown are given in parentheses).
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Abstract 

This paper proposes a dependency tree-
based SRL system with proper pruning and 
extensive feature engineering. Official 
evaluation on the CoNLL 2008 shared task 
shows that our system achieves 76.19 in la-
beled macro F1 for the overall task, 84.56 
in labeled attachment score for syntactic 
dependencies, and 67.12 in labeled F1 for 
semantic dependencies on combined test 
set, using the standalone MaltParser. Be-
sides, this paper also presents our unofficial 
system by 1) applying a new effective 
pruning algorithm; 2) including additional 
features; and 3) adopting a better depend-
ency parser, MSTParser. Unofficial evalua-
tion on the shared task shows that our sys-
tem achieves 82.53 in labeled macro F1, 
86.39 in labeled attachment score, and 
78.64 in labeled F1, using MSTParser on 
combined test set. This suggests that proper 
pruning and extensive feature engineering 
contributes much in dependency tree-based 
SRL.  

1 Introduction 

Although CoNLL 2008 shared task mainly 
evaluates joint learning of syntactic and semantic 
parsing, we focus on dependency tree-based se-
mantic role labeling (SRL). SRL refers to label 
the semantic roles of predicates (either verbs or 
nouns) in a sentence. Most of previous SRL sys-
tems (Gildea and Jurafsky, 2002; Gildea and 
Palmer, 2002; Punyakanok et al., 2005; Pradhan 
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et al., 2004, 2005) work on constituent structure 
trees and has shown to achieve remarkable re-
sults. For example, Punyakanok et al. (2005) 
achieved the best performance in the CoNLL 
2005 shared task with 79.44 in F-measure on the 
WSJ test set and 77.92 on the combined test set 
(WSJ +Brown). 

With rapid development of dependency pars-
ing in the last few years, more and more re-
searchers turn to dependency tree-based SRL 
with hope to advance SRL from viewpoint of 
dependency parsing. Hacioglu (2004) pioneered 
this work by formulating SRL as a classification 
problem of mapping various dependency rela-
tions into semantic roles. Compared with previ-
ous researches on constituent structure tree-based 
SRL which adopts constituents as labeling units, 
dependency tree-based SRL adopts dependency 
relations as labeling units. Due to the difference 
between constituent structure trees and depend-
ency trees, their feature spaces are expected to be 
somewhat different. 

In the CoNLL 2008 shared task, we extend the 
framework by Hacioglu (2004) with maximum 
entropy as our classifier. For evaluation, we will 
mainly report our official SRL performance us-
ing MaltParser (Nivre and Nilsson, 2005). Be-
sides, we will also present our unofficial system 
by 1) applying a new effective pruning algorithm; 
2) including additional features; and 3) adopting 
a better dependency parser, MSTParser (McDon-
ald, 2005). 

In the remainder of this paper, we will briefly 
describe our system architecture, present various 
features used by our models and report the per-
formance on CoNLL 2008 shared task (both offi-
cial and unofficial). 
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2 System Description 

In CoNLL 2008 shared task, we adopt a standard 
three-stage process for SRL: pruning, argument 
identification and argument classification. To 
model the difference between verb and noun 
predicates, we carry out separate training and 
testing for verb and noun predicates respectively. 

In addition, we adopt OpenNLP maximum en-
tropy package 1  in argument identification and 
classification. 

2.1 Predicate identification 

Most of Previous SRL systems only consider 
given predicates. However, predicates are not 
given in CoNLL 2008 shared task and required 
to be determined automatically by the system. 
Therefore, the first step of the shared task is to 
identify the verb and noun predicates in a sen-
tence. Due to time limitation, a simple algorithm 
is developed to identify noun and verb predicates: 
1) For the WSJ corpus, we simply adopt the 

annotations provided by PropBank and 
NomBank. That is, we only consider the verb 
and noun predicates annotated in PropBank 
and NomBank respectively.  

2) For the Brown corpus, verb predicates are 
identified simply according to its POS tag 
and noun predicates are determined using a 
simple method that only those nouns which 
can also be used as verbs are identified. To 
achieve this goal, an English lexicon of about 
56K word is applied to identify noun predi-
cates.  

Evaluation on the test set of CoNLL 2008 
shared task shows that our simple predicate iden-
tification algorithm achieves the accuracies of 
98.6% and 92.7 in the WSJ corpus for verb and 
noun predicates respectively, with overall accu-
racy of 95.5%, while it achieves the accuracies of 
73.5% and 43.1% in the Brown corpus for verb 
and noun predicates respectively with overall 
accuracy of 61.8%. This means that the perform-
ance of predicate identification in the Brown 
corpus is much lower than the one in the WSJ 
corpus. This further suggests that much work is 
required to achieve reasonable predicate identifi-
cation performance in future work. 

2.2 Preprocessing 

Using the dependency relations returned by a 
dependency parser (either MaltParser or 

                                                 
1https://sourceforge.net/project/showfiles.php?group_id=59
61 

MSTParser in this paper), we can construct cor-
responding dependency tree for a given sentence. 
For example, Figure 1 shows the dependency 
tree of the sentence “Meanwhile, overall evi-
dence on the economy remains fairly clouded.”. 
Here, W is composed of two parts: word and its 
POS tag with “/” as a separator while R means a 
dependency relation and ARG represents a se-
mantic role. 

In Hacioglu (2004), a simple pruning algo-
rithm is applied to filter out unlikely dependency 
relation nodes in a dependency tree by only 
keeping the parent/children/grand-children of the 
predicate, the siblings of the predicates, and the 
children/grandchildren of the siblings. This paper 
extends the algorithm a little bit by including the 
nodes two more layers upward and downward 
with regard to the predicate’s parent, such as the 
predicate’s grandparent, the grandparent’s chil-
dren and the grandchildren’s children. For the 
example as shown in Figure 1, all the nodes in 
the entire tree are kept. Evaluation on the training 
set shows that our pruning algorithm signifi-
cantly reduces the training instances by 76.9%. 
This is at expanse of wrongly pruning 1.0% se-
mantic arguments for verb predicates. However, 
this figure increases to 43.5% for noun predicates 
due to our later observation that about half of 
semantic arguments of noun predicates distrib-
utes over ancestor nodes out of our consideration. 
This suggests that a specific pruning algorithm is 
necessary for noun predicates to include more 
ancestor nodes. 

2.3 Features 

Some of the features are borrowed from Ha-
cioglu (2004) with some additional features mo-
tivated by constituent structure tree-based SRL 
(Pradhan et al 2005; Xue and Palmer, 2004). In 
the following, we explain these features and give 
examples with regard to the dependency tree as 
shown in Figure 1. We take the word evidence in 
Figure 1 as the predicate and the node “on” as 
the node on focus.  

The following eight basic features are moti-
vated from constituent structure tree-based SRL:  
1)  Predicate: predicate lemma. (evidence) 
2) Predicate POS: POS of current predicate. 

(NN) 
3)  Predicate Voice: Whether the predicate (verb) 

is realized as an active or passive construc-
tion. If the predicate is a noun, the value is 
null and presented as “_”. ( _ ) 
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Figure 1. Example of a dependency tree augmented with semantic roles  

for the given predicate evidence. 
 

4)  Relation type: the dependency relation type 
of the current node. (NMOD) 

5) Path: the chain of relations from current rela-
tion node to the predicate. (NMOD->SBJ) 

6) Sub-categorization: The relation type of 
predicate and the left-to-right chain of the re-
lation label sequence of the predicate’s chil-
dren. (SBJ->NMOD-NMOD) 

7)  Head word: the head word in the relation, 
that is, the headword of the parent of the cur-
rent node. (evidence) 

8)  Position: the position of the headword of the 
current node with respect to the predicate po-
sition in the sentence, which can be before, 
after or equal. (equal) 

Besides, we also include following additional 
features borrowed from Hacioglu (2004): 
1) Family membership: the relationship be-

tween current node and the predicate node in 
the family tree, such as parent, child, sibling. 
(child) 

2)  Dependent word: the modifying word in the 
relation, that is, the word of current node. (on) 

3) POS of headword: the POS tag of the head-
word of current word. (NN) 

4)  POS of dependent word: the POS tag of cur-
rent word. (IN) 

5)  POS pattern of predicate's children: the 
left-to-right chain of the POS tag sequence of 
the predicate’s children. (JJ-IN) 

6)  Relation pattern of predicate’s children: 
the left-to-right chain of the relation label se-
quence of the predicate’s children. (NMOD-
NMOD) 

7)  POS pattern of predicate’s siblings: the 
left-to-right chain of the POS tag sequence of 
the predicate’s siblings. (RB-.-VBN-.) 

8)  Relation pattern of predicate’s siblings: the 
left-to-right chain of the relation label se-
quence of the predicate’s siblings. (TMP-P-
PRD-P) 

3 System Performance 

All  the training data are included in our system, 
which costs 70 minutes in training and 5 seconds 
on testing on a PC platform with a Pentium D 
3.0G CPU and 2G Memory. In particular, the 
argument identification stage filters out those 
nodes whose probabilities of not being semantic 
arguments are more than 0.98 for verb and noun 
predicates. 

   Labeled 
Macro F1 

Labeled 
F1 

LAS 

Test WSJ 78.39 70.41 85.50
Test Brown 59.89 42.67 77.06
Test WSJ+Brown 76.19 67.12 84.56

Table 1: Official performance using MaltParser 
(with the SRL model trained and tested on the 
automatic output of MaltParser) 
 

All the performance is returned on the test set 
using the CoNLL 2008 evaluation script 
eval08.pl provided by the organizers. Table 1 
shows the official performance using MaltParser 
(with the SRL model trained and tested on the 
automatic output of MaltParser provided by the 
task organizers) as the dependency parser. It 
shows that our system performs well on the WSJ 
corpus and badly on the Brown corpus largely 
due to bad performance on predicate identifica-
tion.  

4 Post-evaluation System 

To gain more insights into dependency tree-
based SRL, we improve the system with a new 
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pruning algorithm and additional features, after 
submitting our official results. 

4.1 Effective pruning 

Our new pruning algorithm is motivated by the 
one proposed by Xue and Palmer (2004), which  
only keeps those siblings to a node on the path 
from current predicate to the root are included, 
for constituent structure tree-based SRL. Our 
pruning algorithm further cuts off the nodes 
which are not related with the predicate. Besides, 
it filters out those nodes which are punctuations 
or with “symbol” dependency relations. Evalua-
tion on the Brown corpus shows that our pruning 
algorithm significantly reduces the training data 
by 75.5% at the expense of wrongly filtering out 
0.7% and 0.5% semantic arguments for verb and 
noun predicates respectively. This suggests that 
our new pruning algorithm significantly performs 
better than the old one in our official system, es-
pecially for the identification of noun predicates. 

Furthermore, the argument identification stage 
filters out those nodes whose probabilities of not 
being semantic arguments are more than 0.90 
and 0.85 for verb and noun predicates respec-
tively, since we that our original threshold of 
0.98 in the official system is too reserved. 

Finally, those rarely-occurred semantic roles 
which occur less than 200 in the training set are 
filtered out and thus not considered in our system, 
such as A5, AA, C-A0, C-AM-ADV, R-A2 and SU. 

4.2 Extensive Feature Engineering 

Motivated by constituent structure tree-based 
SRL, two more combined features are considered 
in our post-evaluation system:  
1) Predicate + Headword: (evidence + remain) 
2) Headword + Relation: (remain + Root) 

In order to better evaluate the contribution of 
various additional feature, we build a baseline 
system using hand-corrected dependency rela-
tions and the eight basic features, motivated by 
constituent structure tree-based SRL, as de-
scribed in Section 2.3. Table 2 shows the effect 
of various additional features by adding one in-
dividually to the baseline system. It shows that 
the feature of dependent word is most useful, 
which improves the labeled F1 score from 
81.38% to 84.84%. It also shows that the two 
features about predicate’s sibling deteriorate the 
performance. Therefore, we delete these two fea-
tures from remaining experiments. Although the 
combined feature of “predicate+head word” is 
useful in constituent structure tree-based SRL, it 

slightly decrease the performance in dependency 
tree-based SRL. For convenience, we include it 
in our system. 
 P R F1 
Baseline 84.31 78.64 81.38

+ Family membership 84.70 78.87 81.68

+ Dependent word  86.74 83.01 84.84

+ POS of headword 84.44 78.55 81.38

+ POS of dependent 
word 

84.42 78.33 81.47

+ POS pattern of 
predicate's children 

84.35 78.73 81.47

+ Relation pattern of 
predicate’s children 

84.75 78.97 81.76

+ Relation pattern of 
predicate’s siblings 

84.29 78.52 81.30

+ POS pattern of 
predicate’s siblings 

83.75 78.32 80.95

+ Predicate  +  Head-
word 

83.30 78.94 81.30

+Headword + Relation 84.66 79.37 81.93

Table 2: Effects of various additional features 

4.3 Best performance 

Table 3 shows our system performance after ap-
plying above effective pruning strategy and addi-
tional features using the default MaltParser. Ta-
ble 3 also reports our performance using the 
state-of-the-art MSTParser. To show the impact 
of predicate identification in dependency tree-
based SRL, Table 4 report the performance on 
gold predicate identification, i.e. only using an-
notated predicates in the corpora. 

Comparison of Table 1 and Table 3 using the 
MaltParser shows that our new extension with 
effective pruning and extensive engineering sig-
nificantly improves the performance. It also 
shows that MSTParser-based SRL performs 
slightly better than MaltParser-based one, much 
less than the performance difference on depend-
ency parsing between them. This suggests that 
such difference between these two state-of-the-
art dependency parsers does not much affect cor-
responding SRL systems. This is also confirmed 
by the results in Table 4. 

Comparison of Table 3 and Table 4 in labeled 
F1 on the Brown test data shows that the system 
with gold predicate identification significantly 
outperforms the one with automatic predicate 
identification using our simple algorithm by 
about 22 in labeled F1. This suggests that the 
performance of predicate identification is critical 
to SRL.  
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MSTParser MaltParser  

Labeled Macro 
F1 

Labeled F1 LAS Labeled Macro 
F1 

Labeled F1 LAS 

Test WSJ 84.50 81.95 87.01 83.69 81.82 85.50
Test Brown 67.61 53.69 81.46 65.09 53.03 77.06
Test 
WSJ+Brown 82.53 78.64 86.39 81.52 78.45 84.56

Table 3: Unofficial performance using MSTParser and MaltParser 
 with predicates automatically identified 

 
MSTParser MaltParser  

Labeled Macro 
F1 

Labeled F1 LAS Labeled Macro 
F1 

Labeled F1 LAS 

Test WSJ 84.75 82.45 87.01 84.04 82.52 85.50
Test Brown 78.31 75.07 81.46 75.72 74.28 77.06
Test 
WSJ+Brown 84.05 81.66 86.39 83.13 81.64 84.56

Table 4: Unofficial performance using MSTParser and MaltParser with gold predicate identification 
 

5 Conclusions 

This paper presents a dependency tree-based 
SRL system by proper pruning and extensive 
feature engineering. Evaluation on the CoNLL 
2008 shared task shows that proper pruning and 
extensive feature engineering contributes much. 
It also shows that SRL heavily depends on the 
performance of predicate identification. 

In future work, we will explore better ways in 
predicate identification. In addition, we will ex-
plore more on dependency parsing and further 
joint learning on syntactic and semantic parsing. 
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Abstract

This paper describes the DeSRL sys-
tem, a joined effort of Yahoo! Research
Barcelona and Università di Pisa for the
CoNLL-2008 Shared Task (Surdeanu et
al., 2008). The system is characterized by
an efficient pipeline of linear complexity
components, each carrying out a different
sub-task. Classifier errors and ambigui-
ties are addressed with several strategies:
revision models, voting, and reranking.
The system participated in the closed chal-
lenge ranking third in the complete prob-
lem evaluation with the following scores:
82.06 labeled macro F1 for the overall task,
86.6 labeled attachment for syntactic de-
pendencies, and 77.5 labeled F1 for se-
mantic dependencies.

1 System description

DeSRL is implemented as a sequence of compo-
nents of linear complexity relative to the sentence
length. We decompose the problem into three sub-
tasks: parsing, predicate identification and clas-
sification (PIC), and argument identification and
classification (AIC). We address each of these sub-
tasks with separate components without backward
feedback between sub-tasks. However, the use of
multiple parsers at the beginning of the process,
and re-ranking at the end, contribute beneficial
stochastic aspects to the system. Figure 1 summa-
rizes the system architecture. We detail the parsing

∗All authors contributed equally to this work.
∗ c© 2008. Licensed under the Creative Commons

Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

sub-task in Section 2 and the semantic sub-tasks
(PIC and AIC) in Section 3.

2 Parsing

In the parsing sub-task we use a combination strat-
egy on top of three individual parsing models,
two developed in-house –DeSRleft−to−right and
DeSRrevisionright−to−left– and a third using an off-the-
shelf parser, Malt 1.0.01.

2.1 DeSRleft−to−right
This model is a version of DeSR (Attardi, 2006),
a deterministic classifier-based Shift/Reduce
parser. The parser processes input tokens advanc-
ing on the input from left to right with Shift ac-
tions and accumulates processed tokens on a stack
with Reduce actions. The parser has been adapted
for this year’s shared task and extended with addi-
tional classifiers, e.g., Multi Layer Perceptron and
multiple SVMs.2

The parser uses the following features:
1. SPLIT LEMMA: from tokens −1, 0, 1, prev(0),
leftChild(0), rightChild(0)

2. PPOSS: from −2, −1, 0, 1, 2, 3, prev(0), next(−1),
leftChild(−1), leftChild(0), rightChild(−1),
rightChild(0)

3. DEPREL: from leftChild(−1), leftChild(0),
rightChild(−1)

4. HDIST: from −1, 0

In the above list negative numbers refer to tokens
on the stack, positive numbers to tokens in the in-
put queue. We use the following path operators:
leftChild(x) refers to the leftmost child of token
x, rightChild(x) to the rightmost child of token
x, prev(x) and next(x) respectively to the token
preceding or following x in the sentence.

1http://w3.msi.vxu.se/∼nivre/research/
MaltParser.html

2This parser is available for download at: http://
sourceforge.net/projects/desr/.
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revision OutputInput

Figure 1: DeSRL system architecture.

The first three types of features are directly ex-
tracted from the attributes of tokens present in the
training corpus. The fourth feature represents the
distance of the token to the head of the noun phrase
to which it belongs, or “O” if it does not belong to
a noun phrase. This distance is computed with a
simple heuristic, based on a pattern of POS tags.
Attardi and Dell’Orletta (2008) have shown that
this feature improves the accuracy of a shift/reduce
dependency parser by providing approximate in-
formation about NP chunks in the sentence. In fact
no token besides the head of a noun phrase can
have a head referring to a token outside the noun
phrase. Hence the parser can learn to avoid creat-
ing such links. The addition of this feature yields
an increase of 0.80% in Labeled Accuracy on the
development set.

2.2 Revision Parser: DeSRrevision
right−to−left

Our second individual parsing model implements
an alternative to the method of revising parse trees
of Attardi and Ciaramita (2007) (see also (Hall &
Novak, 2005)). The original approach consisted in
training a classifier to revise the errors of a base-
line parser. The approach assumed that only lo-
cal revisions to the parse tree would be needed,
since the dependency parser mostly gets individual
phrases correctly. The experiments showed that in-
deed most of the corrections can be expressed by
a small set of (about 20) complex movement rules.
Furthermore, there was evidence that one could get
higher improvements from the tree revision classi-
fier if this was trained on the output of a lower ac-
curacy parser. The reason for this is that the num-
ber of errors is higher and this provides a larger
amount of training data.

For the CoNLL 2008 shared task, we refined this
idea, but instead of using an independent classi-
fier for the revision, we use the parser itself. The
second parser is trained on the original corpus ex-
tended with dependency information predicted by
a lower accuracy parser. To obtain the base parser
we use DeSR trained on half the training corpus
using a Maximum Entropy (ME) classifier. The

ME classifier is considerably faster to train but has
a lower accuracy: this model achieved an LAS of
76.49% on the development set. Using the out-
put of the ME-based parser we extend the original
corpus with four additional columns: the lemma
of the predicted head (PHLEMMA), the PPOSS of
the predicted head (PHPPOSS), the dependency of
the predicted head (PHDEPREL), and the indica-
tion of whether a token appears before or after its
predicted head. A second parser is trained on this
corpus, scanning sentences from right to left and
using the following additional features:

1. PHPPOSS: from −1, 0
2. PHLEMMA: from −1, 0
3. PHDEPREL: from −1, 0
4. PHHDIST: from 0

Performing parsing in reverse order helps reduce
several of the errors that a deterministic parser
makes when dependency links span a long distance
in the input sequence. Experiments on the CoNLL
2007 corpora (Dell’Orletta, 2008) have shown that
this indeed occurs, especially for distances in the
range from 6 to 23. In particular, the most signifi-
cant improvements are for dependencies with label
COORD (+ 6%) and P (+ 8%).

The revision parser achieves an LAS of 85.81%
on the development set. Note that the extra fea-
tures from the forward parser are indeed use-
ful, since a simple backward parser only achieves
82.56% LAS on the development set.

2.3 Parser Combination
The final step consists in combining the out-
puts of the three individual models a simple
voting scheme: for each token we use major-
ity voting to select its head and dependency la-
bel. In case of ties, we chose the dependency
predicted by our overall best individual model
(DeSRrevisionright−to−left).

3

Note that typical approaches to parser
combination combine the outputs of inde-
pendent parsers, while in our case one base
model (DeSRrevisionright−to−left) is trained with

3We tried several voting strategies but none performed bet-
ter.
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information predicted by another individual
model(DeSRleft−to−right). To the best of our
knowledge, combining individual parsing models
that are inter-dependent is novel.

3 Semantic Role Labeling

We implement the Semantic Role Labeling (SRL)
problem using three components: PIC, AIC, and
reranking of predicted argument frames.

3.1 Predicate Identification and Classification
The PIC component carries out the identification
of predicates, as well as their partial disambigua-
tion, and it is implemented as a multiclass average
Perceptron classifier (Crammer & Singer, 2003).
For each token i we extract the following features
(〈, 〉 stands for token combination):

1. SPLIT LEMMA: from 〈i−1, i〉, i−1, i, i+1, 〈i, i+1〉
2. SPLIT FORM: from i− 2, i− 1, i, i+ 1.i+ 2

3. PPOSS: from 〈i−2, i−1〉, 〈i−1, i〉, i−1, i, i+1, 〈i, i+
1〉, 〈i+ 1, i+ 2〉

4. WORD SHAPE: e.g., “Xx*” for “Brazil”, from 〈i−2, i−
1, i〉, 〈i− 1, i〉, i− 1, i, i+ 1, 〈i, i+ 1〉, 〈i, i+ 1, i+ 2〉

5. Number of children of node i
6. For each children j of i: split lemmaj , ppossj ,

depreli,j , 〈split lemmai, split lemmaj〉, 〈ppossi,
ppossj〉

7. Difference of positions: j − i, for each child j of i.

The PIC component uses one single classifier map-
ping tokens to one of 8 classes corresponding to
the rolesets suffixes 1 to 6, the 6 most frequent
types, plus a class grouping all other rolesets, and
a class for non predicates; i.e., Y = {0, 1, 2, .., 7}.
Each token classified as y7 is mapped by default to
the first sense y1. This approach is capable of dis-
tinguishing between different predicates based on
features 1 and 2, but it can also exploit information
that is shared between predicates due to similar
frame structures. The latter property is intuitively
useful especially for low-frequency predicates.

The classifier has an accuracy in the multiclass
problem, considering also the mistakes due to the
non-predicted classes, of 96.2%, and an F-score of
92.7% with respect to the binary predicate iden-
tification problem. To extract features from trees
(5-7) we use our parser’s output on training, devel-
opment and evaluation data.

3.2 Argument Identification and
Classification

Algorithm 1 describes our AIC framework. The al-
gorithm receives as input a sentence S where pred-
icates have been identified and classified using the

Algorithm 1: AIC
input : sentence S; inference strategy I; model w
foreach predicate p in S do

set frame Fin = {}
foreach token i in S do

if validCandidate(i) then
ŷ = arg maxy∈Y score(Φ(p, i),w, y)
if ŷ 6= nil then

add argument (i,ŷ) to Fin

Fout = inference(Fin, I)
output: set of all frames Fout

PIC component, an inference strategy I is used
to guarantee that the generated best frames satisfy
the domain constraints, plus an AIC classification
model w. We learn w using a multiclass Percep-
tron, using as output label setY all argument labels
that appear more than 10 times in training plus a nil
label assigned to all other tokens.

During both training and evaluation we se-
lect only the candidate tokens that pass the
validCandidate filter. This function requires that
the length of the dependency path between pred-
icate and candidate argument be less than 6, the
length of the dependency path between argument
and the first common ancestor be less than 3, and
the length of the dependency path between the
predicate and the first common ancestor be less
than 5. This heuristic covers over 98% of the ar-
guments in training.

In the worst case, Algorithm 1 has quadratic
complexity in the sentence size. But, on average,
the algorithm has linear time complexity because
the number of predicates per sentence is small (av-
eraging less than five for sentences of 25 words).

The function Φ generates the feature vector for
a given predicate-argument tuple. Φ extracts the
following features from a given tuple of a predicate
p and argument a:

1. token(a)4, token(modifier of a) if a is the
head of a prepositional phrase, and token(p).

2. Patterns of PPOSS tags and DEPREL labels
for: (a) the predicate children, (b) the children
of the predicate ancestor across VC and IM
dependencies, and (c) the siblings of the same
ancestor. In all paths we mark the position of
p, a and any of their ancestors.

3. The dependency path between p and a. We
add three versions of this feature: just the

4token extracts the split lemma, split form, and PPOSS
tag of a given token.
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path, and the path prefixed with p and a’s
PPOSS tags or split lemmas.

4. Length of the dependency path.
5. Distance in tokens between p and a.
6. Position of a relative to p: before or after.
We implemented two inference strategies:

greedy and reranking. The greedy strategy sorts
all arguments in a frame Fin in descending order
of their scores and iteratively adds each argument
to the output frame Fout only if it respects the do-
main constraints with the other arguments already
selected. The only domain constraint we use is that
core arguments cannot repeat.

3.3 Reranking of Argument Frames
The reranking inference strategy adapts the ap-
proach of Toutanova et al. (2005) to the depen-
dency representation with notable changes in can-
didate selection, feature set, and learning model.
For candidate selection we modify Algorithm 1:
instead of storing only ŷ for each argument in Fin

we store the top k best labels. Then, from the ar-
guments in Fin, we generate the top k frames with
the highest score, where the score of a frame is the
product of all its argument probabilities, computed
as the softmax function on the output of the Per-
ceptron. In this set of candidate frames we mark
the frame with the highest F1 score as the positive
example and all others as negative examples.

From each frame we extract these features:
1. Position of the frame in the set ordered by

frame scores. Hence, smaller positions in-
dicate candidate frames that the local model
considered better (Marquez et al., 2007).

2. The complete sequence of arguments and
predicate for this frame (Toutanova, 2005).
We add four variants of this feature: just the
sequence and sequence expanded with: (a)
predicate voice, (b) predicate split lemma,
and (c) combination of voice and split lemma.

3. The complete sequence of arguments and
predicate for this frame combined with their
PPOSS tags. Same as above, we add four
variants of this feature.

4. Overlap with the PropBank or NomBank
frame for the same predicate lemma and
sense. We add the precision, recall, and F1

score of the overlap as features (Marquez et
al., 2007).

5. For each frame argument, we add the features
from the local AIC model prefixed with the

WSJ + Brown WSJ Brown
Labeled macro F1 82.69 83.83 73.51

LAS 87.37 88.21 80.60
Labeled F1 78.00 79.43 66.41

Table 1: DeSRL results in the closed challenge,
for the overall task, syntactic dependencies, and
semantic dependencies.

Devel WSJ Brown
DeSRleft−to−right 85.61 86.54 79.74
DeSRrevisionright−to−left 85.81 86.19 78.91
MaltParser 84.10 85.50 77.06
Voting 87.37 88.21 80.60

Table 2: LAS of individual and combined parsers.

corresponding argument label in the current
frame (Toutanova, 2005).

The reranking classifier is implemented as multi-
layer perceptron with one hidden layer of 5 units,
trained to solve a regression problem with a least
square criterion function. Previously we experi-
mented, unsuccessfully, with a multiclass Percep-
tron and a ranking Perceptron. The limited number
of hidden units guarantees a small computational
overhead with respect to a linear model.

4 Results and Analysis

Table 1 shows the overall results of our system
in the closed challenge. Note that these scores
are higher than those of our submitted run mainly
due to improved parsing models (discussed be-
low) whose training ended after the deadline. The
score of the submitted system is the third best
for the complete task. The system throughput in
our best configuration is 28 words/second, or 30
words/second without reranking. In exploratory
experiments on feature selection for the re-ranking
model we found that several features classes do
not contribute anything and could be filtered out
speeding up significantly this last SRL step. Note
however that currently over 90% of the runtime is
occupied by the syntactic parsers’ SVM classifiers.
We estimate that we can increase throughput one
order of magnitude simply by switching to a faster,
multiclass classifier in parsing.

4.1 Analysis of Parsing
Table 2 lists the labeled attachment scores (LAS)
achieved by each parser and by their combination
on the development set, the WSJ and Brown test
sets. The results are improved with respect to the
official run, by using a revision parser trained on
the output of the lower accuracy ME parser, as

261



Labeled F1 Unlabeled F1

Syntax PIC Inference Devel WSJ Brown Devel WSJ Brown
gold gold greedy 88.95 90.21 84.95 93.71 94.34 93.29

predicted gold greedy 85.96 86.70 78.68 90.60 90.98 88.02
predicted predicted greedy 79.88 79.27 66.41 86.07 85.33 80.14
predicted predicted reranking 80.13 79.43 66.41 86.33 85.62 80.41

Table 3: Scores of the SRL component under various configurations.

Devel WSJ Brown
Unlabeled F1 92.69 90.88 86.96

Labeled F1 (PIC) 87.29 84.87 71.99
Labeled F1 (Sense 1) 79.62 78.94 70.11

Table 4: Scores of the PIC component.

mentioned earlier. These results show that vot-
ing helps significantly (+1.56% over the best single
parser) even though inter-dependent models were
used. However, our simple voting scheme does
not guarantee that a well-formed tree is generated,
leaving room for further improvements; e.g., as
in (Sagae & Lavie, 2006).

4.2 Analysis of SRL

Table 3 shows the labeled and unlabeled F1 scores
of our SRL component as we move from gold to
predicted information for syntax and PIC. For the
shared task setting –predicted syntax and predicted
PIC– we show results for the two inference strate-
gies implemented: greedy and reranking. The first
line in the table indicates that the performance of
the SRL component when using gold syntax and
gold PIC is good: the labeled F1 is 90 points for the
in-domain corpus and approximately 85 points for
the out-of-domain corpus. Argument classification
suffers the most on out-of-domain input: there is
a difference of 5 points between the labeled scores
on WSJ and Brown, even though the correspond-
ing unlabeled scores are comparable.

The second line in the table replicates the setup
of the 2005 CoNLL shared task: predicted syntax
but gold PIC. This yields a moderate drop of 3 la-
beled F1 points on in-domain data and a larger drop
of 6 points for out-of-domain data.

We see larger drops when switching to predicted
PIC (line 3): 5-6 labeled F1 points in domain and
12 points out of domain. This drop is caused by the
PIC component, e.g., if a predicate is missed the
whole frame is lost. Table 4 lists the scores of our
PIC component, which we compare with a base-
line system that assigns sense 1 to all identified
predicates. The table indicates that, even though
our disambiguation component improves signifi-
cantly over the baseline, it performs poorly, espe-

cially on out-of-domain data. Same as SRL, the
classification sub-task suffers the most out of do-
main (there is a difference of 15 points between
unlabeled and labeled F1 scores on Brown).

Finally, the reranking inference strategy yields
only modest improvements (last line in Table 3).
We attribute these results to the fact that, unlike
Toutanova et al. (2005), we use only one tree to
generate frame candidates, hence the variation in
the candidate frames is small. Considering that the
processing overhead of reranking is already large
(it quadruples the runtime of our AIC component),
we do not consider reranking a practical extension
to a SRL system when processing speed is a dom-
inant requirement.
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Abstract 

This paper proposes a novel method to 
analyze syntactic dependencies and label 
semantic dependencies around both the 
verbal predicates and the nouns. In this 
method, a probabilistic model is designed 
to obtain a global optimal result. More-
over, a predicate identification model and 
a disambiguation model are proposed to 
label predicates and their senses. The ex-
perimental results obtained on the wsj 
and brown test sets show that our system 
obtains 77% of labeled macro F1 score 
for the whole task, 84.47% of labeled at-
tachment score for syntactic dependency 
task, and 69.45% of labeled F1 score for 
semantic dependency task. 

1 Introduction 

There are two difficulties in the CoNLL 2008 
shared task. One is how to label semantic role on 
a dependency-based representation and how to 
label verbal predicates and nouns. The other one 
is how to combine the syntactic task with the 
semantic task together. 

On the basis of statistical analysis of labeling 
results, we optimize the traditional approaches of 
syntactic dependency parsing and semantic role 
labeling. Moreover, we design a predicate 
identification model and a disambiguation model, 
which will be described in section 2.3, for 
labeling predicates and their senses. In the 
disambiguation model, an exhaustion method is 
used to find the best sense which is 
corresponding to a frame of predicate. In order to 
obtain a global optimization result for every 
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sentence, a probabilistic model is designed to 
combine all subtasks. 

The rest of this paper is organized as follows:   
our system is described in section 2; and section 
3 reports our results on development and test sets; 
at last we conclude the paper in section 4. 

2 A Probabilistic Model for Syntactic 
and Semantic Dependency Labeling 

Compared with previous tasks, this shared task is 
more complex. It aims to merge both syntactic 
and semantic dependencies under a unified 
representation. Obviously, it can be divided into 
two subtasks: syntactic dependency parsing and 
semantic dependency labeling. For the second 
subtask, predicates and their senses should be 
labeled before semantic arguments for predicates 
are labeled. Since many predicates have only one 
sense, it is inefficient to build a multi-label 
classifier to classify each predicate. When a 
classification approach is used, it is mandatory to 
consider multiple senses for those predicates 
with only one or two senses. To prevent 
assigning irrelevant senses to predicates, we do 
not adopt classification approach. Instead, two 
more subtasks, i.e., predicate identification and 
predicate sense labeling, are introduced in this 
paper. The predicate sense labeling and semantic 
dependency labeling are performed together with 
a disambiguation model. 

To ensure that we can get an optimal overall 
syntactic and semantic dependency results 
through integrating the above steps, a probability 
model is proposed. The probabilistic model is 
described in Equation (1), where the score P  
of a sentence labeling is the combined 
conditional probability of its all subtasks,  is 
the probability of syntactic dependency parsing, 

 is the probability of predicate 

identification,  is the probability of 

sent

synP

predP
)(iPsem
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semantic dependency labeling for the ith-
predicate, and n is the number of predicates. 

∏
=

=
n

1i
sempredsynsent )(** iPPPP            (1) 

For each sentence, its top-N candidates using 
syntactic dependency parsing are obtained. Then 
for each candidate, predicates and semantic ar-
guments are labeled. At last, the best one with 
the highest  is chosen as final labeling result. sentP

2.1 Syntactic Dependency Parsing 

There are several approaches for syntactic de-
pendency parsing, as demonstrated in the CoNLL 
2007 shared task. A commonly used LR algo-
rithm is applied to this task. Unlike the best-first 
probabilistic shift-reduce LR algorithm used by 
(Kenji and Jun, 2007), here a combined probabil-
ity of all parsing steps is used to evaluate parsing 
results, and the best one is obtained as the final 
result. The probability of syntactic dependency 
parsing is defined in Equation (2). 

∏=
j

actsyn iPP )(
=i 1

act

                      (2)  

where  is the probability of every LR ac-
tion act at step i, and j is the number of all steps. 

)(iP

As the search space of LR parser is exponen-
tial growth with the word number, the maximum 
size of candidate states is limited to 50. 

The features that we use are similar to (Kenji 
and Jun, 2007). Hence we do not describe them 
in this paper. 

2.2 Predicate Identification 

In this subtask, a MaxEnt model is adopted for 
classification. The features we used are as follow: 

• Base info: FORM, LEMMA, POS (GPOS 
if available, or is PPOS), SPLIT_FORM, 
SPLIT_LEMMA, PPOSS. 

• Base syntactic dependency info:  
o Number of modifiers; 
o Number of modifiers of the previous word; 
o Number of modifiers of the next word; 
o PPOSS of left-most modifier; 
o Deprel of left-most modifier; 
o PPOSS of right-most modifier; 
o Deprel of right-most modifier. 

• Modifiers info 
o POS list of all modifiers: if GPOS is avail-

able, POS is GPOS. Otherwise it is PPOS. 
o DEPREL list of all modifiers; 
o SPLIT_LEMMA list of all modifiers; 
o PPOSS list of all modifiers. 

• Head’s base info 

• Head’s base syntactic dependency info 
• Head’s modifiers info 
• Deprel:  the syntactic dependency relation 

to head. 
• Word stem 
• Stem of right-most modifier 
• PPOSS of right-most modifier 
• Suffix: The suffix of the word. We use the 

last 3 characters as this feature. 
• Voice: Check if the word is a verb and is 

passive voice. 
• Previous word info: Check if the previous 

word is a predicate. 
• Pos path to ROOT: PPOSS list from 

word to ROOT through the syntactic de-
pendency path. 

• Deprel path to ROOT: DEPREL list from 
word to ROOT through the syntactic de-
pendency path. 

Through statistical analysis, we find that 
PPOSS of nearly all predicates are in a particular 
category which contains NN, NNP, NNS, VB, 
VBD, VBG, VBN, VBP, VBZ, and JJ. Hence we 
ignore the words without these PPOSS to reduce 
the number of samples and speed up the process 
of training and recognition. Meanwhile, we also 
ignore the words having no relational frame in 
PropBank or NomBank. 

2.3 Predicate Sense Labeling 

In this subtask, we label the sense of each predi-
cate. Different predicates are usually unrelated 
even if they have the same sense number, which 
makes us hardly use a classifier to label them. 
Hence, we design a disambiguation model to 
solve this problem.  

Firstly, for each word which has been identi-
fied to be a predicate, we find out all of its prob-
able sense forms (corresponding to the field of 
“PRED”). According to statistical analysis, only 
about 0.05% PREDs are not described in 
PropBank frames or NomBank frames. So it is 
reasonable to assume that all PREDs could be 
found in PropBank or NomBank. Moreover, we 
find that about 96% PREDs are formed as 
“SPLIT_LEMMA + .sense” or “LEMMA 
+ .sense”. As a result, when a word is identified 
to be a predicate, we use its LEMMA and 
SPLIT_LEMMA to find all possible PREDs 
from PropBank and NomBank. Furthermore, if 
some special words are unsuitable for these two 
forms, we should convert them into their original 
forms first and then find their possible PREDs. 
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For the rest anomalistic words, we build a map-
ping dictionary from training data. 

Secondly, for each possible sense form, we la-
bel semantic argument for all words. If a word is 
not a semantic argument, it would be labeled as 
“_”. The score of the current possible sense form 
is calculated as the combination of all probability 
of each labeling. More details about semantic 
dependency labeling will be described in section 
2.4. 

Thirdly, we choose the sense form and its se-
mantic arguments with the highest score. The 
above steps will be repeated until all predicates 
have definite senses. 

2.4 Semantic Dependency Labeling 

Unlike CoNLL-2005 shared task, this shared 
task performing Semantic Role Labeling on a 
dependency-based representation (DSRL). It is a 
novel way for SRL and the traditional SRL 
methods can not directly be used here. 
Constituent-based SRL model needs to find out 
all probable constituents, while DSRL only 
considers the semantic dependency between 
word and predicate. Moreover, DSRL uses 
syntactic dependency parsing tree instead of 
traditional full syntactic parsing tree. As a result, 
the traditional features need to be amended 
accordingly. The features we used are as follows: 

• Deprel 
• Word stem 
• POS: if GPOS is available, POS is GPOS. 

Otherwise it is PPOS. 
• Stem of right-most modifier 
• PPOSS of right-most modifier 
• Predicate: the FORM of predicate. 
• PPOSS of predicate 
• Suffix of predicate 
• Voice: voice of predicate 
• Position: The position of the word with re-

spect to its predicate. It has three values, 
“before”, “is” and “after”, for the predicate.  

• Deprel path to predicate: DEPREL list 
from word to its predicate through the syn-
tactic dependency path. 

• Length of syntactic dependency path to 
predicate 

• Sense: the sense of predicate 
Moreover, we try to find more features with 

frames. Since the PropBank and NomBank are 
available and all predicates with senses are avail-
able for this subtask. Statistical analysis shows 
that nearly all core semantic arguments (AA, A0, 
A1, A2 …) of a predicate are described in the 

frame of predicate. But it is incorrect contrarily. 
Based on these observations, we design features 
the following features for five frequently used 
core arguments: 

• A0 is in predicate’s frame: Have two 
values: “YES” and “NO”. 

• A1 is in predicate’s frame 
• A2 is in predicate’s frame 
• A3 is in predicate’s frame 
• A4 is in predicate’s frame 

Because the other core semantic arguments are 
rare, we do not need to design features for them. 
With this method, the labeling efficiency is im-
proved while the precision almost keeps un-
changed. 

As the frame information has been used in fea-
tures, we do not add any valency check on the 
labeling result. 

3 Experiments and Analysis 

3.1 Data and Environment 

The data provided for this Closed Challenge of 
shared task is part of TreeBank and Brown cor-
pus. Training set covers sections 02-21 of Tree-
Bank. Development set covers section 24 of 
TreeBank. Wsj test set covers section 23 of 
TreeBank. Brown test set covers sections ck01, 
ck02, and ck03 of the Brown corpus. 

The maximum entropy classier (Berger et al, 
1996) used is Le Zhang's Maximum Entropy 
Modeling Toolkit and the L-BFGS parameter 
estimation algorithm with gaussian prior smooth-
ing (Chen and Rosenfeld, 1999). The gaussian 
prior is set to 2 and the iteration count is set to 
500. All results we list here are post-evaluated 
because there are some small modifications. 

The experiments are performed on a PC with 
AMD Athlon™ 64 x2 4400+ CPU and 2GB 
main memory running Microsoft Windows XP 
with sp2.  Our system is developed using C++. 

In our experimental analysis, the abbreviations 
used are listed as follows: 

• LAS1: Labeled attachment score 
• UAS: Unlabeled attachment score 
• LAS2: Label accuracy score 
• LP: Labeled precision 
• LR: Labeled recall 
• LF1: Labeled F1 
• UP: Unlabeled precision 
• UR: Unlabeled recall 
• UF1: Unlabeled F1 
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3.2 Syntactic Dependency Parsing 

We trained two LR models for syntactic depend-
ency parsing. The first LR model uses MaxEnt 
classification to determine possible parser actions 
and their probabilities. The second LR model 
also uses MaxEnt classification, but parsing is 
performed backwards simply by reversing the 
sentence before parsing starts.  

For a sentence, each model can label top-N 
candidates and calculate the probability for every 
result. We join these two models by finding the 
candidate with the highest probability from all 
candidates as the final result for the sentence. 
Table 1 shows the results of each model and joint 
model. We can see that the two LR models ob-
tain similar results. The joint model can obtain 
better result and increase almost one percentage. 
The processing time of joint model is twice more 
than that of the two other models. 

 
 LR 

Model 
LR-back 
Model 

Joint 
Model

LAS1 83.05 83.38 84.43 
UAS 86.36 86.74 87.74 dev 
LAS2 89.15 89.63 90.08 
LAS1 84.84 84.06 85.48 
UAS 87.60 86.74 88.13 wsj 
LAS2 90.70 90.47 91.21 
LAS1 77.29 76.95 78.91 
UAS 82.75 82.61 84.38 brown 
LAS2 85.00 84.82 85.76 
LAS1 84.00 83.27 84.75 
UAS 87.06 86.28 87.71 

wsj + 
brown LAS2 90.07 89.84 90.6 

Speed (sec/sent) 0.49 0.42 0.92 
Table 1:  Syntactic dependency parsing results 

3.3 Predicate Identification 

Our predicate identification approach is de-
scribed in section 2.2. We use the gold HEAD 
and DEPREL fields to test our approach. The 
results are shown in Table 2. The labeling for 
each sentence spends about 14ms.  
 

 dev wsj brown 
Precision 93.56 93.61 87.51 

Recall 93.24 93.39 89.04 
F1 93.40 93.50 88.27 

Table 2:  Predicate identification results 

3.4 Semantic Dependency Labeling 

Semantic dependency labeling is the last sub-
task. Our DSRL model uses MaxEnt classifica-
tion to determine the semantic dependency be-
tween each word and its corresponding predicate. 

The gold HEAD and DEPREL and PRED fields 
is used to test the model. 

Statistical analysis shows that, for about 99% 
semantic argument labels, the length of syntactic 
dependency path from word to predicate is less 
than 7. So we ignore the words with the length of 
7 or more. 

The final results of semantic dependency la-
beling are shown in Table 3. The labeling for 
each sentence spends about 10ms. 

Brown set is an out-of-domain set and wsj set 
is an in-domain set. Usually, the results on wsj 
are much better than those on brown. But here 
we found that the unlabeled scores are nearly the 
same between wsj and brown. It shows that our 
model performs well at unlabeled labeling on 
out-of-domain set, and should be improved at 
labeled labeling. 

 
 dev wsj brown 

LP 80.50 82.47 77.29 
LR 70.73 73.58 67.16 
LF1 75.30 77.77 71.87 
UP 92.10 92.65 92.87 
UR 80.92 82.65 80.69 
UF1 86.15 87.36 86.35 

Table 3:  Semantic dependency labeling results 

3.5 Overall Result 

As described in section 2, we use a probabilistic 
model to integrate all subtasks. In the probabilis-
tic model, syntactic dependency parsing should 
parse top-N candidate results. We do the rest 
parsing for each candidate result and get N inte-
grated results. Then, for each integrated result, its 

 is calculated and the best one is chose as 
the final result. 

sentP

The DSRL results around verbal predicates 
and nouns on wsj set are shown in Table 4. It 
shows that verbal predicates are labeled much 
better than nouns. 

 
 Unlabeled 

Predicate
Labeled 
Predicate 

Labeled Semantic 
Arguments 

NN* 87.79 79.52 58.09 
VB* 96.85 80.25 73.77 

Table 4:  The F1 values of DSRL around verbal 
predicates and nouns on wsj  

 
Table 5 shows the overall results with differ-

ent N.  The results are improved when N changes 
from 1 to 2. However, there is nearly no im-
provement by increasing N from 2 to 3. So N is 
set to be 2 in our system. Meanwhile, the effect 
of this approach is not obvious. We find that 

266



there are nearly only one or two different points 
between the top-2 candidate dependency parsing 
results. This leads to that the DSRL results with 
these top-2 candidate results are almost the same. 
This is the probable reason that the approach is 
not much improved with the increase of N. In the 
future it would be necessary for us to consider 
the number of different points when finding the 
top-N dependency results. 

 
 N=1 N=2 N=3 

LP 78.58 78.93 79.01 
LR 75.58 75.52 75.33 
LF1 77.05 77.19 77.13 
UP 86.56 86.95 87.07 
UR 83.04 82.94 82.75 

dev 

UF1 84.76 84.90 84.85 
LP 79.41 79.76 79.96 
LR 76.67 76.59 76.49 
LF1 78.02 78.15 78.19 
UP 86.59 86.92 87.11 
UR 83.40 83.25 83.10 

wsj 

UF1 84.97 85.04 85.06 
LP 70.52 70.95 70.79 
LR 68 67.88 67.54 
LF1 69.24 69.38 69.13 
UP 81.87 82.39 82.28 
UR 78.65 78.47 78.14 

brown 

UF1 80.23 80.39 80.16 
LP 78.45 78.8 78.96 
LR 75.72 75.64 75.5 
LF1 77.06 77.18 77.19 
UP 86.08 86.43 86.59 
UR 82.89 82.73 82.56 

wsj + 
brown 

UF1 84.45 84.54 84.53 
Speed (sec/sent) 0.93 0.94 0.95 
Table 5: Overall macro scores (Wsem = 0.50) 

4 Conclusion 

We divide this shared task into four subtasks: 
syntactic dependency parsing, predicate identifi-
cation, predicate sense labeling and semantic 
dependency labeling. Then, we design a prob-
abilistic model to combine them. The purpose of 
our system is to find a global optimal result for 
every sentence. If a syntactic dependency parsing 
result has the highest probability but it is unrea-
sonable, it would be difficult to get a semantic 
parsing result with high probability again. Hence, 
a more reasonable result may be found with 
lower syntactic dependency parsing probability. 

In our system, we have not distinguished be-
tween nouns and verbal predicates. The experi-
mental results show that the results of verbal 
predicates are much better than those of nouns. 
In the future, it is necessary for us to deal with 
them separately. 
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Abstract

Our submission to the CoNLL-2008
shared task (Surdeanu et al., 2008) focused
on applying a novel method for semantic
role labeling to the shared task. Our system
first simplifies each sentence to be labeled
using a set of hand-constructed rules; the
weights of the system are trained on se-
mantic role labeling data to generate sim-
plifications which are as useful as possible
for semantic role labeling. Our system is
only a semantic role labeling system, and
thus did not receive a score for Syntactic
Dependencies (or, by extension, a score for
the complete problem). Unlike most sys-
tems in the shared task, our system took
constituency parses as input. On the sub-
task of semantic dependencies, our system
obtained an F1 score of 76.17, the high-
est in the open task. In this paper we give
a high-level overview of the sentence sim-
plification system, and discuss and analyze
the modifications to this system required
for the CoNLL-2008 shared task.

1 Sentence Simplification

The main technical interest of our method is a sen-
tence simplification system. This system is de-
scribed in depth in (Vickrey and Koller, 2008); for
lack of space, we omit many details, including a
discussion of related work, from this paper.

Current semantic role labeling systems rely pri-
marily on syntactic features in order to identify
and classify roles. Features derived from a syntac-
tic parse of the sentence have proven particularly
useful (Gildea and Jurafsky, 2002). For example,
the syntactic subject of “eat” is nearly always the

c© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.
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Figure 1: Constituency parse with path features for verb
“eat”.

I was not given a chance to eat.

Someone gave me a chance to eat.

I had a chance to eat.

I ate.

depassivize

give -> have

chance to X

I was given a chance to eat.

remove not

Figure 2: Example simplification

ARG0. An example sentence with extracted path
features is shown in Figure 1.

A major problem with this approach is that the
path from a phrase to the verb can be quite com-
plicated. In the sentence “He expected to receive a prize
for winning,” the path from “win” to its ARG0, “he”,
involves the verbs “expect” and “receive” and the
preposition “for.” The corresponding path through
the parse tree likely occurs a small number of times
(or not at all) in the training corpus. If the test set
contained exactly the same sentence but with “ex-
pected” replaced by “did not expect” we would ex-
tract a different parse path feature; therefore, as far
as the classifier is concerned, the syntax of the two
sentences is totally unrelated.

The idea of our method is to learn a mapping
from full, complicated sentences to simplified sen-
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Figure 3: Rule for depassivizing a sentence

tences. Figure 2 shows an example of a series
of simplifications applied to the sentence “I was
not given a chance to eat.” Our method com-
bines hand-written syntactic simplification rules
with machine learning, which determines which
rules to prefer. We then use the output of the sim-
plification system as input to an SRL system that
is trained to label simplified sentences.

There are several reasons to simplify sentences
before doing semantic role labeling. First, label-
ing simplified sentences is much easier than label-
ing raw sentences. Second, by mapping all sen-
tences to a common, canonical form, we can gener-
alize more effectively across sentences with differ-
ing syntax. Third, our model is effective at sharing
information across verbs, since most of our simpli-
fication rules apply equally well regardless of the
target verb. These latter two benefits are particu-
larly important for verbs with few labeled training
instances; using training examples efficiently can
lead to considerable gains in performance.

Note that unlike most participants in the
CoNLL-2008 Shared Task (Surdeanu et al., 2008),
our model took as input constituency parses as
generated by the Charniak parser (specifically, we
used the parses provided with the CoNLL-2005
shared task distribution). This was the only labeled
data used that was not available in the closed task.

1.1 Transformation Rules
At the center of our sentence simplification system
is a hand-written set of transformation rules. A
transformation rule takes as input a parse tree and
produces as output a different, changed parse tree.
Since our goal is to produce a simplified version
of the sentence, the rules are designed to bring all
sentences toward the same common format.

A rule (see left side of Figure 3) consists of two
parts. The first is a “tree regular expression”, a tree
fragment with optional constraints at each node.
The rule assigns numbers to each node which are
referred to in the second part of the rule. Formally,
a rule node X matches a parse-tree node A if: (1)

SimplifiedOriginal#Rule Category

I atethe food.Float(The food) I 
ate.

5Floating nodes

He slept.I said he slept.4Sentence extraction

Food is tasty.Salt makes food 
tasty.

8“Make” rewrites

The total 
includestax.

Includingtax, the 
total…

7Verb acting as PP/NP

John has a 
chance to eat.

John’s chance to 
eat…

7Possessive

I will eat.Will I eat?7Questions

I will eat.Nor will I eat.7Inverted sentences

Float(The food) I 
ate.

The food I ate…8Modified nouns

I eat.I have a chance to 
eat.

7Verb RC (Noun)

I eat.I am likely to eat.6Verb RC (ADJP/ADVP)

I eat.I wantto eat.17Verb Raising/Control (basic)

I eat.I must eat.14Verb Collapsing/Rewriting

I ate.I ateand slept.8Conjunctions

John is a lawyer.John, a lawyer, …20Misc Collapsing/Rewriting

A car hitme.I was hitby a car.5Passive

I sleptThursday.Thursday, I slept.24Sentence normalization

SimplifiedOriginal#Rule Category
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ate.

5Floating nodes

He slept.I said he slept.4Sentence extraction

Food is tasty.Salt makes food 
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8“Make” rewrites

The total 
includestax.

Includingtax, the 
total…

7Verb acting as PP/NP

John has a 
chance to eat.

John’s chance to 
eat…

7Possessive

I will eat.Will I eat?7Questions

I will eat.Nor will I eat.7Inverted sentences

Float(The food) I 
ate.

The food I ate…8Modified nouns

I eat.I have a chance to 
eat.

7Verb RC (Noun)

I eat.I am likely to eat.6Verb RC (ADJP/ADVP)

I eat.I wantto eat.17Verb Raising/Control (basic)

I eat.I must eat.14Verb Collapsing/Rewriting

I ate.I ateand slept.8Conjunctions

John is a lawyer.John, a lawyer, …20Misc Collapsing/Rewriting

A car hitme.I was hitby a car.5Passive

I sleptThursday.Thursday, I slept.24Sentence normalization

Table 1: Rule categories with sample simplifica-
tions. Target verbs are underlined.

All constraints of node X (e.g., constituent cate-
gory, head word, etc.) are satisfied by node A.
(2) For each child node Y of X, there is a child
B of A that matches Y; two children of X cannot
be matched to the same child B. There are no other
requirements. A can have other children besides
those matched, and leaves of the rule pattern can
match to internal nodes of the parse (correspond-
ing to entire phrases in the original sentence). For
example, the same rule is used to simplify both “I
had a chance to eat,” and “I had a chance to eat a
sandwich,” (into “I ate,” and “I ate a sandwich,”).

The second part of the rule is a series of simple
steps that are applied to the matched nodes. For ex-
ample, one type of simple step applied to the pair
of nodes (X,Y) removes X from its current parent
and adds it as the final child of Y. Figure 3 shows
the depassivizing rule and the result of applying it
to the sentence “I was given a chance.” The trans-
formation steps are applied sequentially from top
to bottom. Any nodes not matched are unaffected
by the transformation; they remain where they are
relative to their parents. For example, “chance”
is not matched by the rule, and thus remains as a
child of the VP headed by “give.”

1.2 Rule Set
Altogether, we currently have 154 (mostly unlex-
icalized) rules. Table 1 shows a summary of our
rule-set, grouped by type. Note that each row lists
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only one possible sentence and simplification rule
from that category; many of the categories handle a
variety of syntax patterns. Our rule set was devel-
oped by analyzing performance and coverage on
the PropBank WSJ training set; neither the devel-
opment set nor (of course) the test set were used
during rule creation. Please refer to (Vickrey and
Koller, 2008) for more details about the rule set.

In the context of the CoNLL-2008 Shared Task,
the rule set might be viewed as consisting of out-
side information. Since we only submitted a sys-
tem to the open task, this was not an issue.

1.3 Generating Simple Sentences
We now describe how to produce all possible sim-
plified sentences for a given input sentence. We
maintain a set of derived parses S which is initial-
ized to contain only the original, untransformed
parse. One iteration of the algorithm consists of
applying every possible matching transformation
rule to every parse in S, and adding all resulting
parses to S. With carefully designed rules, re-
peated iterations are guaranteed to converge; that
is, we eventually arrive at a set Ŝ such that if we
apply an iteration of rule application to Ŝ, no new
parses are added. Note that we simplify the whole
sentence without respect to a particular verb.

We then find all parses in Ŝ that have “eat” as
the main verb. We call such a parse a valid simple
sentence; this is exactly the canonicalized version
of the sentence which our simplification rules are
designed to produce.

1.4 Labeling Simple Sentences
For a particular sentence/target verb pair s, v, the
output from the previous section is a set Ssv =
{tsvi }i of valid simple sentences. From the train-
ing set, we now extract a set of role patterns
Gv = {gv

j }j for each verb v. For example, a
common role pattern for “give” is that of “I gave
him a sandwich”. We represent this pattern as
ggive
1 = {ARG0 = Subject NP, ARG1 =

Postverb NP2, ARG2 = Postverb NP1}.
For each simple sentence tsvi ∈ Ssv, we ap-

ply all extracted role patterns gv
j to tsvi , obtaining

a set of possible role labelings. We call a sim-
ple sentence/role labeling pair a simple labeling
and denote the set of candidate simple labelings
Csv = {csv

k }k.

1.5 Probabilistic Model
Given a (possibly large) set of candidate simple la-
belings Csv, we need to select a correct one. We

Rule = Depassivize
Pattern = {ARG0 = Subj NP, ARG1 = PV NP2, ARG2 = PV NP1}
Role = ARG0, Head Word = John
Role = ARG1, Head Word = sandwich
Role = ARG2, Head Word = I
Role = ARG0, Category = NP
Role = ARG1, Category = NP
Role = ARG2, Category = NP
Role = ARG0, Position = Subject NP
Role = ARG1, Position = Postverb NP2
Role = ARG2, Position = Postverb NP1

Figure 4: Features for “John gave me a sandwich.”

assign a score to each candidate based on its fea-
tures: which rules were used to obtain the simple
sentence, which role pattern was used, and fea-
tures about the assignment of constituents to roles.
The set of extracted features for the sentence “I
was given a sandwich by John” with simplification
“John gave me a sandwich” is shown in Figure 4.

We now define a log-linear model which as-
signs a probability to each candidate simple label-
ing based on its score. Specifically, the probability
of a simple labeling csv

k with respect to a weight

vector w is P (csv
k ) = e

wT fsv
k∑

k′ e
wT fsv

k′
.

Unfortunately, we do not have labeled examples
of correct simplifications. To get around this, we
treat the correct simplification as a hidden variable.
Thus, we say that the probability of a particular
semantic role labeling is

∑
csv
k
∈Ksv P (csv

k ). This
leads to our final objective,

∑
s,v

log

∑
csv
k
∈Ksv ewT fsv

k∑
csv
k′∈Csv ewT fsv

k′

− wTw
2σ2

.

We train our model by optimizing the objective
using standard methods, specifically BFGS. Due
to the summation over the hidden variable repre-
senting the choice of simplification (not observed
in the training data), our objective is not convex.
Thus, we are not guaranteed to find a global opti-
mum; in practice we have gotten good results using
the initialization of setting all weights to 0.

2 Baseline Model

In addition to our simplification system, we also
built a high-performing logistic regression model
for semantic role labeling, which we refer to as
Baseline. This model uses a slightly modified ver-
sion of the features used in (Pradhan et al., 2005).
This model was also trained on the PropBank train-
ing set, using Charniak constituency parses.
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Both our simplification model and Baseline pro-
duce labeled constituencies. Since we were re-
quired to produce semantic dependency relations,
we simply labeled the head word of each con-
stituent with the role chosen by the model.

3 Labeling Nouns

The 2008 shared task requires systems to label the
arguments of both nouns and verbs. However, our
sentence simplification system was built to handle
only verbs. While in principle the model can nat-
urally be extended to label nouns by the addition
of further syntactic simplification rules, we were
not able to complete this extension in time for the
contest deadline. Instead, we trained our Baseline
model to label the arguments of nouns as well as
verbs. The features of this model are the same as
those used to label verbs, and were not extended to
handle special features of nouns.

4 Identifying Predicates

Another important subtask was to identify the
predicates to be labeled. In the labeled training
corpus, nouns with no labeled arguments are gen-
erally skipped (i.e., not labeled as predicates at all).
Thus, we made a strong simplifying assumption: if
a predicate (either noun or verb) is labeled by our
system as having no arguments, we should not la-
bel it as being a predicate. On the development
set, out of a total of 6390 labeled predicates, only
23 had no labeled arguments; thus, this assumption
appears to be quite reasonable.

Our system architecture was as follows. First,
we modified the training (and test) set by mark-
ing as a potential predicate every word that was ei-
ther: a) a verb that wasn’t “do”, “be”, or “have” or
b) a noun found in the nombank index. Then, we
trained our system on all potential predicates (not
just predicates that were actually labeled). Finally,
after applying our classifier to the test data, we re-
moved any predicate with no labeled arguments.

5 Sense-Tagging Predicates

We tried three simple heuristics for sense-labeling
the predicates. All of them were applied at the end
of our pipeline, and thus did not interact with the
argument labeling decisions.

The simplest heuristic labeled every predicate as
sense 1. A slightly more intelligent heuristic la-
beled every predicate with its most common sense
in the training set. Finally, we extended this heuris-
tic to label each verb with its most common sense

for the subcategorization (i.e., set of roles) actu-
ally produced by the labeling system. Thus, if one
sense was intransitive while the other was transi-
tive, we would be able to distinguish between them
(assuming that our labeling system produced the
correct set of arguments). For this third heuris-
tic, we ignored all but the core arguments (ARG0 -
ARG5). The final heuristic was the most effective,
as discussed in the results section.

6 Results

The first stage of Baseline, which tries to filter out
constituents which are obviously not arguments,
took about three hours and approximately 4Gb of
memory to train1. The second stage, which per-
forms the final classification of arguments, took
about four hours and 3Gb of memory to train.

The sentence simplification system, which we
will refer to as Simplification, works in two steps.
First, it generates the set of all possible simplifi-
cations for each sentence. This step took a rela-
tively small amount of memory, under 1Gb, but
took around 24 hours to complete. The set of sim-
plifications is stored in a compact form; the total
storage required for all simplifications of all sen-
tences was roughly 4 times the (compressed) size
of the Charniak input parses. The second step,
which trains the model using the possible simplifi-
cations, took around 12 hours and 3Gb of memory.

We only submitted results for the semantic de-
pendencies portion of the competition. The sys-
tem we used was the Combined system described
in (Vickrey and Koller, 2008), which combines
the simplification procedure with the Baseline
model. The Combined model was augmented
with the modifications described above. Our sys-
tem achieved an official F1 score on the SRL
subtask of 76.17, the highest in the open task.
Our results are not strictly comparable to those
in the closed task, due to the use of the Char-
niak parser trained on Penn Treebank constituency
parses. However, a comparison still provides in-
sight into the relative strength of our system; our
score would place us tied for fourth in the closed
challenge for semantic dependencies.

We will now discuss the relative contributions
of various components of our system. All results
in this section are for TestWSJ + TestBrown.

Our Combined model provides the same ben-
efit over Baseline as described in (Vickrey and

1All runs were done on a dual core 2.66Mhz Xeon ma-
chine with 4Gb of RAM
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Koller, 2008) for labeling the arguments of verbs2.
When applied to just verb predicates, the Com-
bined model provides a statistically significant im-
provement of 1.2 points of F1 score over Base-
line. However, since the CoNLL-2008 shared task
adds both labeling of noun dependencies and pred-
icate identification and sense tagging, the gain due
to better labeling arguments of verbs is reduced.
The Baseline model achieves an F1 score of 75.31
on the semantic dependencies task, .86 F1 points
lower than the Combined system.

Note that while most of this gain is directly due
to better verb argument labeling, better verb ar-
gument labeling also indirectly slightly improves
predicate identification and sense-tagging since we
use the predicted arguments for both of of these
subtasks. We do in fact see a small increase for
labeling and sense-tagging predicates, from 80.72
F1 for the Baseline to 80.81 F1 for Combined.

As mentioned, we use Baseline to label the ar-
guments of nouns. Noun argument labeling ap-
pears to be more difficult than verb argument la-
beling, or at least requires some modification of
the features. Baseline obtains an F1 score of 75.64
for verbs, but only 68.19 F1 for nouns.

On the subtask of predicate identification, Com-
bined achieved an F1 of 90.65. It performed bet-
ter on verbs than nouns. For predicates with part
of speech VB*3 it scored 95.43 F1; for predicates
with part of speech NN*, it scored 85.97 F1. Verbs
without arguments are often labeled in the gold
data, so the verb score could perhaps be improved
by retaining verb predicates without arguments.

As described above, we tried three heuristics for
sense-labeling predicates. Our final system used
the third heuristic, which chose the most com-
mon sense for the set of labeled arguments pro-
duced by the system. Combined obtained an F1
score of 80.81 on the combined predicate identifi-
cation/classification task, with a score of 82.58 for
verbs and 79.28 for nouns. The decrease in per-
formance by adding classification is much larger
for verbs than nouns; verb sense classification is
apparently significantly more difficult than noun
sense classification (at least for verbal nouns).

Table 2 compares the results of the Combined
system using each of the three heuristics. Going

2Note that the scoring metrics are different between the
CoNLL-2005 and CoNLL-2008 shared tasks. The CoNLL-
2005 required the constituent boundaries to be labeled cor-
rectly, while the CoNLL-2008 only requires identifying the
head word of each argument.

3This category includes some nouns, e.g. gerunds.

Overall Predicate ID/Class
Heuristic Score All Verbs Nouns
Always 1 75.69 79.29 81.26 77.58
Most common 76.02 80.33 81.73 79.21
Best for subcat 76.17 80.81 82.58 79.28

Table 2: Relative performance of sense-labeling heuristics

from the simplest heuristic to the third heuristic
gained 1.52 points of F1 score on the subtask of
predicate identification/classification, and an im-
provement of .48 F1 score for the overall seman-
tic dependency score. Another interesting thing to
note is that all of improvement for noun predicates
came from choosing the most common sense in-
stead of always choosing sense 1. On the other
hand, using subcategorization information is quite
important for sense-tagging verbs.

7 Discussion and Future Work
The CoNLL-08 task introduces two new sub-
tasks for labeling semantic dependencies: predi-
cate identification and predicate classification. Our
experimental results show that both are non-trivial
and suggest that there is room for additional im-
provement on these subtasks.

We are particularly interested in two extensions
to our simplification model related to the 2008
shared task. The first is extending our simplifica-
tion model to handle the arguments of nouns. As
discussed above, there is a large amount of room
for improvement for argument labeling of nouns.
The second is incorporating uncertainty from the
parser into our model. Specifically, we would like
to extract a complete parse forest from the Char-
niak parser and use it as input to our model. This
would allow our simplification model to jointly
reason about the correct parse, possible simplifica-
tions of those parses, and semantic role labelings
of the resulting simplified sentences.
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