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Introduction

The 2008 Conference on Computational Natural Language Learning is the twelfth in the series of yearly
meetings organized by SIGNLL, the ACL special interest group on natural language learning. CoNLL
2008 will be held in Manchester, UK, August 16-17, 2008, in conjunction with Coling 2008.

We are delighted to report that CoNLL’s main session received a large number of submissions. A total
of 85 papers were under consideration for the main session after several withdrawals, and of them
only 20 were accepted. This makes this year’s CoNLL especially competitive and contributes to an
interesting program. We are grateful to the program committee members for their service in evaluating
the submissions. Special thanks to the program committee members who joined on a short notice to
help with the larger than expected number of submissions.

This year CoNLL had two special themes of interest, both of which solicited papers on models that
explain natural phenomena relating to human language. The first concerned the central scientific
problem addressed by CoNLL: the study of first language acquisition. The second theme was the central
engineering problem: how to build systems that do something useful, especially complete systems that
solve real problems.

The first theme contributed to an increased number of high-quality submissions in the first language
acquisition area. Two sessions of the conference will be devoted to papers on this topic. The second
theme led to submissions in diverse traditional NLP application areas.

As in previous years, CoNLL 2008 has a shared task. This year, the conference shared task proposed
to merge the shared task topics from the last four years (2004-2007) into a unique task called “Joint
Learning of Syntactic and Semantic Dependencies”. Both syntactic dependencies (extracted from the
Penn Treebank ) and semantic dependencies (extracted from PropBank and NomBank) were jointly
addressed under a unique unified representation.

The shared task was organized by Mihai Surdeanu, Richard Johansson, Adam Meyers, Lluis Marquez,
and Joakim Nivre.

The call was very successful attracting the interest of more than 50 teams from all over the world,
which represented a wide variety of universities, research institutions, and companies. At the end of
the evaluation period, 22 teams submitted results (with 19 and 5 contributions to the closed and open
challenges, respectively). All this work will be presented in the conference in the form of 5 selected
oral talks and 14 posters.

In our opinion, the current shared task constitutes a qualitative step ahead and we hope that the resources
created and the body of work presented will both serve as a benchmark and have a substantial impact
on future research on syntactic-semantic parsing.

We are excited that the invited speakers at CoNLL 2008 will be Regina Barzilay and Nick Chater.

Finally, we would like to thank the SIGNLL board members for useful discussion, Erik Tjong Kim
Sang, who acted as the information officer, and especially Lluis Marquez and Joakim Nivre, who helped
us greatly with advice around the conference organization, as well as to the organizers of COLING
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2008, Harold Somers, Mark Stevenson and Roger Evans. Many thanks also to Microsoft Research for
sponsoring CoNLL this year and to Priscilla Rasmussen for help with the finances.

Enjoy this year’s conference!
Alex Clark and Kristina Toutanova

CoNLL 2008 Conference Chairs
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Semantic Parsing for High-Precision Semantic Role Labelling

Paola Merlo
Linguistics Department
University of Geneva
5 rue de Candolle
1211 Geneve 4 Switzerland
merlo@lettres.unige.ch

Abstract

In this paper, we report experiments that
explore learning of syntactic and seman-
tic representations. First, we extend a
state-of-the-art statistical parser to pro-
duce a richly annotated tree that identi-
fies and labels nodes with semantic role la-
bels as well as syntactic labels. Secondly,
we explore rule-based and learning tech-
niques to extract predicate-argument struc-
tures from this enriched output. The learn-
ing method is competitive with previous
single-system proposals for semantic role
labelling, yields the best reported preci-
sion, and produces a rich output. In com-
bination with other high recall systems it
yields an F-measure of 81%.

1 Introduction

In statistical natural language processing, consid-
erable ingenuity and insight have been devoted to
developing models of syntactic information, such
as statistical parsers and taggers. Successes in
these syntactic tasks have recently paved the way
to applying novel statistical learning techniques
to levels of semantic representation, such as re-
covering the logical form of a sentence for in-
formation extraction and question-answering ap-
plications (Miller et al., 2000; Ge and Mooney,
2005; Zettlemoyer and Collins, 2007; Wong and
Mooney, 2007).

In this paper, we also focus our interest on learn-
ing semantic information. Differently from other
work that has focussed on logical form, however,
we explore the problem of recovering the syn-
tactic structure of the sentence, the propositional

©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.
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argument-structure of its main predicates, and the
substantive labels assigned to the arguments in the
propositional structure, the semantic roles. This
rich output can be useful for information extrac-
tion and question-answering, but also for anaphora
resolution and other tasks for which the structural
information provided by full syntactic parsing is
necessary.

The task of semantic role labelling (SRL), as has
been defined by previous researchers (Gildea and
Jurafsky, 2002), requires collecting all the argu-
ments that together with a verb form a predicate-
argument structure. In most previous work, the
task has been decomposed into the argument iden-
tification and argument labelling subtasks: first the
arguments of each specific verb in the sentence are
identified by classifying constituents in the sen-
tence as arguments or not arguments. The argu-
ments are then labelled in a second step.

We propose to produce the rich syntactic-
semantic output in two steps, which are different
from the argument identification and argument la-
belling subtasks. First, we generate trees that bear
both syntactic and semantic annotation, such as
those in Figure 1. The parse tree, however, does
not explicitly encode information about predicate-
argument structure, because it does not explicitly
associate each semantic role to the verb that gov-
erns it. So, our second step consists in recovering
the predicate-argument structure of each verb by
gleaning this information in an already richly dec-
orated tree.

There are linguistic and computational reasons
to think that we can solve the joint problem of
recovering the constituent structure of a sentence
and its lexical semantics. From a linguistic point
of view, the assumption that syntactic distributions
will be predictive of semantic role assignments is
based on linking theory (Levin, 1986). Linking
theory assumes the existence of a hierarchy of se-

CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 1-8
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mantic roles which are mapped by default on a
hierarchy of grammatical functions and syntactic
positions, and it attempts to predict the mapping
of the underlying semantic component of a predi-
cate’s meaning onto the syntactic structure. For ex-
ample, Agents are always mapped in syntactically
higher positions than Themes. From a computa-
tional point of view, if the internal semantics of a
predicate determines the syntactic expressions of
constituents bearing a semantic role, it is then rea-
sonable to expect that knowledge about semantic
roles in a sentence will be informative of its syn-
tactic structure. It follows rather naturally that se-
mantic and syntactic parsing can be integrated into
a single complex task.

Our proposal also addresses the problem of se-
mantic role labelling from a slightly different per-
spective. We identify and label argument nodes
first, while parsing, and we group them in a
predicate-argument structure in a second step. Our
experiments investigate some of the effects that re-
sult from organising the task of semantic role la-
belling in this way, and the usefulness of some
novel features defined on syntactic trees.

In the remainder of the paper, we first illustrate
the data and the graphical model that formalise the
architecture used and its extension for semantic
parsing. We then report on two kinds of exper-
iments: we first evaluate the architecture on the
joint task of syntactic and semantic parsing and
then evaluate the joint approach on the task of se-
mantic role labelling. We conclude with a discus-
sion which highlights the practical and theoretical
contribution of this work.

2 The Data

Our experiments on joint syntactic and semantic
parsing use data that is produced automatically by
merging the Penn Treebank (PTB) with PropBank
(PRBK) (Marcus et al., 1993; Palmer et al., 2005),
as shown in Figure 1. PropBank encodes proposi-
tional information by adding a layer of argument
structure annotation to the syntactic structures of
the Penn Treebank.! Verbal predicates in the Penn
Treebank (PTB) receive a label REL and their ar-
guments are annotated with abstract semantic role
labels, such as AO, Al, or AA for those comple-
ments of the predicative verb that are considered
arguments. Those complements of the verb la-

"We use PRBK data as they appear in the CONLL 2005
shared task.

NP-AO
the authority

VBD-REL PP-TMP PP-DIR

dropped IN(TMP) NP TO(DIR) NP
| \ | \
at NN to QP

\
midnight  § 2.80 trillion

Figure 1: A sample syntactic structure with seman-
tic role labels.

belled with a semantic functional label in the orig-
inal PTB receive the composite semantic role label
AM-X, where X stands for labels such as LOC,
TMP or ADV, for locative, temporal and adverbial
modifiers respectively. A tree structure with Prop-
Bank labels is shown in Figure 1. (The bold labels
are not relevant for the moment and they will be
explained later.)

3 The Syntactic and Semantic Parser
Architecture

To achieve the complex task of joint syntactic and
semantic parsing, we extend a current state-of-the-
art statistical parser (Titov and Henderson, 2007)
to learn semantic role annotation as well as syntac-
tic structure. The parser uses a form of left-corner
parsing strategy to map parse trees to sequences of
derivation steps.

We choose this parser because it exhibits the
best performance for a single generative parser,
and does not impose hard independence assump-
tions. It is therefore promising for extensions
to new tasks. Following (Titov and Henderson,
2007), we describe the original parsing architec-
ture and our modifications to it as a Dynamic
Bayesian network. Our description is brief and
limited to the few aspects of interest here. For
more detail, explanations and experiments see
(Titov and Henderson, 2007). A Bayesian network
is a directed acyclic graph that illustrates the statis-
tical dependencies between the random variables
describing a set of events (Jensen, 2001). Dy-
namic networks are Bayesian networks applied to
unboundedly long sequences. They are an appro-
priate model for sequences of derivation steps in



Figure 2: The pattern on connectivity and the latent
vectors of variables in an Incremental Bayesian
Network.

parsing (Titov and Henderson, 2007).

Figure 2 illustrates visually the main properties
that are of relevance for us in this parsing architec-
ture. Let T" be a parse tree and D1, ..., D, be the
sequence of parsing decisions that has led to the
building of this parse tree. Let also each parsing
decision be composed of smaller parsing decisions

d%, ..., d}, and let all these decisions be indepen-
dent. Then,
P(T) =P(Dy,...,Dp)
=11, P(D¢|Dq,...,Di—1) (D

= 1, [Tx P(di|n(t, F))

where h(t, k) denotes the parse history for sub-
decision di;.

The figure represents a small portion of the ob-
served sequence of decisions that constitute the re-
covery of a parse tree, indicated by the observed
states D;. Specifically, it illustrates the pattern of
connectivity for decision df,. As can be seen the re-
lationship between different probabilistic parsing
decisions are not Markovian, nor do the decisions
influence each other directly. Past decisions can in-
fluence the current decision through state vectors
of independent latent variables, referred to as S;.
These state vectors encode the probability distri-
butions of features of the history of parsing steps
(the features are indicated by s! in Figure 2).

As can be seen from the picture, the pattern
of inter-connectivity allows previous non-adjacent
states to influence future states. Not all states
in the history are relevant, however. The inter-
connectivity is defined dynamically based on the
topological structure and the labels of the tree that
is being developed. This inter-connectivity de-
pends on a notion of structural locality (Hender-
son, 2003; Musillo and Merlo, 2006).2

ZSpecifically, the conditioning states are based on the

In order to extend this model to learn decisions
concerning a joint syntactic-semantic representa-
tion, the semantic information needs to be high-
lighted in the model in several ways. We modify
the network connectivity, and bias the learner.

First, we take advantage of the network’s dy-
namic connectivity to highlight the portion of the
tree that bears semantic information. We augment
the nodes that can influence parsing decisions at
the current state by explicitly adding the vectors
of latent variables related to the most recent child
bearing a semantic role label of either type (REL,
A0 to AS or AM-X) to the connectivity of the
current decision. These additions yield a model
that is sensitive to regularities in structurally de-
fined sequences of nodes bearing semantic role la-
bels, within and across constituents. These exten-
sions enlarge the locality domain over which de-
pendencies between predicates bearing the REL
label, arguments bearing an A0O-AS5 label, and ad-
juncts bearing an AM-X role can be specified, and
capture both linear and hierarchical constraints be-
tween predicates, arguments and adjuncts. Enlarg-
ing the locality domain this way ensures for in-
stance that the derivation of the role DIR in Figure
1 is not independent of the derivations of the roles
TMP, REL (the predicate) and AO.

Second, this version of the Bayesian network
tags its sentences internally. Following (Musillo
and Merlo, 2005), we split some part-of-speech
tags into tags marked with semantic role labels.
The semantic role labels attached to a non-terminal
directly projected by a preterminal and belonging
to a few selected categories (DIR, EXT, LOC, MNR,
PRP, CAUS or TMP) are propagated down to the
pre-terminal part-of-speech tag of its head.> This
third extension biases the parser to learn the rela-
tionship between lexical items, semantic roles and
the constituents in which they occur. This tech-
nique is illustrated by the bold labels in Figure 1.

We compare this augmented model to a sim-
ple baseline parser, that does not present any of
the task-specific enhancements described above,

stack configuration of the left-corner parser and the derivation
tree built so far. The nodes in the partially built tree and stack
configuration that are selected to determine the relevant states
are the following: top, the node on top of the pushdown stack
before the current derivation move; the left-corner ancestor of
top (that is, the second top-most node on the parser stack);
the leftmost child of top; and the most recent child of top, if
any.

3Exploratory data analysis indicates that these tags are the
most useful to disambiguate parsing decisions.



PTB/PRBK 24

P R F
Baseline 79.6 78.6 79.1
ST 80.5 794 799
ST+EC 81.6 80.3 81.0

Table 1: Percentage F-measure (F), recall (R), and
precision (P) of our joint syntactic and semantic
parser on merged development PTB/PRBK data
(section 24). Legend of models: ST=Split Tags;
EC=enhanced connectivity.

other than being able to use the complex syntactic-
semantic labels. Our augmented model has a to-
tal of 613 non-terminals to represent both the PTB
and PropBank labels of constituents, instead of the
33 of the original syntactic parser. The 580 newly
introduced labels consist of a standard PTB label
followed by a set of one or more PropBank seman-
tic role such as PP-AM-TMP or NP-A0-Al. As a
result of lowering the six AM-X semantic role la-
bels, 240 new part-of-speech tags were introduced
to partition the original tag set which consisted
of 45 tags. As already mentioned, argumental la-
bels AO-AS are specific to a given verb or a given
verb sense, thus their distribution is highly vari-
able. To reduce variability, we add the tag-verb
pairs licensing these argumental labels to the vo-
cabulary of our model. We reach a total of 4970
tag-word pairs. These pairs include, among oth-
ers, all the tag-verb pairs occuring at least 10 times
in the training data. In this very limited form of
lexicalisation, all other words are considered un-
known.

4 Parsing Experiments

Our extended joint syntactic and semantic parser
was trained on sections 2-21 and validated on sec-
tion 24 from the merged PTB/PropBank. To eval-
uate the joint syntactic and semantic parsing task,
we compute the standard Parseval measures of la-
belled recall and precision of constituents, taking
into account not only the original PTB labels, but
also the newly introduced PropBank labels. This
evaluation gives us an indication of how accurately
and exhaustively we can recover this richer set of
syntactic and semantic labels. The results, com-
puted on the development data set from section 24
of the PTB with added PropBank annotation, are
shown in Table 1. As the table indicates, both the
enhancements based on semantic roles yield an im-

provement on the baseline.

This task enables us to compare, albeit indi-
rectly, our integrated method to other methods
where semantic role labels are learnt separately
from syntactic structure. (Musillo and Merlo,
2006) report results of a merging technique where
the output of the semantic role annotation pro-
duced by the best semantic role labellers in the
2005 CONLL shared task is merged with the out-
put of Charniak’s parser. Results range between
between 82.7% and 83.4% F-measure. Our inte-
grated method almost reaches this level of perfor-
mance.

The performance of the parser on the syntactic
labels only (note reported in Table 1) is slightly de-
graded in comparison to the original syntax-only
architecture (Henderson, 2003), which reported
an F-measure of 89.1% since we reach 88.4% F-
measure for the best syntactic-semantic model (last
line of Table 1). This level of performance is still
comparable to other syntactic parsers often used
for extraction of semantic role features (88.2% F-
measure) (Collins, 1999).

These results indicate that the extended parser is
able to recover both syntactic and semantic labels
in a fully connected parse tree. While it is true that
the full fine-grained interpretation of the semantic
label is verb-specific, the PropBank labels (A0,Al,
etc) do respect some general trends. AQ labels are
assigned to the most agentive of the arguments,
while A1 labels tend to be assigned to arguments
bearing a Theme role, and A2, A3, A4 and AS la-
bels are assigned to indirect object roles, while all
the AM-X labels tend to be assigned to adjuncts.
The fact that the parser learns these labels with-
out explicit annotation of the link between the ar-
guments and the predicate to which they are as-
signed, but based on the smoothed representation
of the derivation of the parse tree and only very
limited lexicalisation, appears to confirm linking
theory, which assumes a correlation between the
syntactic configuration of a sentence and the lexi-
cal semantic labels.

We need to show now that the quality of the
output produced by the joint syntactic and seman-
tic parsing is such that it can be used to perform
other tasks where semantic role information is cru-
cial. The most directly related task is semantic role
labelling (SRL) as defined in the shared task of
CoNLL 2005.



5 Extraction of Predicate-Argument
Structures

Although there is reason to think that the good
performance reported in the previous section is
due to implicit learning of the relationship of the
syntactic representation and the semantic role as-
signments, the output produced by the parser does
not explicitly encode the predicate-argument struc-
tures. Collecting these associations is required to
solve the semantic role labelling task as usually de-
fined. We experimented with two methods: a sim-
ple rule-based method and a more complex learn-
ing method.

5.1 The rule-based method

The rule-based extraction method is the natural
second step to solve the complete semantic role
labelling task, after we identify and label seman-
tic roles while parsing. Since in our proposal, we
solve most of the problem in the first step, then we
should be able to collect the predicate-argument
pairs by simple, deterministic rules. The simplic-
ity of the method also provides a useful compari-
son for more complex learning methods, which can
be justified only if they perform better than simple
rule-based predicate-argument extraction.

Our rule-based method automatically compiles
finite-state automatata defining the paths that con-
nect the first node dominating a predicate to its
semantic roles from parse trees enriched with se-
mantic role labels.* Such paths can then be used to
traverse parse trees returned by the parsing model
and collect argument structures. More specifically,
a sample of sentences are randomly selected from
the training section of the PTB/PRBK. For each
predicate, then, all the arguments left and right of
the predicate and all the adjuncts left and right
respectively are collected and filtered by simple
global constraints, thereby guaranteeing that only
one type of obligatory argument label (A0 to AS)
is assigned in each proposition.

When evaluated on gold data, this rule-based ex-
traction method reaches 94.9% precision, 96.9%
recall, for an F-measure of 95.9%. These results
provide an upper bound as well as indicating that,
while not perfect, the simple extraction rules reach
a very good level of correctness if the input from
the first step, syntactic and semantic parsing, is
correct. The performance is much lower when

Tt uses VanNoord’s finite-state-toolkit
http://www.let.rug.nl/ vannoord/Fsa/.

parses are not entirely correct, and semantic role
labels are missing, as indicated by the results of
72.9% precision, 66.7% (F-measure 69.7%), ob-
tained when using the best automatic parse tree.
The fact that performance depends on the qual-
ity of the output of the first step, indicates that
the extraction rules are sensitive to errors in the
parse trees, as well as errors in the labelling. This
indicates that a learning method might be more
adapted to recover from these mistakes.

5.2 The SVM learning method

In a different approach to extract predicate argu-
ment structures from the parsing output, the sec-
ond step learns to associate the right verb to each
semantically annotated node (srn) in the tree pro-
duced in the first step. Each individual (verb, srn)
pair in the tree is either a positive example (the srn
is a member of the verb’s argument structure) or a
negative example (the argument either should not
have been labelled as an argument or it is not as-
sociated to the verb). The training examples are
produced by parsing section 2-21 of the merged
PTB/PRBK data with the joint syntactic-semantic
parser and producing the training examples by
comparison with the CONLL 2005 gold proposi-
tions. There are approximately 800’000 training
examples in total. These examples are used by
an SVM classifier (Joachims, 1999).5. Once the
predicate-argument structures are built, they are
evaluated with the CONLL 2005 shared task cri-
teria.

5.3 The learning features

The features used for the extraction of the
predicate-argument structure reflect the syntactic
properties that are useful to identify the arguments
of a given verb. We use syntactic and semantic
node label, the path between the verb and the argu-
ment, and the part-of-speech tag of the verb, which
provides useful information about the tense of the
verb. We also use novel features that encode min-
imality conditions and locality constraints (Rizzi,
1990). Minimality is a typical property of natu-
ral languages that is attested in several domains.
In recovering predicate-argument structures, mini-
mality guarantees that the arguments are related to
the closest verb in a predicate domain, which is not
always the verb to which they are connected by the

>We use a radial basis function kernel, where parameters

c and v were determined by a grid search on a small subset of
2000 training examples. They are set at c=8 and y = 0.03125.



shortest path. For example, the subject of an em-
bedded clause can be closer to the verb of the main
clause than to the predicate to which it should be
attached. Minimality is encoded as a binary feature
that indicates whether a verb w intervenes between
the verb v and the candidate argument srn. Mini-
mality is defined both in terms of linear precedence
(indicated below as <) and of dominance within
the same VP group. A VP group is a stack of VPs
covering the same compound verb group, such as
[vp should [vp have [yp [y come ]]]]. Formal
definitions are given below:

minimal(v, srn, w) =g

false
true

VPG-dominates(v, srn, w) =4f

true
{ false
In addition to the minimality conditions, which
resolve ambiguity when two predicates compete to
govern an argument, we use locality constraints to
capture distinct local relationships between a verb
and the syntactic position occupied by a candidate
argument. In particular, we distinguish between in-
ternal arguments occupying a position dominated
by a VP node, external arguments occupying a
position dominated by an S node, and extracted
arguments occupying a position dominated by an
SBAR node. To approximate such structural dis-
tinctions, we introduce two binary features indicat-
ing, respectively, whether there is a a node labelled
S or SBAR on the path connecting the verb and the
candidate argument.

if(v < w< srnorsrn < w < v)and
VPG-dominates(v, srn, w)
otherwise

if VP € path(v, srn) and
VP € VP-group directly dominating w
otherwise

6 Results and Discussion

Table 2 illustrates our results on semantic role la-
belling. Notice how much more precise the learn-
ing method is than the rule-based method, when
the minimality constraint is added. The second and
third line indicate that this contribution is mostly
due to the minimality feature. The fifth and sixth
line however illustrate that these features together
are more useful than the widely used feature path.
Recall however, suffers in the learnt method. Over-
all, the learnt method is better than a rule-based
method only if path and either minimality or lo-
cality constraints are added, thus suggesting that

Prec Rec F
Learning all features 874 63.6 73.7
Learning all —min 754 66.2 705
Learning all —loc 874 63.6 73.6
Rule-based 729 66.7 69.7
Learning all —path 80.6 60.9 694
Learning all —-min —loc 743 63.8 68.6
Baseline 574 539 55.6

Table 2: Results on the development section (24),
rule-based, and learning, (with all features, and
without path, minimality and locality constraints)
compared to a closest verb baseline.

the choice of features is crucial to reach a level
of performance that justifies the added complex-
ity of a learning method. Both methods are much
better than a baseline that attaches each role to
a verb by the shortest path.® Notice that both
these approaches are not lexicalised, they apply to
all verbs. Learning experiments where the actual
verbs were used showed a little degradation as well
as a very considerable increase in training times
(precision: 87.0%; recall: 61.0%; F: 71.7%).”
Some comments are in order to compare prop-
erly our best results — the learning method with
all features — to other methods. Most of the best
performing SRL systems are ensemble learners or
rerankers, or they use external sources of infor-
mation such as the PropBank frames files. While
these techniques are effective to improve classifi-
cation accuracy, we might want to compare the sin-
gle systems, thus teasing apart the contribution of
the features and the model from the contribution
of the ensemble technique. Table 3 reports the sin-
gle systems’ performance on the test set. These re-
sults seem to indicate that methods like ours, based
on a first step of PropBank parsing, are compara-
ble to other methods when learning regimes are
factored out, contrary to pessimistic conclusions
in previous work (Yi and Palmer, 2005). (Yi and
Palmer, 2005) share the motivation of our work.
They observe that the distributions of semantic la-

%1n case of tie, the following verb is chosen for an AQ label
and the preceding verb is chosen for all the other labels.

"We should notice that all these models encode the feature
path as syntactic path, because in exploratory data analysis we
found that this feature performed quite a bit better than path
encoded taking into account the semantic roles assigned to the
nodes on the path. Concerning the learning model, we notice
that a simpler, and much faster to train, linear SVM classifier
performs almost as well as the more complex RBF classifier.
It is therefore preferable if speed is important.



Model CONLL 23 Comments

P R F
(Surdeanu and Turmo, 2005) 80.3 73.0 76.5 Propbank frames to filter output, boosting
(Liu et al., 2005) 80.5 72.8 76.4 Single system + simple post-processing
(Moschitti et al., 2005) 76.6 752 75.9 Specialised kernels for each kind of role
This paper 87.6 65.8 75.1 Single system and model, locality features
(Ozgencil and McCracken, 2005) 74.7 74.2 74.4 Simple system, no external knowledge
(Johansson and Nugues, 2005) 75.5 73.2 74.3 Uses only 3 sections for training

Table 3: Final Semantic Role Labelling results on test section 23 of Propbank as encoded in the CONLL
shared task for those CONLL 2005 participants not using ensemble learning or external resources.

bels could potentially interact with the distribu-
tions of syntactic labels and redefine the bound-
aries of constituents, thus yielding trees that reflect
generalisations over both these sources of infor-
mation. They also attempt to assign SRL while
parsing, by merging only the first two steps of
the standard pipeline architecture, pruning and ar-
gument identification. Their parser outputs a bi-
nary argument-nonargument distinction. The ac-
tual fine-grained labelling is performed, as in other
methods, by an ensemble classifier. Results are
not among the best and Yi and Palmer conclude
that PropBank parsing is too difficult and suffers
from differences between chunk annotation and
tree structure. We think instead that the method is
promising, as shown by the results reported here,
once the different factors that affect performance
are teased apart.

Some qualitative observations on the errors are
useful. On the one hand, as can be noticed in Table
3, our learning method yields the best precision,
but often the worse recall and it has the most ex-
treme difference between these two scores.® This
is very likely to be a consequence of the method.
Since the assignment of the semantic role labels
proper is performed during parsing, the number
of nodes that require a semantic role is only 20%
of the total. Therefore the parser develops a bias
against assigning these roles in general, and recall
suffers.® On the other hand, precision is very good,
thanks to the rich context in which the roles are as-
signed.

This property of our method suggests that com-
bining our results with those of other existing se-

8This observation applies also in a comparison to the other
systems that participated in the CONLL shared task.

°The SVM classifier, on the other hand, exceeds 94% in
accuracy and its F measures are situated around 87-88% de-
pending on the feature sets.

mantic role labellers might be beneficial, since the
errors it performs are quite different. We tested
this hypothesis by combining our outputs, which
are the most precise, with the outputs of the sys-
tem that reported the best recall (Haghighi et al.,
2005). The combination, performed on sections
24 and 23, gives priority to our system when it
outputs a non-null label (because of its high pre-
cision) and uses the other system’s label when our
system outputs a null label. This combination pro-
duces a result of 79.0% precision, 80.4% recall,
and 79.7% F-measure for section 24, and 80.5%
precision, 81.4% recall, and 81.0% F-measure for
section 23. We conclude that the combination is in-
deed able to exploit the positive aspects of both ap-
proaches, as the F-measure of the combined result
is better than each individual result. It is also the
best compared to the other systems of the CoNLL
shared task. Comparatively, we find that applying
the same combination technique to the output of
the system by (Haghighi et al., 2005) with the out-
put of the best system in the CoNLL 2005 shared
task (Punyakanok et al., 2005) yields combined
outputs that are not as good as the better of the
two systems (P:76.3%; R:78.6%; F:77.4% for sec-
tion 24; P:78.5%; R:80.0%; F:79.3% for section
23). This result confirms our initial hypothesis,
that combination of systems with different perfor-
mance characteristics yields greater improvement.

Another direct consequence of assigning roles
in a rich context is that in collecting arguments for
a given verb we hardly need to verify global con-
straints. Differently from previous work that had
found that global coherence constraints consider-
ably improved performance (Punyakanok et al.,
2005), using global filtering contraints showed no
improvement in our learning model. Thus, these
results confirm the observations that a verb does



not assign its semantic roles independently of each
other (Haghighi et al., 2005). Our method too can
be seen as a way of formulating the SRL problem
in a way that is not simply classification of each in-
stance independently. Because identification of ar-
guments and their labelling is done while parsing,
the parsing history, both syntactic and semantic,
is taken into account in identifying and labelling
an argument. Semantic role labelling is integrated
in structured sequence prediction. Further integra-
tion of semantic role labelling in structured prob-
abilistic models related to the one described here
has recently been shown to result in accurate syn-
chronous parsers that derive both syntactic and se-
mantic dependency representations (Henderson et
al., 2008).

7 Conclusion

Overall our experiments indicate that an inte-
grated approach to identification and labelling fol-
lowed by predicate-argument recovery can solve
the problem of semantic role labelling at a level
of performance comparable to other approaches,
as well as yielding a richly decorated syntactic-
semantic parse tree. The high precision of our
method yields very good results in combination
with other high-recall systems. Its shortcomings
indicates that future work lies in improving recall.
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1

In global linear models (GLMs) for structured pre-
diction, (e.g., (Johnson et al., 1999; Lafferty et al.
2001; Collins, 2002; Altun et al., 2003; Taskar e

al., 2004)), the optimal labef* for an inputx is

where)(x) is the set of possible labels for the in-
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Abstract

We describe a parsing approach that makes use
of the perceptron algorithm, in conjunction with
dynamic programming methods, to recover full
constituent-based parse trees. The formalism allows
a rich set of parse-tree features, including PCFG-
based features, bigram and trigram dependency fea-
tures, and surface features. A severe challenge in
applying such an approach to full syntactic pars-
ing is the efficiency of the parsing algorithms in-
volved. We show that efficient training is feasi-
ble, using a Tree Adjoining Grammar (TAG) based
parsing formalism. A lower-order dependency pars-
ing model is used to restrict the search space of the
full model, thereby making it efficient. Experiments
on the Penn WSJ treebank show that the model
achieves state-of-the-art performance, for both con-
stituent and dependency accuracy.

Introduction

(1)

* = arg max w-f(x,
y g max, (x,9)

putx; f(x,y) € R?is a feature vector that rep-
resents the paifx,y); andw is a parameter vec-

tor. This paper describes a GLM for natural lan
guage parsing, trained using the averaged perce?—
tron. The parser we describe recovers full synta

tic representations, similar to those derived by
probabilistic context-free grammar (PCFG). A ke

motivation for the use of GLMs in parsing is that .
they allow a great deal of flexibility in the features

which can be included in the definition 8fx, y).
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A critical problem when training a GLM for
parsing is the computational complexity of the
inference problem. The averaged perceptron re-
quires the training set to be repeatedly decoded
under the model; under even a simple PCFG rep-
resentation, finding therg max in Eqg. 1 requires
O(n3G) time, wheren is the length of the sen-
tence, and~ is a grammar constant. The average
sentence length in the data set we use (the Penn
WSJ treebank) is over 23 words; the grammar con-
stantG can easily take a value abH00 or greater.
These factors make exact inference algorithms vir-
tually intractable for training or decoding GLMs
for full syntactic parsing.

As a result, in spite of the potential advantages
of these methods, there has been very little previ-
ous work on applying GLMs for full parsing with-
out the use of fairly severe restrictions or approxi-

ations. For example, the model in (Taskar et al.,

004) is trained on only sentences of 15 words or
less; reranking models (Collins, 2000; Charniak
and Johnson, 2005) restri@{(x) to be a small set
of parses from a first-pass parser; see section 1.1
for discussion of other related work.

The following ideas are central to our approach:
(1) A TAG-based, splittable grammar. We
describe a novel, TAG-based parsing formalism
at allows full constituent-based trees to be recov-

red. A driving motivation for our approach comes

i{:om the flexibility of the feature-vector represen-

ationsf(x, y) that can be used in the model. The
formalism that we describe allows the incorpora-
tion of: (1) basic PCFG-style features; (2) the
use of features that are sensitivebigram depen-
dencies between pairs of words; and (3) features
that are sensitive tarigram dependencies. Any
gf these feature types can be combined vsitin-
face featuref the sentence, in a similar way

CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 9-16
Manchester, August 2008



to the use of surface features in conditional rarald et al., 2005). Dependency parsing can be
dom fields (Lafferty et al., 2001). Crucially, in implemented inO(n3) time using the algorithms
spite of these relatively rich representations, thef Eisner (2000). In this case there is no gram-
formalism can be parsed efficiently (if(n*G) mar constant, and parsing is therefore efficient. A
time) using dynamic-programming algorithms dedisadvantage of these approaches is that they do
scribed by Eisner (2000) (unlike many other TAG+ot recover full, constituent-based syntactic struc-
related approaches, our formalism is “splittabletures; the increased linguistic detail in full syntac-
in the sense described by Eisner, leading to mote& structures may be useful in NLP applications,
efficient parsing algorithms). or may improve dependency parsing accuracy, as
(2) Use of a lower-order model for pruning. is the case in our experimertts.
The O(n*G) running time of the TAG parser is There has been some previous work on GLM
still too expensive for efficient training with the approaches for full syntactic parsing that make use
perceptron. We describe a method that leverage$ dynamic programming. Taskar et al. (2004)
a simple, first-order dependency parser to restrickescribe a max-margin approach; however, in this
the search space of the TAG parser in training angork training sentences were limited to be of 15
testing. The lower-order parser runs@(n3H) words or less. Clark and Curran (2004) describe
time whereH < G; experiments show that it is a log-linear GLM for CCG parsing, trained on the
remarkably effective in pruning the search spacPenn treebank. This method makes use of paral-
of the full TAG parser. lelization across an 18 node cluster, together with
Experiments on the Penn WSJ treebank shoup to 25GB of memory used for storage of dy-
that the model recovers constituent structures withamic programming structures for training data.
higher accuracy than the approaches of (Charnia€lark and Curran (2007) describe a perceptron-
2000; Collins, 2000; Petrov and Klein, 2007),based approach for CCG parsing which is consid-
and with a similar level of performance to theerably more efficient, and makes use of a super-
reranking parser of (Charniak and Johnson, 2005gagging model to prune the search space of the full
The model also recovers dependencies with sigarsing model. Recent work (Petrov et al., 2007;
nificantly higher accuracy than state-of-the-art deFinkel et al., 2008) describes log-linear GLMs ap-
pendency parsers such as (Koo et al., 2008; M@lied to PCFG representations, but does not make
Donald and Pereira, 2006). use of dependency features.

1.1 Related Work 2 The TAG-Based Parsing Model

Previous v_vork_has made use of various re_st.rlctlorgl Derivations

or approximations that allow efficient training of

GLMs for parsing. This section describes the relalhis section describes the idea @érivationsin

tionship between our work and this previous workour parsing formalism. As in context-free gram-
In reranking approaches, a first-pass parsefars or TAGs, a derivation in our approach is a

is used to enumerate a small set of candidafata structure that specifies the sequence of opera-

parses for an input sentence; the reranking moddions used in combining basic (elementary) struc-

which is a GLM, is used to select between thesBires in a grammar, to form a full parse tree. The

parses (e.g., (Ratnaparkhi et al., 1994; Johnson rarsing formalism we use is related to the tree ad-

al., 1999; Collins, 2000; Charniak and Johnsori0ining grammar (TAG) formalisms described in

2005)). A crucial advantage of our approach is thdChiang, 2003; Shen and Joshi, 2005). However,

it considers a very large set of alternativegjifx), an important difference of our work from this pre-

and can thereby avoid search errors that may Béous work is that our formalism is defined to be

made in the first-pass parder. “splittable”, allowing use of the efficient parsing
Another approach that allows efficient training2lgorithms of Eisner (2000).

of GLMs is to usesimpler syntactic representa- A derivation in our model is a paji©z, D) where

tions in particular dependency structures (McDonE is a set ospinesandD is a set odependencies

1Some features used within reranking approaches may be ?Note however that the lower-order parser that we use to
difficult to incorporate within dynamic programming, but it restrict the search space of the TAG-based parser is based on
is nevertheless useful to make use of GLMs in the dynamidhe work of McDonald et al. (2005). See also (Sagae et al.,
programming stage of parsing. Our parser could, of cours@007) for a method that uses a dependency parser to restrict
be used as the first-stage parser in a reranking approach. the search space of a more complex HPSG parser.
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@ S b) s clear from context, we will use; to refer to the
VP VP spine inE corresponding to théth word.

VBD/\NP VP/\NP oD 'is a set ofn dependencie_s. Ea_ch depen-
‘ ‘ ‘ ‘ dency is a tuplgh, m,l). Hereh is the index of
ate NN VBD NN the head-wordof the dependency, corresponding

Ca‘\ke a‘te Ca‘lke to the spiney, which contains a node that is being
adjoined into.m is the index of thenmodifier-word
Figure 1: Two example trees. of the dependency, corresponding to the spine

which is being adjoined intg;,. [ is alabel.

The labell is a tuple(P0S, A, np, m, L). 1, and

are the head and modifier spines that are be-
combined.P0S specifies which node ipy, is

being adjoined intoA is a binary flag specifying

NP S NP  ADVP  ADVP whether the combination operation being used is s-
| | | | | adjunction or r-adjunctiorL is a binary flag spec-

specifying how the spines are combined to form
a parse tree. The spines are similar to eIementa?IY1

: Ing
trees in TAG. Some examples are as follows:

NNP VP NN RB RB s : .
‘ ‘ \ | | ifying whether or not any “previous” modifier has
John  VBD  cake quickly  luckily been r-adjoined into the positid@s in 7;,. By a
a‘te previous modifier, we mean a modifier that was

gjoined from the same direction as (i.e., such

These structures do not have substitution nodes, , ,
thath < m’ < morm <m' <h).

is common in TAGS Instead, the spines consist o _ _
of a lexical anchor together with a series of unary !t Would be sufficient to definé to be the pair
projections, which usually correspond to differentP0S; A)—the inclusion ofny, 7, andL adds re-
X-bar levels associated with the anchor. dundant information that can be recovered from

The operations used to combine spines are siffl® SetZ, and other dependencies B—but it

ilar to the TAG operations of adjunction and sisWill be convenient to include this information in

ter adjunction. We will call these operatioregu- the 1abel. In particular, it is important that given
lar adjunction(r-adjunction) andsister adjunction this definition ofl, it is possible to define a func-

(s-adjunction). As one example, tioake spine tion GRM(!) that maps a labdl to a triple of non-
shown above can be s-adjoined into ¥fenode of terminals that represents the grammatical relation

theatespine, to form the tree shown in figure 1(a)Petweenn andh in the dependency structure. For

In contrast, if we use the r-adjunction operation t&*@mple, in the tree shown in figure 1(a), the gram-
adjoin thecaketree into theVP node, we get a dif- matical relation betweeocakeandateis the triple

ferent structure, which has an additiond® level GRM(I) = (VP VBD NP). In the tree shown in

created by the r-adjunction operation: the resultinfjgure 1(b), the grammatical relation betwezake

tree is shown in figure 1(b). The r-adjunction op2ndateis the triplecri(l) = (VP VP NP).

eration is similar to the usual adjunction operation The conditions under which a pdif/, D) forms
in TAGs, but has some differences that allow ouft Valid derivation for a sentence are similar to
grammars to be splittable; see section 2.3 for mot§0se in conventional LTAGs. Eachi,n) € E
discussion. must be such thag is an elementary tree whose
We now give formal definitions of the sefisand ~ @nchor is the word:;. The dependencied must
D. Takex to be a sentence consisting of+ 1 form a directed, projective tree spanning words
words, zo . . . 7, Wherezg is a specialoot sym- 0...n, with x at the root of this tree, as is also
bol, which we will denote as. A derivation forthe the case in previous work on discriminative ap-
input sentence consists of a paitE, D), where: Proches to dependency parsing (McDonald et al.,
o £is aset of(n + 1) tuples of the form(i, ), 2005). We allow any modifier treg, to adjoin
wherei € {0...n} is an index of a word in the INto any position in any head treg,, but the de-
sentence, ang is the spine associated with thePendencied) must nevertheless be coherent—for
word z;. The setE specifies one spine for eachexample they must be consistent with the spines in
of the (n + 1) words in the sentence. Where it isZ» @nd they must be nested correctie will al-

31t would be straightforward to extend the approach to in- “For example, closer modifiers to a particular head must
clude substitution nodes, and a substitution operation. adjoin in at the same or a lower spine position than modifiers
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low multiple modifier spines to s-adjoin or r—adjoin(a) i (b) /S\
into the same node in a head spine; see section 2.3 VP NP VP
for more details. VE e NP acte Ve
N fB 3ahn RE viD
2.2 A Global Linear Model Z_ ¥ ey N

The model used for parsing with this approach is \ \
a global linear model. For a given sentenceve e
define)’(x) to be the set of valid derivations far,

where eacly € Y(x) is a pair(E, D) as described Figure 2: Two Example Trees

in the previous section. A functiohmaps(x, y)
S

pairs to feature-vectoyx, y) € RY. The param-
eter vectorw is also a vector irR?. Given these /\

definitions, the optimal derivation for an input sen- NP P
tencex is y* = arg max,cy(x) w - £(x, y). NP /\
We now come to how the feature-vecfix, y) Jomn ve AOvP
is defined in our approach. A simple “first-order” /’\ Rf
m | woul fin ADVP VP NP quickly
odel would define S |
fxy) = > elx(im)+ Wy e ot
(i) EE () cae

Z d(x, (h,m,1)) (2) Figure 3: An example tree, formed by a combina-
(hom ) €D(y) tion of the two structures in figure 2.

Here we useé?(y) and D(y) to respectively refer
to the set of spines and dependencieg.inThe e Q(y) is an additional set of grandparent de-
functione maps a sentence paired with a spine pendencies, of type 2. Each of these dependencies
(i,7m) to a feature vector. The functiahmaps de- is a tuple(h,m, [, ¢). Again, there is one member
pendencies withiny to feature vectors. This de- of Q for every member of. The additional infor-
composition is similar to the first-order model ofmation, the indey;, is the index of the word that is
McDonald et al. (2005), but with the addition ofthe first modifier to théeft of the spine fom.
thee features. The feature-vector definition then becomes:

We will extend our model to include higher-
order features, in particular features baseditn
ling dependencies (McDonald and Pereira, 2006),

f(X7 y) = Z e(x7 <7:a 77>) +

(i,m €E(y)

d(x, (h,m,1 h,m, 1
and grandparentdependencies, as in (Carrera§n,m§mw(x’< 1 >)+<hﬂm,§es(;(x’< b))+
2007). Ify = (E, D) is a derivation, then:
, (hym, 1, g)) + , (hym, 1,
e S(y) is a set of sibling dependencies. Eac@,mg;emi(x ot (h,m,l,Zq;GQ(;l)(X b
sibling dependency is a tuplé, m, [, s). For each ©)

(h,m,l, sy € Sthe tuple(h,m,!) is an element of
D; there is one member df for each member of \ypares & andq are feature vectors corresponding
D._ The indexs is t_he mde_x of th_e word that was to the new, higher-order elemerits.

adjoined to the spine fat immediately beforen

(or theNULL symbol if no previous adjunction has2.3 Recovering Parse Trees from Derivations
taken place).

e GG(y) is a set of grandparent dependencies
type 1. Each type 1 grandparent dependency is
tuple (h,m,l,g). There is one member a¥ for
every member ofD. The additional information,
the indexg, is the index of the word that is the first

35 in TAG approaches, there is a mapping from

? erivations(F, D) to parse trees (i.e., the type of
tfes generated by a context-free grammar). In our
case, we map a spine and its dependencies to a con-
stituent structure by first handling the dependen-

modifier to theright of the spine fom. *We also added constituent-boundary features to the
model, which is a simple change that led to small improve-
that are further from the head. ments on validation data; for brevity we omit the details.
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cies on each side separately and then combinimgake use of this idea of automata, and also make
the left and right sides. direct use of the method described in section 4.2 of
First, it is straightforward to build the con- (Eisner, 2000) that allows a set of possible senses
stituent structure resulting from multiple adjunc-for each word in the input string. In our use of
tions on the same side of a spine. As one exanthe algorithm, each possible sense for a word cor-
ple, the structure in figure 2(a) is formed by firstresponds to a different possible spine that can be
s-adjoining the spine with anchoakeinto theVP  associated with that word. The left and right au-
node of the spine foate then r-adjoining spines tomata are used to keep track of the last position
anchored byodayandquicklyinto the same node, in the spine that was adjoined into on the left/right
where all three modifier words are to the right of the head respectively. We can make use of sep-
the head word. Notice that each r-adjunction oparate left and right automata—i.e., the grammar is
eration creates a neMP level in the tree, whereas splittable—because left and right modifiers are ad-
s-adjunctions do not create a new level. Now corjeined independently of each other in the tree. The
sider a tree formed by first r-adjoining a spine foextension of Eisner’s algorithm to the second-order
luckily into the VP node forate, followed by s- modelis similar to the algorithm described in (Car-
adjoining the spine fodohninto the S node, in reras, 2007), but again with explicit use of word
both cases where the modifiers are to the left afenses and left/right automata. The resulting algo-
the head. In this case the structure that would béthms run inO(Gn?) and O(Hn*) time for the
formed is shown in figure 2(b). first-order and second-order models respectively,
Next, consider combining the left and rightwhereG andH are grammar constants.
structures of a spine. The main issue is how to
handle multiple r-adjunctions or s-adjunctions or8.2 Efficient Parsing
both sides of a node in a spine, because our deriv_?l

tions do not specify how adjunctions from different he efficiency of the parsing algorithm is impor-

sides embed with each other. In our approach, thtgnt in applying the parsing model to test sen-

combination operation preserves the height of thignces, and also when training the model using dis-

different modifiers from the left and right direc-cng];"_it've dmetglquh The grammar.constaﬁtsl
tions. To illustrate this, figure 3 shows the resulf” Introduced in the previous section are poly-

of combining the two structures in figure 2. Thenomlal in factors such as the number of possible

combination of the left and right modifier struc-s‘pines in the model, and the number of possible

tures has led to flat structures, for example the rul%tates in the finite-state automata implicit in the

VP — ADVP VP NP in the above tree parsing algorithm. These constants are large, mak-

Note that our r-adjunction operation is different"'9 exhausze pgrsmg VEry Expensive. ] o
To deal with this problem, we use a simple ini-

from the usual adjunction operation in TAGs, in

that “wrapping” adjunctions are not possible, andial model to prune the §earch space of the more
r-adjunctions from the left and right directions aré?®mplex model.  The first-stage model we use

independent from each other; because of this ol @ first-order dependency model, with labeled
grammars are splittable. dependencies, as described in (McDonald et al.,

2005). As described shortly, we will use this model

3 Parsing Algorithms to computemarginal scores for dependencies in
_ _ both training and test sentences. A marginal score
3.1 Use of Eisner's Algorithms u(x, h,m,l) is a value between and 1 that re-

This section describes the algorithm for findingdlects the plausibility of a dependency for sentence
y* = argmax,cy) w - £(x,y) wheref(x,y) is  x with head-wordz;,, modifier wordz,,, and la-
defined through either the first-order model (Eq. 2pell. In the first-stage pruning model the labéls
or the second-order model (Eq. 3). are triples of non-terminals representing grammat-
For the first-order model, the methods describeigal relations, as described in section 2.1 of this
in (Eisner, 2000) can be used for the parsing alggaper—for example, one possible label would be
rithm. In Eisner’s algorithms for dependency pars{VP VBD NP), and in general any triple of non-
ing each word in the input has left and right finiteterminals is possible.
state (weighted) automata, which generate the left Given a sentenceg, and an indexn of a word
and right modifiers of the word in question. Wein that sentence, we defiAX(x,m) to be the
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highest scoring dependency withhas a modifier: to the number of non-terminals in the grammar,
which is far more manageable. We use the algo-
rithm described in (Globerson et al., 2007) to train
) the conditional log-linear model; this method was
For a sentenc&,_we then define the set of allow- found to converge to a good model after 10 itera-
able dependencies to be tions over the training data.

DMAX(x, m) = max p(x, h,m,l)

m(x) = {{hm. ) 2 pulx hom, 1) 2 aDMAX(m)} 44y slementation Details

whereq is a constant dictating the beam size tha}l 1 Features
is used (in our experiments we used= 1075). '

The setr(x) is used to restrict the set of pos-Section 2.2 described the use of feature vectors
sible parses under the full TAG-based model. I@ssociated with spines used in a derivation, to-
section 2.1 we described how the TAG model hagether with first-order, sibling, and grandparent
dependency labels of the fortR0S, A, 1, 7m, L), dependencies. The dependency features used in
and that there is a functioRM that maps labels our experiments are closely related to the features
of this form to triples of non-terminals. The ba-described in (Carreras, 2007), which are an ex-
sic idea of the pruned search is to only allow detension of the McDonald and Pereira (2006) fea-
pendencies of the forrth, m, (POS, A, 1y, m, L)) tUres to cover grandparent dependencies in addi-
if the tuple (h, m, GRM((POS, A, 7, nm, L)) is a tion to first-order and sibling dependencies. The
member ofr(x), thus reducing the search spacdeatures take into account the identity of the la-
for the parser. bels! used in the derivations. The features could

We now turn to how the marginals(x, h, m, [) potentially look at any information in the la-
are defined and computed. A simple approachels, which are of the form(PGS, A, 7, 7, L),
would be to use a conditional log-linear modePut in our experiments, we map labels to a pair
(Lafferty et al., 2001), with features as defined byGRM((POS, A, 1, 7, L)), A). Thus the label fea-
McDonald et al. (2005), to define a distributiontures are sensitive only to the triple of non-
P(y|x) where the parse structurgsare depen- terminals corresponding to the grammatical rela-
dency structures with labels that are triples of nortion involved in an adjunction, and a binary flag

terminals. In this case we could define specifiying whether the operation is s-adjunction
or r-adjunction.
p(x,h,m, )= Y P(ylx) For the spine features(x, (i,7)), we use fea-
y:(h,m,l)ey ture templates that are sensitive to the identity of

which can be computed with inside-outside styld® SPinen, together with contextual features of

algorithms, applied to the data structures from'€ Stringx. These features consider the iden-

(Eisner, 2000). The complexity of training and aplity Of the words and part-of-speech tags in a win-

plying such a model is agaifi(Gn3), whereG is dow that is centered om; and spans the range
the number of possible labels, and the number df(i-2) - - - T(i+2)-

possible Iab_els (triples of non-terminals) IS arour_ujLZ Extracting Derivations from Parse Trees

G = 1000 in the case of treebank parsing; this _ o _
value forG is still too large for the method to be ef- N the experiments in this paper, the following
ficient. Instead, we train three separate mogigls thrée-step process was used: (1) derivations were
112, and us for the three different positions in the extracted from a training set drawn fro_m the Pepn
non-terminal triples. We then takex, i, m, [) to WSJ treebank, and then used to train a parsing

be a product of these three models, for example wg0del; (2) the test data was parsed using the re-

would calculate sulting model, giving a derivation for each test
data sentence; (3) the resulting test-data deriva-
p(x, h,m, (VP VBD NP)) = tions were mapped back to Penn-treebank style
p1(x, h,m, (VP)) x ua(x, h,m, (VBD)) trees, using the method described in section 2.1.

% p13(x, b, m, (NP)) To achieve step (1), we first apply a set of head-

finding rules which are similar to those described
Training the three models, and calculating thén (Collins, 1997). Once the head-finding rules
marginals, now has a grammar constant equabve been applied, it is straightforward to extract
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[ [ precision recall | 1st stage 2nd stage
PPKO7 — — 3883 « active coverage oraclek  speed r
FKMO08 88.2 87.8 88.0 107* ] 0.07 97.7 97.0 5:15 91.1
CH2000 89.5 89.6 89.6 107° 0.16 98.5 97.9 11:45 91.6
C02000 89.9 89.6 89.8 1076 | 0.34 99.0 98.5 21:50 92.0
PKO7 90.2 89.9 90.1
this paper 91.4 90.7 911
CJO5 - - 91.4 Table 3: Effect of the beam size, controlled lay, on the
HO08 - - 91.7 performance of the parser on the development set (1,699 sen-
C02000(s24) 896 886 89.1 tences). In each casgerefers to the beam size used in both
this paper (s24) 91.1 899 905 training and testing the model. “active”: percentage of de-

pendencies that remain in the beam out of the total number of

] ] labeled dependencies (1,000 triple labels times 1,138,167 un-
Table 1: Results for different methods. PPK07, FKMO8, |abeled dependencies); “coverage”: percentage of correct de-

CH2000, CO2000, PK07, CJ05 and HO8 are results on sectigendencies in the beam out of the total number of correct de-
23 of the Penn WSJ treebank, for the models of Petrov et gbendencies. “oracle;F: maximum achievable score of con-
(2007), Finkel et al. (2008), Charniak (2000), Collins (2000)stituents, given the beam. “speed”: parsing timeniim:sec
Petrov and Klein (2007), Charniak and Johnson (2005), an@dr the TAG-based model (this figure does notinclude the time

Huang (2008). (CJO5 is the performance of an updateghken to calculate the marginals using the lower-order model);
model at http://www.cog.brown.edu/mj/software.htm.) “s24™g " score of predicted constituents.

denotes results on section 24 of the treebank.

[ [ s23 ] s24 | . . .
0T S eESie 5.0 ToL0 d|_ct|on§1ry listing the spines that havg been seen
KCCO8 labeled | 92.5 | 91.7 with this POS tag in training data; during parsing
this paper 935 92.5 we only allow spines that are compatible with this

dictionary. (For test or development data, we used
Table 2:Table showing unlabeled dependency accuracy fothe part-of-speech tags generated by the parser of

sections 23 and 24 of the treebank, using the method of (Y ; : -
mada and Matsumoto, 2003) to extract dependencies froi]ColllnS,.1997). Fumre work S_hC_)UId ConSIder_lr?
parse trees from our model. KCCO8 unlabeled is from (Ko&Orporating the tagging step within the model; it is

et al., 2008), a model that has previously been shown to haygpt challenging to extend the model in this way.)
higher accuracy than (McDonald and Pereira, 2006). KCC08

labeled is the labeled dependency parser from (Koo et al., .
2008); here we only evaluate the unlabeled accuracy. 5 Experiments

Sections 2-21 of the Penn Wall Street Journal tree-

derivations from the Penn treebank trees. bank were used as training data in our experiments,

Note that the mapping from parse trees t@nd section 22 was used as a development set. Sec-
derivations is many-to-one: for example, the extions 23 and 24 were used as test sets. The model
ample trees in section 2.3 have structures that ayés trained for 20 epochs with the averaged per-
as “flat” (have as few levels) as is possible, givegeptron algorithm, with the development data per-
the setD that is involved. Other similar trees, formance being used to choose the best epoch. Ta-
but with more VP levels, will give the same setble 1 shows the results for the method.
D. However, this issue appears to be benign in the Our experiments show an improvement in per-
Penn WSJ treebank. For example, on section 22 fsfrmance over the results in (Collins, 2000; Char-
the treebank, if derivations are first extracted usingiak, 2000). We would argue that the Collins
the method described in this section, then mappd@000) method is considerably more complex than
back to parse trees using the method described dirs, requiring a first-stage generative model, to-
section 2.3, the resulting parse trees score 100gether with a reranking approach. The Char-
precision and 99.81% recall in labeled constituerniak (2000) model is also arguably more com-
accuracy, indicating that very little information isplex, again using a carefully constructed genera-

lost in this process. tive model. The accuracy of our approach also
' shows some improvement over results in (Petrov
4.3 Part-of-Speech Tags, and Spines and Klein, 2007). This work makes use of a

Sentences in training, test, and development daRCFG with latent variables that is trained using
are assumed to have part-of-speech (POS) tagssplit/merge procedure together with the EM al-
POS tags are used for two purposes: (1) in thgorithm. This work is in many ways comple-
features described above; and (2) to limit the sehentary to ours—for example, it does not make
of allowable spines for each word during parsinguse of GLMs, dependency features, or of repre-
Specifically, for each POS tag we create a separatentations that go beyond PCFG productions—and
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Abstract

Combination of features contributes to a
significant improvement in accuracy on
tasks such as part-of-speech (POS) tag-
ging and text chunking, compared with us-
ing atomic features. However, selecting
combination of features on learning with
large-scale and feature-rich training data
requires long training time. We propose a
fast boosting-based algorithm for learning
rules represented by combination of fea-
tures. Our algorithm constructs a set of
rules by repeating the process to select sev-
eral rules from a small proportion of can-
didate rules. The candidate rules are gen-
erated from a subset of all the features with
a technique similar to beam search. Then
we propose POS tagging and text chunk-
ing based on our learning algorithm. Our
tagger and chunker use candidate POS tags
or chunk tags of each word collected from
automatically tagged data. We evaluate
our methods with English POS tagging and
text chunking. The experimental results
show that the training time of our algo-
rithm are about 50 times faster than Sup-
port Vector Machines with polynomial ker-
nel on the average while maintaining state-
of-the-art accuracy and faster classification
speed.

1 Introduction

Several boosting-based learning algorithms have
been applied to Natural Language Processing
problems successfully. These include text catego-
rization (Schapire and Singer, 2000), Natural Lan-
guage Parsing (Collins and Koo, 2005), English
syntactic chunking (Kudo et al., 2005) and so on.

(©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.
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Furthermore, classifiers based on boosting-
based learners have shown fast classification speed
(Kudo et al., 2005).

However, boosting-based learning algorithms
require long training time. One of the reasons is
that boosting is a method to create a final hypoth-
esis by repeatedly generating a weak hypothesis in
each training iteration with a given weak learner.
These weak hypotheses are combined as the fi-
nal hypothesis. Furthermore, the training speed
of boosting-based algorithms becomes more of a
problem when considering combination of features
that contributes to improvement in accuracy.

This paper proposes a fast boosting-based algo-
rithm for learning rules represented by combina-
tion of features. Our learning algorithm uses the
following methods to learn rules from large-scale
training samples in a short time while maintaining
accuracy; 1) Using a rule learner that learns sev-
eral rules as our weak learner while ensuring a re-
duction in the theoretical upper bound of the train-
ing error of a boosting algorithm, 2) Repeating to
learn rules from a small proportion of candidate
rules that are generated from a subset of all the fea-
tures with a technique similar to beam search, 3)
Changing subsets of features used by weak learner
dynamically for alleviating overfitting.

We also propose feature-rich POS tagging and
text chunking based on our learning algorithm.
Our POS tagger and text chunker use candidate
tags of each word obtained from automatically
tagged data as features.

The experimental results with English POS tag-
ging and text chunking show drastically improve-
ment of training speeds while maintaining compet-
itive accuracy compared with previous best results
and fast classification speeds.

2 Boosting-based Learner

2.1 Preliminaries

We describe the problem treated by our boosting-
based learner as follows. Let X be the set of ex-
amples and ) be a set of labels {—1,+1}. Let
F = {f1, f2,-.., far} be M types of features rep-
resented by strings. Let S be a set of training sam-

CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 17-24
Manchester, August 2008



# .S = {(xi,y:) } 21 - % € X,y € {£1}
## a smoothing value € =1
## rule number r: the initial value is 1.
Initialize: Fori=1,...m: w1,; = exp(} log(xi ));
While (r < R)
## Train weak-learner using (S, {wr; }i~1)
## Get v types of rules: {f;}7_4
{f;}j=1 «— weak-learner(S,{w;:};~1);
## Update weights with confidence value
Foreach f € {f;}7_;
1 Wy 41(f)+e
= 510g(W7\i1(f)+5)
For i=1,...m: wry1,: = wrs exp(—yih(s,c))
f.=1f,¢c, =c;r++;
endForeach
endWhile
Output: F(x) = sign(log(y*1) + 3,2 s, ) (%))

Figure 1: A generalized version of our learner

ples {(x1,91), s (Xm, Ym) }» Wwhere each example
x; € X consists of features in F, which we call a
feature-set, and y; € ) is a class label. The goal is
to induce a mapping

F:XxX-=Y)

from S.

Let |x;| (0 < |x;] < M) be the number of fea-
tures included in a feature-set x;, which we call
the size of x;, and ; ; € F (1 < j < |x;| ) bea
feature included in x;. ! We call a feature-set of
size k a k-feature-set. Then we define subsets of
feature-sets as follows.

Definition 1 Subsets of feature-sets

If a feature-set X; contains all the features in a
feature-set x;, then we call X; is a subset of x; and
denote it as

x; C x;.

Then we define weak hypothesis based on the
idea of the real-valued predictions and abstaining
(RVPA, for short) (Schapire and Singer, 2000). 2

Definition 2 Weak hypothesis for feature-sets

Let £ be a feature-set, called a rule, x be a
feature-set, and c be a real number, called a con-
fidence value, then a weak-hypothesis for feature-
sets is defined as

c fCx
h<fvc> (x) = {O otherwise’

'Our learner can handle binary vectors as in (Morishita,
2002). When our learner treats binary vectors for M attributes
{X1,...Xim }, the learner converts each vector to the corre-
sponding feature-set as x; — {fi|X:; € Xi A X;; = 1}
1<i<m,1<j<M).

2We use the RVPA because training with RVPA is faster
than training with Real-valued-predictions (RVP) while main-
taining competitive accuracy (Schapire and Singer, 2000).
The idea of RVP is to output a confidence value for samples
which do not satisfy the given condition too.
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2.2 Boosting-based Rule Learning

Our boosting-based learner selects R types of rules
for creating a final hypothesis F' on several training
iterations. The F' is defined as

F(x) = sign(3,1 hig, e, (X))

We use a learning algorithm that generates
several rules from a given training samples
S {(xs,yi)}1", and weights over samples
{wy1, ..., wyrm} as input of our weak learner. w;.;
is the weight of sample number ¢ after selecting
r — 1 types of rules, where O<w,;, 1 < ¢ < m and
1<r<R.

Given such input, the weak learner selects v
types of rules {f;}7_, (f; C F) with gain:

gain(f) = |\/Wy 1 (f) — /Wy _i(F)
where f is a feature-set, and W, ,(f) is
Wry(f) =

and [[x]] is 1 if a proposition 7 holds and 0 other-
wise.

The weak learner selects a feature-set having the
highest gain as the first rule, and the weak learner
finally selects v types of feature-sets having gain
in top v as {f; {—1 at each boosting iteration.

Then the boosting-based learner calculates the
confidence value of each f in {f;}_, and updates
the weight of each sample. The confidence value

c; for £} is defined as

il

o weal[f Cxi Ay =y,

Wi 41(f5)
Wi —1(£;)

).

After the calculation of c; for f;, the learner up-
dates the weight of each sample with

cj = %log(

€y

Wi = wrierp(—yihg; c;))-

Then the learner adds (fj, c;) to F' as the r-
th rule and its confidence value. 3 When we
calculate the confidence value c;;q for f; 1, we
use {Wy41,1, ..., Wr41,m }. The learner adds (£,
¢j+1) to I as the r+1-th rule and confidence value.

After the updates of weights with {f;}"_,, the
learner starts the next boosting iteration. The
learner continues training until obtaining R rules.

Our boosting-based algorithm differs from the
other boosting algorithms in the number of rules
learned at each iteration. The other boosting-based
algorithms usually learn a rule at each iteration

Eq. (1) is the update of the AdaBoost used in ADTrees
learning algorithm (Freund and Mason, 1999). We use
this AdaBoost by the following two reasons. 1) The pa-
per (Iwakura and Okamoto, 2007) showed that the accuracy
of text chunking with the AdaBoost of ADTrees is slightly
higher than text chunking with the AdaBoost of BoosTexter
for RVPA (Schapire and Singer, 2000), 2) We expect the Ad-
aBoost of ADTrees can realize faster training because this Ad-
aBoost does not normalize weights at each update compared
with the AdaBoost of BoosTexter normalizes weights at each
iteration.



## sort ByW (F, fq): Sort features (f € F)
## in ascending order based on weights of features
## (a % b): Return the reminder of (a + b)
## | B|-buckets: B = {BJ0], ..., B[|B| — 1]}
procedure distFT(S, | B|)
##Calculate the weight of each feature
Foreach (f€F) W, (f) = 7", w,[[{f} C xi]
##Sort features based on thier weights and
## store the results in F's
Fs «— sortByW (F,W,)
## Distribute features to buckets
Fori=0..M : BI(i % |B|)] = (B[(i % |B|)] U F's[i])
return B

Figure 2: Distribute features to buckets based on weights

(Schapire and Singer, 2000; Freund and Mason,
1999). Despite the difference, our boosting-based
algorithm ensures a reduction in the theoretical up-
per bound of training error of the AdaBoost. We
list the detailed explanation in Appendix.A.
Figure 1 shows an overview of our boosting-
based rule learner. To avoid to happen that
Wy 41(f) or W, _1(f) is very small or even zero,
we use the smoothed values e (Schapire and
Singer, 1999). Furthermore, to reflect imbalance
class distribution, we use the default rule (Freund

and Mason, 1999), defined as %log(%: ), where

Wy =" llyi = y]] fory € {£1}. The initial
weights are defined with the default rule.

3 Fast Rule Learner
3.1 Generating Candidate Rules

We use a method to generate candidate rules with-
out duplication (Iwakura and Okamoto, 2007).
We denote ' = f + f as the generation of k + 1-
feature-set f’ consisting of a feature f and a k-
feature-set f. Let ID(f) be the integer corre-
sponding to f, called id, and ¢ be O-feature-set.
Then we define gen generating a feature-set as

f+f if ID(f) >r;}zé)f(ID(f’)
s .

We assign smaller integer to more infrequent fea-
tures as ¢d. If there are features having the same
frequency, we assign id to each feature with lexi-
cographic order of features. Training based on this
candidate generation showed faster training speed
than generating candidates by an arbitrary order
(Iwakura and Okamoto, 2007).

gen(f’f)—{

otherwise

3.2 Training with Redistributed Features

We propose a method for learning rules by repeat-
ing to select a rule from a small portion of can-
didate rules. We evaluated the effectiveness of
four types of methods to learn a rule from a sub-
set of features on boosting-based learners with a
text chunking task (Iwakura and Okamoto, 2007).
The results showed that Frequency-based distribu-
tion (F-dist) has shown the best accuracy. F-dist
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## I}, : A set of k-feature-sets

## R, : v optimal rules (feature-sets)

## Ry, ., : w k-feature-sets for generating candidates
## selectNBest(R, n, S, W,.): n best rules from R
## with gain on {w; , };i~, and training samples S
procedure weak-learner(Fy, S, W)
## v best feature-sets as rules

R, = selectNBest( R, U Fi, v, S, W,.);

if (¢ < k) return R,; ## Size constraint

## w best feature-sets in F}; for generating candidates
Ry, = selectNBest(Fy, w, S, W;);

T= fIgizn gain(f); ## The gain of v-th optimal rule

Foreach ( fx € Ri..)
if (u(fx) < 7) continue; ## Upper bound of gain
Foreach (f € F) ## Generate candidates
ficr = gen(fie, /);
if (€ < D7 [[ficrr € xi]) Fra
end Foreach

end Foreach

return weak-learner(Fj 1,5, W);

(Fr+1 U fiy1);

Figure 3: Find optimal feature-sets with given weights

distributes features to subsets of features, called
buckets, based on frequencies of features.
However, we guess training using a subset of
features depends on how to distribute features to
buckets like online learning algorithms that gener-
ally depend on the order of the training examples

(Kazama and Torisawa, 2007).

To alleviate the dependency on selected buck-
ets, we propose a method that redistributes fea-
tures, called Weight-based distribution (W-disf).

W-dist redistributes features to buckets based on
the weight of feature defined as

Wi (f) = 25 wrs[l{f} € xi]
foreach f € F after examining all buckets. Fig-
ure 2 describes an overview of W-dist.

3.3 Weak Learner for Learning Several Rules
We propose a weak learner that learns several rules
from a small portion of candidate rules.

Figure 3 describes an overview of the weak
learner. At each iteration, one of the | B|-buckets
is given as an initial 1-feature-sets F7. The weak
learner finds v best feature-sets as rules from can-
didates consisting of F; and feature-sets generated
from F;. The weak learner generates candidates k-
feature-sets (1 < k) from w best (k-1)-feature-sets
in Fy,_, with gain.

We also use the following pruning techniques
(Morishita, 2002; Kudo et al., 2005).
¢ Frequency constraint: We examine candidates
seen on at least £ different examples.

e Size constraint: We examine candidates whose
size is no greater than a size threshold (.

o Upper bound of gain: We use the upper bound
of gain defined as

u(f) ¥ max

(VWr1 (£), v Wr, 1 (F)).
For any feature-set f'CF, which contains f (i.e.
f C 1), the gain(f’) is bounded under u(f), since

0< Wey(f) < W, (f) for y € {£1}. Thus, if u(f)



## S = {(xi,y:) Nl : xiCX, y; € {+1}
## W, = {w,; }i~1: Weights of samples after learning
##rtypesof rules. wi; =1 (1 <i<m)
## | B| : The size of bucket B = {BJ[0], ..., B[|B| — 1]}
## b, r : The current bucket and rule number
procedure AdaBoost.SDF()
B =distFT(S, | B|); ## Distributing features into B
## Initialize values and weights:
w

r=1,b=0;¢c0 = %log(wi );
Fori=1,..m:wi; = exp(co);
While (r < R) ## Learning R types of rules

##Select v rules and increment bucket id b

R = weak-learner(Bb], S, W,); b++;

Foreach (f € R) ##Update weights with each rule

-1 Wi 41 (£)+1 4,

¢ = 3log(w w1 );

For i=l,..,m Wr41,5 = Wri e;vp(—yih@c));

f,="Ff¢c =c;r++;
end Foreach

if (b == | B|) ## Redistribution

B =distFT(S, | B|); b=0;

end if
end While

return F'(x) = sign(co + Zf‘:l hs, ey (%))

Figure 4: An overview of AdaBoost.SDF

- words, words that are turned into all capitalized,
prefixes and suffixes (up to 4) in a 7-word window.
- labels assigned to three words on the right.
- whether the current word has a hyphen,

a number, a capital letter
- whether the current word is all capital, all small
- candidate POS tags of words in a 7-word window

Figure 5: Feature types for POS tagging

is less than the gain of the current optimal rule 7,
candidates containing f are safely pruned.

Figure 4 describes an overview of our algorithm,
which we call AdaBoost for a weak learner learn-
ing Several rules from Distributed Features (Ad-
aBoost.SDF, for short).

The training of AdaBoost.SDF with (v
l,w = o0, 1 < |B|) is equivalent to the approach
of AdaBoost.DF (Iwakura and Okamoto, 2007). If
we use (|B| = 1,v = 1), AdaBoost.SDF examines
all features on every iteration like (Freund and Ma-
son, 1999; Schapire and Singer, 2000).

4 POS tagging and Text Chunking

4.1 English POS Tagging

We used the Penn Wall Street Journal treebank
(Marcus et al., 1994). We split the treebank into
training (sections 0-18), development (sections 19-
21) and test (sections 22-24) as in (Collins, 2002).
We used the following candidate POS tags, called
candidate feature, in addition to commonly used
features (Giménez and Marquez, 2003; Toutanova
et al., 2003) shown in Figure 5.

We collect candidate POS tags of each word
from the automatically tagged corpus provided for
the shared task of English Named Entity recog-
nition in CoNLL 2003. # The corpus includes
17,003,926 words with POS tags and chunk tags

*http: //www.cnts.ua.ac.be/conll2003 /ner/
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- words and POS tags in a 5-word window.
- labels assigned to two words on the right.
- candidate chunk tags of words in a 5-word window

Figure 6: Feature types for text chunking

annotated by a POS tagger and a text chunker.
Thus, the corpus includes wrong POS tags and
chunk tags.

We collected candidate POS tags of words that
appear more than 9 times in the corpus. We express
these candidates with one of the following ranges
decided by their frequency fq; 10 < fq < 100,
100 < fq < 1000 and 1000 < fq.

For example, we express 'work’ annotated as
NN 2000 times like “1000<NN”. If *work’ is cur-
rent word, we add 1000<NN as a candidate POS
tag feature of the current word. If work’ appears
the next of the current word, we add 1000<NN as
a candidate POS tag of the next word.

4.2 Text Chunking

We used the data prepared for CONLL-2000 shared
tasks. > This task aims to identify 10 types of
chunks, such as, NP, VP and PP, and so on.

The data consists of subsets of Penn Wall Street
Journal treebank; training (sections 15-18) and test
(section 20). We prepared the development set
from section 21 of the treebank as in (Tsuruoka
and Tsujii, 2005). ©

Each base phrase consists of one word or more.
To identify word chunks, we use IOE2 representa-
tion. The chunks are represented by the following
tags: E-X is used for end word of a chunk of class
X. I-X is used for non-end word in an X chunk. O
is used for word outside of any chunk.

For instance, “[He] (NP) [reckons] (VP) [the
current account deficit] (NP)...” is represented by
IOE2 as follows; “He/E-NP reckons/E-VP the/I-
NP current/I-NP account/I-NP deficit/E-NP”.

We used features shown in Figure 6. We col-
lected the followings as candidate chunk tags from
the same automatically tagged corpus used in POS
tagging.

e Candidate tags expressed with frequency infor-
mation as in POS tagging

e The ranking of each candidate decided by fre-
quencies in the automatically tagged data

e Candidate tags of each word

For example, if we collect “work” anno-
tated as I-NP 2000 times and as E-VP 100
time, we generate the following candidate fea-
tures for “work”; 1000<I-NP, 100<E-VP<1000,
rank:I-NP=1 rank:E-NP=2, candidate=I-NP and
candidate=E-VP.

3

>http: //lcg-www.uia.ac.be /conl2000/chunking /
6W€ used http: / /ilk.uvt.nl /“sabine / chunklink / chunklink 2-2-2000-for_conll.pl
for creating development data.



Table 1: Training data for experiments: 4 of S, M, # of
cl and av. f of ft indicate the number samples, the distinct
number of feature types, the number of class in each data set,
and the average number of features, respectively. POS and
ETC indicate POS-tagging and text chunking. The “-c” in-
dicates using candidate features collected from parsed unla-
beled data.

data || f#ofS | M | fofcl | av. fofft
POS || 01234 [ 579052 | 45 | 22.00
POS< |[ O012.344 | 579.793 | 45 | 3539
ETC || 211,727 | 92825 [ 22 | 1137
ETC< [ 211,727 | 93333 | 22 | 4549

We converted the chunk representation of the
automatically tagged corpus to IOE2 and we col-
lected chunk tags of each word appearing more
than nine times.

4.3 Applying AdaBoost.SDF

AdaBoost.SDF treats the binary classification
problem. To extend AdaBoost.SDF to multi-class,
we used the one-vs-the-rest method.

To identify proper tag sequences, we use Viterbi
search. We map the confidence value of each clas-
sifier into the range of 0 to 1 with sigmoid function
7, and select a tag sequence which maximizes the
sum of those log values by Viterbi search.

S Experiments
5.1 Experimental Settings

We compared AdaBoost.SDF with Support Vec-
tor Machines (SVM). SVM has shown good per-
formance on POS tagging (Giménez and Marquez,
2003) and Text Chunking (Kudo and Matsumoto,
2001). Furthermore, SVM with polynomial kernel
implicitly expands all feature combinations with-
out increasing the computational costs. Thus, we
compared AdaBoost.SDF with SVM. 3

To evaluate the effectiveness of candidate fea-
tures, we examined two types of experiments with
candidate features and without them. We list the
statics of training sets in Table 1.

We tested R=100,000, |B|=1,000, v
{1,10,100}, w={1,10,100,00}, ¢={1,2,3}, and
¢={1,5} for AdaBoost.SDF. We tested the soft
margin parameter C'={0.1,1,10} and the kernel
degree d={1,2,3} for SVM. °

We used the followings for comparison; Train-
ing time is time to learn 100,000 rules. Best train-
ing time is time for generating rules to show the
best F-measure (Fj3—1) on development data. Ac-
curacy is Fjg—1 on a test data with the rules at best
training time.

"s(X) = 1/(1 + exp(—BX)), where X = F(x) is a
output of a classifier. We used (=5 in this experiment.
SWe used TlnySVM (http: / /chasen.org /“taku /software / TinySVM /).

9We used machines with 2.66 GHz QuadCore Intel Xeon
and 10 GB of memory for all the experiments.
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Table 2: Experimental results of POS tagging and Text
Chunking (TC) with candidate features. F and time indicate
the average Fjg—; of test data and time (hour) to learn 100,000
rules for all classes with F-dist. These results are listed sepa-
rately with respect to each & = {1, 5}.

v || POSE=1) | POS(E=5 | TCE=1 | TCE=5 |
[[ F [T tme | F [ tme [[ F T tme | F | time |
1 97.27 196.3 97.23 195.7 93.98 145.3 93.95 155.8
10 97.23 23.05 97.17 22.35 93.96 2.69 93.88 2.70
100 96.82 2.99 96.83 291 93.16 0.74 93.14 0.56

Accuracy (F-measure)

=3 w=1v=100 -
(=3 w=10 v=.

=3 w=100 v=10 o b
=3 uFlO(? v=100 e

I I
0 2 4 6 8
Training Time (hour)

Figure 7: Accuracy on development data of Text Chunk-
ing (¢ = 3) obtained with parsers based on F-dist. We mea-
sured accuracy obtained with rules at each training time. The
widest line is AdaBoost.SDF (,—1,.,—=~). The others are Ad-
aBoost.SDF (=10 (0), ,=100(®), v=1&w={1,10,100} )-

5.2 Effectiveness of Several Rule Learning

Table 2 shows average accuracy and training time.
We used F-dist as the distribution method. These
average accuracy obtained with rules learned by
AdaBoost.SDF (,=19) on both tasks are competi-
tive with the average accuracy obtained with rules
learned by AdaBoost.SDF (,—1). These results
have shown that learning several rules at each iter-
ation contributes significant improvement of train-
ing time. These results have also shown that the
learning several rule at each iteration methods are
more efficient than training by just using the fre-
quency constraint £.

Figure 7 shows a snapshot for accuracy ob-
tained with chunkers using different number of
rules. This graph shows that chunkers based
on AdaBoost.SDF (,—10,100) and AdaBoost.SDF
(y=1,0={1,10,100}) have shown better accuracy than
chunkers based on AdaBoost.SDF (,—1 —o) at
each training time. These result have shown that
learning several rules at each iteration and learning
combination of features as rules with a technique
similar to beam search are effective in improving
training time while giving a better convergence.

Figure 7 also implies that taggers and chunkers
based on AdaBoost.SDF (,—199) will show better
or competitive accuracy than accuracy of the oth-
ers by increasing numbers of rules to be learned
while maintaining faster convergence speed.




Table 3: Experimental results on POS tagging and Text
Chunking. Accuracies (Fjg=1) on test data and training time
(hour) of AdaBoost.SDF are averages of w={1,10,100,00} for
each ¢ with F-dist and £ = 1. Fjg—; and time (hour) of SVMs
are averages of C={0.1,1,10} for each kernel parameter d.

Table 4: Results obtained with taggers and chunkers based
on F-dist and W-dist. These results obtained with taggers and
chunkers trained with w = {1,10,100,00} and { = 2. F
and time indicate average F3—; on test data and average best
training time.

X . POS tagging with F-dist
i P?Staggmg\lvnthout a featull‘es . v - w:|l T . w:]()‘ T - w:lO? [ . w:oci
<@ h Fo=y | Gme | Fp=y | tme | Fp=y [ Ume | T : 9731 I 31([;;3 : 9731 I 61::1;5 : 9732 I 112;69 : 97.26 I 81;]:9 ]
v=1 96.90 2.09 97.10 | 2790 97.10 3092 T0 | 9726 | 321 | 9732 | 957 | 9730 | 1554 | 9730 | 19.64
v=10 96.89 079 97.12 4.56 97.07 474 T00 | 9686 | 062 | 9695 | 132 | 9695 | 2.13 | 9696 | 243
»=100 9657 0.10 96.82 0.81 96.73 0.81 S -
SVMs || 9660 [ 101.63 || O7.15 [ 16676 ][ 9693 [ 62532 | POS tagging with W-dist
- - - — — - = v [ w=1 w=10 [ w=100 [ w=00
POS tagging with features | F [ time [ F [ time | F [ time | F [ time |
A 7T T ) T 3 | T 9732 | 2996 | 9731 | 5705 | 9731 | 1632 | 9732 | 9871
¢(d) |[Fp=y [ ®me [[ Fp—y [ tme || Fp—y | tume | 10 | 9724 | 266 | 97.30 | 2570 | 9728 | 1620 | 97.29 | 20.49
— 0% =3 T 5 ) 100 [ 9700 | 054 | 9702 | 131 | 9707 | 222 | 9708 | 28
v=10 96.08 127 97.29 13.26 97.23 3827 Text Chunking with F-dist
v=100 96.61 0.14 96.03 .64 96.76 5.05 2 o=l T w=10 T w=100 w=o0 ]
SVMs ][ 9676 | 17024 ][ 9731 | 20639 ][ 9723 [ 134604 ] [ F7 [fime [ F7 [ time [ F ] tme [ F ] fime |
T 9305 | 742 [ 9430 | 2330 | 9422 [ 3474 | 9431 | 2106
Text Chunking without features 10 93.99 0.98 94.08 2.44 94.19 3.11 94.18 3.18
Alg /| 1 T 2 T 3 ] 100 | 9332 | 0.6 | 9333 | 032 | 9342 | 040 | 9342 | 040
¢ |[ Fg=1 [ time [ Fg—q [ time [ Fg—; [ tme | Text Chunking with W-dist
o=l 92.50 0.12 93.60 0.26 9347 041 D oml i o=10 ©=100 i =00 ]
v=10 9234 0.02 9350 0.05 9339 0.07 [F Jtame [ F [ ome | F_ [ ome | F__ [ time |
v=100 89.70 | 0008 92.31 0.02 92.03 0.02 1 9300 | 203 | 0424 | 2477 | 9432 | 3572 | 9432 | 3561
SVMs || 9204 | 835 || 9391 | 738 [ 9349 | 982 | 10 | 9398 | 071 | 9430 | 2.82 | 9429 | 3.60 | 9430 | 4.05
T00 | 93.66 | 0.7 | 93.65 | 036 | 9350 | 042 | 9350 | 042
Text Chunking with candidate features
Az /| 1 T 2 I 3 ] _ { } .
c) |rFamr T e Famr e [ Famr T e better average accuracy thapC = 1,3 in both
V=l 9289 | 025 [ 9419 | 2610 || 0404 [ 3007 tasks. Table 4 lists comparison of F-dist and W-
v=10 92.85 0.04 9411 297 94.08 3.06 X R )
=100 || 9199 | 001 5337 | 032 [ 9324 | 03 dist on POS tagging and text chunking. Most of
SVMs ][ 9277 | 1274 ][ 9431 [ 9063 ][ 9420 [ 4927 |

5.3 Comparison with SVM

Table 3 lists average accuracy and training time
on POS tagging and text chunking with respect
to each (v, () for AdaBoost.SDF and d for SVM.
AdaBoost.SDF with ,—19 and ,—190 have shown
much faster training speeds than SVM and Ad-
aBoost.SDF ( ,—1 =) that is equivalent to the
AdaBoost.DF (Iwakura and Okamoto, 2007).

Furthermore, the accuracy of taggers and chun-
kers based on AdaBoost.SDF (,—1¢) have shown
competitive accuracy with those of SVM-based
and AdaBoost.DF-based taggers and chunkers.
AdaBoost.SDF (,—19) showed about 6 and 54
times faster training speeds than those of Ad-
aBoost.DF on the average in POS tagging and text
chunking. AdaBoost.SDF (,=19) showed about
147 and 9 times faster training speeds than the
training speeds of SVM on the average of POS
tagging and text chunking. On the average of the
both tasks, AdaBoost.SDF (,—1p) showed about
25 and 50 times faster training speed than Ad-
aBoost.DF and SVM. These results have shown
that AdaBoost.SDF with a moderate parameter v
can improve training time drastically while main-
taining accuracy.

These results in Table 3 have also shown that
rules represented by combination of features and
the candidate features collected from automati-
cally tagged data contribute to improved accuracy.

5.4 Effectiveness of Redistribution

We compared Fjg—1 and best training time of F-
dist and W-dist. We used ¢ = 2 that has shown
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accuracy obtained with W-dist-based taggers and
parsers better than accuracy obtained with F-dist-
based taggers and parsers. These results have
shown that W-dist improves accuracy without dras-
tically increasing training time. The text chunker
and the tagger trained with AdaBoost.SDF (v = 10,
w 10 and W-dist) has shown competitive accu-
racy with that of the chunker trained with Ad-
aBoost.SDF (v = 1, w = oo and F-dist) while main-
taining about 7.5 times faster training speed.

5.5 Tagging and Chunking Speeds

We measured testing speeds of taggers and chun-
kers based on rules or models listed in Table 5. '°

We examined two types of fast classification al-
gorithms for polynomial kernel: Polynomial Ker-
nel Inverted (PKI) and Polynomial Kernel Ex-
panded (PKE). The PKI leads to about 2 to 12
times improvements, and the PKE leads to 30 to
300 compared with normal classification approach
of SVM (Kudo and Matsumoto, 2003). !

The POS-taggers based on AdaBoost.SDF,
SVM with PKI, and SVM with PKE processed
4,052 words, 159 words, and 1,676 words per sec-
ond, respectively. The chunkers based on these
three methods processed 2,732 words, 113 words,
and 1,718 words per second, respectively.

10We list average speeds of three times tests measured with
a machine with Xeon 3.8 GHz CPU and 4 GB of memory.

""'We use a chunker YamCha for evaluating classification
speeds based on PKI or PKE (http://www.chasen.org/ taku /software /
yamcha/). We list the average speeds of SVM-based tagger and
chunker with PKE of a threshold parameter ¢ = 0.0005 for
rule selection in both task. The accuracy obtained with mod-
els converted by PKE are slightly lower than the accuracy ob-
tained with their original models in our experiments.



Table 5: Comparison with previous best results: (Top :
POS tagging, Bottom: Text Chunking )

POS tagging Fg=1
Perceptron (Collins, 2002) 97.11

Dep. Networks (Toutanova et al., 2003) 97.24
SVM (Giménez and Marquez, 2003) 97.05
ME based a bidirectional inference (Tsuruoka and Tsujii, 2005) 97.15
Guided learning for bidirectional sequence classification (Shen et al., 2007) 97.33
AdaBoost.SDF with candidate features ((=2,0=1,w=100, W-dist) 97.32
AdaB SDF with candidate features (¢=2,0=10,w=10, F-dist) 97.32
SVM with candidate features (C'=0.1, d=2) 97.32
Text Chunking Fg=1
Regularized Winnow + full parser output (Zhang et al., 2001) 94.17
SVM-voting (Kudo and Matsumoto, 2001) 9391

ASO + unlabeled data (Ando and Zhang, 2005) 94.39
CRF+Reranking(Kudo et al., 2005) 94.12
ME based a bidirectional inference (Tsuruoka and Tsujii, 2005) 93.70
LaSo (Approximate Large Margin Update) (Daumé IIT and Marcu, 2005) 94.4

HySOL (Suzuki et al., 2007) 94.36
AdaBoost.SDF with candidate featuers ((=2,v=1,w=00, W-dist) 94.32
AdaBoost.SDF with candidate featuers ({=2,0=10,w=10,W-dist) 94.30
SVM with candidate features (C=1, d=2) 94.31

One of the reasons that boosting-based classi-
fiers realize faster classification speed is sparseness
of rules. SVM learns a final hypothesis as a linear
combination of the training examples using some
coefficients. In contrast, this boosting-based rule
learner learns a final hypothesis that is a subset of
candidate rules (Kudo and Matsumoto, 2004).

6 Related Works

6.1 Comparison with Previous Best Results
We list previous best results on English POS tag-
ging and Text chunking in Table 5. These results
obtained with the taggers and chunkers based on
AdaBoost.SDF and SVM showed competitive F-
measure with previous best results. These show
that candidate features contribute to create state-
of-the-art taggers and chunkers.

These results have also shown that
AdaBoost.SDF-based taggers and chunkers
show competitive accuracy by learning combi-
nation of features automatically. Most of these
previous works manually selected combination
of features except for SVM with polynomial
kernel and (Kudo and Matsumoto, 2001) a
boosting-based re-ranking (Kudo et al., 2005).

6.2 Comparison with Boosting-based
Learners

LazyBoosting randomly selects a small proportion

of features and selects a rule represented by a fea-

ture from the selected features at each iteration

(Escudero et al., 2000).

Collins and Koo proposed a method only up-
dates values of features co-occurring with a rule
feature on examples at each iteration (Collins and
Koo, 2005).

Kudo et al. proposed to perform several pseudo
iterations for converging fast (Kudo et al., 2005)
with features in the cache that maintains the fea-
tures explored in the previous iterations.

AdaBoost. MH® % learns a weak-hypothesis rep-
resented by a set of rules at each boosting iteration
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(Sebastiani et al., 2000).

AdaBoost.SDF differs from previous works in
the followings. AdaBoost.SDF learns several rules
at each boosting iteration like AdaBoost MHX %,
However, the confidence value of each hypothe-
sis in AdaBoost MHXF does not always minimize
the upper bound of training error for AdaBoost
because the value of each hypothesis consists of
the sum of the confidence value of each rule.
Compared with AdaBoost MHX % AdaBoost.SDF
computes the confidence value of each rule to min-
imize the upper bound of training error on given
weights of samples at each update.

Furthermore, AdaBoost.SDF learns several
rules represented by combination of features from
limited search spaces at each boosting itera-
tion. The creation of subsets of features in Ad-
aBoost.SDF enables us to recreate the same classi-
fier with same parameters and training data. Recre-
ation is not ensured in the random selection of sub-
sets in LazyBoosting.

7 Conclusion

We have proposed a fast boosting-based learner,
which we call AdaBoost.SDF. AdaBoost.SDF re-
peats to learn several rules represented by combi-
nation of features from a small proportion of can-
didate rules. We have also proposed methods to
use candidate POS tags and chunk tags of each
word obtained from automatically tagged data as
features in POS tagging and text chunking.

The experimental results have shown drastically
improvement of training speed while maintaining
competitive accuracy compared with previous best
results.

Future work should examine our approach on
several tasks. Future work should also compare
our algorithm with other learning algorithms.

Appendix A: Convergence

The upper bound of the training error for AdaBoost
of (Freund and Mason, 1999), which is used in Ad-
aBoost.SDF, is induced by adopting THEOREM 1
presented in (Schapire and Singer, 1999). Let Zg
be > " wpr41, that is a sum of weights updated
with R rules. The bound holds on the training er-
ror after selecting R rules,

mllFxi) #uill < Zr

is induced as follows.

By unraveling the Eq. we obtain

(1,
WR1,i = exp(—Yi Zle b, ) (xi)). Thus, we
obtain [F(x;) # will < exp(—yi X)L, hiey e, (Xi)),
since if F(x;) # i, then exp(—y: 5| heg, (x:)) >
1. Combining these equations gives the stated
bound on training error



N

m R
Z exp(—y; Z hig, ey (X))
im1 =1

ZwR.t,_l,i = Zr. 2)
i=1

Then we show that the upper bound of training er-
ror Zg for R rules shown in Eq. (2) is less than or

equal to the upper bound of the training error Zr_

for R-1 rules. By unraveling the (2) and plug-
ging the confidence values cr = {3log(7= 48, 0
} given by the weak hypothesis into the unraveled
equation, we obtain Zr<Zp_1, since

> wriri =Y wrexp(—yibisp.cn))

Zr =
=1 =1
= ZwR,i — Wi t1(fr) — Wi 41 (fR) +
=1
Wi 41(fr)exp(—cr) + Wr,—1(fr)exp(cr)
= Zn-1— (VWr11(fr) — VWr _1(fr))?
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Abstract But there are few studies that combine the two per-
spectives and try to tease apart the influence of dif-
ferent features on the analysis of specific construc-

of linguistically motivated features on ar-  yjons jet alone motivated by a thorough linguistic
gument disambiguation in data-driven de- analysis

pendency parsing of Swedish. We present In this paper, we investigate the influence of a
results from experiments with gold stan-  get of linguistically motivated features on parse re-
dard features, such as animacy, definite-  gyjis for Swedish, and in particular on the analysis
ness and finiteness, as well as correspond- 4t argument relations such as subjects, objects and
ing experiments where these features have g pject predicatives. Motivated by an error anal-
been acquired automatically and show  ysis of the best performing parser for Swedish in
significant improvements both in overall  the CoNLL-X shared task, we extend the feature
parse results and in the analysis of specific ,ggel employed by the parser with a set of lin-
argument relations, such as subjects, ob- gyistically motivated features and go on to show
jects and predicatives. how these features may be acquired automatically.
We then present results from corresponding parse

experiments with automatic features.
Data-driven dependency parsing has recently re- The rest of the paper is structured as follows. In

ceived extensive attention in the parsing commusection 2 we present relevant properties of Swedish
nity and impressive results have been obtained fenorphosyntax, as well as the treebank and parser
a range of languages (Nivre et al., 2007). Eveemployed in the experiments. Section 3 presents
with high overall parsing accuracy, however, dataan error analysis of the baseline parser and we go
driven parsers often make errors in the assigren to motivate a set of linguistic features in sec-
ment of argument relations such as subject antibn 4, which are employed in a set of experiments
object and the exact influence of data-derived feawith gold standard features, discussed in section
tures on the parsing accuracy for specific linguisti. Section 6 presents the automatic acquisition of
constructions is still relatively poorly understood.these features, with a particular focus on animacy
There are a number of studies that investigate thgassification and in section 7 we report parse ex-
influence of different features or representationgberiments with automatic features.

choices on overall parsing accuracy, (Bod, 1998:; _ _
Klein and Manning, 2003). There are also attemptg Parsing Swedish

at a more fine-grained analysis of accuracy, targeBefore we turn to a description of the treebank
ing specific linguistic constructions or grammati-and the parser used in the experiments, we want to
cal functions (Carroll and Briscoe, 2002; Kublerpoint to a few grammatical properties of Swedish
and Proki¢, 2006; McDonald and Nivre, 2007)that will be important in the following:

©2008.  Licensed under théCreative Commons \/erh second (V2) Swedish is, like the majority of
Attribution-Noncommercial-Share Alike 3.0 Unporteli

cense (http://creativecommons.org/licenses/by-ng-@4/ Qermanic Ianguage.s a y2-language; 't_he Ti'
Some rights reserved. nite verb always resides in second position in

This article investigates the effect of a set

1 Introduction
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declarative main clauses. S FORM__POS DEP, FEATS
. ; |
Word order variation Pretty much any con- | Stoptl * |
. 7. I:next + + | +
stituent may occupy the sentence-initial po-| rnext-1 + s
e . I: 1 + + +
sition, but subjects are most common. ot : |
Limited case marking Nouns are only inflected | & e orop * LT
for genitive case. Personal pronouns dis{ G:rightdep oftop -
. . . . . G: left dep ofnext + + +
tinguish nominative and accusative case, but G:left dep of head ofop .

. e - G: left sibling of right dep otop +
demonstratives and quantifying pronouns are g rign sibling of left dep otop N roy,
case ambiguous (“ke nouns). G: right sibling of left dep ohext + +

2.1 Treebank: Talbanken05 Table 1: Baseline and extendeBEATS) feature

Talbanken05 is a Swedish treebank converted f§0del for Swedish; S: stack, I: input, G: graph;
dependency format, containing both written and" = ™ POSItions to the left¢) or right (+)

spoken language (Nivre et al., 2006ajor each

token, TalbankenO05 contains information on word

form, part of speech, head and dependency rela-

tion, as well as various morphosyntactic and/ofo-right pass over the input. The decision that

lexical semantic features. The nature of this adﬁeeds to be made at any point during this deriva-
ditional information varies depending on part Oftion is (a) whether to add a dependency arc (with

speech: some label) between the token on top of the stack
NnouN: definiteness, animacy, cag®/GEN) (top) and the next token in the input queuexd,
PRO: animacy, caség/Acc) and (b) whether to pofop from the stack or push

nextonto the stack. The features fed to the classi-
fier for making these decisions naturally focus on
2.2 Parser: MaltParser attributes oftop, nextand neighbouring tokens in

We use the freely available MaltParéemvhich S, 1 or G. In the baseline feature model, these at-
is a language-independent system for data-drivefibutes are limited to the word fornFORrw), part
dependency parsing. MaltParser is based & speechgos, and dependency relationgp) of

a deterministic parsing strategy, first propose@ given token, but in later experiments we will add
by Nivre (2003), in combination with treebank- Other linguistic featuress€ATs). The baseline fea-
induced classifiers for predicting the next parsindure model is depicted as a matrix in Table 1, where
action. Classifiers can be trained using any mdows denote tokens in the parser configuration (de-
chine learning approach, but the best results haf@ed relative to S, | and G) and columns denote
so far been obtained with support vector machineégitributes. Each cell containingfacorresponds to
using LIBSVM (Chang and Lin, 2001). Malt- @ feature of the model.

Parser has a wide range of parameters that needgto
be optimized when parsing a new language. As
our baseline, we use the settings optimized fofFhe written part of Talbanken05 was parsed em-
Swedish in the CoNLL-X shared task (Nivre et al. ploying the baseline feature model detailed above,
2006b), where this parser was the best perfornusing 10-fold cross validation for training and test-
ing parser for Swedish. The only parameter thdng. The overall result for unlabeled and labeled
will be varied in the later experiments is the feadependency accuracy is 89.87 and 84.92 respec-
ture model used for the prediction of the next pardtively.

ing action. Hence, we need to describe the feature Efror analysis shows that the overall most fre-
model in a little more detail. quent errors in terms of dependency relations in-

MaltParser uses two main data structures, ¥polve either various adverbial relations, due to PP-
stack (S) and an input queue (l), and builds a dettachment ambiguities and a large number of ad-
pendency graph (G) incrementally in a single left=

3Note that these results are slightly better than the official
The written sections of the treebank consist of profesg:ONLL'X shared task scores (89.50/84.58), which were ob-

sional prose and student essays and amount to 197,123 n@'—ned using a single training-test split, not cross-waiih.
ning tokens, spread over 11,431 sentences ote also that, in both cases, the parser input containet! gol

2http://w3.msi.vxu.sef/users/nivre/research/MaltRangal standard part-of-speech tags.

VERB: tense voice(a/PA)

Baseline and Error Analysis
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Gold_Sys before after Total s the mirror image of the normal distribution of
Ss 00 | 103 (23.1%) 343 (76.9%)| 446 (100%) : :
00  ss | 103(33.3%) 206 (66.7%) 309 (100%) Syntactic functions among pr'everbal elements. As
Table 2 shows, the proportion of preverbal ele-
Table 2: Position relative to verb for confused subments among the subject-assigned objects (33.3%)
jects and objects is notably higher than in the corpus as a whole,
where preverbal objects account for a miniscule
6% of all objects.
In addition to the word order variation dis-

cussed above, Swedish also has limited morpho-

verplal Iabgls, or the argument rela.tlons, such 6}Bgical marking of syntactic function. Nouns are
subjects, direct objects, formal subjects and subq- g only for genitive case and only pronouns
ject predicatives. In particular, confusion of argu

‘are marked for accusative case. There is also syn-

types Wi.th respect to dependency_assignrﬁent. noun is invariant for case, e.gdet, den'it’, in-
Swedish exhibits some ambiguities in word or- enfingano’. and ma in'fact al,so func'tion as

der and morphology which follow from the proper-g gano., may, ’ .

. : . . a determiner. This means that, with respect to

ties discussed above. We will exemplify these fac-

. word form, only the set of unambiguous pronouns
tors through an analysis of the errors where sub- y 9 P

. . . . clearly indicate syntactic function. In the errors,
jects are assigned object statgs ©0) and vice y y

. . we find that nouns and functionally ambiguous
versa 00_s9). The confusion of subjects and ob- . )
. - . pronouns dominate the errors where subjects and
jects follows from lack of sufficient formal disam-

biuation. Le.. Simole clues such as word ordeijeCtS are confused, accounting for 84.5% of the
g , 1€, p 3s 00 and 93.5% of theo_sserrors.

part-of-speech and word form do not clearly indi-" tp¢ jnitial error analysis shows that the confu-

cate syntactic function. - - :
, . .__sion of argument relations constitutes a frequent
m;Mg:),:ﬁsﬁgégoev(\;(:rfglﬁ)rxet[;esi%];zt;l ﬂgg;bjselftgnd consistent error during parsing. Ambiguities
'ectﬁ hOV\rI)eVEI’ are more likelv to occur }ever!n word order and morphological marking consti-
J P ' . y e P tute a complicating factor and we find cases that
bally (77%), whereas objects typically occupy eviate from the most frequent word order pat-
postverbal position (94%). We would therefore ex: . : 5
) . terns and are not formally disambiguated by part
pect postvgrbal subjects and preverbal quects to t<))(t:"-speech information. It is clear that we in order
more dominant among the errors than_ in the tre% resolve these ambiguities have to examine fea-
bank as a whole (23% and 6% respectively). Tablg

2 shows a breakdown of the errors for confuset er;as beyond syntactic category and linear word or-
subjects and objects and their position with respect
to the verbal head. We find that postverbal subject Linguistic features for argument
(after) are in clear majority among the subjects er-  disambiguation
roneously assigned the object relation. Due to th
V2 property of Swedish, the subject must resid
in the position directly following the finite verb
whenever another constituent occupies the prev
bal position, as in (1) where a direct object reside
sentence-initially:
(1) Samma erfarenhet gjorde engelsn@nnen

same experience made englishmerbEF

‘The same experience, the Englishmen had’

rgument relations tend to differ along several lin-
guistic dimensions. These differences are found
&S statistical tendencies, rather than absolute re-
guirements on syntactic structure. The property
of animacy a referential property of nominal el-
ements, has been argued to play a role in argument
realization in a range of languages see de Swart
et.al. (2008) for an overview. It is closely cor-
_ _ related with the semantic property of agentivity,
For the confused objects we find a larger propofzence subjects will tend to be referentially animate
tion of preverbal elements than for subjects, which, e often than objects. Another property which
“We define argument relations as dependency relatiof®ay differentiate between the argument functions
which obtain between a verb and a dependent which ig the property ofiefinitenesswhich can be linked
o ooy s WIh @ notion of givenness, (Weber and Maler
non-arguments, like adverbials, in dependency grammar, b2004). This is reflected in the choice of refer-
through dependency label. ring expression for the various argument types in
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Talbanken05 — subjects are more often pronominabmparatof. Since the main focus of this article is
(49.2%), whereas objects and subject predicatives the disambiguation of grammatical functions,
are typically realized by an indefinite noun (67.6%we report accuracy for specific dependency rela-
and 89.6%, respectively). As mentioned in sectiotions, measured as a balanced F-score.

2, there are categorical constraints which are cha!g—2 Results

acteristic for Swedish morphosyntax. Even if the_

morphological marking of arguments in Scandinal Ne overall results for these experiments are pre-

vian is not extensive or unambiguousase may sented in table 3, along with p-scores. The exper-

distinguish arguments. Only subjects may followMments show that each feature individually causes
a finite verb and precede a non-finite verb and onl significant improvement in terms of overall la-
complements may follow a non-finite verb. Infor-P€led accuracy as well as performance for argu-
mation ontenseor the relatedinitenessis there- Mentrelations. Error analysis comparing the base-
fore something that one might assume to be beHng parser (NoFeats) with new parsers trained with
eficial for argument analysis. Another property ofdividual features reveal the influence of these
the verb which clearly influences the assignmergatures on argument disambiguation. - We find
of core argument functions is teiceof the verb, that animacy influences the disambiguation of sub-
i.e., whether it is passive or active. jects from objects, objects from indirect objects
as well as the general distinction of arguments
5 Experiments with gold standard from non-arguments. Definiteness has a notable
features effect on the disambiguation of subjects and sub-

We perform a set of experiments with an extende.k?Ct predicatives. Informfitio_n on r_nor_phological
feature model and added, gold standard inform&ase shows a clear effect in distinguishing between

tion on animacy, definiteness, case, finiteness ar_%guments and non-arguments, and in particular,

voice, where the features were employed individun distinguishing nominal modifiers with genitive
ally as well as in combination case. The added verbal features, finiteness and

voice, have a positive effect on the verbal depen-
5.1 Experimental methodology dency relations, as well as an overall effect on the
All parsing experiments are performed using 10assignment of thess and 0o argument relations.
fold cross-validation for training and testing onlnformation on voice also benefits the relation ex-
the entire written part of Talbanken05. The feapressing the demoted agemg) in passive con-
ture model used throughout is the extended fe&tructions, headed by the prepositawn‘by’, as in

ture model depicted in Table 1, including all fourEnglish.
columns® Hence, what is varied in the exper- The ADCV experiment which combines infor-

iments is only the information contained in themation on animacy, definiteness, case and verbal

FEATS features (animacy, definiteness, etc.), whiléeatures shows a cumulative effect of the added
the tokens for which these features are defined réeatures with results which differ significantly
mains constant. Overall parsing accuracy will bd&om the baseline, as well as from each of the in-
reported using the standard metricslatfeled at- dividual experiments (1.0001). We observe clear
tachment scordLAS) and unlabeled attachment improvements for the analysis of all argument re-
score (UAS).” Statistical significance is checkedlations, as shown by the third column in table 4

using Dan Bikel's randomized parsing evaluatiovhich presents F-scores for the various argument

- . __ relations.
SWe experimented with the use of tense as well as finite-

ness, a binary feature which was obtained by a mapping frogg Acquiring features
tense to finite/non-finite. Finiteness gave significantlitdre

results (p<.03) and was therefore employed in the following, A possible objection to the general applicability

see (Dvrelid, 2008b) for details. .
SPreliminary experiments showed that it was better to tié)f the results presented above is that the added

FEATS features to the same tokens =sRrM features (rather INformation consists of gold standard annotation
than Pos or DEP features). Backward selection from this from a treebank. However, the morphosyntactic

model was tried for several different instantiationsrafats . .
but with no significant improvement. features examined here (definiteness, case, tense,

7LAS and UAS report the percentage of tokens that are a¥0iCe) represent standard output from most part-

signed the correct headlith (labeled) omwithout (unlabeled) of-speech taggers. In the following we will also
the correct dependency label, calculated using eval.pl#gt

fault settings (http://nextens.uvt.sltonll/software.html) 8http://www.cis.upenn.edu/dbikel/software.html
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NoFeats Gold Auto

UAS LAS | p-value Ss subject 90.25 91.80 91.32
NoFeats 89.87 84.92— 00 object 84.53 86.27 86.10
Anim 89.93 85.10] p<.0002 SP subj.pred. 84.82 85.8|37 85.80
Def 89.87 85.02 p<.02 AG pass. agent 73.56 81.34 81.02
Case 89.99 85.138 p<.0001 ES logical subj. 71.82 73.44 72.60
Verb 90.24 85.38 p<.0001 Fo formal obj. 56.68 65.64 65.38
ADC 90.13 85.35| p<.0001 VO obj. small clause 72.10 83.40 83.12
ADCV  90.40 85.68| p<.0001 Vs subj. small clause  58.75 65.56 68.75

Fs formal subj.
10 indir. obj.

71.31 72.10 71.31

Table 3: Overall results in gold standard ex- 76.14 77.76 76.29

periments expressed as unlabeled and labeled
attachment scores. Table 4. F-scores for argument relations with
combined features (ADCV).

Feature Application Class Types Tokens covered
Definiteness POS-tagger Animate 644 6010

Case POS-tagger Inanimate 6910 34822
Animacy -NN Animacy classifier Total 7554 40832
Animacy -PN Named Entity Tagger _

Animacy -Po Majority class Table 6: The animacy data set from TalbankenQ5;

number of noun lemmas (Types) and tokens in

Tense (finiteness), voice POS-tagger
each class.

Table 5: Overview of applications employed for
automatic feature acquisition.

towards the non-person class, which accounts for

91.5% of the data instances. Due to the small size
show that the property of animacy can be fairlyof the treebank we classify common notem-
robustly acquired for common nouns by meang1as based on their morphosyntactic distribution

of distributional features from an automaticallyin @ considerably larger corpus. For the animacy
parsed corpus. classification of common nouns, we construct a

Table 5 shows an overview of the applicationgeneralfeature spacdor animacy classification,
employed for the automatic acquisition of our lin-which makes use of distributional data regarding
guistic features. For part-of-speech tagging, weyntactic properties of the noun, as well as various
employ MaltTagger — a HMM part-of-speech tag-morphological properties. The syntactic and mor-
ger for Swedish (Hall, 2003). The POS-tagger disphological features in the general feature space are
tinguishes tense and voice for verbs, nominativpresented below:
and accusative case for pronouns, as well as de

niteness and genitive case for nouns g_yntactic features A feature for each dependency

relation with nominal potential: (transitive)

6.1 Animacy

The feature of animacy is clearly the most chal-
lenging feature to acquire automatically. Recall
that Talbanken05 distinguishes animacy for all
nominal constituents. In the following we describe
the automatic acquisition of animacy information
for common nouns, proper nouns and pronouns.

subject 6uBJ, object ©BJ), prepositional
complement §A), root (ROOT)°, apposition
(APP), conjunct €C), determiner9eT), pred-
icative (PRD), complement of comparative
subjunction (k). We also include a feature
for the complement of a genitive modifier, the
so-called ‘possesseeGENHD).

Common nouns Table 6 presents an overviewMorphological features A feature for each mor-

of the animacy data for common nouns in Tal-

®Nominal elements may be assigned the root relation in

banken05. Itis clear that the data is highly skewegkntence fragments which do not include a finite verb.
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phological distinction relevant for a noun:since we are not basing the classification on gold
gender QEU/UTR), number §IN/PLU), defi- standard parses.

niteness PEF/IND), case KOM/GEN). Also,
the part-of-speech tags distinguish date
(DAT) and quantifying nounssgT), e.g. del,
rad ‘part, row’, so these are also included a
features.

Proper nouns In the task of named entity recog-
Rition (NER), proper nouns are classified accord-
ing to a set of semantic categories. For the annota-
Yion of proper nouns, we make use of a named en-
tity tagger for Swedish (Kokkinakis, 2004), which

For extraction of distributional data for the Tal-is a rule-based tagger based on finite-state rules,
banken05 nouns we make use of the Swedish Paupplied with name lists, so-called “gazetteers”.

role corpus of 21.5M token'. To facilitate feature The tagger distinguishes the category ‘Person’ for
extraction, we part-of-speech tag the corpus arfguman referring proper nouns and we extract in-
parse it with MaltParser, which assigns a deperformation on this category.

dency analysi$: For classification, we make usepyonouns A subset of the personal pronouns in
of the Tilburg Memory-Based Learner (TiMBL) gcandinavian, as in English, clearly distinguish
(Daelemans et al., 2003). and optimize the yheir referent with regard to animacy, e.dian,
T'MEL parameters on a subset of the full datayet e, i, There is, however, a quite large group
set . . i of third person plural pronouns which are ambigu-
We obtain results for animacy classification %%bus with regards to the animacy of their referent
noun Iemmas,' ranging from 97'3% accuracy _t%.g.,de, dem, dera&hey, them, theirs’. Pronom- ’
94.0% depending on the sparsity of the data, W'%al reference resolution is a complex task which

an absolute frequency threshold of 10, we Obtal{;{/e will not attempt to solve in the present context.

0 I i 0
an accuracy of 95.4%, which con_stl_tutes a 50 Af he pronominal part-of-speech tags from the part-
reduction of error rate over a majority baseline

. e . “of-speech tagger distinguish humber and gender
W(? find that classification of the '”‘?‘”'mate class '3nd in the animacy classification of the personal
quite stable throughout the experiments, where

e o ) ??onouns we classify based on these tags only. We
the classification of the minority class of animat

employ a simple heuristic where the pronominal

nouns suffers from sparse data. We obtain a ﬁ' gs which had more than 85% human instances in
score of 71.8% F-score for the animate class al

) ) ] e gold standard are annotated as huiaihe
97.5% for the inanimate class with a threshold o 9

. ronouns which are ambiguous with respect to an-
10. The common nouns in TalbankenO5 are clas |Fnacy are not annotated as animate.

fied for animacy following a leave-one-out training |, iaple 7 we see an overview of the accuracy
and testing scheme where each of theouns in - ot the acquired features, i.e., the percentage of
Talbanken05 are classified with a classifier trainedy ract instances out of all instances. Note that

onn — 1 instances. This ensures that the tralnlngve adhere to the general annotation strategy in

and test instances are disjoint at all times. Morerg|hanken05, where each dimension (definiteness,
over, the fact that the distributional data is takep,qe etc.) contains a null categapy which ex-

from a separate data set ensures non—circularibfesses the lack of a certain property. The acqui-

19parole is available at http://spraakbanken.gu.se sition of the morphological features (definiteness,
“'For part-of-speech tagging, we employ the MaltTagger €ase, finiteness and voice) are very reliable, with

a HMM part-of-speech tagger for Swedish (Hall, 2003). For, ; 0 ; 0
parsing, we employ MaltParser with a pretrained model fogccurames from 96.9% for voice to 98.5% for the
Swedish, which has been trained on the tags output by tfease feature.

tagger. It makes use of a smaller set of dependency relations It is not surprising that we observe the largest
than those found in Talbanken05. discrepancies from the gold standard annotation

12TiMBL is freely available at . . . )
http:/filk.uvt.nl/software html in the automatic animacy annotation. In general,

BFor parameter optimization we employ thethe annotation of animate nominals exhibits a de-
paramsearch  tool, ~ supplied with TiMBL, seecent precision (95.7) and a lower recall (61.3). The

http://ilk.uvt.nl/software.html. Paramsearch implersen ic cl ificati fh
a hill climbing search for the optimal settings on iteratjve @Utomatic classification of human common nouns

larger parts of the osupplied data. We performed parameter 145 manya) classification of the individual pronoun lem-
optimization on 20 /°. of the tota-0 data set, where W€ ‘mas was also considered. However, the treebank has a total of
balanced the data with respect to frequency. The resultingy gitferent pronoun forms, hence we opted for a heuristic

settings aré: = 11, GainRatio feature weighting and Inverse .|, ssification of the part-of-speech tags instead
Linear (IL) class voting weights. '
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Dimension Features Instances Correct Accuracy

Definiteness DD, @ 40832 40010 98.0
Case GG, AA, @ 68313 67289 98.5
AnimacyNNpro HH, @ 68313 61295 89.7
Animacyyy HH, @ 40832 37952 92.9
Animacyp v HH, @ 2078 1902 91.5
Animacypo HH, & 25403 21441 84.4
Finiteness FV, @ 30767 30035 97.6
\oice PA, @ 30767 29805 96.9

Table 7: Accuracy for automatically acquired linguistiatigres.

Gold  Automatic pected, we find that the effect of the automatic fea-
UAS LAS UAS LASp-value tures is generally lower than their gold standard
NoFeats 89.87 84.92 89.87 8492 counterparts. However, all automatic features im-
Def 89.87 85.02 89.88 85.(18<0.01 prove significantly on the NoFeats baseline. In the
Case  89.9985.1389.9585|14.0001 error analysis we find the same tendencies in terms
Verb  90.24 85.38 90.12 85.pkc.0001 of improvement for specific dependency relations.
Anim  89.9385.10 89.86 85.(1% .03 The morphological argument features from the
ADC 90.1385.3590.01 85.24<.0001 POS-tagger are reliable, as we saw above, and
ADCV 90.4085.68 90.27 85.%2.0001 we observe almost identical results to the gold

standard results. The addition of information
Table 8: Overall results in experiments with autopp gefiniteness causes a significant improvement
matic features compared to gold standard feature®<_01)’ and so does the addition of information
on case (g.0001). The addition of the automat-
ically acquired animacy information results in a
smaller, but significant improvement of overall re-
sults even though the annotation is less reliable
(p<.03). An interesting result is that the automat-
ically acquired information on animacy for com-
Eﬂon nouns actually has a significantly better effect
f

(Animacyyy) also has a quite high precision
(94.2) in combination with a lower recall (55.5).
The named-entity recognizer (Animagy) shows

more balanced results with a precision of 97.8 an

;;ecfglnz%ﬁgfl a;g_g;i h:géﬁt:; Csla(s'::;;am;n o|ng distributional tendencies (Qvrelid, 2008a). As
P P P g 0 in the gold standard experiments, we find that the

gives us high preC|S|on_ (96.3) combined with IOWerfeatures which have the most notable effect on per-
recall (62.0) for the animate class.

formance are the verbal features(p001).

7 Experiments with acquired features In parallel with the results achieved with the
combination of gold standard features, we observe

The experimental methodology is identical to thgy-6vement of overall results compared to the
one described in 5.1 above, the only difference bgyasejine (g.0001) and each of the individual fea-
ing that the linguistic features are acquired autdy.as when we combine the features of the argu-
matically, rather than being gold standard. In ordef,qnts (ADC: p<.01) and the argument and ver-
to enable a direct comparison with the results frony ;| teatures ’(ADCV' g.0001). Column 4 in Ta-
the earlier experiments, we employ the gold stare 4 shows an overview of performance for the
dard part-of-speech tags, as before. This meaggy ment relations, compared to the gold standard
that the set for which the various linguistic feature%xperiments. We find overall somewhat lower re-
are defined is identical, whereas the feature valuggi jn the experiment with automatic features, but
may differ. . find the same tendencies with the automatically ac-
Table 8 presents the overall results with aUtoduired features
matic features, compared to the gold standard re- '
sults and p-scores for the difference of the auto-
matic results from the NoFeats baseline. As ex-

an the gold standard counterparts due to captur-
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8 Conclusion Daelemans, Walter, Jakub Zavrel, Ko Van der Sloot, and An-
] ) tal Van den Bosch. 2004. TiMBL.: Tilburg Memory Based
An error analysis of the best performing data- Learner, version 5.1, Reference Guide. Technical report,

driven dependency parser for Swedish revealed LK Technical Report Series 04-02.

consistent errors in dependency assignmenfe swart, Peter, Monique Lamers, and Sander Lestrade.
namely the confusion of argument functions. We 2008. Animacy, argument structure and argument encod-
established a set of features expressing distinguish—Tfé('zr;t_rlosdl”_c;fg o the special issue on animatingua

ing semantic and structural properties of argu-

ments such as animacy, definiteness and finitengdall, Johan.  2003. A probabilistic part-of-speech tagger
with suffix probabilities. Master’s thesis, Vaxjo Univer

and performed a set of experiments with gold stan- gy sweden.
dard features taken from a treebank of Swedish.

; s~ dinidClein, Dan and Christopher D. Manning. 2003. Accurate
The experiments showed that each feature deVId< unlexicalized parsing. lfProceedings of the 41st Annual

ually caused an improvement in terms of overall Ia- Meeting of the Association for Computational Linguistics

beled accuracy and performance for the argument (ACL), pages 423-430.

relations. We furth_ermore f_ound that t_he reSU|t$<okkinakis, Dimitrios. 2004. Reducing the effect of name

may largely be replicated with automatic features explosion. InProceedings of the LREC Workshop: Be-

and a generic part-of-speech tagger. The featuresl)(loLnPd Nell(med Entity Recognition, Semantic labelling for

: : . tasks

were acquired automatically employing a part-of-

speech tagger, a named-entity recognizer and K@bler, Sandra and Jelena Proki€. 2006. Why is German de-
. e pendency parsing more reliable than constituent parsing?

ammacy classifier of C_0m_m0_n npun lemmas em- In Proceedings of the Fifth Workshop on Treebanks and

ploying morphosyntactic distributional features. A Linguistic Theories (TLT)pages 7-18.

set of correspo_ndl_n_g experlments with au'[omatéf/chonald, Ryan and Joakim Nivre. 2007. Characterizing

features gave significant improvement from the ad- tne errors of data-driven dependency parsingPrioceed-

dition of individual features and a cumulative ef- ings of the Eleventh Conference on Computational Natural

fect of the same features in combination. In partic- -3"guage Learning (CoNLLpages 122-131,

ular, we show that the very same tendencies in imNivre, Joakim, Jens Nilsson, and Johan Hall. 2006a. Tal-

provement for Speciﬁc argument relations such as banken05: A Swedish treebank with phrase structure and
dependency annotation. Froceedings of the fifth Inter-

Su_bJeCtS’ ObjE(I:tS and pre'dlcatlves may be obtained national Conference on Language Resources and Evalua-
using automatically acquired features. tion (LREC) pages 1392-1395.
Properties of the Scandinavian languages con-

d with . . N{vre, Joakim, Jens Nilsson, Johan Hall, Gillsen Eryigid
nected with errors In argument assignment are Not gyetosiay Marinov. 2006b. Labeled pseudo-projective

isolated phenomena. A range of other languages dependency parsing with Support Vector Machines. In

exhibit similar properties, for instance, Italian ex- Proceedings of the Conference on Computational Natural
. T ' . Language Learning (CoNLL)

hibits word order variation, little case, syncretism

in agreement morpho|ogy, as well as pro-dropl}livre, Joakim, Johan Hall, Sandra Kubler, Ryan McDon-
. ald, Jens Nilsson, Sebastian Riedel, and Deniz Yuret.
German exhibits a larger degree of word order 2007. CoNLL 2007 Shared Task on Dependency Pars-

variation in combination with quite a bit of Syn- ing. InProceedings of the CONLL Shared Task Session of
cretism in case morphology; Dutch has word order EMNLP-CoNLL 2007pages 915-932.

variation, little case and syncretism in agreemengyrelid, Lilja. 2008a. Argument Differentiation. Soft con-
morphology. These are all examples of other lan- straints and data-driven model$h.D. thesis, University

guages for which the results described here are rel-°f Gothenburg.

evant. @vrelid, Lilja. 2008b. Finite matters: Verbal features ata-
driven parsing of Swedish. IRroceedings of the Interna-
tional Conference on NLP, GOTAL 2008
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Abstract

A semantic parser learning system learns
to map natural language sentences into
their domain-specific formal meaning rep-
resentations, but if the constructs of the
meaning representation language do not
correspond well with the natural language
then the system may not learn a good se-
mantic parser. This paper presents ap-
proaches for automatically transforming a
meaning representation grammar (MRG)
to conform it better with the natural lan-
guage semantics. It introduces grammar
transformation operators and meaning rep-
resentation macros which are applied in an
error-driven manner to transform an MRG
while training a semantic parser learning
system. Experimental results show that the
automatically transformed MRGs lead to
better learned semantic parsers which per-
form comparable to the semantic parsers
learned using manually engineered MRGs.

1 Introduction

Semantic parsing is the task of converting natural
language (NL) sentences into their meaning repre-
sentations (MRs) which a computer program can
execute to perform some domain-specific task, like
controlling a robot, answering database queries
etc. These MRs are expressed in a formal mean-
ing representation language (MRL) unique to the
domain to suit the application, like some specific
command language to control a robot or some

“"Alumnus at the time of submission.

{©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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query language to execute database queries. A ma-
chine learning system for semantic parsing takes
NL sentences paired with their respective MRs as
training data and induces a semantic parser which
can then map novel NL sentences into their MRs.

The grammar of an MRL, which we will call
meaning representation grammar (MRG), is as-
sumed to be deterministic and context-free which
is true for grammars of almost all the computer
executable languages. A semantic parsing learn-
ing system typically exploits the given MRG of the
MRL to learn a semantic parser (Kate and Mooney,
2006; Wong and Mooney, 2006). Although in dif-
ferent ways, but the systems presented in these pa-
pers learn how the NL phrases relate to the pro-
ductions of the MRG, and using this information
they parse a test sentence to compositionally gen-
erate its best MR. In order to learn a good seman-
tic parser, it is necessary that the productions of
the MRG accurately represent the semantics be-
ing expressed by the natural language. However,
an MRL and its MRG are typically designed to
best suit the application with little consideration
for how well they correspond to the semantics of
a natural language.

Some other semantic parser learning systems
which need MRL in the form of Prolog (Tang
and Mooney, 2001) or A-calculus (Zettlemoyer and
Collins, 2007; Wong and Mooney, 2007) do not
use productions of the MRG but instead use pred-
icates of the MRL. However, in order to learn a
good semantic parser, they still require that these
predicates correspond well with the semantics of
the natural language. There are also systems which
learn semantic parsers from more detailed train-
ing data in the form of semantically augmented
parse trees of NL sentences in which each inter-
nal node has a syntactic and a semantic label (Ge

CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 33—40
Manchester, August 2008



(a) NL: If the ball is in our midfield then player 5 should go to (-5,0).
MR: (bpos (rec (pt —-32 -35) (pt 0 35))
(do (player our {5}) (pos (pt =5 0))))

(b) NL: Which is the longest river in Texas?
MR: answer (longest (river (loc_2 (stateid (' Texas’)))))

(c) NL: Which is the longest river in Texas?
MR: select river.name from river where
river.traverse=’'Texas’ and river.length=
(select max(river.length) from river
where river.traverse='Texas’);

Figure 1: Examples of NL sentences and their MRs from
(a) the CLANG domain (b) GEOQUERY domain with func-
tional MRL (c) GEOQUERY domain with SQL.

and Mooney, 2005; Nguyen et al., 2006). For these
systems to work well, it is also necessary that the
semantic labels of the MRL correspond well with
natural language semantics.

If the MRG of a domain-specific MRL does not
correspond well with natural language semantics
then manually re-engineering the MRG to work
well for semantic parsing is a tedious task and re-
quires considerable domain expertise. In this pa-
per, we present methods to automatically trans-
form a given MRG to make it more suitable for
learning semantic parsers. No previous work ad-
dresses this issue to our best knowledge. We intro-
duce grammar transformation operators and mean-
ing representation macros to transform an MRG.
We describe how these are applied in an error-
driven manner using the base semantic parsing
learning algorithm presented in (Kate and Mooney,
20006) resulting in a better learned semantic parser.
Our approach, however, is general enough to im-
prove any semantic parser learning system which
uses productions of the MRG. We present exper-
imental results with three very different MRLs to
show how these grammar transformations improve
the semantic parsing performance.

2 Background

The following subsection gives some examples of
semantic parsing domains and their corresponding
MRLs and illustrates why incompatibility between
MRGs and natural language could hurt semantic
parsing. The next subsection then briefly describes
a base semantic parser learning system which we
use in our experiments.

2.1 MRLs and MRGs for Semantic Parsing

Figure 1 (a) gives an example of a natural lan-
guage sentence and its corresponding MR in an
MRL called CLANG which is a formal declar-
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REGION — ( rec POINT POINT )

POINT — ( pi NUM NUM ) POINT — ( pt NUM NUM )

NUM — -32 NUM — -35 NUM — 0 NUM — 35

Figure 2: The parse for the CLANG expression “(rec (pt
-32 -35) (pt 0 35))” corresponding to the natural language ut-
terance “our midfield” using its original MRG.

ative language with LISP-like prefix notation
designed to instruct simulated soccer players in
the RoboCup' Coach Competition. The MRL
and its MRG was designed by the Coach Com-
petition community (Chen et al., 2003) to suit
the requirements of their application independent
of how well the MRG conforms with the natural
language semantics. They were, in fact, not
aware that later (Kate et al., 2005) this will be
introduced as a test domain for learning semantic
parsers. In this original MRG for CLANG, there
are several constructs which do not correspond
well with their meanings in the natural language.
For example, the MR expression of the rectangle
(rec (pt -32 -35) (pt 0 35)) from
the example MR in Figure 1 (a), whose parse ac-
cording to the original MRG is shown in Figure 2,
corresponds to the NL utterance “our midfield”. In
the parse tree, the nodes are the MRG productions
and the tokens in upper-case are non-terminals
of the MRG while the tokens in lower-case are
terminals of the MRG, this convention will be
used throughout the paper. As can be seen,
the numbers as well as the productions in the
parse of the MR expression do not correspond to
anything in its natural language utterance. It is
also impossible to derive a semantic parse tree
of this MR expression over its natural language
utterance because there are not enough words in
it to cover all the productions present in the MR
parse at the lowest level. To alleviate this problem,
the provided MRG was manually modified (Kate
et al., 2005) to make it correspond better with
the natural language by replacing such long MR
expressions for soccer regions by shorter expres-
sions like (midfield our)?2. This new MRG
was used in all the previous work which uses the
CLANG corpus. In the next sections of the paper,
we will present methods to automatically obtain a

Thttp://www.robocup.org

2The names for the new tokens introduced were chosen for
readability and their similarity to the natural language words
is inconsequential for learning semantic parsers.



(a) ANSWER — answer ( RIVER )

[
RIVER — longest (RIVER )

[
RIVER — river (LOCATIONS )

[
LOCATIONS — loc.2 ( STATE )

\
STATE — STATEID

|
STATEID — stateid ( ‘Texas’ )

(b) ANSWER — answer ( RIVER )

\
RIVER — QUALIFIER ( RIVER )

QUALIFIER — longest RIVER — river (LOCATIONS )

[
LOCATIONS — LOC.2 ( STATE)

LOC.2 — loc2 STATE — STATEID

|
STATEID — stateid ( ‘Texas’ )

Figure 3:

“answer(longest(river(loc_2(stateid(‘Texas’)))))” correspond-

Different parse trees obtained for the MR

ing to the NL sentence “Which is the longest river in Texas?”
using (a) a simple MRG (b) a manually designed MRG.

better MRG which corresponds well with the NL
semantics.

Figure 1 (b) shows an NL sentence and its MR
from the GEOQUERY domain (Zelle and Mooney,
1996) which consists of a database of U.S. geo-
graphical facts about which a user can query. The
MRL used for GEOQUERY in some of the previ-
ous work is a variable-free functional query lan-
guage, that was constructed from the original MRs
in Prolog (Kate et al., 2005). From this MRL, the
MRG was then manually written so that its pro-
ductions were compatible with the semantics ex-
pressible in natural language. This MRG was dif-
ferent from some simple MRG one would other-
wise design for the MRL. Figure 3 (a) shows the
parse tree obtained using a simple MRG for the
MR shown in Figure 1 (b). The MR parse ob-
tained using the simple MRG is more like a linear
chain which means that in a semantic parse of the
NL sentence each production will have to corre-
spond to the entire sentence. But ideally, different
productions should correspond to the meanings of
different substrings of the sentence. Figure 3 (b)
shows a parse tree obtained using the manually de-
signed MRG in which the productions QUALIFIER
— longest and LOC_2 — loc2 would correspond to
the semantic concepts of “longest” and “located
in” that are expressible in natural language.

Finally, Figure 1 (c) shows the same NL sen-
tence from the GEOQUERY domain but the MR
in SQL which is the standard database query lan-
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guage. The inner expression finds the length of the
longest river in Texas and then the outer expres-
sion finds the river in Texas which has that length.
Due to space restriction, we are not showing the
parse tree for this SQL MR, but its incompatibil-
ity with the NL sentence can be seen from the MR
itself because part of the query repeats itself with
"Texas’ appearing twice while in the NL sen-
tence everything is said only once.

2.2 KRISP: A Semantic Parser Learning
System

We very briefly describe the semantic parser learn-
ing system, KRISP (Kate and Mooney, 2006),
which we will use as a base system for transform-
ing MRGs, we however note that the MRG trans-
formation methods presented in this paper are gen-
eral enough to work with any system which learns
semantic parser using MRGs. KRISP (Kernel-
based Robust Interpretation for Semantic Parsing)
is a supervised learning system for semantic pars-
ing which takes NL sentences paired with their
MRs as training data. The productions of the MRG
are treated like semantic concepts. For each of
these productions, a Support-Vector Machine clas-
sifier is trained using string similarity as the ker-
nel (Lodhi et al., 2002). Each classifier can then
estimate the probability of any NL substring rep-
resenting the semantic concept for its production.
During semantic parsing, the classifiers are called
to estimate probabilities on different substrings of
the sentence to compositionally build the most
probable MR parse over the entire sentence with
its productions covering different substrings of the
sentence. KRISP was shown to perform competi-
tively with other existing semantic parser learning
systems and was shown to be particularly robust to
noisy NL input.

3 Transforming MRGs Using Operators

This section describes an approach to transform
an MRG using grammar transformation operators
to conform it better with the NL semantics. The
following section will present another approach
for transforming an MRG using macros which is
sometimes more directly applicable.

The MRLs used for semantic parsing are always
assumed to be context-free which is true for al-
most all executable computer languages. There
has been some work in learning context-free gram-
mars (CFGs) for a language given several exam-



ples of its expressions (Lee, 1996). Most of the
approaches directly learn a grammar from the ex-
pressions but there also have been approaches that
first start with a simple grammar and then trans-
form it using suitable operators to a better gram-
mar (Langley and Stromsten, 2000). The goodness
for a grammar is typically measured in terms of its
simplicity and coverage. Langley and Stromsten
(2000) transform syntactic grammars for NL sen-
tences. To our best knowledge, there is no previous
work on transforming MRGs for semantic parsing.
For this task, since an initial MRG is always given
with the MRL, there is no need to first learn it from
its MRs. The next subsection describes the opera-
tors our method uses to transform an initial MRG.
The subsection following that then describes how
and when the operators are applied to transform the
MRG during training. Our criteria for goodness of
an MRG is the performance of the semantic parser
learned using that MRG.

3.1 Transformation Operators

We describe five transformation operators which
are used to transform an MRG. Each of these op-
erators preserves the coverage of the grammar,
i.e. after application of the operator, the trans-
formed grammar generates the same language that
the previous grammar generated®>. The MRs do
not change but only the way they are parsed may
change because of grammar transformations. This
is important because the MRs are to be used in an
application and hence should not be changed.

1. Create Non-terminal from a Terminal
(CreateNT): Given a terminal symbol ¢ in the
grammar, this operator adds a new production
T — t to it and replaces all the occurrences of
the terminal ¢ in all the other productions by the
new non-terminal 7". In the context of seman-
tic parsing learning algorithm, this operator intro-
duces a new semantic concept the previous gram-
mar was not explicit about. For example, this oper-
ator may introduce a production (a semantic con-
cept) LONGEST — longest to the simple grammar
whose parse was shown in Figure 3 (a). This is
close to the production QUALIFIER — longest of the
manual grammar used in the parse shown in Fig-
ure 3 (b).

2. Merge Non-terminals (MergeNT): This op-
erator merges n non-terminals T, 1%, ..., Ty, by
introducing n productions " — 11, T — 15, ...,

3This is also known as weak equivalence of grammars.
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T — T, where T is a new non-terminal. All the
occurrences of the merged non-terminals on the
right-hand-side (RHS) of all the remaining produc-
tions are then replaced by the non-terminal 7'. In
order to ensure that this operator preserves the cov-
erage of the grammar, before applying it, it is made
sure that if one of these non-terminals, say 77, oc-
curs on the RHS of a production 7 then there also
exist productions 7o, ..., T, Which are same as m;
except that 15, ..., T}, respectively occur in them
in place of T1. If this condition is violated for any
production of any of the n non-terminals then this
operator is not applicable. This operator enables
generalization of some non-terminals which occur
in similar contexts leading to generalization of pro-
ductions in which they occur on the RHS. For ex-
ample, this operator may generalize non-terminals
LONGEST and SHORTEST in GEOQUERY MRG to
form QUALIFIER* — LONGEST and QUALIFIER —
SHORTEST productions.

3. Combine Two Non-terminals (Combi-
neNT): This operator combines two non-terminals
Ty and T5 into one new non-terminal 7’ by intro-
ducing a new production 7' — 717 T5. All the
instances of 77 and 75 occurring adjacent in this
order on the RHS (with at least one more non-
terminal®) of all the other productions are replaced
by the new non-terminal 7T'. For example, the pro-
duction A — a B T} T will be changedto A — a
B T'. This operator will not eliminate other occur-
rences of 77 and 75 on the RHS of other produc-
tions in which they do not occur adjacent to each
other. In the context of semantic parsing, this op-
erator adds an extra level in the MR parses which
does not seem to be useful in itself, but later if
the non-terminals 77 and 75 get eliminated (by the
application of the DeleteProd operator described
shortly), this operator will be combining the con-
cepts represented by the two non-terminals.

4. Remove Duplicate Non-terminals (Re-
moveDupINT): If a production has the same non-
terminal appearing twice on its RHS then this op-
erator adds an additional production which differs
from the first production in that it has only one oc-
currence of that non-terminal. For example, if a
production is A — b C' D C, then this operator
will introduce a new production A — b C' D re-

*A system generated name will be given to the new non-
terminal.

SWithout the presence of an extra non-terminal on the
RHS, this change will merely add redundancy to the parse
trees using this production.



moving the second occurrence of the non-terminal
C. This operator is applied only when the subtrees
under the duplicate non-terminals of the produc-
tion are often found to be the same in the parse
trees of the MRs in the training data. As such this
operator will change the MRL the new MRG will
generate, but this can be easily reverted by appro-
priately duplicating the subtrees in its generated
MR parses in accordance to the original produc-
tion. This operator is useful during learning a se-
mantic parser because it eliminates the type of in-
compatibility between MRs and NL sentences il-
lustrated with Figure 1 (c) in Subsection 2.1.

5. Delete Production (DeleteProd): This last
operator deletes a production and replaces the oc-
currences of its left-hand-side (LHS) non-terminal
with its RHS in the RHS of all the other produc-
tions. In terms of semantic parsing, this operator
eliminates the need to learn a semantic concept. It
can undo the transformations obtained by the other
operators by deleting the new productions they in-
troduce.

We note that the CombineNT and MergeNT op-
erators are same as the two operators used by Lan-
gley and Stromsten (2000) to search a good syntac-
tic grammar for natural language sentences from
the space of its possible grammars. We also note
that the applications of CreateNT and CombineNT
operators can reduce a CFG to its Chomsky nor-
mal form®, and conversely, because of the reverse
transformations achieved by the DeleteProd opera-
tor, a Chomsky normal form of a CFG can be con-
verted into any other CFG which accepts the same
language.

3.2 Applying Transformation Operators

In order to transform an MRG to improve semantic
parsing, since a simple hill-climbing type approach
to search the space of all possible MRGs will be
computationally very intensive, we use the follow-
ing error-driven heuristic search which is faster al-
though less thorough.

First, using the provided MRG and the training
data, a semantic parser is trained using KRISP. The
trained semantic parser is applied to each of the
training NL sentences. Next, for each production 7
in the MRG, two values total, and incorrect, are
computed. The value total, counts how many MR
parses from the training examples use the produc-

®In which all the productions are of the form A — a or
A— BC.
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tion w. The value incorrect, counts the number
of training examples for which the semantic parser
incorrectly uses the production 7, i.e. it either did
not include the production 7 in the parse of the MR
it produces when the correct MR’s parse included
it, or it included the production m when it was not
present in the correct MR’s parse. These two statis-
tics for a production indicate how well the seman-
tic parser was able to use the production in seman-
tic parsing. If it was not able to use a production 7
well, then the ratio incorrect, /total,, which we
call mistakeRatio,, will be high indicating that
some change needs to be made to that production.
After computing these values for all the produc-
tions, the procedure described below for applying
the first type of operator is followed. After this,
the MRs in the training data are re-parsed using
the new MRG, the semantic parser is re-trained and
the total, and incorrect, values are re-computed.
Next, the procedure for applying the next operator
is followed and so on. The whole process is re-
peated for a specified number of iterations. In the
experiments, we found that the performance does
not improve much after two iterations.

1. Apply CreateNT: For each terminal ¢ in the
grammar, total; and incorrect; values are com-
puted by summing up the corresponding values for
all the productions in which ¢ occurs on the RHS
with at least one non-terminal’. If total, is greater
than 3 (a parameter) and mistakeRatio;
incorrecty/total; is greater than « (another pa-
rameter), then the CreateNT operator is applied,
provided the production 7' — ¢ is not already
present.

2. Apply MergeNT: All the non-terminals oc-
curring on the RHS of all those productions 7 are
collected whose mistakeRatio, value is greater
than « and whose total, value is greater than (.
The set of these non-terminals is then partitioned
such that the criteria for applying the MergeNT
is satisfied by the non-terminals in each partition
with size at least two. The MergeNT operator is
then applied to the non-terminals in each partition
with size at least two.

3. Apply CombineNT: For every non-terminal
pair T and T, totalr, 1, and incorrectr, 1, val-
ues are computed by summing their correspond-
ing values for the productions in which the two
non-terminals are adjacent in the RHS in the

"Without a non-terminal on the RHS, the operator will
only add a redundant level to the parses which use this pro-
duction.



presence of at least one more non-terminal. If
mistakeRatior, 1, = incorecty,r,/totaly, T, is
greater than «v and totalr, 7, is greater than /3, then
the CombineNT operator is applied to these two
non-terminals.

4. Apply RemoveDupINT: If a production
7 has duplicate non-terminals on the RHS under
which the same subtrees are found in the MR parse
trees of the training data more than once then this
operator is applied provided its mistake Ratioy is
greater than o and total, is greater than [3.

5. Apply DeleteProd: The DeleteProd opera-
tor is applied to all the productions m and whose
mistakeRatio, is greater than « and total; is
greater than 3. This step simply deletes the pro-
ductions which are mostly incorrectly used.

For the experiments, we set the o parameter to
0.75 and 8 parameter to 5, these values were de-
termined through pilot experiments.

4 Transforming MRGs Using Macros

As was illustrated with Figure 2 in Subsection 2.1,
sometimes there can be large parses for MR ex-
pressions which do not correspond well with their
semantics in the natural language. While it is pos-
sible to transform the MRG using the operators
described in the previous section to reduce a sub-
tree of the parse to just one production which will
then correspond directly to its meaning in the nat-
ural language, it will require a particular sequence
of transformation operators to achieve this which
may rarely happen during the heuristic search used
in the MRG transformation algorithm. In this sec-
tion, we describe a more direct way of obtaining
such transformations using macros.

4.1 Meaning Representation Macros

A meaning representation macro for an MRG is a
production formed by combining two or more ex-
isting productions of the MRG. For example, for
the CLANG example shown in Figure 2, the pro-
duction REGION — (rec(pt -32 -35)(pt 0 35)) is a mean-
ing representation macro. There could also be non-
terminals on its RHS. From an MR parse drawn
with non-terminals at the internal nodes (instead of
productions), a macro can be derived from a sub-
tree® rooted at any of the internal nodes by making
its root as the LHS non-terminal and the left-to-
right sequence formed by its leaves (which could

8Each node of a subtree must either include all the chil-

dren nodes of the corresponding node from the original tree
or none of them.
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be non-terminals) as the RHS. We use the follow-
ing error-driven procedure to introduce macros in
the MRG in order to improve the performance of
semantic parsing.

4.2 Learning Meaning Representation
Macros

A semantic parser is first learned from the train-
ing data using KRISP and the given MRG. The
learned semantic parser is then applied to the train-
ing sentences and if the system can not produce
any parse for a sentence then the parse tree of its
corresponding MR is included in a set called failed
parse trees. Common subtrees in these failed parse
trees are likely to be good candidates for introduc-
ing macros. Then a set of candidate trees is cre-
ated as follows. This set is first initialized to the
set of failed parse trees. The largest common sub-
tree of every pair of trees in the candidate trees is
then also included in this set if it is not an empty
tree. The process continues with the newly added
trees until no new tree can be included. This pro-
cess is similar to the repeated bottom-up general-
ization of clauses used in the inductive logic pro-
gramming system GOLEM (Muggleton and Feng,
1992). Next, the trees in this set are sorted based
on the number of failed parse trees of which they
are a subtree. The trees which are part of fewer
than 3 subtrees are removed. Then in highest to
lowest order, the trees are selected one-by-one to
form macros, provided their height is greater than
two (otherwise it will be an already existing MRG
production) and an already selected tree is not its
subtree. A macro is formed from a tree by mak-
ing the non-terminal root of the tree as its LHS
non-terminal and the left-to-right sequence of the
leaves as its RHS.

These newly formed macros (productions) are
then included in the MRG. The MRs in the train-
ing data are re-parsed and the semantic parser is
re-trained using the new MRG. In order to delete
the macros which were not found useful, a pro-
cedure similar to the application of DeleteProd is
used. The total, and incorrect, values for all the
macros are computed in a manner similar to de-
scribed in the previous section. The macros for
which mistakeRatio, = total;/incorrect, is
greater than « and total, is greater than (3 are re-
moved. This whole procedure of adding and delet-
ing macros is repeated a specified number of it-
erations. In the experiments, we found that two



80
70
60
50
40
30 . ! ! !

Precision

Manual grammar
Transformed grammar ------- 4
) Initiallgramnﬂar

60 70 80

30 40 50

Recall

Figure 4: The results comparing the performances of the
learned semantic parsers on the GEOUQERY domain with the

functional query language using different MRGs.

100
90 [
80
70
60
50
40

30 L L L L
40

Precision

Transformed grammar
) Initiallgramnllar

60 70 80

50
Recall

Figure 5:
the learned semantic parsers on the GEOUQERY domain with
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The results comparing the performances of

iterations are usually sufficient.

S Experiments

We tested our MRG transformation methods with
MRGs of three different MRLs which were de-
scribed in the Background section. In each case,
we first transformed the given MRG using macros
and then using grammar transformation operators.
The training and testing was done using standard
10-fold cross-validation and the performance was
measured in terms of precision (the percentage of
generated MRs that were correct) and recall (the
percentage of all sentences for which correct MRs
were obtained). Since we wanted to evaluate how
the grammar transformation changes the perfor-
mance on the semantic parsing task, in each of
the experiments, we used the same system, KRISP,
and compared how it performs when trained using
different MRGs for the same MRL. Since KRISP
assigns confidences to the MRs it generates, an en-
tire range of precision-recall trade-off was plotted
by measuring precision and recall values at various
confidence levels.

Figure 4 shows the results on the GEOQUERY
domain using the functional query language whose
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Figure 6: The results comparing the performances of the

learned semantic parsers on the CLANG corpus using different
MRGs.

corpus contained total 880 NL-MR pairs. As can
be seen, the performance of the semantic parser
that KRISP learns when trained using the initial
simple MRG for the MRL is not good. But
when that MRG is transformed, the performance
of the semantic parser dramatically improves and
is very close to the performance obtained with the
manually-engineered grammar. The macro trans-
formations did not help improve the performance
with this MRG, and most of the the performance
gain was obtained because of the CreateNT and
DeleteProd operators.

We next tested our MRG transformation algo-
rithm on SQL as the MRL for the GEOQUERY do-
main. This corpus contains 700 NL-MR pairs in
which the NL sentences were taken from the orig-
inal 880 examples. This corpus was previously
used to evaluate the PRECISION system (Popescu
et al., 2003), but since that system is not a machine
learning system, its results cannot be directly com-
pared with ours. The initial MRG we used con-
tained the basic SQL productions. Figure 5 shows
that results improve by a large amount after MRG
transformations. We did not have any manually-
engineered MRG for SQL for this domain avail-
able to us. With this MRG, most of the improve-
ment was obtained using the macros and the Re-
moveDupINT transformation operator.

Finally, we tested our MRG transformation al-
gorithm on the CLANG domain using its origi-
nal MRG in which all the chief regions of the
soccer field were in the form of numeric MR ex-
pressions which do not correspond to their mean-
ings in the natural language. Its corpus contains
300 examples of NL-MR pairs. Figure 6 shows
the results. After applying the MRG transforma-
tions the performance improved by a large margin.
The gain was due to transformations obtained us-



ing macros while the grammar transformation op-
erators did not help with this MRG. Although the
precision was lower for low recall values, the re-
call increased by a large quantity and the best F-
measure improved from 50% to 63%. But the per-
formance still lagged behind that obtained using
the manually-engineered MRG. The main reason
for this is that the manual MRG introduced some
domain specific expressions, like left, right,
left—quarter etc., which correspond directly
to their meanings in the natural language. On
the other hand, the only way to specify “left” of
a region using the original CLANG MRG is by
specifying the coordinates of the left region, like
(rec(pt -32 -35) (pt 0 0)) is the left of
(rec (pt -32 -35) (pt 0 35)) etc. It
is not possible to learn the concept of “left” from
such expressions even with MRG transformations.

6 Conclusions

A meaning representation grammar which does not
correspond well with the natural language seman-
tics can lead to a poor performance by a learned
semantic parser. This paper presented grammar
transformation operators and meaning representa-
tion macros using which the meaning representa-
tion grammar can be transformed to make it better
conform with the semantics of natural language.
Experimental results on three different grammars
demonstrated that the performance on semantic
parsing task can be improved by large amounts by
transforming the grammars.
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Abstract

Detecting the semantic coherence of a doc-
ument is a challenging task and has sev-
eral applications such as in text segmenta-
tion and categorization. This paper is an
attempt to distinguish between a ‘semanti-
cally coherent’ true document and a ‘ran-
domly generated’ false document through
topic detection in the framework of latent
Dirichlet analysis. Based on the premise
that a true document contains only a few
topics and a false document is made up of
many topics, it is asserted that the entropy
of the topic distribution will be lower for
a true document than that for a false docu-
ment. This hypothesis is tested on several
false document sets generated by various
methods and is found to be useful for fake
content detection applications.

1 Introduction

The “Internet revolution” has dramatically in-
creased the monetary value of higher ranking on
the web search engines index, fostering the ex-
pansion of techniques, collectively known as “Web
Spam”, that fraudulently help to do so. Internet is
indeed “polluted” with fake Web sites whose only
purpose is to deceive the search engines by arti-
ficially pushing up the popularity of commercial
sites, or sites promoting illegal content 1. These
fake sites are often forged using very crude content
generation techniques, ranging from web scrap-
ping (blending of chunks of actual contents) to
simple-minded text generation techniques based

(©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-
cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

1The annual AirWeb challenge http://airweb.
cse. | ehi gh. edu gives a state-of-the art on current \Web
Spam detection techniques.

yvon@insi.fr

on random sampling of words (“word salads”),
or randomly replacing words in actual documents
(“word stuffing”) 2. Among these, the latter two
are easy to detect using simple statistical models
of natural texts, but the former is more challeng-
ing, it being made up of actual sentences: recog-
nizing these texts as forged requires either to resort
to plagiarism detection techniques, or to automati-
cally identify their lack of semantic consistency.
Detecting the consistency of texts or of text
chunks has many applications in Natural Language
Processing. So far, it has been used mainly in the
context of automatic text segmentation, where a
change in vocabulary is often the mark of topic
change (Hearst, 1997), and, to a lesser extent, in
discourse studies (see, e.g., (Foltz et al., 1998)).
It could also serve to devise automatic metrics for
text summarization or machine translation tasks.
This paper is an attempt to address the issue
of differentiating between ‘true’ and ‘false’ doc-
uments on the basis of their consistency through
topic modeling approach. We have used La-
tent Dirichlet allocation (LDA) (Blei et al., 2002)
model as our main topic modeling tool. One of the
aims of LDA and similar methods, including prob-
abilistic latent semantic analysis (PLSA) (Hof-
mann, 2001), is to produce low dimensionality rep-
resentations of texts in a “semantic space” such
that most of their inherent statistical characteristics
are preserved. A reduction in dimensionality facil-
itates storage as well as faster retrieval. Modeling
discrete data has many applications in classifica-
tion, categorization, topic detection, data mining,
information retrieval (IR), summarization and col-
laborative filtering (Buntine and Jakulin, 2004).
The aim of this paper is to test LDA for es-
tablishing the semantic coherence of a document
based on the premise that a real (coherent) docu-
ment should discuss only a few number of topics,

2The same techniques are commonly used in mail spams
also.
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a property hardly granted for forged documents
which are often made up of random assemblage
of words or sentences. As a consequence, the co-
herence of a document may reflect in the entropy
of its posterior topic distribution or in its perplex-
ity for the model. The entropy of the estimated
topic distribution of a true document is expected to
be lower than that of a fake document. Moreover,
the length normalized log-likelihood of a true and
coherent document may be higher as compared to
that of a false and incoherent document.

In this paper, we compare two methods to esti-
mate the posterior topic distribution of test docu-
ments, and this study is also an attempt to inves-
tigate the role of different parameters on the effi-
ciency of these methods.

This paper is organized as follows: In Section 2,
the basics of the LDA model are set. We then dis-
cuss and contrast several approaches to the prob-
lem of inferring the topic distribution of a new
document in Section 3. In Section 4, we describe
the corpus and experimental set-up that are used
to produce the results presented in Section 5. We
summarize our main findings and draw perspec-
tives for future research in Section 6.

2 Latent Dirichlet Allocation

2.1 Basics

LDA is a probabilistic model of text data which
provides a generative analog of PLSA (Blei et al.,
2002), and is primarily meant to reveal hidden top-
ics in text documents. In (Griffiths and Steyvers,
2004), the authors used LDA for identifying “hot
topics” by analyzing the temporal dynamics of top-
ics over a period of time. More recently LDA has
also been used for unsupervised language model
(LM) adaptation in the context of automatic speech
recognition (ASR) (Hsu and Glass, 2006; Tam
and Schultz, 2007; Heidel et al., 2007). Several
extensions of the LDA model, such as hierarchi-
cal LDA (Blei et al., 2004), HMM-LDA (Grif-
fiths et al., 2005), correlated topic models (Blei
and Lafferty, 2005) and hidden topic Markov mod-
els (Gruber et al., 2007), have been proposed, that
introduce more complex dependency patterns in
the model.

Like most of the text mining technigques, LDA
assumes that documents are made up of words and
the ordering of the words within a document is
unimportant (“bag-of-words” assumption). Con-
trary to the simpler Multinomial Mixture Model

(see, e.g., (Nigam et al., 2000) and Section 2.4),
LDA assumes that every document is represented
by a topic distribution and that each topic defines
an underlying distribution on words.

The generative history of a document (a bag-
of-words) collection is the following: Assuming
a fixed and known number of topics nr, for each
topic t, a distribution 3; over the indexing vocab-
ulary (w = 1...nyw) is drawn from a Dirichlet
distribution. Then, for each document d, a distri-
bution 6, over the topics (¢t = 1...np) is drawn
from a Dirichlet distribution. For a document d,
the document length [, being an exogenous vari-
able, the next step consists of drawing a topic ¢;
from 6, for each position i = 1...1;. Finally, a
word is selected from the chosen topic ¢;. Given
the topic distribution, each word is thus drawn in-
dependently from every other word using a docu-
ment specific mixture model. The probability of
ith word token is thus:

P(wilfg, B) = Y P(ti=t[0)P(wilt;, B) (1)
t=1

nr
= OaBro
t=1

Conditioned on 3 and 6, the likelihood of doc-
ument d is a mere product of terms such as (2),
which can be rewritten as:

()

nw

P(Calbs,8) = ]

w=1

np Caw
[Zw%i 3)

t=1
where Cy,, is the count of word w in d.

2.2 LDA: Training

LDA training consists of estimating the following
two parameter vectors from a text collection: the
topic distribution in each document d (04,t =
1..np,d = 1..np) and the word distribution in
each topic (Buw,t = l..np,w = l..ny). Both
64 and S, define discrete distributions, respectively
over the set of topics and over the set of words.
Various methods have been proposed to estimate
LDA parameters, such as variational method (Blei
et al., 2002), expectation propagation (Minka and
Lafferty, 2002) and Gibbs sampling (Griffiths and
Steyvers, 2004). In this paper, we have used
the latter approach, which boils down to repeat-
edly going through the training data and sampling
the topic assigned to each word token conditioned
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on the topic assigned to all the other word to-
kens. Given a particular Gibbs sample, the pos-
teriors for # and 3 are 3: Dirichlet with parameters
(K142, - .., Ky, +2A) and Dirichlet with param-
eters (Jag1 + ¢, ..., Jan, + ), respectively, where
Ky, is the number of times word w is assigned to
topic ¢t and Jg is the number of times topic ¢ is as-
signed to some word token in document d. Hence,

K + A
222/1 Ky +nwA
Jat + «
Sty Jak + nra

/Btw =

(4)

O = (®)
During the Gibbs sampling phase, 5; and 6, are
sampled from the above posteriors while the final
estimates for these parameters are obtained by av-
eraging the posterior means over the complete set
of Gibbs iteration.

2.3 LDA: Testing

Training LDA model on a text collection already
provides interesting insights regarding the the-
matic structure of the collection. This has been the
primary application of LDA in (Blei et al., 2002;
Griffiths and Steyvers, 2004). Even better, being
a generative model, LDA can be used to make
prediction regarding novel documents (assuming
they use the same vocabulary as the training cor-
pus). In a typical IR setting, where the main fo-
cus is on computing the similarity between a doc-
ument d and a query d’, a natural similarity mea-
sure is given by P(Cy |04, 3), computed according
to (3) (Buntine et al., 2004).

An alternative would be to compute the KL di-
vergence between the topic distributionin d and d’,
which however requires to infer the latter quantity.
As the topic distribution of a (new) document gives
its representation along the latent semantic dimen-
sions, computing this value is helpful for many
applications, including text segmentation and text
classification. Methods for efficiently and accu-
rately estimating topic distribution for text docu-
ments are presented and evaluated in Section 3.

2.4 Baseline: Multinomial Mixture Model

The performance of LDA model is compared
with that of the simpler multinomial mixture
model (Nigam et al., 2000; Rigouste et al., 2007).

3assuming non-informative priors with hyper-parameters
« and A for the Dirichlet distribution over topics and the
Dirichlet distribution over words respectively

In this model, every word in a document belongs
to the same topic, as if the document specific topic
distribution 6, in LDA were bound to lie on one
vertex of the [0, 1]"7 simplex. Using the same no-
tations as before (except for 8;, which now denotes
the position independent probability of topic ¢ in
the collection), the probability of a document is:

0

This model can be trained through expectation
maximization (EM), using the following reestima-
tion formulas, where (7) defines the E-step; (8) and
(9) define the M-step.

P(Cql0:, B) (6)

0 TTu (Blu)
Cy, 0, ~ 7
PAtICa,6,6) = >ty 0 TTY (Bruw) G 0
0, o a+) P(tCy,0,0) (8)
d=1
Bw < A+> CawP(tICa0,8) (9
d=1

As suggested in (Rigouste et al., 2007), we ini-
tialize the EM algorithm by drawing initial topic
distributions from a prior Dirichlet distribution
with hyper-parameter o = 1. G = 0.1 in all the
experiments.

During testing, the parameters of the multino-
mial models are used to estimate the posterior topic
distribution in each document using (7). The like-
lihood of a test document is given by (6).

3 Inferring the Topic Distribution of Test
Documents

P(Cy4|64), the conditional probability of a docu-
ment d given 6, is obtained using (3) 4. Computing
the likelihood of a test document requires to inte-
grate this quantity over 6; likewise for the compu-
tation of the posterior distribution of 4. This inte-
gral has no close form solution, but can be approx-
imated using Monte-Carlo sampling techniques as:

P(C Z P(Cyq)0™)

where 9™ denotes the m!" sample from the
Dirichlet prior, and M is the number of Monte

(10)

4The dependence on § is dropped for simplicity. 3 is
learned during training and kept fi xed during testing.
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Carlo samples. Given the typical length of doc-
uments and the large vocabulary size, small scale
experiments convinced us that a cruder approxima-
tion was in order, as the sum in (10) is dominated
by the maximum value. We thus contend ourselves
to solve:

0* = argmax P(Cy|0)
6,5, 0:=1

(11)

and use this value to approximate P(C}) using (3).

The maximization program (11) has no close
form solution. However, the objective function is
differentiable and log-concave, and can be opti-
mized in a number of ways. We considered two
different algorithms: an EM-like approach, ini-
tially introduced in (Heidel et al., 2007), and an ex-
ponentiated gradient approach (Kivinen and War-
muth, 1997; Globerson et al., 2007).

The first approach implements an iterative pro-
cedure based on the following update rule:

nZW CawBat Brw
zt’ 19dt’ﬁt/

Although no justification was given in (Hei-
del et al., 2007), it can be shown that this
update rule converges towards a global opti-
mum of the likelihood. Let # and ¢’ be two
topic distributions in the np-dimensional simplex,
L(9) = log P(Cql0), and py(w,0) = ot
We define an auxiliary function Q(6,60") =
Yo Cuw (X, pe(w, 0) 1og(6;)). Q(6,6') is concave
in ¢, and performs the role played by the auxil-
iary function in the EM algorithm. Simple cal-
culus suffices to prove that (i) the update (12)
maximizes in 6" the function Q(6,6¢’), and (ii)
Q6,0") —Q(6,0) > L(0") — L(0), which stems
from the concavity of the log. At an optimum of
Q(6,0") the positivity of the first term implies the
positivity of the second. Maximizing @ using the
update rule (12) thus increases the likelihood and
repeating this update converges towards the opti-
mum value. We experimented both with an un-
smoothed (12) and with a smoothed version of this
update rule. The unsmoothed version yielded a
slightly better result than the smoothed one.
Exponentiated gradient (Kivinen and Warmuth,
1997; Globerson et al., 2007) yields an alternative

update rule:
) (13)

Oar — — (12)

nw

Oat < Oar exp (77 Z

deﬁt’w
t’ 1 Hdt’ ﬁt/

where 7 defines the convergence rate. In this form,
the update rule does not preserve the normaliza-
tion of #, which needs to be performed after every
iteration.

A systematic comparison of these rules was car-
ried out, yielding the following conclusions:

e the convergence of the EM-like method is
very fast. Typically, it requires less than half
a dozen iterations to converge. After conver-
gence, the topic distribution estimated by this
method for a subset of train documents was
always very close (as measured by the KL-
divergence) to the respective topic distribu-
tion of the same documents observed at the
end of the LDA training. Taking np = 50,
the average KL divergence for a set of 4,500
documents was found to be less than 0.5.

e exponentiated gradient has a more erratic be-
haviour, and requires a careful tuning of n on
a per document basis. For large values of 7,
the update rule (13) sometimes fails to con-
verge; smaller values of 7 allowed to consis-
tently reach convergence, but required more
iterations (typically 20-30). On a positive
side, on an average, the topic distributions
estimated by this method are better than the
ones obtained with the EM-like algorithm.

Based on these findings, we decided to use the
EM-like algorithm in all our subsequent experi-
ments.

4 Experimental protocol

4.1 Training and test corpora

The Reuters Corpus Volume 1 (RCV1) (Lewis et
al., 2004) is a collection of over 800,000 news
items in English from August 1996 to August
1997. Out of the entire RCV1 dataset, we se-
lected 27,672 documents (news items) for training
(TrainReuters) and 23,326 documents for testing
(TestReuters). The first 4000 documents from the
TestReuters dataset were used as true documents
(TrueReuters) in the experiments reported in this
paper. The vocabulary size in the train set, after
removing the function words, is 93, 214.

Along with these datasets of “true” documents,
three datasets of fake documents were also cre-
ated. Document generation techniques are many:
here we consider documents made by mixing short
passages from various texts and documents made
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by assembling randomly chosen words (sometimes
called as “word salads™). In addition, we also
consider the case of documents generated with a
stochastic language model (LM). Our “fake” test
documents are thus composed of:

e (SentenceSalad) obtained by randomly pick-
ing sentences from TestReuters.

e (WordSalad) created by generating random
sentences from a conventional unigram LM
trained on TrainReuters.

e (Markovian) created by generating random
sentences from a conventional 3-gram LM
trained on TrainReuters.

Each of these forged document set contains 4,000
documents.

To assess the performance on out-of-domain
data, we replicated the same tests using 2,000
Medline abstracts (Ohta et al., 2002). 1,500 doc-
uments were used either to generate fake docu-
ments by picking sentences randomly or to train an
LM and then using the LM to generate fake docu-
ments. The remaining 500 abstracts were set aside
as “true” documents (TrueMedline).

4.2 Performance Measurements : EER

The entropy of the topic distribution is computed
as H = —Y.1_, Oglogfy. The other measure
of interest is the average ‘log-likelihood per word’
(LLPW) 5.

While evaluating the performance of our sys-
tem, two types of errors are encountered: false ac-
ceptance (FA) when a false document is accepted
as a true document and false rejection (FR) when a
true document is rejected as a false document. The
rate of FA and FR is dependent on the threshold
used for taking the decision, and usually the per-
formance of a system is shown by its receiver op-
erating characteristic (ROC) curve which is a plot
between FA and FR rates for different values of
threshold. Instead of reporting the performance of
a system based on two error rates (FA and FR),
the general practice is to report the performance in
terms of equal-error-rate (EER). The EER is the
error rate at the threshold where FA rate = FR rate.

In our system, a threshold on entropy (or
LLPW) is used for taking the decision, and all the

>This measure is directly related to the text per-

plexity in the model, according to perplexity =
o—average log-likelihood per word

documents having their entropy (or LLPW) below
(or above) the threshold are accepted as true doc-
uments. The EER is obtained on the test set by
changing the threshold on the test set itself, and
the best results thus obtained are reported.

5 Detecting semantic inconsistency

5.1 Detecting fake documents with LDA and
Multinomial mixtures

In the first set of experiments, the LLPW and en-
tropy of the topic distribution (the two measures)
of the Multinomial mixture and LDA models were
compared to check the ability of these two mea-
sures and models in discriminating between true
and false documents. These results are summa-
rized in Table 1.

TrueReuters vs. Multinomial
LLPW | Entropy
SentenceSalad | 15.3% | 48.8%
WordSalad 9.3% 35.8%
Markovian 17.6% | 38.9%
LDA
TrueReuters vs. LLPW | Entropy
SentenceSalad | 18.9% | 0.88%
WordSalad 9.9% | 0.13%
Markovian 25.0% | 0.28%

Table 1: Performance of the Multinomial Mixture
and LDA

For the multinomial mixture model, the LLPW
measure is able to discriminate between true and
false documents to a certain extent. As expected
(not shown here), the LLPW of the true documents
is usually higher than that of the false documents.
In contrast, the entropy of the posterior topic dis-
tribution does not help much in discriminating be-
tween true and false documents. In fact it remains
close to zero (meaning that only one topic is “ac-
tive) both for true and false documents.

The behaviour of the LDA scores is entirely dif-
ferent. The perplexity scores (LLPW) of true and
fake texts are comparable, and do not make useful
predictors. In contrast, the entropy of the topic dis-
tribution allows to sort true documents from fake
ones with a very high accuracy for all kinds of fake
texts considered in this paper. Both results stem
from the ability of LDA to assign a different topic
to each word occurrence.

Similar pattern is observed for our three false
test sets (against the TrueReuters set) with small
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variations The texts generated with a Markov
model, no matter the order, have the highest en-
tropy, reflecting the absence of long range corre-
lation in the generation model. Though the texts
generated by mixing sentences are more confus-
ing with the true documents, the performance is
still less than 1% EER. Texts mixing a high num-
ber of topics (e.g., Sentence Salads) are almost as
likely as natural texts that address only a few top-
ics. However, the former has much higher entropy
of the topic distribution due to a large number of
topics being active in such texts (see also Figure 1).
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Figure 1: Histogram of entropy of 6 for different
true and false document sets.

It is noteworthy that both the predictors (LLPW
and Entropy) give complementary clues regarding
a text category. A linear combination of these two
scores (the weight to the LLPW score is 0.1) al-
lows to substantially improve over these baseline
results, yielding a relative improvement (in EER)
of +20.0% for the sentence salads, +20.8% for the
word salads, and +27.3% for the Markov Models.

5.2 Effect of the number of topics

In this part, we investigate the performance of
LDA in detecting false documents when the num-
ber of topics is changed. Increasing the number
of topics means higher memory requirements both
during training and testing. Though the results are
shown only for SentenceSalad, similar trend is ob-
served for WordSalad and Markovian.

The numbers in Table 2 show that the perfor-
mance obtained with the LLPW score consistently
improve with an increase in the number of top-
ics, though the % improvement obtained when the

number of topics exceeds 200 is marginal. In con-
trast, the best performance in case of entropy is
achieved at 50 topics and slowly degrades when a
more complex model is used.

Number of Topics | LLPW | Entropy
10 27.9 1.88
50 18.9 0.88
100 16.0 0.93
200 14.8 0.90
300 13.8 1.05
400 13.6 1.10

Table 2: EER from LLPW and Entropy distribution
for TrueReuters against SentenceSalad.

5.3 Detecting “noisy” documents

In this section, we study fake documents produced
by randomly changing words in true documents
(the TrueReuters dataset). In each document, a
fixed percentage of content words is randomly re-
placed by any other word from the training vocab-
ulary 8. This percentage was varied from 5 to 100
and EER for these corrupted document sets is com-
puted at each % corruption level (Figure 2). As
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Figure 2: EER at various noise levels

expected, the EER is very high at low noise levels,
and as the noise level is increased, EER gets lower.
When only a few words are changed in a true doc-
ument, it retrains the properties of a true document
(high LLPW and low entropy). However, as more
number of words are changed in a true document,

®When the replacement words are chosen from asmall set

of very specifi ¢ words, the fake document generation strategy
istermed as “word stuffi ng”.
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it starts showing the characteristics of a false docu-
ment (low LLPW and high entropy). These results
suggest that our semantic consistency tests are too
crude a measure to detect a small number of in-
consistencies, such as the ones found in the state-
of-the-art OCR or ASR systems’ outputs. On the
other hand, it confirms the numerous studies that
have shown that topic detection (and topic adapta-
tion) or text categorization tasks can be performed
with the same accuracy for moderately noisy texts
and clean texts, a finding which warrants the topic-
based LM adaptation strategies deployed in (Hei-
del et al., 2007; Tam and Schultz, 2007).

The difference in the behavior of our two pre-
dictors is striking. The EER obtained using LLPW
drops more quickly than the one obtained with en-
tropy of the topic distribution. It suggests that the
influence of “corrupting” content words (mostly
with low (,,,) is heavy on the LLPW, but the topic
information is not lost till a majority of the “uncor-
rupted” content words belong to the same topic.

5.4 Effect of the document length

In this section, we study the robustness of our
two predictors with respect to the document length
by progressively increasing the number of content
words in a document (true or fake). As can be seen
from Figure 3, the entropy of the posterior topic
distribution starts to provide a reasonable discrim-
ination (5% EER) when the test documents contain
about 80 to 100 content words, and attains results
comparable to those reported earlier in this paper
when this number doubles. This definitely rules
out this method as a predictor of the semantic con-
sistency of a sentence: we need to consider at least
a paragraph to get acceptable results.

5.5 Testing with out-of-domain data

In this section, we study the robustness of our pre-
dictors on out-of-domain data using a small ex-
cerpt of abstracts from the Medline database. Both
true and fake documents are from this dataset.
The results are summarized in Table 3. The per-

TrueMedline vs. | LLPW | Entropy
SentenceSalad 31.23% | 22.13%
WordSalad 30.03% | 19.46%
Markovian 36.51% | 23.63%

Table 3: Performance of LDA on PubMed ab-

stracts

formance on out-of-domain documents is poor,

TrueReuters against False sets
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Figure 3: EER with change in number of con-
tent words used for LDA analysis. EER based
on: LLPW of TrueReuters and false document sets
(solid line) and Entropy of topic distribution of
TrueReuters and false document sets (dashed line).

though the entropy of the topic distribution is still
the best predictor. The reasons for this failure are
obvious: a majority of the words occurring in these
documents (true or fake) are, from the perspective
of the model, characteristic of one single Reuters
topic (health and medicine). They cannot be dis-
tinguished either in terms of perplexity or in terms
of topic distribution (the entropy is low for all the
documents). It is interesting to note that all the
out-of-domain Medline data can be separated from
the in-domain TrueReuters data with good accu-
racy on the basis of the lower LLPW of the former
as compared to the higher LLPW of the latter.

6 Conclusion

In the LDA framework, this paper investigated two
methods to infer the topic distribution in a test
document. Further, the paper suggested that the
coherence of a document can be evaluated based
on its topic distribution and average LLPW, and
these measures can help to discriminate between
true and false documents. Indeed, through exper-
imental results, it was shown that entropy of the
topic distribution is lower and average LLPW of
true documents is higher for true documents and
the former measure was found to be more effective.
However, the poor performance of this method on
out-of-domain data suggests that we need to use a
much larger training corpus to build a robust fake
document detector. This raises the issue of train-
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ing LDA model with very large collections. In fu-
ture we would like to explore the potential of this
method for text segmentation tasks.
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Abstract

This paper investigates, in a first stage,
some methods for the automatic acquisi-
tion of verb-particle constructions (VPCs)
taking into account their statistical prop-
erties and some regular patterns found in
productive combinations of verbs and par-
ticles. Given the limited coverage pro-
vided by lexical resources, such as dictio-
naries, and the constantly growing number
of VPCs, possible ways of automatically
identifying them are crucial for any NLP
task that requires some degree of semantic
interpretation. In a second stage we also
study whether the combination of statis-
tical and linguistic properties can provide
some indication of the degree of idiomatic-
ity of a given VPC. The results obtained
show that such combination can success-
fully be used to detect VPCs and distin-
guish idiomatic from compositional cases.

1 Introduction

Considerable investigative effort has focused on
the automatic identification of Multiword Expres-
sions (MWE?), like compound nouns (science fic-
tion) and phrasal verbs (carry out) (e.g. Pearce
(2002), Evert and Krenn (2005) and Zhang et
al. (2006)). Some of them employ language
and/or type dependent linguistic knowledge for
the task, while others employ independent statis-
tical methods, such as Mutual Information and
Log-likelihood (e.g. Pearce (2002) and, Zhang et
al. (2006)), or even a combination of them (e.g.
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Baldwin (2005) and Sharoff (2004)), as basis for
helping to determine whether a given sequence
of words is in fact an MWE. Although some re-
search aims at developing methods for dealing
with MWE:s in general (e.g. Zhang et al. (2006),
Ramisch et al. (2008)), there is also some work that
deals with specific types of MWEs (e.g. Pearce
(2002) on collocations and Villavicencio (2005)
on verb-particle constructions (VPCs)) as each of
these MWE types has distinct distributional and
linguistic characteristics.

VPCs are combinations of verbs and particles,
such as take off in Our plane took off late, that due
to their complex characteristics and flexible na-
ture, provide a real challenge for NLP. In particu-
lar, there is a lack of adequate resources to identify
and treat them, and those that are available provide
only limited coverage, in face of the huge number
of combinations in use. For tasks like parsing and
generation, it is essential to know whether a given
VPC is possible or not, to avoid for example us-
ing combinations that sound unnatural or ungram-
matical to native speakers (e.g. give/lend/?grant
out for the conveying of something to someone or
some place - (Fraser, 1976)).! Thus, the knowl-
edge of which combinations are possible is cru-
cial for precision grammar engineering. In ad-
dition, as the semantics of VPCs varies from the
idiomatic to the more compositional cases, meth-
ods for the automatic detection and handling of id-
iomaticity are very important for any NLP task that
involves some degree of semantic interpretation
such as Machine Translation (in this case avoiding
the problem of producing an unrelated translation
for a source sentence). Automatic methods for the
identification of idiomaticity in MWEs have been

!'See Baldwin et al. (2004) for a discussion of the effects of
multiword expressions like VPCs on a parser’s performance.
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proposed using a variety of approaches such as
statistical, substitutional, distributional, etc. (e.g.
McCarthy et al. (2003), Bannard (2005) and Fa-
zly and Stevenson (2006)). In particular, Fazly
and Stevenson (2006) look at the correlation be-
tween syntactic fixedness (in terms of e.g. pas-
sivisation, choice of determiner type and pluralisa-
tion) and non-compositionality of verb-noun com-
pounds such as shoot the breeze.

In this work we investigate the automatic extrac-
tion of VPCs, looking into a variety of methods,
combining linguistic with statistical information,
ranging from frequencies to association measures:
Mutual Information (MI), x? and Entropy. We also
investigate the determination of compositionality
of VPCs verifying whether the degree of semantic
flexibility of a VPC combined with some statisti-
cal information can be used to determine if it is
idiomatic or compositional.

This paper starts with a brief description of
VPCs, research on their automatic identification
and determination of their semantics (§ 2). We then
explain the research questions and the assumptions
that serve as the basis for the application of statis-
tical measures (§ 3) on the dataset (§ 4). Our meth-
ods and experiments are then detailed (§ 5), and
the results obtained are analysed (§ 6). We con-
clude with a discussion of the contributions that
this work brings to the research on verb-particle
constructions (§ 7).

2 Verb-Particle Constructions in Theory
and Practice

Particles in VPCs are characterised by containing
features of motion-through-location and of com-
pletion or result in their core meaning (Bolinger,
1971). VPCs can range from idiosyncratic or semi-
idiosyncratic combinations, such as get on (in e.g.
Bill got on well with his new colleagues), to more
regular ones, such as tear up (e.g. in In a rage she
tore up the letter Jack gave her). A three way clas-
sification is adopted by (Dehé, 2002) and (Jack-
endoff, 2002), where a VPC can be classified as
compositional, idiomatic or aspectual, depending
on its sense. In compositional VPCs the meaning
of the construction is determined by the literal in-
terpretations of the particle and the verb. These
VPCs usually involve particles with directional or
spatial meaning, and these can often be replaced
by the appropriate directional PPs (e.g. carry in
in Sheila carried the bags in/into the house Dehé
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(2002)). Idiomatic VPCs, on the other hand, can-
not have their meaning determined by interpreting
their components literally (e.g. get on, meaning fo
be on friendly terms with someone). The third class
is that of aspectual VPCs, which have the parti-
cle providing the verb with an endpoint, suggesting
that the action described by the verb is performed
completely, thoroughly or continuously (e.g. tear
up meaning to tear something into a lot of small
pleces).

From a syntactic point of view, a given combi-
nation can occur in several different subcategorisa-
tion frames. For example, give up can occur as an
intransitive VPC (e.g. in [ give up! Tell me the an-
swer), where no other complement is required, or
it may occur as a transitive VPC which requires a
further NP complement (e.g. in She gave up alco-
hol while she was pregnant ). Since in English par-
ticles tend to be homographs with prepositions (up,
out, in), a verb followed by a preposition/particle
and an NP can be ambiguous between a transitive
VPC and a prepositional verb (e.g. rely on, in He
relies on his wife for everything). Some criteria
that characterise VPCs are discussed by Bolinger
(1971):2

C1 In a transitive VPC the particle may come ei-
ther before or after the NP (e.g. He backed
up the team vs. He backed the team up).
However, whether a particle can be separated
or not from the verb may depend on the de-
gree of bonding between them, the size of the
NP, and the kind of NP. This is considered by
many to be sufficient condition for diagnos-
ing a VPC, as prepositions can only appear in
a position contiguous to the verb (e.g. *He
got the bus off).

C2 Unstressed personal pronouns must precede
the particle (e.g. They ate it up but not *They
ate up it).

C3 If the particle precedes a simple definite NP,
the particle does not take the NP as its object
(e.g. in He brought along his girlfriend) un-
like with PP complements or modifiers (e.g.
in He slept in the hotel). This means that in
the first example the NP is not a complement
of the particle along, while in the second it is.

The distinction between a VPC and a prepositional verb
may be quite subtle, and as pointed out by Bolinger, many
of the criteria proposed for diagnosing VPCs give different

results for the same combination, frequently including un-
wanted combinations and excluding genuine VPCs.



In this paper we use the first two criteria, therefore
the candidates may contain noise (in the form of
prepositional verbs and related constructions).

VPCs have been the subject of a considerable
amount of interest, and some analysis has been
done on the subject of productive VPCs. In many
cases the particle seems to be compositionally
adding a specific meaning to the construction and
following a productive pattern (e.g. in fear up,
cut up and split up, where the verbs are seman-
tically related and up adds a sense of completion
to the action of these verbs). Fraser (1976) points
out that semantic properties of verbs can affect
their ability to combine with particles: for exam-
ple, bolt/cement/clamp/glue/paste/nail are seman-
tically similar verbs where the objects represented
by the verbs are used to join material, and they can
all combine with down. There is clearly a com-
mon semantic thread running through this list, so
that a new verb that is semantically similar to them
can also be reasonably assumed to combine with
down. Indeed, frequently new VPCs are formed by
analogy with existing ones, where often the verb is
varied and the particle remains (e.g. hang on, hold
on and wait on). Similarly, particles from a given
semantic class can be replaced by other particles
from the same class in compositional combina-
tions: send up/in/back/away (Wurmbrand, 2000).
By identifying classes of verbs that follow patterns
such as these in VPCs, we can help in the identi-
fication of a new unknown candidate combination,
using the degree of productivity of a class to which
the verb belongs as a back-off strategy.

In terms of methods for automatic identifica-
tion of VPCs from corpora, Baldwin (2005) pro-
poses the extraction of VPCs with valence infor-
mation from raw text, exploring a range of tech-
niques (using (a) a POS tagger, (b) a chunker, (c) a
chunk grammar, (d) a dependency parser, and (e) a
combination of all methods). Villavicencio (2005)
uses the Web as a corpus and productive patterns
of combination to generate and validate candidate
VPCs. The identification of compositionality in
VPCs is addressed by McCarthy et al. (2003) who
examine the overlap of similar words in an auto-
matically acquired distributional thesaurus for verb
and VPCs, and by Bannard (2005) who uses a
distributional approach to determine when and to
what extent the components of a VPC contribute
their simplex meanings to the interpretation of the
VPC. Both report a correlation between some of
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the measures and compositionality judgements.

3 The Underlying Hypotheses

The problem of the automatic detection and classi-
fication of VPCs can be summarised as, for a given
VPC candidate, to answer to the questions:

Q1 Is it a real VPC or some free combination
of verb and preposition/adverb or a preposi-
tional verb?

Q2 Ifitis atrue VPC, is it idiomatic or composi-
tional?

In order to answer the first question, we use two
assumptions. Firstly, we consider that the elements
of a true VPC co-occur above chance. The greater
the correlation between the verb and the particle
the greater the chance that the candidate is a true
VPC. Secondly, based on criterion C1 we also as-
sume that VPCs have more flexible syntax and are
more productive than non-VPCs. This second as-
sumption goes against what is usually adopted for
general MWESs, since it is the prepositional verbs
that allow less syntactic configurations than VPCs
and are therefore more rigid (§ 2). To further dis-
tinguish VPCs from prepositional verbs and other
related constructions we also verify the possibil-
ity of the particle to be immediately followed by
an indirect prepositional complement (like in The
plane took off from London), which is a good in-
dicator/delimiter of a VPC since in non-VPC con-
structions like prepositional verbs the preposition
needs to have an NP complement. Therefore, we
will assume that a true VPC occurs in the following
configurations, according to Villavicencio (2005)
and Ramisch et al. (2008):

S1 VERB + PARTICLE + DELIMITER, for intran-
sitive VPCs;

S2 VERB + NP + PARTICLE + DELIMITER, for
transitive split VPCs and;

S3 VERB + PARTICLE + NP + DELIMITER, for
transitive joint VPCs.

In order to answer Q2, we look at the link be-
tween productivity and compositionality and as-
sume that a compositional VPC accepts the sub-
stitution of one of its members by a semantically
related term. This is in accordance to Fraser
(1976), who shows that semantic properties of



verbs can affect their ability to combine with par-
ticles: for example verbs of hunting combining
with the resultative down (hunt/track/trail/follow
down) and verbs of cooking with the aspectual up
(bake/cook/fry/broil up), forming essentially pro-
ductive VPCs. Idiomatic VPCs, however, will
not accept the substitution of one of its members
by a related term (e.g. get and its synonyms in
get/*obtain/*receive over), even if at first glance
this could seem natural. In our experiments, we
will consider that a VPC is compositional if it ac-
cepts: the replacement of the verb by a synonym,
or of the preposition by another preposition. Sum-
marising our hypothesis, we get:

e For QI: Is the candidate syntactically flexi-
ble, i.e. does it allow the configurations S1
through S37?

— NO: non-VPC
- YES: VPC

e For Q2: Is the candidate semantically flexi-
ble, allowing the substitution of a member by
a related word?

— NO: idiomatic VPC
— YES: compositional VPC

4 Data Sources

To generate a gold standard, we used the Bald-
win VPC candidates dataset (henceforth Baldwin
CD)?, which contains 3,078 English VPC candi-
dates annotated with information about idiomatic-
ity (14.5% are considered idiomatic). We fur-
ther annotated this dataset with information about
whether each candidate is a genuine VPC or not,
where a candidate is consider genuine if it be-
longs to at least one of a set of machine-readable
dictionaries: the Alvey Natural Language Tools
(ANLT) lexicon (Carroll and Grover, 1989), the
Comlex lexicon (Macleod and Grishman, 1998),
and the LinGO English Resource Grammar (ERG)
(Copestake and Flickinger, 2000)*. With this crite-
rion 81.8% of them are considered genuine VPCs.

To gather information about the candidates in
this work we employ both a fragment of 1.8M
sentences from the British National Corpus (BNC
Burnard (2000)) and the Web as corpora. The
BNC fragment is used to calculate the correlation

3This dataset was provided by Timothy Baldwin for the
MWE2008 Workshop.
*Version of November 2001.
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measures since they require a corpus with known
size. The Web is used to generate frequencies
for the entropy measures, as discussed in § 5.2.
Web frequencies are approximated by the number
of pages containing a candidate and indexed by
Yahoo Search API. In order to keep the searches
as simple and self-sufficient as possible, no addi-
tional sources of information are used (Villavicen-
cio, 2005). Therefore, the frequencies are quite
conservative in the sense that by employing in-
flected forms of verbs, potentially much more evi-
dence could be gathered.

For the generation of semantic variational pat-
terns, we use both Wordnet 3.0 (Fellbaum, 1998)
and Levin’s English Verb Classes and Alternations
(Levin, 1993). Wordnet is organised as a graph of
concepts, called synsets, linked by relations of syn-
onymy, hyponymy, etc. Each synset contains a list
of words that represent the concept. The verbs in
a synset and its synonym synsets are used to gen-
erate variations of a VPC candidate. Likewise we
use Levin’s classes, which define 190 fine-grained
classes for English verbs, based on their syntactic
and semantic features.

It is important to highlight that the generation
of the semantic variations strongly relies on these
resources. Therefore, cross-language extension
would depend on the availability of similar tools
for the target language.

5 Carrying out the experiments

Our experiments are composed of two stages, each
one consisting of three steps (corresponding to the
next three sections). The first stage filters out ev-
ery candidate that is evaluated as not being a VPC,
while the second one intends to identify the id-
iomatic VPCs among the remaining candidates of
the previous stage.

5.1 Generating candidates

For each of the 3,078 items in the Baldwin CD we
generated 2 sets of variations, syntactic and seman-
tic, and we will refer to these as alternative forms
or variations of a candidate.

The syntactic variations are generated using the
patterns S1 to S3 described in section 3. Following
the work of Villavicencio (2005) 3 frequently used
prepositions for, from and with are used as delim-
iters and we search for NPs in the form of pronouns
like this and definite NPs like the boy. The use of
alternative search patterns also helps to give an in-



WNL Wordnet Loose variations.

Levin

dication about the syntactic distribution of a can-
didate VPC, and consequently if it has a preferred
syntactic realisation. For instance, for eat up and
the delimiter with, we propose a list of Web search
queries for its respective variations v;, shown with
their corresponding Web frequencies in table 1.3

Variation (v;) Frequency (ny ahoo(vi))

eat up with 49200
eat the * up with 2240
eat this up with 1120
eat up the * with 3110

Table 1: Distribution of syntactic variations for the
candidate eat up.

For the semantic variations, in order to capture
the idiomaticity of VPCs we generate the alterna-
tive forms by replacing the verb by its synonym
verbs as follows:

WNS Wordnet Strict variations. When using Word-
net, we consider any verb that belongs to the
same synset of the candidate as a synonym.

This is an indi-
rect synonymy relation capturing any verb
in Wordnet that belongs either to the same
synset or to a synset that is synonym of the
synset in which the candidate verb is con-
tained.

These include all verbs in the same Levin
class as the candidate.

Multiword synonyms are ignored in this step to
avoid noisy search patterns, (e.g. *eat up up). The
examples for these variations are shown in table 2
for the candidate act in.

Wordnet and Levin are considered ambiguous
resources because one verb is potentially contained
in several synsets or classes. However, as Word
Sense Disambiguation is not within the scope of
this work we employ some heuristics to select a
given sense for the candidate verb. In order to test
the effect of frequency, the first heuristic adopts the
first synset in the list, as Wordnet organises synsets
in descending order of frequency (denoted as first).
To study the influence of the number of synonym:s,
the second and third heuristics use respectively the
biggest (max) and smallest (mmin) synsets. The last

The Yahoo wildcard used in these searches matches any
word occurring in that particular position.
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Variation (v;) Source Ny ghoo(V;)
act in — 2690
playact in WNS 0
play in WNS 167000
behave in WNL 98
doin WNL 24600
pose in Levin 1610
qualify in Levin 358
rank in Levin 706
rate in Levin 16700
serve in Levin 2240

Table 2: Distribution of syntactic variations for the
candidate eat up.

heuristic is the union of all synonyms (all). These
heuristics are indicated using a subscript notation,
where e.g. WNS,; symbolizes the WNS varia-
tions set using the union of all synsets as disam-
biguation heuristic.  Finally, we generated two
additional sets of candidates by replacing the par-
ticle by one of the 48 prepositions listed in the
ANLT dictionary (prep) and also by one of 9 cho-
sen locative prepositions (loc-prep). It is impor-
tant to also verify possible variations of the prepo-
sition because compositional VPCs combine pro-
ductively with one or more groups of particles, e.g.
locatives, and present consequently a wider prob-
ability distribution among the variations, while an
idiomatic VPC presents a higher frequency for a
chosen preposition.

5.2 Working the statistical measures out

The classifications of the candidate VPCs are done
using a set of measures: the frequencies of the
VPC candidates and of their individual words,
their Mutual Information (MI), x? and Entropies.
We calculate the MI and 2 indices of a candidate
formed by a verb and a particle based on their in-
dividual frequencies and on their co-occurrence in
the BNC fragment.
The Entropy measure is given by

n

H(V)=— Z p(vi)In [ p(v;) ]
i=1
where (o)
S SR
VeV

is the probability of the variation v; to occur
among the set of all possible variations V'



H(V) <0.001081
npnc(p) < 51611
nYahoo(Utransitive) <1
Ny ahoo(V) < 2020000000 : yes
Ny ahoo(V) > 2020000000
x? < 25.99

Figure 1: Fragment of the decision tree that filters
out non-VPCs.

{v1,v2,...,v,}, and n(v;) is the Web frequency
for the variation v;.

The entropy of a probability distribution gives
us some clues about its shape. A very low en-
tropy is a sign of a heterogeneous distribution that
contains a peak. On the other hand, a distribution
that presents uniformity will lead to a high entropy
value.

The interest of H (V) for the detection of VPCs
is in that true instances are more likely to not prefer
a canonical form, more widely distributing proba-
bilities over all alternative syntactic frames (S1 to
S3), while non-VPCs are more likely to choose one
frame and present low frequencies for the proposed
variations.

For the semantic variations, the entropy is cal-
culated from a set V' of variations generated by the
Wordnet synset, Levin class and preposition sub-
stitutions described in § 5.1. The interpretation of
the entropy at this point is that high entropy indi-
cates compositionality while low entropy indicates
idiomaticity, since compositional VPCs are more
productive and distribute well over a class of verbs
or a class of prepositions and idiomatic VPCs pre-
fer a specific verb or preposition.

5.3 Bringing estimations together

Once we got a set of measures to predict
VPCs and another to predict their idiomatic-
ity/compositionality, we would like to know which
measures are useful. Therefore, we combine our
measures automatically by building a decision tree
with the J4 8 algorithm, a version of the traditional
entropy-based C4 . 5 algorithm implemented in the
Weka package.®

6 Weighting the results up

The first stage of our experiments applied to the
3,078 VPC candidates generated a decision tree us-

®http://www.cs.waikato.ac.nz/ml/weka/

54

ing 10-fold cross validation that is partially repro-
duced in figure 1. From these, 2,848 candidates
were considered genuine VPCs, with 2,419 true
positives, 100 false negatives and 429 false posi-
tives. This leads to a recall of 96% of the VPCs
being kept in the list with a precision of 84.9%,
and an f-measure of 90.1%. We interpret this as a
very positive result since although some false neg-
atives have been filtered out, the remaining candi-
dates are now less noisy.

Figure 1 shows that the entropy of the variations
is the best predictor since it is at the root of the
tree. We can also see that there are several types
of raw frequencies being used before a correlation
measure appears (x2). We can conclude that the
frequency of each transitive, intransitive and split
configurations are also good predictors to detect
false from true VPCs. At this point, MI does not
seem to contribute to the classification task.

For our second stage, we generated Wordnet
synonym, Levin class and preposition variations
for a list of the 2,867 VPC candidates classified
as genuine cases. We also took into account the
proportion of synonyms that are MWEs (vpc-syn)
and the proportion of synonyms that contain the
candidate itself (self-syn).

In order to know what kind of contribution each
measure gives to the construction of the decision
tree, we used a simple iterative algorithm that con-
structs the set U of useful attributes. It first ini-
tialises U with all attributes, then calculates the
precision for each class (yes and no)’ on a cross
validation using all attributes in U. For each at-
tribute @ € U, it ignores a and recalculates preci-
sions. If both precisions decrease, the contribution
of a is positive, if both increase then a is negative,
else its contribution remains unknown. All fea-
tures that contribute negatively are removed from
U, and the algorithm is repeated until there is no
negative attribute left.

The step-by-step execution of the algorithm
can be observed in table 3, where the inconclu-
sive steps are hidden. We found out that the
optimal features are U* {self-syn, H (prep),
H(Levingirst), H(WNSgirst), H(WNSpmin),
H(Levinmgz), H(Levinmy,).} The self-syn in-
formation seems to be very important, as without
it precisions of both classes decrease considerably

"We use the precision as a quality estimator since it gives
a good idea of the amount of work that a grammar engineer
or lexicographer must perform in order to clear the list from
false positives.



Precision

# Ignored No Yes +/—
1% iteration
0 — 86.6% 54.9%
1 vpc-syn 86.7% 56.6% —
2 self-syn 852% 28.7% +
4 H(loc-prep) 86.7% 561%  —
6 H(WNSne) 87.5% 574%  —
9 H(WNLfirst) 86.7% 57.9% —
10 HWNLpa:) 867% 578%  —
11 HWNLpin) 869% 57.6% -
16  H(Levingy) 86.7% 55.1% —
2"? jteration
17 — 87.7% 60.3%
18 H (prep) 87.6% 592%  +
21 H(WNSau) 87.8% 61.6% —
22 H(WNLy;) 87.8% 61.0% —
23 H(Levingirst) 87.5% 60.2% +
374 jteration
26 — 87.8% 61.9%
27 HWNStirst) 878% 61.9% +
28 H(WNSnin) 877% 61.1% +
29  H(Levinme.) 87.8%  61.6 +
30 H(Levingg,) 87.7% 61.5% +

Table 3: Iterative attributes selection process. Pre-
cision in each class is used as quality estimator.

(experiment #2).

All entropies of the WNL heuristics are of little
or no utility. This could probably be explained by
either the choice of simple WSD heuristics for se-
lecting synsets, or because the indirect synonymy
information is too far related to the original verb to
be used in variational patterns. Inspecting the gen-
erated variations, we notice that most of the syn-
onym synsets are related to secondary senses or
very specific uses of a verb and are thus not cor-
rectly disambiguated.

In what concerns the WNS sets, only the small-
est and first synset were kept, suggesting again that
it may not be a good idea to maximise the syn-
onyms set and for future work, we intent to es-
tablish a threshold for a synset to be taken into
account. In addition, we can also infer a posi-
tive contribution of the frequency of a sense with
the choice of the first synset returned by Word-
net resulting in a reasonable WSD heuristic (which
is compatible with the results by McCarthy et al.
(2004)).

On the other hand, the algorithm selected the

55

first, the smallest and the biggest of the Levin’s
sets. This probably happens because the major-
ity of these verbs belongs only to one or two, but
never to a great number of classes. Since the gran-
ularity of the classes is coarser than for synsets,
the heuristics often offer four equal or very close
entropies and thus redundant information. As an
overall result, the last iteration shown in table 3
indicates a precision of 61.9% for the classifier in
detecting idiomatic VPCs, that is to say that we au-
tomatically retrieved 176 VPCs where 67 are false
positives and 109 are truly idiomatic. This value is
a quality estimator for the resulting VPCs that will
potentially be used in the construction of a lexi-
con. Recall of idiomatic VPCs goes from 16.7%
to 24.9%.

7 Conclusions

One of the important challenges for robust natu-
ral language processing systems is to be able to
successfully deal with Multiword Expressions and
related constructions. We investigated the identifi-
cation of VPCs using a combination of statistical
methods and linguistic information, and whether
there is a correlation between the productivity of
VPCs and their semantics that could help us detect
if a VPC is idiomatic or compositional.

The results confirm that the use of statistical
and linguistic information to automatically iden-
tify verb-particle constructions presents a reason-
able way of improving coverage of existing lexi-
cal resources in a very simple and straightforward
manner. In terms of grammar engineering, the in-
formation about compositional candidates belong-
ing to productive classes provides us with the ba-
sis for constructing a family of fine-grained redun-
dancy rules for these classes. These rules are ap-
plied in a constrained way to verbs already in the
lexicon, according to their semantic classes. The
VPCs identified as idiomatic, on the other hand,
need to be explicitly added to the lexicon, after
their semantic is determined. This study can also
be complemented with the results of investigations
into the semantics of VPCs, as discussed by both
Bannard (2005) and McCarthy et al. (2003).

In addition, the use of clustering methods is an
interesting possibility for automatically identify-
ing clusters of productive classes of both verbs and
of particles that combine well together.
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Abstract asking for the object of the new color, as ibring

the chromium tray, not the blue one. Children were
generally good at performing this “referent selection”
new word from hearing it used in a familiar {55k, In a production task performed six weeks later,
context—an ability often referred to dast when children had to use the name of the new color,
mapping. In this paper, we study fast map-  they showed signs of having learned something about
ping in the context of a general probabilistic  the new color name, but were not successful at pro-
model of word learning. We use our model  qycing it. On the basis of these findings, Carey and

to simulate fast mapping experiments on chil- - partlett suggest that fast mapping and word learning
dren, such as referent selection and retention. gye two distinct, yet related, processes.

The word learning model can perform these

tasks through an inductive interpretation of

the acquired probabilities. Our results suggest
that fast mapping occurs as a natural conse-
guence of learning more words, and provides
explanations for the (occasionally contradic-

tory) child experimental data.

Children can determine the meaning of a

Extending Carey and Bartlett's work, much re-
search has concentrated on providing an explanation
for fast mapping, and on examining its role in word
learning. These studies also show that children are
generally good at referent selection, given a novel tar-
get. However, there is not consistent evidence regard-
ing whether children actually learn the novel word
1 Fast Mapping from one or a few such exposures (retention). For

example, whereas the children in the experiments of

An average six-year-old child knows over,000  Golinkoff et al. (1992) and Halberda (2006) showed
words, most of which s/he has learned from hearingigns of nearly-perfect retention of the fast-mapped
other people use them in ambiguous contexts (Car)ords, those in the studies reported by Horst and
1978). Children are thus assumed to be equipped Wihmuelson (2008) did not (all participating children
powerful mechanisms for performing such a compleyere close in age range).
task so efficiently. One interesting ability children as . :

. There are also many speculations about the possible
young as two years of age show is that of correctly and

immediately mapping a novel word to a novel objecgauses of fast mapping. Some researchers consider

in the presence of other familiar objects. The tern'1t as a sign of a specialized (innate) mechanism for

“fast mapping” was first used by Carey and BartletWorO: Iearnlng.trl:/l ?rkm:n anfd VtVachtelL (1988), Iﬁr ex-
(1978) to refer to this phenomenon. ampiée, argue that chiidren last map because they ex-

Carey and Bartlett’s goal was to examine how mucR® cteach object to have only one name (mutual exclu-

children learn about a word when presented in an arrs1'—V'ty)' Golinkoff et al. (1992) attribute fast mapping

biguous context, as opposed to concentrated teachirtlO a (hard-coded) bias towards mapping novel names

They used an unfamiliar namehtomium) to refer to tg namelless 0 bJeCF categqnes. Somg even suggest a
iy . change in children’s learning mechanisms, at around
an unfamiliar color §1ive green), and then asked . . .
g;e time they start to show evidence of fast mapping

a group of four-year-old children to select an object . . . . _
group y ) Je which coincides with a sudden burst in their vocab-
from among a set, upon hearing a sentence explicit - . .
lary), e.g., from associative to referential (Gopnik

(©2008. Licensed under theCreative Commons  gnd Meltzoff, 1987; Reznick and Goldfield, 1992). In
Attribution-Noncommercial-Share  Alike 3.0 Unported  Ii-

cense (http://creativecommons.org/licenses/by-ng-88/ Some contras_t, others see fast mapping as a phenome_non
rights reserved. that arises from more general processes of learning
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and/or communication, which also underlie the iming scene as a set of meaning symbols. To simulate
pressive rate of lexical acquisition in children (e.g.referential uncertainty (i.e., the case where the child
Clark, 1990; Diesendruck and Markson, 2001; Regieperceives aspects of the scene that are unrelated to the
2005; Horst et al., 2006; Halberda, 2006). perceived utterance), we include additional symbols
In our previous work (Fazly et al., 2008), we pre-n the representation of the scene, e.g.:
selj_teq alword Iearr_1ing model whi.ch proposes a pmtbtterance: Joe rolled the ball
abilistic interpretation of cross-situational learning,
and bootstraps its own partially-learned knowledge o
the word meanings to accelerate word learning ovéf Section 3.1, we explain how the utterances and
time. We have shown that the model can learn reasofile corresponding semantic symbols are selected, and
able word—meaning associations from child-directefow we add referential uncertainty.
data, and that it accounts for observed learning pat- Given a corpus of such utterance—scene pairs, our
terns in children, such as vocabulary spurt, withounodel learns the meaning of each wasdas a prob-
requiring a developmental change in the underlyingbility distribution, p(.|w), over the semantic sym-
learning mechanism. Here, we use this computationBPIs appearing in the corpus. In this representation,
model to investigate fast mapping and its relation t#(m|w) is the probability of a symbok: being the
word learning. Specifically, we take a close look afneaning of a wordv. In the absence of any prior
the onset of fast mapping in our model by simulatknowledge, all symbols are equally likely to be the
ing some of the psychological experiments mentione@leaning of a word. Hence, prior to receiving any us-
above. We examine the behaviour of the model in vafges of a given word, the model assumes a uniform
ious referent selection and retention tasks, and prélistribution over semantic symbols as its meaning.
vide gxplanatlons for the (occg5|ona!ly contradlctoryé2 M eaning Probabilities
experimental results reported in the literature. We also
study the effect of exposure to more input on the pepur model combines probabilistic interpretations of
formance of the model in fast mapping. cross-situational learning (Quine, 1960) and of a
Our results suggest that fast mapping can be eyariation of the principle of contrast (Clark, 1990),
plained as an induction process over the acquired d§rough an interaction between two types of prob-
sociations between words and meanings. Our modapilistic knowledge acquired and refined over time.
learns these associations in the form of probabilitie$iven an utterance—scene pair received at time.,
within a unified framework: however, we argue that U, S®)), the model first calculates an alignment
different interpretations of such probabilities may b@robability a for eachw € U and eachmn € S,
involved in choosing the referent of a familiar as op4sing the meaning probabilities(.[w) of all the
posed to a novel target word (as noted by Halberg®/ords in the utterance prior to this time. The model
2006). Moreover, the overall behaviour of our modelhen revises the meaning of the wordsUf) by in-
confirms that the probabilistic bootstrapping approacrporating the alignment probabilities for the current
to word learning naturally leads to the onset of fagfiPut pair. This process is repeated for all the input
mapping in the course of lexical development, withPalrs, one at a time.

out hard-coding any specialized learning mechanisgep 1: Calculating the alignment probabilities.

into the model to account for this phenomenon.  \ye estimate the alignment probabilities of words
and meaning symbols based on a localized version
of the principle of contrast: that a meaning sym-
This section summarizes the model presented in Fhel in a scene is likely to be highly associated with
zly et al. (2008). Our word learning algorithm is anonly one of the worddn the corresponding utter-
adaptation of the IBM translation model proposed bgnce! For a symboln € S® and a wordw € U®),
Brown et al. (1993). However, our model is increthe higher the probability ofn being the meaning
mental, and does not require a batch process over thew (according top(m|w)), the more likely it is
entire data. that m is aligned withw in the current input. In
other words, a(w|m, U®, S(1) is proportional to
p~1(m|w). In addition, if there is strong evidence
The input to our word learning model consists of a sehat m is the meaning of another word i) —
of utterance—scene pairs that link an observed scene., if p{*~1) (m|w’) is high for somew’ € U® other
(what the child perceives) to the utterance that de—; o o _
Note that this differs from what is widely known as the prin-

scribes it (what the child hears). We represent eagible of contrast (Clark, 1990), in that the latter assumm@grast
utterance as a sequence of words, and the correspoadess the entire vocabulary rather than within an utteranc

?cene: {joe,roll, the,ball, mommy, hand, talk}

2 Overview of the Computational Model

2.1 Utterance and Meaning Representations
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thanw—the likelihood of aligningn to w should de- From this point on, we simply use(m|w) (omit-

crease. Combining these two requirements: ting the superscriptt)) to refer to the meaning prob-
(t—1) ability of m for w at the present time of learning.
a(ulm, U, 50) = LMW
> P (mlw') 2.3 Referent Probabilities

w’ eU®) . .- . .
Due to referential uncertainty, some of the meaninéhe meaning probablhtg)(m|w) is used to retnevg
e most probable meaning feramong all the possi-

symbols in the scene might not have a counterpaﬁe meaning symbols:. However, in the referent se-
in the utterance. To accommodate for such cases, a ’ '

18ction tasks performed by children, the subject is of-

dummy word is added to each utterance before th ¢ dt lect the ref tof at ¢ df
alignment probabilities are calculated, in order to Ie&en orced 1o select Ine reterent ot a target word from
mong a limited set of objects, even when the mean-

. . . a
a meaning symbol not be (strongly) aligned with an
of the words in the current utterance. ¥ng of the target word has not been accurately learned

yet. For our model to perform such tasks, it has to de-
Step 2: Updating theword meanings. We need to cide how likely it is for a target wordv to refer to a
update the probabilities(.|w) for allwordsw € U®),  particular objectn, based on its previous knowledge
based on the evidence from the current input pair rezhout the mapping between andw (i.e., p(m|w)),
flected in the alignment probabilities. We thus adés well as the mapping betwegnand other words in
the current alignment probabilities farand the sym- the lexicon?
bolsm € S to the accumulated evidence from prior  The likelihood of using a particular nameto refer
co-occurrences ofv and m. We summarize this to a given objecin is calculated as:

cross-situational evidence in the form of an associa- rf(wlm) = p(w|m)
tion score, which is updated incrementally: p(m|w) - p(w)
assoc® (w, m) = assoc= (w, m) + a p(m)
a(w|m, U S®) 2 _ p(m|w) - p(w) 4)

Zw’ev p(mlw’) - p(w’)
yaherev is the set of all words that the model has seen

is the relative frequency ab:
freq(w)

whereassoc*— (w, m) is zero ifw andm have not
co-occurred before. The association score of a wo
and a symbol is basically a weighted sum of their co2° far anch(w)
occurrence counts. p(w) -
The model then uses these association scores to up- 2 wey freq(w’)
date the meaning of the words in the current input: The referent of a target word among the present ob-
assoc(t)(m, w) + A jects, therefore, will be the objeet with the highest

Z assoc(t)(mj, w) + B x A referent probabilityrf (w|m).

m;EM 3
whereM is the set of all symbols encountered prior to
or attimet, g is the expected number of symbol types3.1 Thelnput Corpora

and) is a small smoothing factor. The denominator i§y,e extract utterances from the Manchester corpus
a normalization factor to get valid probabilities. ThiS(Theakston et al., 2001) in the CHILDES database
formulation results in a uniform probability df/3 (MacWhinney, 2000). This corpus contains tran-
over allm & M for anovel wordw, and a probability  gcrints of conversations with children between the
smaller than\ for a meaning symbaot: that has not ages of1:8 and 3;0 (years;months). We use the
been previously seen with a familiar word mother’s speech from transcripts 6fchildren, re-
Our model updates the meaning of a word eV ove punctuation and lemmatize the words, and con-
ery time it is heard in an utterance. The Stf?”QtBatenate the corresponding sessions as input data.
of learning of a word at timet is reflected in  There is no semantic representation of the corre-
P(t)(m = my|w), wherem,, is the “correct” mean- gnonding scenes available from CHILDES. There-
ing of w: for a learned wordv, the probability dis- tqre we automatically construct a scene representa-
tribution p(.|w) is highly skewed towards the correctijo for each utterance, as a set containing the seman-
meaningm.,, and therefore hearing will trigger the ¢ referents of the words in that utterance. We get
retrieval of the meaning,,..> these from an input-generation lexicon that contains

2An input-generation lexicon contains the correct meanimg f @ symbol associated with each word as its semantic
each word, as described in Section 3.1. Note thatthe moésldo—_
not have access to this lexicon for learning; it is used ooly f 3All through the paper, we use as both the meaning and the
input generation and evaluation. referent of a wordw.

(®)

P (mlw) =

Experimental Setup
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referent. We use every other sentence from the origating a cheem, wherecheem is a previously unseen
inal corpus, preserving their chronological order. Tdruit). In such a setting, our model aligns the objects
simulate referential uncertainty in the input, we thein the scene with the words in the utterance based on
pair each sentence with its own scene representatida acquired knowledge of word meanings, and then
as well as that of the following sentence in the origiupdates the meanings of the words accordingly. The
nal corpus. (Note that the latter sentence is not usedodel can align a familiar word with its referent with
as an utterance in our input.) The extra semantic syrhigh confidence, since the previously learned mean-
bols that are added to each utterance thus correspdnd probability of the familiar object given the famil-

to meaningful semantic representations, as opposia word, orp(m|w), is much higher than the meaning
to randomly selected symbols. In the resulting corpysrobability of the same object given any other word in
of 92,239 input pairs, each utterance is, on averagéhe sentence. In a similar fashion, the model can eas-
paired with78% extra meaning symbols, reflecting aily align a novel word in the sentence with a novel

high degree of referential uncertianty. object in the scene, because the meaning probability
of the novel object given the novel word /3, ac-
32 TheModel Parameters cording to Eq. (3)) is higher than the meaning proba-

We set the parameters of our learning algorithm usingjlity of that object for any previously heard word in

a development data set which is similar to our traininghe sentence (the latter probability is smaller than

and test data, but is selected from a non-overlappirfed- (3), as explained in Section 3.2).

portion of the Manchester corpus. The expected num- Earlier fast mapping experiments on children as-
ber of symbols3 in Eq. (3), is set t&500 based on sumed that it is such a contrast between the familiar
the total number of distinct symbols extracted for th@nd novel words in the same sentence that helps chil-
development data. Therefore, the default probabilitgiren select the correct target object in a referent selec-
of a symbol for a novel word will bé/8500. A famil- ~ tion task. For example, in Carey and Bartlett's (1978)
iar word, on the other hand, has been seen with sorggperiment, to introduce a novel word—meaning as-
symbols before. Therefore, the probability of a previsociation (e.g.,chromium-olive), the authors use
ously unseen symbol for it (which, based on Eq. (3)poth the familiar and the novel words in one sentence
has an upper bound &) must be less than the default(bring methe chromiumtray, not the blue one.). How-
probability mentioned above. Accordingly, we set ever, further experiments show that children can suc-

to 1075, cessfully select the correct referent even if such a con-
trast is not present in the sentence. Many researchers
33 TheTraining Procedure have performed experiments where young subjects

In the next section, we report results from the com@'e forced to choose between a novel and a familiar
putational simulation of our model for a number ofbject upon hearing a request, suchgage me the
experiments. All of the simulations use the same p&#@ll (familiar target), orgive me the dax (novel tar-
rameter settings (as described in the previous sectio@e,t)- In all of the reported experimental results, chil-
but different input: in each simulation, a random pordren can readily pick the correct referent for a famil-
tion of 1000 utterance—scene pairs is selected frorfff Or & novel target word in such a setting (Golinkoff
the input corpus, and incrementally processed by ttf al., 1992; Halberda and Goldman, 2008; Halberda,
model. The size of the training corpus is chosen arbZ006; Horst and Samuelson, 2008).

trarily to reflect a sample pointin learning, and further However, Halberda’s eye-tracking experiments on
experiments have shown that increasing this numbgpth adults and pre-schoolers suggest that the pro-
does not change the pattern observed in the results.a@sses involved for referent selection in the familiar
order to avoid behaviour that is specific to a particutarget situation may be different from those in the
lar sequence of input items, the reported results in tmpvel target situation. In the latter situation, Subjects

next section are averaged ouérsimulations. appear to systematically reject the familiar object as
the referent of the novel name before mapping the
4 Experimental Resultsand Analysis novel object to the novel name. In the familiar target

] situation, however, there is no need to reject the novel
4.1 Referent Selection distractor object, because the subject already knows
In a typical word learning scenario, the child faceshe referent of the target.
a scene where a number of familiar and unfamiliar The difference between these two conditions can be
objects are present. The child then hears a sentenegplained in terms of the meaning and referent proba-
which describes (some part of) the scene, and is corbilities of our model explained in Section 2. In a typi-
posed of familiar and novel words (e.g., hearilogis cal referent selection experiment, the child is asked to
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get the ball” while facing aball and a novel ObJeCt. Table 1: Referent selection imMILIAR and NOVEL
(dax). We assume that the child knows the meaning -
ARGET conditions.

of verbs and determiners suchgesandthe, therefore

we simplify the familiar target condition in the form ____UPON HEARING THE TARGET WORD
N . . Condition p(ballltarget) | p(dax|target)
of the following input item: FAMILIAR TARGET | 0.843 £0.056 < 0.0001
NOVEL TARGET 0.0001+0.00 0.0001+0.00
ball (FAMILIAR TARGET)
{ball,dax} AFTER PERFORMING INDUCTION
Condition rf (target[ball) | rf (target|dax)
A familiar word such ashall has a meaning prob- | NOVEL TARGET 0.12740.127 | 0993 £0.002

ability highly skewed towards its correct meaning.

That is, upon hearingall, the model can confidently

retrieve its meaningall, which is the one with the input item as a training pair, simulating the in-

the highest probability)(m/|ball) among all possible duction process that humans go through to select the

meaningsn. In such a case, Ball is present in the referentin such cases. This time, the model shows a

scene, the model can easily pick it as the referent §frong preference towards the novel object as the ref-

the familiar target name, without processing the othedrent of the target word (see Table 1, bottom panel).

objects in the scene. Our results confirm that in both conditions, the model
Now consider the condition where a novel targe@onsistently selects the correct referent for the target

name is used in the presence of a familiar and a priord across all the simulations.

viously unseen object:

4.2 Retention
dax (NOVEL TARGET) As discussed in the previous section, results from
{pall,dax} the human experiments as well as our computational

Since this is the first time the model has heard th@mulations show that the referent of a novel target
word dax, both meaning®all anddax are equally word can be selected based on the previous knowl-
likely becausep(.|daz) is uniform. Thus the mean- edge about the present objects and their names. How-

ing probabilities cannot be solely used for selectingver’ the success of a subject in a referent selection
the referent ofdax, and the model has to perform ask does not necessarily mean that the child/model

some kind of induction on the potential referents ir@S!éarned the meaning of the novel word based on

the scene based on what it has learned about eégﬁt one trial. In order to better understand what and
of them. The model can infer the referent dix how much children learn about a novel word from a
by comparing the referent probabilities( daz|ball) single amb'gl%ous .exposure, some studies h?“’e per-
andrf (daz|dax) from Eq. (4) after processing the in- formed retention trials after the referent selection ex-
put item. Sinceball has strong associations with anPeriments. Often, various referent selection trials are
other wordball, its referent probability for the novel performed in ong s.es.smn, where in each trla.l 'a novel
namedax is much lower than the referent probability®PieCt-name pair is introduced among familiar ob-
of dax, which does not have strong associations withfCts- Some of thg recently m'Froduced objects_ are
any of the words in the learned lexicon then put together in one last trial, and the subjects

We simulate the process of referent selection in ofre asked to choose the correct referent for one of the
model as follows. We train the model as describeg ecently heard) novel target words. The majority of

in Section 3.3. We then present the model with on{‘-.he reported experiments show that children can suc-
more input item, which represents either thievi. - cessfully perform the retention task (Golinkoff et al.,
IAR TARGET Of t,he NOVEL TARGET condition. For 1992; Halberda and Goldman, 2008; Halberda, 2006).

each condition, we compare the meaning probabilit We simulate a similar retention experiment by
p(object]|target) for both familiar and novel objects raining Fhe model as usual. V\'/e. fur'ther prgsgnt the
in the scene (see Table 1, top panel). In the F model with tw<_) experimental training |tems S|_m|Iar to
MILIAR TARGET condition, the model demonstrates'® ON€ used in the BVEL TARGET condition in the

a strong preference towards choosing the familiar off€Vious sectlon_, with dlf_ferent familiar and novel ob-
ject as the referent, whereas in theweL TargeT JECtS and words in each input:

condition, the model shows no preference towards any dax (REFERENTSELECTIONTRIAL 1)

of the objects based on the meaning probabilities of  {ball, dax}

the target word. Therefore, for thedVEL TARGET

condition, we also compare the referent probabilities  cheem (REFERENTSELECTIONTRIAL 2)

rf (target|object) for both objects after processing {pen, cheen}
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Table 2: Retention of a novel target word from a set
of novel objects.
2-OBJECTRETENTION TRIAL

rf(daz]dax) | rf(daz|cheem)
0.996 +0.001 | 0.501+0.068

3-OBJECTRETENTION TRIAL
rf(daz]dax) | rf(dax|cheem) | rf(dax|lukk) 3
0.995 +0.001 0.407+0.062 0.990 +0.001 0 02 o4 08 08 1 12 14 16 18 2

8
time of first exposure x10

number of usages needed to learn

o

oo o o o

@ a0 000 00000 Qo0
D 0 O D QWD ® 00 OO

. L . . Figure 1. Number of usages needed to learn a word,
The training session is followed by a retention trial . :
as a function of the word’s age of exposure.

where the two novel objects used in the previous ex-
perimental inputs are paired with one of the novel tar-

get words: knowledge aboutlukk (i.e., associating it with an-
dax (2-OBJECTRETENTIONTRIAL) other word) to rule it out as a referent fdax. These
{cheem, dax} results show that introducing a new object for the first

After processing the retention input, we comdiime inaretention trial considerably increases the dif-
pare the referent probabilitiesf (daz|cheem) and ficulty of the task. This can explain the contradictory
rf (dax|dax) to see if the model can choose the corresults reported in the literature: when the referent
rect novel object in response to the target wdest.  probabilities are not informative, other factors may
The top panel in Table 2 summarizes the results of thigfluence the outcome of the experiment, such as the
experiment. The model consistently shows a strorgmount of training received for a novel word-object,
preference towards the correct novel object as the refdr a possible delay between training and test sessions.
erent of the novel target word across all simulations.

Unlike studies on referent selection, experimentdt-3 The Effect of Exposureto More Input
results for retention have not been consistent acrosge fast mapping ability observed in children implies
various studies. Horst and Samuelson (2008) pethat once children have learned a repository of words,
form experiments with two-year-old children involv- they can easily link novel words to novel objects in a
ing both referent selection and retention, and repofamiliar context based only on a few exposures. We
that their subjects perform very poorly at the retentioexamine this effect in our model: we train the model
task. One factor that discriminates the experimentah 20, 000 input pairs, looking at the relation between
setup of Horst and Samuelson from others (e.g., Hahe time of first exposure to a word, and the number
berda, 2006) is that, in their retention trials, they pugf usages that the model needs for learning that word.
together two recently observed novel objects with &igure 1 plots this for words that have been learned at
third novel object that has not been seen in any of th&ome point during the training.We can see that the
experimental sessions before. The authors do not aodel shows clear fast mapping behaviour—that is,
tribute their contradictory results to the presence afords received later in time, on average, require fewer
this third object, but this factor can in fact affect theusages to be learned. These results show that our
performance considerably. We simulate this conditiomodel exhibits fast mapping patterns once it has been
by using the same input items for referent selectiogxposed to enough word usages, and that no change
trials as in the previous simulation, but we replace thig the underlying learning mechanism is needed.

retention trial with the following: The effect of exposure to more input on fast map-
dax (3-OBJECTRETENTION TRIAL) ping can be described in terms of context familiarity:
{cheem, dax, lukk} the more input the model has processed so far, the

The third object, 1ukk, has not been seen by theMmore likely it is that the context of the usage of a novel

model before. Results under the new condition are r&/Crd (the other words in the sentence and the objects
ported in the bottom panel of Table 2. As can be seelf the scene) is familiar to the model. Thls_ pattern
the model shows a strong tendency towards the Cd}lgs been studied through a number of experiments on
rect novel referendax for the novel targeda)_(' com- “We consider a wora as learned if the meaning probability
pared to the other recently seen novel objgotem.  p(m.|w) is higher than a certain threshofd For this experi-
However, the probability of the unseen objasikk ~ Ment, we sef = 0.70. - _

is also very high for the target wothx. That is be- ®In Fazly et al. (2008), we reported a variation of this exper-

] _iment, where we used a smaller training set, and also a eliffer
cause the model cannot use any previously acquirgdmantic representation for word meanings.
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children. For example, Gershkoff-Stowe and Hahrf’able 3: Average number of correct mappings and the

(2007) taughtlG- to 18-month-olds the names aft (. probabilities of target words for two condi-
unfamiliar objects over2 training sessions, where _.
tions, Low and HGH TRAINING.

unfamiliar objects were presented with varying fre- _ _

quency. Data were compared to a control group Cffgnwd$§2|N|N . Correﬁzsmfpp'ngs P(tgfggféf&’gjﬁ)

children who were exposed to the same experimel-Hicn TRAINING %90 0.494£0.79

tal words at the first and last sessions only. Their re-

sults show that for children in the experimental group,

extended practice with a novel set of words led téor a target word, as well as the referent probability of

the rapid acquisition of a second set of low-practice target word for its correct meaning, increase as a re-

words. Children in the control group did not show thesult of more training on the context. In other words, a

same lexical advantage. more familiar context helps the model perform better
Inspired by Gershkoff-Stowe and Hahn (2007), wén a fast mapping task.

perform an experiment to study the effect of con-

text familiarity on fast mapping in our model. We5 Related Computational Models

choose two sets of words,dBITEXT (containing20 o
words) and ERGET (containing10 words), to con- The rule-based model of Siskind (1996), and the con-

duct a referent selection task as follows. First, w8ectionist model proposed by Regier (2005), both
train our model on a sequence of utterance—sceﬁQOW that learning gets easier as the model is exposed

pairs constructed from the SeDATEXT U TARGET, to more input—that is, words heard later are learned
as follows: the unified set is randomly shuffled and@Ster- These findings confirm that fast mapping may
divided into two subsets, words in each subset afdMPIY be a result of learning more words, and that
put together to form an utterance, and the meaning® €XPlicit change in the underlying learning mech-
of the words in that utterance are put together tg"iS™ iS needed. However, these studies do not ex-
form the corresponding scene. We repeat this proce@$!ne various aspects of fast mapping, such as ref-

twice, so that each word appears in exactly two inp rént selection and retention. Horst et al. (2006) ex-
pairs. We train our model on the constructed p’éirs.pl'c'tly test fast mapping in their connectionist model

Next, we perform a referent selection task on eac?lf word learning by performing referent selection and

word in the TARGET set: we pair each target word retention tasks. The behaviour of their model matches

w with the meaning ofl0 randomly selected words the child experimental data reported in a study by the
from CONTEXT U TARGET, including the meaning of same authors (Horst and Samuelson, 2008), but not

the target word itselfrf,,), and have the model pro- that of the contradictory findings of other similar ex-
wlr . , . .

cess this test pair. We compare the referent probabff€iments. Moreover, the model's learming capacity

ity of w and eachn € CONTEXT U TARGET to see is limited, and the fast mapping experiments are per-

whether the model can correctly map the target Worfd')rme.d onavery Sn_ﬁall_vocak_JuIary. Erank etal. (2007)
to its referent. We call this setting theow TRAIN-  €X@Mmine fastmapping in their Bayesian model by test-
ING condition. ing its performance in a novel target referent selection

In the above setting, the context words in the refiask. However, the experiment is performed on an ar-

erent selection trials are as new to the model as ﬂt]igcal corpus. Moreover, since the learning algorithm
target words. We thus repeat this experiment witi? non-incremental, the success of the model in refer-
a familiar context: we first train the model over in-€Nt selection is determined implicitly: each possible

put pairs that are randomly constructed from word&/©rd-meaning mapping from the test input is added
in CONTEXT only, using the same training proce_to t_he cgrrent lexicon, gnd the coqs'lstency of the new
dure as described above. This context-familiarizatiol$XICON IS checked against the training corpus.

process is followed by a similar training session o%
CONTEXT U TARGET, and a test session on target

words, similar to the previous condition. Again, wewe have used a general computational model of word
count the number of correct mappings between a tagarning (first introduced in Fazly et al., 2008) to study

get word and its referent based on the referent probgist mapping. Our model learns a probabilistic asso-
bilities. We call this Set“ng the t&H TRAINING con- ciation between a word and its meaning, from expo-
dition. Table 3 shows the results for both conditionssyre to word usages in naturalistic contexts. We have
It can be seen that the accuracy of finding the refereghown that these probabilities can be used to simu-

®Unlike in previous experiments, here we do not use childl-at_e various fast mapping eXper_'mentS performed on
directed data as we want to control the familiarity of thetesh  children, such as referent selection and retention. Our

Discussion and Concluding Remarks
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experimental results suggest that fast mapping can Biark, Eve 1990. On the pragmatics of contrakiurnal
explained as an induction process over the acquiredof Child Language, 17:417-431.

associations between words and objects. In that senégsendruck, Gil and Lori Markson 2001. Children's
fast mapping is a general cognitive ability, and not avoidance of lexical overlap: Apragmatlc accoune-

a hard-coded, specialized mechanism of word learn- velopmental Psychology, 37(5):630-641.

iy 7 " . azly, Afsaneh, Afra Alishahi, and Suzanne Steven-
ing.” In addition, our results confirm that the onsef: son 2008. A probabilistic incremental model of word

of fast mapping 'is a natural consequence of Iegrning learning in the presence of referential uncertainty. In
more words, which in turn accelerates the learning of Proceedings of the 30th Annual Conference of the Cog-
new words. This bootstrapping approach results in a nitive Science Society.

rapid pace of vocabulary acquisition in children, with+rank, Michael C., Noah D. Goodman, and Joshua B.

out requiring a developmental change in the underly- T_ener_1bau|m 2%0|7- A bayegian fra_meworkl fO; cross-
ing learning mechanism. situational word-learning. IAdvancesin Neural Infor-

. . mation Processing Systems, volume 20.
Results of the referent selection experiments sho¢/

h del fully find th f ershkoff-Stowe, Lisa and Erin R. Hahn 2007. Fast map-
that our mode| can successiully find the reterent o ping skills in the developing lexicordournal of Speech,

a novel target word in a familiar context. Moreover, |anguage, and Hearing Research, 50:682—-697.
our retention experiments show tha_t the model cafolinkoff, Roberta Michnick, Kathy Hirsh-Pasek,
map a recently heard novel word to its recently seen Leslie M. Bailey, and Neil R. Wegner 1992. Young
novel referent (among other novel objects) after only children and adults use lexical principles to learn new
one exposure. However, the strength of the associa-N0Uns-Developmental Psychology, 28(1):99-108.
tion of a novel pair after one exposure shows a nd2oPnik, '°];"S°” and Andrew a/leltzoff %1987- Thed _deve:op-

. L ment of categorization in the second year and its relation
ta?le @ffe”rence_:_compared to f[he assoplatlon _be_tweento other cognitive and linguistic development€hild
a typlcal fgmlllar Wgrd and its meaning. ThIS IS Development, 58(6):1523-1531.
consistent with what is C(_)mmonly assumed In the litry31perda, Justin 2006. Is this a dax which | see before
erature: even though children learn something aboutme? use of the logical argument disjunctive syllogism
a word from only one exposure, they often need more supports word-learning in children and adu@sgnitive
exposure to reliably learn its meaning (Carey, 1978). Psychology, 53:310-344.
Various kinds of experiments have been performed tdalberda, Justin and Julie Goldman 2008. One-trial learn-
examine how strongly children learn novel words in- "9 In 2-year-olds: Children learn new nouns in 3 sec-

troduced to them in experimental settings. For exam onds flat. (in submission).
P gs-. H8rst, Jessica S., Bob McMurray, and Larissa K. Samuel-

ple, children are persuaded to produce a fast-m_appe son 2006. Online processing is essential for learning:
word, or to use the novel word to refer to objects understanding fast mapping and word learning in a dy-
that are from the same category as its original refer- namic connectionist architecture. Pnoc. of CogSci’ 06.
ent (e.g., Golinkoff et al., 1992; Horst and Samuelsomiorst, Jessica S. and Larissa K. Samuelson 2008. Fast
2008). We intend to look at these new tasks in our fu- mapping but poor retention by 24-month-old infarits.
ture research. fancy, 13(2):128-157.

MacWhinney, B. 2000.The CHILDES Project: Tools for
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Improving Word Segmentation by Simultaneously Learning Phonotactics
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Abstract

The most accurate unsupervised word seg-
mentation systems that are currently avail-
able (Brent, 1999; Venkataraman, 2001;
Goldwater, 2007) use a simple unigram
model of phonotactics. While this sim-
plifies some of the calculations, it over-
looks cues that infant language acquisition
researchers have shown to be useful for
segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Here we explore the
utility of using bigram and trigram phono-
tactic models by enhancing Brent’s (1999)
MBDP-1 algorithm. The results show
the improved MBDP-Phon model outper-
forms other unsupervised word segmenta-
tion systems (e.g., Brent, 1999; Venkatara-
man, 2001; Goldwater, 2007).

1 Introduction

How do infants come to identify words in the
speech stream? As adults, we break up speech
into words with such ease that we often think
that there are audible pauses between words in the
same sentence. However, unlike some written lan-
guages, speech does not have any completely reli-
able markers for the breaks between words (Cole
and Jakimik, 1980). In fact, languages vary on how
they signal the ends of words (Cutler and Carter,
1987), which makes the task even more daunting.
Adults at least have a lexicon they can use to rec-
ognize familiar words, but when an infant is first
born, they do not have a pre-existing lexicon to
consult. In spite of these challenges, by the age of

©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.
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six months infants can begin to segment words out
of speech (Bortfeld et al., 2005). Here we present
an efficient word segmentation system aimed to
model how infants accomplish the task.

While an algorithm that could reliably extract
orthographic representations of both novel and fa-
miliar words from acoustic data is something we
would like to see developed, following earlier re-
searchers, we simplify the problem by using a text
that does not contain any word boundary markers.
Hereafter, we use the phrase “word segmentation”
to mean some process which adds word boundaries
to a text that does not contain them.

This paper’s focus is on unsupervised, incre-
mental word segmentation algorithms; i.e., those
that do not rely on preexisting knowledge of a par-
ticular language, and those that segment the cor-
pus one utterance at a time. This is in contrast
to supervised word segmentation algorithms (e.g.,
Teahan et al., 2000), which are typically used for
segmenting text in documents written in languages
that do not put spaces between their words like
Chinese. (Of course, unsupervised word segmen-
tation algorithms also have this application.) This
also differs from batch segmentation algorithms
(Goldwater, 2007; Johnson, 2008b; Fleck, 2008),
which process the entire corpus at least once be-
fore outputting a segmentation of the corpus. Un-
supervised incremental algorithms are of interest
to some psycholinguists and acquisitionists inter-
ested in the problem of language learning, as well
as theoretical computer scientists who are inter-
ested in what unsupervised, incremental models
are capable of achieving.

Phonotactic patterns are the rules that deter-
mine what sequences of phonemes or allophones
are allowable within words. Learning the phono-
tactic patterns of a language is usually modeled

CoNLL 2008: Proceedings of the 12th Conference on Computational Natural Language Learning, pages 65-72
Manchester, August 2008



separately from word segmentation; e.g., current
phonotactic learners such as Coleman and Pierre-
humbert (1997), Heinz (2007), or Hayes and Wil-
son (2008) are given word-sized units as input.

However, infants appear to simultaneously learn
which phoneme combinations are allowable within
words and how to extract words from the input. It
is reasonable that the two processes feed into one
another, and when infants acquire a critical mass of
phonotactic knowledge, they use it to make judge-
ments about what phoneme sequences can occur
within versus across word boundaries (Mattys and
Jusczyk, 2001). We use this insight, also suggested
by Venkataraman (2001) and recently utilized by
Fleck (2008) in a different manner, to enhance
Brent’s (1999) model MBDP-1, and significantly
increase segmentation accuracy. We call this mod-
ified segmentation model MBDP-Phon.

2 Related Work

2.1 Word Segmentation

The problem of unsupervised word segmentation
has attracted many earlier researchers over the
past fifty years (e.g., Harris, 1954; Olivier, 1968;
de Marcken, 1995; Brent, 1999). In this section,
we describe the base model MBDP-1, along with
two other segmentation approaches, Venkataraman
(2001) and Goldwater (2007). In §4, we compare
MBDP-Phon to these models in more detail. For
a thorough review of word segmentation literature,
see Brent (1999) or Goldwater (2007).

2.1.1 MBDP-1

Brent’s (1999) MBDP-1 (Model Based Dy-
namic Programming) algorithm is an implemen-
tation of the INCDROP framework (Brent, 1997)
that uses a Bayesian model of how to generate an
unsegmented text to insert word boundaries. The
generative model consists of five steps:

1. Choose a number of word types, n.

2. Pick n distinct strings from ¥4, which will
make up the lexicon, L. Entries in L are la-
beled W7 ... W,,. Wy = $, where $ is the
utterance boundary marker.

. Pick a function, f, which maps word types to
their frequency in the text.

. Choose a function, s, to map positions in the
text to word types.
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5. Concatenate the words in the order specified
by s, and remove the word delimiters (#).

It is important to note that this model treats the
generation of the text as a single event in the prob-
ability space, which allows Brent to make a num-
ber of simplifying assumptions. As the values for
n, L, f, and s completely determine the segmenta-
tion, the probability of a particular segmentation,
Wy, can be calculated as:

P(wnm) = P(n, L, f,s) (D

To allow the model to operate on one utterance at
a time, Brent states the probability of each word in
the text as a recursive function, R(wy,), where wy,
is the text up to and including the word at position
k, wyg. Furthermore, there are two specific cases
for R: familiar words and novel words. If wy is
familiar, the model already has the word in its lex-
icon, and its score is calculated as in Equation 2.

f(v:k) ' (f%zk; 1>2 2

Otherwise, the word is novel, and its score is cal-
culated using Equation 3! (Brent and Tao, 2001),

R(wy) =

R(wy,) =
6 . n Ps(a)..Pslag) (L—I)Q 3)
Tk 1-Ps(#) n

where Ps, is the probability of a particular
phoneme occurring in the text. The third term of
the equation for novel words is where the model’s
unigram phonotactic model comes into play. We
detail how to plug a more sophisticated phonotac-
tic learning model into this equation in §3. With
the generative model established, MBDP-1 uses a
Viterbi-style search algorithm to find the segmen-
tation for each utterance that maximizes the R val-
ues for each word in the segmentation.

Venkataraman (2001) notes that considering the
generation of the text as a single event is un-
likely to be how infants approach the segmenta-
tion problem. However, MBDP-1 uses an incre-
mental search algorithm to segment one utterance
at a time, which is more plausible as a model of
infants’ word segmentation.

"Brent (1999) originally described the novel word score
2
as R(Ek) _ Py (Wn, ) ( ) ,

Yok Pa(Wy)

where P, is the probability of all thé phonemes in the word
occurring together, but the denominator of the third term was
dropped in Brent and Tao (2001). This change drastically
speeds up the model, and only reduces segmentation accuracy

by ~ 0.5%.

6 .
)

Nk nE—1

i

1_mET. g

nk



2.1.2 Venkataraman (2001)

MBDP-1 is not the only incremental unsuper-
vised segmentation model that achieves promis-
ing results. Venkataraman’s (2001) model tracks
MBDP-1’s performance so closely that Batchelder
(2002) posits that the models are performing the
same operations, even though the authors describe
them differently.

Venkataraman’s model uses a more traditional,
smoothed n-gram model to describe the distribu-
tion of words in an unsegmented text.> The most
probable segmentation is retrieved via a dynamic
programming algorithm, much like Brent (1999).

We use MBDP-1 rather than Venkataraman’s
approach as the basis for our model only because it
was more transparent how to plug in a phonotactic
learning module at the time this project began.

2.1.3 Goldwater (2007)

We also compare our results to a segmenter put
forward by Goldwater (2007). Goldwater’s seg-
menter uses an underlying generative model, much
like MBDP-1 does, only her language model is
described as a Dirichlet process (see also John-
son, 2008b). While this model uses a unigram
model of phoneme distribution, as did MBDP-1, it
implements a bigram word model like Venkatara-
man (2001). A bigram word model is useful in
that it prevents the segmenter from assuming that
frequent word bigrams are not simply one word,
which Goldwater observes happen with a unigram
version of her model.

Goldwater uses a Gibbs sampler augmented
with simulated annealing to sample from the pos-
terior distribution of segmentations and deter-
mine the most likely segmentation of each utter-
ance.® This approach requires non-incremental
learning.* We include comparison with Goldwa-
ter’s segmenter because it outperforms MBDP-1
and Venkataraman (2001) in both precision and
recall, and we are interested in whether an incre-
mental algorithm supplemented with phonotactic
learning can match its performance.

2.2 Phonotactic Learning

Phonotactic acquisition models have seen a surge
in popularity recently (e.g., Coleman and Pierre-

2We refer the reader to Venkataraman (2001) for the de-
tails of this approach.

3We direct the reader to Goldwater (2007) for details.

“In our experiments and those in Goldwater (2007), the
segmenter runs through the corpus 1000 times before out-
putting the final segmentation.
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humbert, 1997; Heinz, 2007; Hayes and Wilson,
2008). While Hayes and Wilson present a more
complex Maximum Entropy phonotactic model in
their paper than the one we add to MBDP-1, they
also evaluate a simple n-gram phonotactic learner
operating over phonemes. The input to the mod-
els is a list of English onsets and their frequency
in the lexicon, and the basic trigram learner simply
keeps track of the trigrams it has seen in the cor-
pus. They test the model on novel words with ac-
ceptable rhymes—some well-formed (e.g., [kip]),
and some less well-formed (e.g., [stwik])—so any
ill-formedness is attributable to onsets. This ba-
sic trigram model explains 87.7% of the variance
in the scores that Scholes (1966) reports his 7th
grade students gave when subjected to the same
test. When Hayes and Wilson run their Maximum
Entropy phonotactic learning model with n-grams
over phonological features, the r-score increases
substantially to 95.6%.

Given the success and simplicity of the basic n-
gram phonotactic model, we choose to integrate
this with MBDP-1.

3 Extending MBDP-1 with Phonotactics

The main contribution of our work is adding
a phonotactic learning component to MBDP-1
(Brent, 1999). As we mention in §2.1.1, the third
term of Equation 3 is where MBDP-1’s unigram
phonotactic assumption surfaces. The original
model simply multiplies the probabilities of all the
phonemes in the word together and divides by one
minus the probability of a particular phoneme be-
ing the word boundary to come up with probabil-
ity of the phoneme combination. The order of the
phonemes in the word has no effect on its score.
The only change we make to MBDP-1 is to the
third term of Equation 3. In MBDP-Phon this be-
comes

q
11 Ae(ai ... aj) (4)
i=0

where a;...a; is an n-gram inside a proposed
word, and ag and a, are both the word boundary
symbol, #°.

It is important to note that probabilities calcu-
lated in Equation 4 are maximum likelihood esti-
mates of the joint probability of each n-gram in the
word. The maximum likelihood estimate (MLE)

>The model treats word boundary markers like a phoneme
for the purposes of storing n-grams (i.e., a word boundary
marker may occur anywhere within the n-grams).



for a particular n-gram inside a word is calculated
by dividing the total number of occurrences of that
n-gram (including in the word we are currently ex-
amining) by the total number of n-grams (includ-
ing those in the current word). The numbers of
n-grams are computed with respect to the obtained
lexicon, not the corpus, and thus the frequency of
lexical items in the corpus does not affect the n-
gram counts, just like Brent’s unigram phonotactic
model and other phonotactic learning models (e.g.,
Hayes and Wilson, 2008).

We use the joint probability instead of the con-
ditional probability which is often used in compu-
tational linguistics (Manning and Schiitze, 1999;
Jurafsky and Martin, 2000), because of our intu-
ition that the joint probability is truer to the idea
that a phonotactically well-formed word is made
up of n-grams that occur frequently in the lexicon.
On the other hand, the conditional probability is
used when one tries to predict the next phoneme
that will occur in a word, rather than judging the
well-formedness of the word as a whole.b

We are able to drop the denominator that was
originally in Equation 3, because Px(#) is zero
for an n-gram model when n > 1. This sim-
ple modification allows the model to learn what
phonemes are more likely to occur at the begin-
nings and ends of words, and what combinations
of phonemes rarely occur within words.

What is especially interesting about this mod-
ification is that the phonotactic learning compo-
nent estimates the probabilities of the n-grams by
using their relative frequencies in the words the
segmenter has extracted. The phonotactic learner
is guaranteed to see at least two valid patterns in
every utterance, as the n-grams that occur at the
beginnings and ends of utterances are definitely
at the beginnings and ends of words. This al-
lows the learner to provide useful information to
the segmenter even early on, and as the segmenter
correctly identifies more words, the phonotactic
learner has more correct data to learn from. Not
only is this mutually beneficial process supported
by evidence from language acquisitionists (Mat-
tys et al., 1999; Mattys and Jusczyk, 2001), it also
resembles co-training (Blum and Mitchell, 1998).
We refer to the extended version of Brent’s model

®This intuition is backed up by preliminary results sug-
gesting MBDP-Phon performs better when using MLEs of the
joint probability as opposed to conditional probability. There
is an interesting question here, which is beyond the scope of
this paper, so we leave it for future investigation.
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described above as MBDP-Phon.

4 Evaluation

4.1 The Corpus

We run all of our experiments on the Bernstein-
Ratner (1987) infant-directed speech corpus from
the CHILDES database (MacWhinney and Snow,
1985). This is the same corpus that Brent (1999),
Goldwater (2007), and Venkataraman (2001) eval-
uate their models on, and it has become the de
facto standard for segmentation testing, as unlike
other corpora in CHILDES, it was phonetically
transcribed.

We examine the transcription system Brent
(1999) uses and conclude some unorthodox
choices were made when transcribing the corpus.
Specifically, some phonemes that are normally
considered distinct are combined into one symbol,
which we call a bi-phone symbol. These phonemes
combinations include diphthongs and vowels fol-
lowed by /1/. Another seemingly arbitrary deci-
sion is the distinction between stressed and un-
stressed syllabic /1/ sound (i.e., there are differ-
ent symbols for the /1/ in “butter” and the /1/ in
“bird”) since stress is not marked elsewhere in the
corpus. To see the effect of these decisions, we
modified the corpus so that the bi-phone symbols
were split into two’ and the syllabic /1/ symbols
were collapsed into one.

4.2 Accuracy

We ran MBDP-1 on the original corpus, and the
modified version of the corpus. As illustrated by
Figures 1 and 2, MBDP-1 performs worse on the
modified corpus with respect to both precision and
recall. As MBDP-1 and MBDP-Phon are both iter-
ative learners, we calculate segmentation precision
and recall values over 500-utterance blocks. Per
Brent (1999) and Goldwater (2007), precision and
recall scores reflect correctly segmented words,
not correctly identified boundaries.

We also test to see how the addition of an n-gram
phonotactic model affects the segmentation accu-
racy of MBDP-Phon by comparing it to MBDP-
1 on our modified corpus.® As seen in Figure 3,
MBDP-Phon using bigrams (henceforth MBDP-
Phon-Bigrams) is consistently more precise in its

TWe only split diphthongs whose first phoneme can occur
in isolation in English, so the vowels in “bay” and “boat” were
not split.

8We also compare MBDP-Phon to MBDP-1 on the origi-
nal corpus. The results are given in Tables 1 and 2.
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Figure 1: Precision of MBDP-1 on both corpora.
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Figure 2: Recall of MBDP-1 on both corpora.

segmentation than MBDP-1, and bests it by ~ 18%
in the last block. Furthermore, MBDP-Phon-
Bigrams significantly outpaces MBDP-1 with re-
spect to recall only after seeing 1000 utterances,
and finishes the corpus ~ 10% ahead of MBDP-
1 (see Figure 4). MBDP-Phon-Trigrams does not
fair as well in our tests, falling behind MBDP-1
and MBDP-Phon-Bigrams in recall, and MBDP-
Phon-Bigrams in precision. We attribute this poor
performance to the fact that we are not currently
smoothing the n-gram models in any way, which
leads to data sparsity issues when using trigrams.
We discuss a potential solution to this problem in
§5.

Having established that MBDP-Phon-Bigrams
significantly outperforms MBDP-1, we compare
its segmentation accuracy to those of Goldwater
(2007) and Venkataraman (2001).° As before, we

“We only examine Venkataraman’s unigram model, as his
bigram and trigram models perform better on precision, but
worse on recall.
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Figure 3: Precision of MBDP-1 and MBDP-Phon
on modified corpus.
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Figure 4: Recall of MBDP-1 and MBDP-Phon on
modified corpus.

run the models on the entire corpus, and then mea-
sure their performance over 500-utterance blocks.
MBDP-Phon-Bigrams edges out Goldwater’s
model in precision on our modified corpus, with
an average precision of 72.79% vs. Goldwa-
ter’s 70.73% (Table 1). If we drop the first 500-
utterance block for MBDP-Phon-Bigrams because
the model is still in the early learning stages,
whereas Goldwater’s has seen the entire corpus, its
average precision increases to 73.21% (Table 1).
When considering the recall scores in Table 2,
it becomes clear that MBDP-Phon-Bigrams has a
clear advantage over the other models. Its aver-
age recall is higher than or nearly equal to both
of the other models’ maximum scores. Since
Venkataraman’s (2001) model performs similarly
to MBDP-1, it is no surprise that MBDP-Phon-
Bigrams achieves higher precision and recall.



MBDP- | Venkataraman| Goldwater MBDP- | Venkataraman| Goldwater
Phon- Phon-
Bigrams Bigrams
Original: Utterances 0 to 9790 Original: Utterances 0 to 9790
Avg. | 72.84% | 67.46% 67.87% Avg. | 72.03% | 70.02% 71.02%
Max. | 7991% | 71.79% 71.98% Max. | 79.31% | 75.59% 76.79%
Min. | 63.97% | 61.77% 61.87% Min. | 44.71% | 42.57% 64.32%
Modified: Utterances 0 to 9790 Modified: Utterances 0 to 9790
Avg. | 72.79% | 59.64% 70.73% Avg. | 74.63% | 66.24% 70.48%
Max. | 80.60% | 66.84% 74.61% Max. | 82.45% | 70.47% 74.79%
Min. | 64.78% | 52.54% 65.29% Min. | 47.63% | 44.71% 63.74%
Modified: Utterances 500 to 9790 Modified: Utterances 500 to 9790
Avg. | 73.21% | 59.54% 70.59% Avg. | 76.05% | 67.37% 70.28%
Max. | 80.60% | 66.84% 74.61% Max. | 82.45% | 70.47% 74.79%
Min. | 67.40% | 52.54% 65.29% Min. | 71.92% | 63.86% 63.74%
Table 1: Precision statistics for MBDP-Phon- Table 2: Recall statistics for MBDP-Phon-

Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

The only metric by which MBDP-Phon-
Bigrams does not outperform the other algorithms
is lexical precision, as shown in Table 3. Lexi-
cal precision is the ratio of the number of correctly
identified words in the lexicon to the total number
of words in the lexicon (Brent, 1999; Venkatara-
man, 2001).!° The relatively poor performance
of MBDP-Phon-Bigrams is due to the incremental
nature of the MBDP algorithm. Initially, it makes
numerous incorrect guesses that are added to the
lexicon, and there is no point at which the lexi-
con is purged of earlier erroneous guesses (c.f. the
improved lexical precision when omitting the first
block in Table 3). On the other hand, Goldwater’s
algorithm runs over the corpus multiple times, and
only produces output when it settles on a final seg-
mentation.

In sum, MBDP-Phon-Bigrams significantly im-
proves the accuracy of MBDP-1, and achieves
better performance than the models described in
Venkataraman (2001) and Goldwater (2007).

5 Future Work

There are many ways to implement phonotactic
learning. One idea is to to use n-grams over phono-
logical features, as per Hayes and Wilson (2008).
Preliminary results have shown that we need to add
smoothing to our n-gram model, and we plan to use

10See Brent (1999) for a discussion of the meaning of this
statistic.
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Bigrams, Goldwater, and Venkataraman on both
corpora over 500-utterance blocks.

Modified Kneser-Ney smoothing (Chen and Good-
man, 1998).

Another approach would be to develop a
syllable-based phonotactic model (Coleman and
Pierrehumbert, 1997). Johnson (2008b) achieves
impressive segmentation results by adding a sylla-
ble level with Adaptor grammars.

Some languages (e.g., Finnish, and Navajo)
contain long-distance phonotactic constraints that
cannot be learned by n-gram learners (Heinz,
2007). Heinz (2007) shows that precedence-based
learners—which work like a bigram model, but
without the restriction that the elements in the bi-
gram be adjacent—can handle many long-distance
agreement patterns (e.g., vowel and consonantal
harmony) in the world’s languages. We posit that
adding such a learner to MBDP-Phon would allow
it to handle a greater variety of languages.

Since none of these approaches to phonotactic
learning depend on MBDP-1, it is also of interest
to integrate phonotactic learners with other word
segmentation strategies.

In addition to evaluating segmentation models
integrated with phonotactic learning on their seg-
mentation performance, it would be interesting to
evaluate the quality of the phonotactic grammars
obtained. A good point of comparison for English
are the constraints obtained by Hayes and Wilson
(2008), since the data with which they tested their
phonotactic learner is publicly available.

Finally, we are looking forward to investigat-



MBDP- | Venkataraman| Goldwater
Phon-
Bigrams
Original: Utterances 0 to 9790
Avg. | 47.69% | 49.78% 56.50%
Max. | 49.71% | 52.95% 63.09%
Min. | 46.30% | 41.83% 55.33%
Modified: Utterances 0 to 9790
Avg. | 48.31% | 45.98% 58.03%
Max. | 50.42% | 48.90% 65.58%
Min. | 41.74% | 36.57% 56.43%
Modified: Utterances 500 to 9790
Avg. | 54.34% | 53.06% 57.95%
Max. | 63.76% | 54.35% 62.30%
Min. | 51.31% | 51.95% 56.52%

Table 3: Lexical precision statistics for MBDP-
Phon-Bigrams, Goldwater, and Venkataraman on
both corpora over 500-utterance blocks.

ing the abilities of these segmenters on corpora
of different languages. Fleck (2008) tests her seg-
menter on a number of corpora, including Arabic
and Spanish, and Johnson (2008a) applies his seg-
menter to a corpus of Sesotho.

6 Conclusion

From the results established in §4, we can con-
clude that MBDP-Phon using a bigram phonotac-
tic model is more accurate than the models de-
scribed in Brent (1999), Venkataraman (2001), and
Goldwater (2007). The n-gram phonotactic model
improves overall performance, and is especially
useful for corpora that do not encode diphthongs
with bi-phone symbols. The main reason there
is such a marked improvement with MBDP-Phon
vs. MBDP-1 when the bi-phone symbols were re-
moved from the original corpus is that these bi-
phone symbols effectively allow MBDP-1 to have
a select few bigrams in the cases where it would
otherwise over-segment.

The success of MBDP-Phon is not clear evi-
dence that the INCDROP framework (Brent, 1997)
is superior to Venkataraman or Goldwater’s mod-
els. We imagine that adding a phonotactic learning
component to either of their models would also im-
prove their performance.

We also tentatively conclude that phonotactic
patterns can be learned from unsegmented text.
However, the phonotactic patterns learned by our
model ought to be studied in detail to see how well
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they match the phonotactic patterns of English.

MBDP-Phon’s performance reinforces the the-
ory put forward by language acquisition re-
searchers that phonotactic knowledge is a cue for
word segmentation (Mattys et al., 1999; Mattys
and Jusczyk, 2001). Furthermore, our results in-
dicate that learning phonotactic patterns can oc-
cur simultaneously with word segmentation. Fi-
nally, further investigation of the simultaneous ac-
quisition of phonotactics and word segmentation
appears fruitful for theoretical and computational
linguists, as well as acquisitionists.
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Abstract

This paper presents an iterative model of
knowledge acquisition of gender infor-
mation associated with word endings in
French. Gender knowledge is represented
as a set of rules containing exceptions.
Our model takes noun-gender pairs as in-
put and constantly maintains a list of
rules and exceptions which is both coher-
ent with the input data and minimal with
respect to a minimum description length
criterion. This model was compared to
human data at various ages and showed a
good fit. We also compared the kind of
rules discovered by the model with rules
usually extracted by linguists and found
interesting discrepancies.

1 Introduction

In several languages, nouns have a gender. In
French, nouns are either masculine or feminine.
For example, you should say le camion (the
truck) but la voiture (the car). Gender assignment
in French can be performed using two kinds of
information. Firstly, lexical information, related
to the co-occurring words (e.g., articles, adjec-
tives) which most of times marks gender unam-
biguously. Secondly, sublexical information, es-
pecially noun-endings, are pretty good predictors
of their grammatical gender (e.g., almost all
nouns endings in —age are masculine). Several
word endings can be used to reliably predict
gender of new words but this kind of rules is
never explicitly taught to children: they have to
implicitly learn that knowledge from exposure to
noun-gender pairs. It turns out that children as
young as 3 already constructed some of these

© 2008. Licensed under the Creative Commons Attri-
bution-Noncommercial-Share Alike 3.0 Unported
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved.

rules, which can be observed by testing them on
pseudo-words (Karmiloff-Smith, 1979).

This paper presents an iterative model of the
way children may acquire this gender knowl-
edge. Its input is a large random sequence of
noun-gender pairs following the distribution of
word frequency at a given age. It is supposed to
represent the words children are exposed to. The
model constantly maintains a list of rules and
exceptions both coherent with the input data and
minimal with respect to an information theory
criterion. This model was compared to human
data at various ages and showed a good fit. We
also compared the kind of rules discovered by
the model with rules usually extracted by lin-
guists and found interesting discrepancies.

2 Principle of Simplicity

Gender knowledge is learned from examples.
Children are exposed to thousands of nouns
which are most of the time accompanied with a
gender clue because of their corresponding de-
terminer or adjective. For instance, when hearing
“ta poussette est derriere le fauteuil” [your
stroller is behind the armchair], a child knows
that poussette is feminine because of the femi-
nine possessive determiner ta, and that fauteuil is
masculine because of the masculine determiner
le. After processing thousands of such
noun/gender pairs, children acquired some gen-
der knowledge which allows them to predict the
gender of pseudo-words (Marchal et al., 2007;
Meunier et al., 2008). This knowledge is largely
dependent on the end of the words since the end-
ings of many nouns in French are associated
more often with one gender than the other
(Holmes & Segui, 2004). For instance children
would predict that pseudo-words such as limette
or mossette are rather feminine words although
they never heard them before. It means that they
should have constructed a rule-like knowledge
saying that “words ending in -ette are rather
feminine”. Or maybe it is “words ending in -te
are rather feminine” or even “words ending in -e
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are rather feminine” ... Actually, there are many
ways to structure this knowledge, especially be-
cause this kind of rule generally has exceptions.
Let us take an example. Consider the following
words and their gender (masculine or feminine):
barrage [weir] (m), image [image] (f), courage
[courage] (m), plage [beach] (f), étage [floor]
(m), garage [garage] (m), collage [collage] (m).
Several rules could be constructed from this data:

(1)words ending in -age are masculine except
image and plage;

(2)words ending in -age are feminine except
barrage, courage, étage, garage and collage;

(3)words ending in -age are feminine except
words ending in -rage, étage and collage.

The latter is an example of a rule whose excep-
tions may themselves contain rules. The question
is to know which rules may be constructed and
used by children, and which cognitive mecha-
nisms may lead to the construction of such rules.
In order to investigate that issue, we relied on the
assumption that children minds obey a principle
of simplicity.

This principle is a cognitive implementation of
the Occam’s razor, saying that one should choose
the simplest hypothesis consistent with the data.
This idea has already been used in the field of
concept learning where it would dictate that we
induce the simplest category consistent with the
observed examples—the most parsimonious gen-
eralization available (Feldman, 2003). Chater &
Vitdnyi (2003) view it as a unifying principle in
cognitive science to solve the problem of induc-
tion in which infinitely many patterns are com-
patible with any finite set of data. They assume
“that the learner chooses the underlying theory of
the probabilistic structure of the language that
provides the simplest explanation of the history
of linguistic input to which the learner has been
exposed.” (Chater & Vitanyi, 2007).

One way to implement this idea is to consider
that the simplest description of a hypothesis is
the shortest one. Without considering frequency
of the rule usage, rule 1 in the previous example
seems intuitively more likely to be used by hu-
mans because it is the shortest.

Intuitively, counting the number of characters
of each hypothesis could seem a good method
but it is better to choose the most compact repre-
sentation (Chater, 1999). More important, the
choice should also depend on the frequency of
rule usage: the description length of a rule that
would be frequently used should not be counted
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like a seldom used rule. For instance, rule 2
could be a more appropriate coding if it is used
very frequently in the language as opposed to the
frequency of its exceptions. That is the reason
why we rely on word frequencies for various
ages in our simulations.

Information theory provides a formal version
of this assumption: the minimum description
length (MDL) principle (Rissanen, 1978). The
goal is to minimize the coding cost of both the
hypothesis and the data reconstructed from the
hypothesis (two-part coding). However, we will
see that, in our case, the model contains all the
data which lead to a simpler mechanism: the idea
is to select the hypothesis which represents the
data in the most compact way, that is which has
the shortest code length. Given a realization x of
a random variable X with probability distribution
P, x can be optimally coded with a size of
—log,(p(x)) bits.

For instance, suppose you are exposed to only
4 words A, B, C and D with frequencies .5, .25,
125, .125. For example, exposure could be:
BAACADBABACADBAA. An optimal coding
would need only 1 bit (—logy(.5)) to code word A
since it occurs 50% of the time. For instance, A
would be 0 and all other words would begin with
1. B needs 2 bits (—logy(.25)), for instance 10. C
and D both needs 3 bits (—logy(.125)), for in-
stance 110 for C and 111 for D.

The average code length for a realization of
the random variable X is computed by weighting
each code length by the corresponding probabil-
ity. It is exactly what is called entropy:

H(X)= =} p(x).logy(p(x))
In the previous example, the average code length
is 1x.542%.2543%.125+3%.125=1.75 bits

From this point of view, learning is data com-
pression (Griinwald, 2005). To sum up, the gen-
eral idea of our approach is to generate rules that
are coherent with the data observed so far and to
select the one with the smallest entropy.

3 Model

Some computational models have been proposed
in the literature, but they are concerned with the
problem of gender assignment given an existing
lexicon rather than dynamically modeling the
acquisition of gender knowledge. Their input is
therefore a set of words representative of all the
words in the language. Analogical modeling
(Skousen, 2003) is such a model. It predicts the
gender of a new word by constructing a set of
words that are analogous to it, with respect to



morphology. Matthews (2005) compared ana-
logical modeling and a neural net and could not
find any significant difference. Our model takes
noun-gender pairs as input and dynamically up-
dates the set of rules it has constructed so far in
order to minimize their description length.

3.1 Input

The input to our model is supposed to represent
the noun/gender pairs children are exposed to.
We used Manulex (Lété et al., 2004), a French
lexical database which contains word frequencies
of 48,900 lexical forms from the analysis of 54
textbooks. Word frequencies are provided for 3
levels: grades 1, 2 and 3-5.

We used the phonetic form of words® because
the development of the gender knowledge is only
based on phonological data during the first six
years of life. It would also be interesting to study
the development of written-specific rules, but
this will be done in a future work.

We constructed a learning corpus by randomly
selecting in this database 200,000 words and
their gender such that their distribution is akin to
their frequency distribution in Manulex. In other
words, the probability of picking a given word in
the corpus is just its frequency. In fact, we sup-
pose that the construction of the rule depends on
the frequency of words children are exposed to
and not just on the words at a type level.

It would have been more accurate to take real
corpora as input, in particular because the order
in which words are considered probably plays a
role, but such French corpora for specific ages,
large enough to be sufficiently accurate, do not
exist to our knowledge.

We now present how our model handles these
noun-gender pairs, one after the other.

3.2 Knowledge Representation

Gender knowledge is represented as rules con-
taining exceptions. The premise of a rule is a
word ending and the conclusion is a gender. The
* character indicates any substring preceding the
word ending. A natural language example of a
rule is:

(4) */yR/ are feminine nouns (f) except
/azyR/, /myR/, /myRmyR/ which are mascu-
line (m).

2 We used an ASCII version of the International Phonetic

Alphabet.
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Exceptions may contain words that could also be
organized in rules, which itselves may contain
exceptions. Here is an example:

(5) */R/—m except:
/tiRliR/, /istwaR/~f
*/JER/-f except /gRyjER/-m
*/yR/~f except /azyR/ and /myR/-m

The gender knowledge corresponding to a given
corpus is represented as a set of such rules. Such
a set contains about 80 rules for a grade-1 learn-
ing corpus. We now present how this knowledge
is updated according to a new noun-gender pair
to be processed.

3.3 Rule Construction

Each time a new noun-gender pair is processed,
all possible set of rules that are coherent with the
data are generated, and the best one, with respect
to the minimum description length criterion, will
be selected. As an example, consider this little
current set of two rules which was constructed
from the words /azyR/, /baRaZ/, /etaZ/, /imaZ/,
/plaZ/, /SosyR/ and /vwAtyR/® (words above be-
low square brackets are the examples which were
used to form the rule):

(6) */yR/-f [/SosyR/,
/azyR/—m

(7a) */aZ/—f [/imaZ/, /plaZ/] except
/etaZ/, /baRaZ/—m

/VWALtyR/]  except

Then a new word is processed: /kuRaZ/ which is
of masculine gender. Since it is not coherent with
the most specific rule (rule 7a) matching its end-
ing (genders are different), the algorithm at-
tempts to generalize it with the first-level excep-
tions in order to make a new rule. /etaZ/ is taken
first. It can be generalized with the new word
/kuRaZ/ to form the new rule:

(8a) *laZ/—m [/etaZ/, /kuRaZ/]

All other exceptions which could be included are
added. The new rule becomes:

(8b) *faZ/—m [/baRaZ/, /etaZ/, [kuRaZ/]

Once a new rule has been created, the algorithm
needs to maintain the coherence of the base. It
checks whether this new rule is in conflict with
other rules with a different gender. This is the

Translations: /azyR/ (azur [azure]), /baRaZ/ (bar-
rage [weir)), /etaZ/ (étage [floor]), /imaZ/ (image
[image]), /plaZ/ (plage [beach]), /SosyR/ (chaus-
sure [shoe]) and /vwAtyR/ (voiture [car])



case since we have the exact same rule but for
the feminine gender (rule 7a). Conflicting exam-
ples are therefore removed from the old rule and
put as exceptions to the new rule. In that case of
identity between old and new rule, all examples
are removed and the rule disappears. The new
rule is:

(8¢c) */aZ/—m [/baRaZ/, /etaZ/, /kuRaZ/] except
/imaZ/, /plaZ/—t

After having checked for rules with a different
gender, the algorithm now checks for existing
rules with the same gender that the new rule, ei-
ther more specific or more general. This is not
the case here. We thus created our first candidate
set of rules (rules 6 and 8c):

CANDIDATE SET #1:

*/yR/—f [/SosyR/, /vwAtyR/] except
lazyR/—m

*laZ/-m [/baRaZ, /etaZ/, /kuRaZ/] except
fimaZ/, /plaZ/—f

Other rules could have been generated from the
set of exceptions of */aZ/-f. The word /etaZ/ was
taken first but the algorithm needs to consider all
other exceptions. It then takes /baRaZ/ to form
the rule:

(9) */RaZ/-m [/baRaZ/, /kuRaZ/]

Note that this is a more specific rule than the
previous one: it is based on a 3-letter ending
whereas /etaZ/ and /kuRaZ/ generated a 2-letter
ending. No other exceptions can be added. The
algorithm now checks for conflicting rules with
the same gender and puts this new rule as an ex-
ception of the previous rule. Then it checks for
possible conflict with rules of different gender,
but there are none. The second candidate set is
therefore:

CANDIDATE SET #2:

*/yR/—1 [/SosyR/, /vwAtyR/] except
/azyR/-m

*/aZ/-f [/imaZ/, [plaZ/] except
/etaZ/-m

*/RaZ/ [/baRaZ/, /kuRaZ/]-m

Something else needs to be done: removing
words from a rule and putting them as exceptions
may lead to new generalizations between them or
with other existing words. In our case, the algo-
rithm memorized the fact that /imaZ/ and /plaZ/
have been put as exceptions.
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It now applies the same mechanism as before:
adding those words to the new set of rules, as if
they were new words. By the same previous al-
gorithm, it gives the new rule:

(7b) */aZ/—f [/imaZ/, [plaZ/]

In order to maintain the coherence of the rule
base, examples of conflicting rules are removed
and put as exceptions:

(7c) */aZ/—f [/imaZ/, [plaZ/] except
/baRaZ/, /etaZ/, /kuRaZ/—m

We now have our third candidate set of rules:

CANDIDATE SET #3:

*/yR/—f [/SosyR/, [vwAtyR/] except
/azyR/-m

*/aZ—1/ [imaZ,plaZ] except
letaZ/, /baRaZ/, /kuRaZ/-m

Figure 1 summarizes the model’s architecture.

|| NER/M | =~

—

“/i/=»*m except /suRi/
*ffon/=+m

“/leR/>f except /tjER/
O/m except /pOf
2/ m except /imaZ/

Generate ;:andidates

Select shortest

code length

Figure 1. Overall architecture

3.4 Model Selection

This section describes how to choose between
candidate models. As we mentioned before, the
idea is to select the most compact model. For
each exception, we compute its frequency F from
the number of times it appeared so far. For each
rule, F is just the sum of the frequencies of all
examples it covered.

The description length of each rule or excep-
tion is —logy(F). Since the overall value needs to
take into account the variation of frequency of
each rule or exception, each description length is
weighted by its frequency, which gives the aver-
age description length of a candidate set of rules
(corresponding to the entropy):

weigth(Model) = =) Fi.log, (F)

Suppose the words of the previous example were
given in that order: /imaZ/ - /vwAtyR/ - /SosyR/
- /imaZ/ - /plaZ/ - /SosyR/ - /plaZ/ - /imaZ/ -
fetaZ/ - /[vwAtyR/ - /baRaZ/ - /azyR/ - /plaZ/ -
/imaZ/ - /imaZ/ - /kuRaZ/



Candidate set #2 would then have an average
description length of 1.875 bits:

-1/16 x logx(1/16) = .25
-4/16 x log»(4/16) = .5
-2/16 x log»(2/16) = 375
-1/16 x logx(1/16) = .25
-8/16 x log,(8/16) = .5
Sum = 1.875 bits

azyR m
*yR £ SosyR, vwAtyR
*RaZ m baRaZ, kuRaZ
etaZz m

*aZ f imaZ,plaZ

In the same way, candidate set #1 would have a
value of 2.18 bits. Candidate set #3 would have a
value of 2 bits. The best model is therefore
model #2 which is the most compact one, ac-
cording to the word frequencies.

4 Implementation

For computational purposes, the knowledge in-
ternal representation is slightly different than the
one we use here: rules and exceptions are repre-
sented on different lines such that exceptions are
written before their corresponding rules and if a
rule is more specific than another one, it is writ-
ten before. For instance, candidate set #2 is writ-
ten that way:

azyR m

*yR £ SosyR, vwAtyR

*Raz m baRaZ, kuRaz

etaz m
*az f imaZ,plaZz

This allows a linear inspection of the rule base in
order to predict the gender of a new word: the
first rule which matches the new word gives the
gender. For instance, if the previous model were
selected, it would predict that the word /caZ/ is
feminine, the pseudo-word /tapyR/ is feminine
and the pseudo-word /piRaZ/ is masculine.

We could have improved the efficiency of the
algorithm by organizing words in a prefix tree
where the keys would be in the reverse order of
words. However, we are not concerned with the
efficiency of the model for the moment, but
rather its ability to account for human data.

The algorithm is the following (R;<R, indi-
cates that R, is more specific than R,. For in-
stance, */tyR/ is more specific than */yR/, which
in turn is more specific than */R/).

updateModel(word W, rule base B):

if W matches a rule Re B then
if R did not contain W as an example
add W to the examples of B
return B
else
for all exceptions E of B
if E and W can be generalized

create the new rule N from them
include possible other exceptions
# More general rule of different gender
if 3R€ B/ R<N and gender(R)#gender(N)
put examples of N matching R as exceptions
memorize those exceptions
if N now contains one example
put that example as an exception
if N contains no examples
remove N
# More specific rule of different gender
if IRe B/ R>N and gender(R)#gender(N)
put examples of R matching N as exceptions
memorize those exceptions
if R now contains one example
put that example as an exception
if R contains no examples
remove R
# Conflicting rule of same gender
if IRe B/ N>R and gender(R)=gender(N)
include R into N
if 3Re B/ N<R and gender(R)=gender(N)
include N into R
Solutions = {B}
# Run the algorithm with new exceptions
for all memorized exceptions E
Solutions=Solutions U updateModel(E,B)
if no generalizations was possible

Add W to B
Solutions = {B}

return(Solutions)

5 Simulations

We ran this model on two corpora, representing
words grade-1 and grade-2 children are exposed
to (each 200,000-word long). 76 rules were ob-
tained in running the grade-1 corpus, and 83
rules with the grade-2 corpus.

End- Gen- Gender Nb Nb
ings der Predict- Exam-  excep-
ability ples tions
*1/ f 56% 79 62
*/sol/ m 57% 4 3
*i/ m 57% 74 55
*/R/ m 72% 188 71
*lam/ f 77% 7 2
*/sy/ m 83% 5 1
*[{ER/  f 88% 31 4
*15/ m 97% 91 2
*/fon/ m 100% 5 0
*/sj6/ f 100% 58 0

Table 1. Sample of rules (with endings and pre-
dicted gender) constructed from grade-1 corpus.




Some of the rules of the first set are listed in
Table I (from grade-1 corpus). For each rule, rep-
resented by a word ending, is detailed its pre-
dicted gender, the number of words (as types)
following the rule, the number of exceptions.
Moreover, the “gender predictability” of each
rule is computed (third column) as the percentage
of words matching the rule over the total number
of words with this ending.

The results of the simulations show that the
lengths of word endings vary from only one pho-
neme (e.g., /*1/, /*1/) to three (/*jER/, /*fon/).
These rules do not really correspond to the kind
of rules linguists would have produced. They
usually consider that the appropriate ending to
associate to a given gender is the suffix (Riegel
et al., 2005). Actually, the nature of the word
ending that humans may rely on to predict gen-
der is an open question in psycholinguistics. Do
we rely on the suffix, the last morpheme, the last
phoneme? The results of our model which did
not use any morphological knowledge, suggests
another answer: it may only depend on the statis-
tical regularities of word endings in the language
and can vary in French from one phoneme to
three and these endings are sometimes matching
morphological units.

However, it is worth noting that the model has
yet some obvious limitations. The first one is that
the gender predictability of rules is variable:
while some rules are highly predictive (e.g.,
*/sj§/ 100% feminine, */@/ 97% masculine),
other are not (e.g., */I/ 56% feminine, */i/ 57%
masculine). The second limitation is that the
rules found by our model are accounting for a
variable amount of examples. For instance, the
rule */R/ masculine accounts for 188 examples
while */sol/ masculine does only 4. One could
wonder what it means from a developmental
point of view to create rules that are extracted
from very few examples. Do children build such
rules? This is far from sure and we shall have to
further address these clear limitations.

Another of our research goals was to test to
what extent our model could predict human data.
To that end, the model’s gender assignment per-
formance was compared to children’s one.

6 Comparison to Experimental Data

6.1 Experiment

An experiment was conducted to study how and
when French native children acquire regularities
between words endings and their associated gen-
der. Nine endings were selected, five which are

more likely associated to the feminine gender
(/ad/, /asj§/, /El/, /ot/, /tyR/) and four to the mas-
culine gender (/aZ/, /m@/, /waR/, /O/). Two lists
of 30 pseudo-words were created containing each
15 pseudo-words whose expected gender is mas-
culine (such as “brido” or “rinloir”’) and 15
whose expected gender is feminine (such as
“surbelle” or “marniture”). The presentation of
each list was counterbalanced across participants.
Participants were 136 children from Grenoble
(all French native speakers): 28 children at the
end of preschool, 30 children at the beginning of
grade 1, 36 children at the end of grade 1 and 42
children at the beginning of grade 2. Each par-
ticipant was given a list and had to perform a
computer-based gender decision task. Each
pseudo-word was simultaneously spoken and
displayed in the center of the screen when the
determiners “le” (masculine) and “/a” (feminine)
were displayed at the bottom of the screen. Then
children had to press the keyboard key corre-
sponding to their intuition, which was recorded.

Pre- Beg. End Beg.
school Gradel Gradel Grade2
End- % Exp. % Exp. % Exp. % Exp.
ings Gd. Gd. Gd. Gd. Gd.
fad/ f 45.24 56.67 67.59%* 57.14
fasj§/ f 58.33 58.89 70.37%*  65.08**
/El/ f 60.71*% 62.22* 76.85%*% 64.29%*
ot/ f 53.57  T1.11%% 82.41%% 7222%*
/tyR/ f 50.00 68.89** 7778*%*% ©8.25%*
laZ/ m  51.19 64.44%% 64.81*%* 61.11**
/m@/ m  60.71* 55.56 57.41 50.00
10/ m  61.90*% 65.56%* 80.56%* 78.57%*
/waR/ m  52.38 62.22*%  64.81*%* 68.25%*

Legend: Gd.:Gender; Beg.:Beginning;
% Exp. Gd.:% Expected Gender;

* p<.05,*4p<.01
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Table 2. Gender attribution rate as a function of
endings and grade level.

In brief, results are twofold. First, children
have acquired some implicit knowledge regard-
ing gender information associated with word
ending. As can be seen in Table 2, at the begin-
ning of grade 1, children respond above chance
and in the expected direction for the majority of
endings (Chi2 test was used to assess statistical
significance). At preschool children responded
also above chance for three word endings. Sec-
ond, there is a clear developmental trend since
gender attribution increases in the expected di-
rection with grade level and more endings are
determined by the older children. The exposure



to written language during the first school year
probably reinforces the implicit knowledge de-
veloped by children before primary school.

6.2 Human vs. Model Data Comparison

Two types of analyses were drawn in order to
compare model and data. Firstly, the gender pre-
dictions obtained from the model were correlated
to those given by children, regarding the gender
of pseudo-words. Secondly, the endings created
by the model were compared to those used in the
experimental material. Correlations were com-
puted between our model and human data (Table
3) by taking into account the rate of predicted
masculine gender, for each pseudo-word.

Model Grade 1 Model Grade 2
Preschool 0.31 0.33
Beg. Grade 1 0.6 0.64
End Grade 1 0.82 0.86
Beg. Grade 2 0.74 0.77

Table 3. Correlations between model and data.

The highest correlations are obtained for children
at the end of grade 1 and at the beginning of
grade 2. This result is interesting since the cor-
pora are precisely intended to represent the lexi-
cal knowledge corresponding to the school level
of these children. Moreover, the correlations ob-
tained with the grade-2 model are higher (though
not significantly) than those obtained with the
grade-1 model. It thus seems that our model is
fairly well suited to account for children’s re-
sults, at least for the older ones. The low correla-
tions observed with the younger children of our
sample cannot be interpreted unambiguously;
one could say that children before grade 1 have
not built much knowledge regarding gender of
word endings but this conclusion contradicts
previous results (Meunier et al., 2008) and it re-
mains to be explored by using a corpora appro-
priated to the lexicon of preschool children.

The endings used by the model to predict the
gender of pseudo-words were also compared
with the endings used in the experiment. Table 4
presents these endings as well as the rate of mas-
culine gender predicted for the experimental end-
ings by the two models trained with grade-1 and
grade-2 lexicons. First, note that the endings
used by the models are the same for both grade-1
and grade-2 lexicons. The growth of the lexicon
between grade 1 and grade 2 does not modify
these rules. Secondly, one can notice that grade-2
model results are more defined than grade-1 re-

sults. Third, a very salient result is that model
endings are short. For example, the model did
not create a rule such */ad/ and rather used the
more compact rule */d/ to predict the gender of
the pseudo-word /bOSad/.

Model Grade 1  Model Grade 2

End- %Gd. End- % Gd.
Endings ings Masc ings  Masc
/ad/ */d/ 028  */d/ 0.17
/asj§/ *[sj8/ 0 *[sj8/ 0
/El/ *1/ 044 =1/ 0.32
/ot/ *1t/ 0.14  *it/ 0.09
/tyR/ *IyR/ 0.09  */yR/ 0.05
faZ/ *1Z] 0.8 *1Z] 0.91
/m@/ *@/ 095 *@/ 0.98
10/ */0/ 093  */0O/ 0.96
/waR/ */R/ 0.72  */R/ 0.82
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Table 4. Rate for expected
predicted by our models.

masculine gender

In fact, the majority of the endings used by the
model are short, i.e. composed with one pho-
neme. Very few endings created by the model are
morphological units such as suffixes. In fact, the
endings /d/ or /R/ are not derivational mor-
phemes, but the endings /sj§/ or /yR/ are suffixes.
So the MDL-based model establishes rules that
take into account different types of linguistic
units from phonemes to morphemes depending
of the statistical predictability of each ending
type. This result is related to an important con-
cern about the study of the acquisition of gram-
matical gender: to which unit do children rely on
to predict gender? Do they rely on the last pho-
neme, biphone, morpheme?

7 Do children rely on morphemes?

In grammatical gender acquisition studies, the
kind of endings used often mixes up phonologi-
cal, derivational and even orthographic cues.
Several studies used true suffixes (Marchal et al.,
2007, Meunier et al., 2008) to ask children to
assign gender to pseudo-words. As those studies
consistently showed that children from 3 years
old onwards assign a gender to those pseudo-
words following the excepted suffix gender, the
tentative conclusion was to say that children rely
on suffixes to assign the gender of new words.
This is an appealing interpretation as the devel-
opment of morphological structure of words is an
important aspect of lexical development and
some of this knowledge is acquired very early
(Casalis et al., 2000; Karmiloff-Smith, 1979).



However, the observations from the MDL-
based model strongly question this assumption:
the units retained in the model’s rules are often
shorter than suffixes and the last phoneme seems
often as predictive as the suffix itself as it leads
to satisfying correlations with children’s data.

So, one would conclude that gender knowl-
edge is not attached to morphological units such
as suffix but is rather a knowledge associated
with the smaller ending segment that best pre-
dicts gender. Note however that despite the high
correlations observed, the actual gender predic-
tions issued from children’s data and those is-
sued from the model are not exactly of the same
magnitude and this would suggest that the MDL-
based model presented here must still be worked
on in order to better describe gender acquisition.
For example, the notion of gender predictability
would benefit from being computed from token
counts instead of type counts.

8 Conclusion

The purpose of this research was to know which
kind of gender information may be constructed
and used by children, and which cognitive
mechanisms may lead to the construction of such
rules. To investigate that issue, we constructed a
model based on the MDL principle which reveals
to be an interesting way to describe the gram-
matical gender acquisition in French, although
we do not claim that children employ such an
algorithm. Our model predicts the gender of a
new word by sequentially scanning exceptions
and rules. This process appears quite similar to
the decision lists technique in machine learning
(Rivest, 1987) which has already been combined
with the MDL principle (Pfahringer, 1997).
However, we are not committed to this formal-
ism: we are more interested in the content of the
model rather than its knowledge representation.
The comparison between model’s results and
human data opens a way of reflection on the kind
of relevant units on which children would rely
on. Perhaps it is not a kind of ending in particular
that plays a role but different units varying fol-
lowing the principle of parsimony.
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Abstract

A fundamental task in sentence compre-
hension is to assign semantic roles to sen-
tence constituents. The structure-mapping
account proposes that children start with
a shallow structural analysis of sentences:
children treat the number of nouns in the
sentence as a cue to its semantic predicate-
argument structure, and represent language
experience in an abstract format that per-
mits rapid generalization to new verbs. In
this paper, we tested the consequences of
these representational assumptions via ex-
periments with a system for automatic se-
mantic role labeling (SRL), trained on a
sample of child-directed speech. When
the SRL was presented with representa-
tions of sentence structure consisting sim-
ply of an ordered set of nouns, it mim-
icked experimental findings with toddlers,
including a striking error found in children.
Adding features representing the position
of the verb increased accuracy and elim-
inated the error. We show the SRL sys-
tem can use incremental knowledge gain
to switch from error-prone noun order fea-
tures to a more accurate representation,
demonstrating a possible mechanism for
this process in child development.

1 Introduction

How does the child get started in learning to in-
terpret sentences? The structure-mapping view
of early verb and syntax acquisition proposes that

(©2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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children start with a shallow structural analysis of
sentences: children treat the number of nouns in
the sentence as a cue to its semantic predicate-
argument structure (Fisher, 1996), and represent
language experience in an abstract format that per-
mits rapid generalization to new verbs (Gertner et
al., 2006).

The structure-mapping account makes strong
predictions. First, as soon as children can identify
some nouns, they should interpret transitive and in-
transitive sentences differently, simply by assign-
ing a distinct semantic role to each noun in the sen-
tence. Second, language-specific syntactic learn-
ing should transfer rapidly to new verbs. Third,
some striking errors of interpretation can occur.
In “Fred and Ginger danced”, an intransitive verb
is presented with two nouns. If children interpret
any two-noun sentence as if it were transitive, they
should be fooled into interpreting the order of two
nouns in such conjoined-subject intransitive sen-
tences as conveying agent-patient role information.
Experiments with young children support these
predictions. First, 21-month-olds use the number
of nouns to understand sentences containing new
verbs (Yuan et al., 2007). Second, 21-month-olds
generalize what they have learned about English
transitive word-order to sentences containing new
verbs: Children who heard “The girl is gorping the
boy” interpreted the girl as an agent and the boy as
a patient (Gertner et al., 2006). Third, 21-month-
olds make the predicted error, treating intransitive
sentences containing two nouns as if they were
transitive: they interpret the first noun in “The girl
and the boy are gorping” as an agent and the sec-
ond as a patient (Gertner and Fisher, 2006). This
error is short-lived. By 25 months, children add
new features to their representations of sentences,
and interpret conjoined-subject intransitives differ-
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ently from transitives (Naigles, 1990).

These experimental results shed light on what
syntactic information children might have avail-
able for early sentence comprehension, but do not
rule out the possibility that children’s early per-
formance is based on a more complex underlying
system. In this paper, we tested the consequences
of our representational assumptions by perform-
ing experiments with a system for automatic se-
mantic role labeling (SRL), whose knowledge of
sentence structure is under our control. Com-
putational models of semantic role labeling learn
to identify, for each verb in a sentence, all con-
stituents that fill a semantic role, and to determine
their roles. We adopt the architecture proposed
by Roth and colleagues (Punyakanok et al., 2005),
limiting the classifier’s features to a set of lexical
features and shallow structural features suggested
by the structure-mapping account. Learning abil-
ity is measured by the level of SRL accuracy and,
more importantly, the types of errors made by the
system on sentences containing novel verbs. Test-
ing these predictions on the automatic SRL pro-
vides us with a demonstration that it is possible to
learn how to correctly assign semantic roles based
only on these very simple cues.

From an NLP perspective this feature study pro-
vides evidence for the efficacy of alternative, sim-
pler syntactic representations in gaining an initial
foothold on sentence interpretation. It is clear that
human learners do not begin interpreting sentences
in possession of full part-of-speech tagging, or full
parse trees. By building a model that uses shal-
low representations of sentences and mimics fea-
tures of language development in children, we can
explore the nature of initial representations of syn-
tactic structure and build more complex features
from there, further mimicking child development.

2 Learning Model

We trained a simplified SRL classifier (Baby SRL)
with sets of features derived from the structure-
mapping account. Our test used novel verbs to
mimic sentences presented in experiments with
children. Our learning task is similar to the full
SRL task (Carreras and Marquez, 2004), except
that we classify the roles of individual words rather
than full phrases. A full automatic SRL system
(e.g. (Punyakanok et al., 2005)) typically involves
multiple stages to 1) parse the input, 2) identify ar-
guments, 3) classify those arguments, and then 4)
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run inference to make sure the final labeling for the
full sentence does not violate any linguistic con-
straints. Our simplified SRL architecture (Baby
SRL) essentially replaces the first two steps with
heuristics. Rather than identifying arguments via
a learned classifier with access to a full syntac-
tic parse, the Baby SRL treats each noun in the
sentence as a candidate argument and assigns a
semantic role to it. A simple heuristic collapsed
compound or sequential nouns to their final noun:
an approximation of the head noun of the noun
phrase. For example, "Mr. Smith’ was treated
as the single noun ’Smith’. Other complex noun
phrases were not simplified in this way. Thus,
a phrase such as ’the toy on the floor’ would be
treated as two separate nouns, 'toy’ and ’floor’.
This represents the assumption that young children
know *Mr. Smith’ is a single name, but they do not
know all the predicating terms that may link mul-
tiple nouns into a single noun phrase. The simpli-
fied learning task of the Baby SRL implements a
key assumption of the structure-mapping account:
that at the start of multiword sentence comprehen-
sion children can tell which words in a sentence are
nouns (Waxman and Booth, 2001), and treat each
noun as a candidate argument.

Feedback is provided based on annotation in
Propbank style: in training, each noun receives the
role label of the phrase that noun is part of. Feed-
back is given at the level of the macro-role (agent,
patient, etc., labeled AO-A4 for core arguments,
and AM-* adjuncts). We also introduced a NO la-
bel for nouns that are not part of any argument.

For argument classification we use a linear clas-
sifier trained with a regularized perceptron update
rule (Grove and Roth, 2001). This learning algo-
rithm provides a simple and general linear clas-
sifier that has been demonstrated to work well in
other text classification tasks, and allows us to in-
spect the weights of key features to determine their
importance for classification. The Baby SRL does
not use inference for the final classification. In-
stead it classifies every argument independently;
thus multiple nouns can have the same role.

2.1 Training

The training data were samples of parental speech
to one child (CEve’; (Brown, 1973), available
via Childes (MacWhinney, 2000)). We trained
on parental utterances in samples 9 through 20,
recorded at child age 21-27 months. All verb-



containing utterances without symbols indicating
long pauses or unintelligible words were automat-
ically parsed with the Charniak parser (Charniak,
1997) and annotated using an existing SRL sys-
tem (Punyakanok et al., 2005). In this initial pass,
sentences with parsing errors that misidentified ar-
gument boundaries were excluded. Final role la-
bels were hand-corrected using the Propbank an-
notation scheme (Kingsbury and Palmer, 2002).
The child-directed speech (CDS) training set con-
sisted of about 2200 sentences, of which a majority
had a single verb and two nouns to be labeled'. We
used the annotated CDS training data to train our
Baby SRL, converting labeled phrases to labeled
nouns in the manner described above.

3 Experimental Results

To evaluate the Baby SRL we tested it with sen-
tences like those used for the experiments with
children described above. All test sentences con-
tained a novel verb ("gorp’). We constructed two
test sentence templates: *A gorps B’ and ’A and B
gorp’, where A and B were replaced with nouns
that appeared more than twice in training. We
filled the A and B slots by sampling nouns that
occurred roughly equally as the first and second
of two nouns in the training data. This procedure
was adopted to avoid ’building in’ the predicted er-
ror by choosing A and B nouns biased toward an
agent-patient interpretation. For each test sentence
template we built a test set of 100 sentences by ran-
domly sampling nouns in this fashion.

The test sentences with novel verbs ask whether
the classifier transfers its learning about argument
role assignment to unseen verbs. Does it as-
sume the first of two nouns in a simple transi-
tive sentence (CA gorps B’) is the agent (AO) and
the second is the patient (A1)? Does it over-
generalize this rule to two-noun intransitives (" A
and B gorp’), mimicking children’s behavior? We
used two measures of success, one to assess clas-
sification accuracy, and the other to assess the
predicted error. We used a per argument F1 for
classification accuracy, with F1 based on correct
identification of individual nouns rather than full
phrases. Here precision is defined as the propor-
tion of nouns that were given the correct label
based on the argument they belong to, and recall
is the proportion of complete arguments for which

!Corpus available at http://L2R.cs.uiuc.edu/
~cogcomp/data.php
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some noun in that argument was correctly labeled.
The desired labeling for *A gorps B’ is AO for the
first argument and A1 for the second; for "A and
B gorp’ both arguments should be AO. To mea-
sure predicted errors we also report the proportion
of test sentences classified with AO first and Al
second (%A0A1). This labeling is a correct gener-
alization for the novel *A gorps B’ sentences, but
is an overgeneralization for A and B gorp.’

3.1 Noun Pattern

The basic feature we propose is the noun pattern
feature. We hypothesize that children use the num-
ber and order of nouns to represent argument struc-
ture. To encode this we created a feature (NPat-
tern) that indicates how many nouns there are in
the sentence and which noun the target is. For ex-
ample, in our two-noun test sentences noun A has
the feature *_N’ active indicating that it is the first
noun of two. Likewise for B the feature *N_’ is ac-
tive, indicating that it is the second of two nouns.
This feature is easy to compute once nouns are
identified, and does not require fine-grained dis-
tinctions between types of nouns or any other part
of speech. Table 1 shows the initial feature pro-
gression that involves this feature. The baseline
system (feature set 1) uses lexical features only:
the target noun and the root form of the predicate.

We first tested the hypothesis that children use
the NPattern features to distinguish different noun
arguments, but only for specific verbs. The NPat-
tern&V features are conjunctions of the target verb
and the noun pattern, and these are added to the
word features to form feature set 2. Now every
example has three features active: target noun, tar-
get predicate, and a NPattern&V feature indicating
"the target is the first of two nouns and the verb
is X.” This feature does not improve results on the
novel ’A gorps B’ test set, or generate the predicted
error with the A and B gorp’ test set, because the
verb-specific NPattern&V features provide no way
to generalize to unseen verbs.

We next tested the NPattern feature alone, with-
out making it verb-specific (feature set 3). The
noun pattern feature was added to the word fea-
tures and again each example had three features ac-
tive: target noun, target predicate, and the target’s
noun-pattern feature (first of two, second of three,
etc.). The abstract NPattern feature allows the
Baby SRL to generalize to new verbs: it increases
the system’s tendency to predict that the first of two



CHILDES WSI
Unbiased Noun Choice Biased Noun Choice Biased Noun Choice

A gorps B A and B gorp A gorps B A and B gorp A gorps B A and B gorp
Features Fl %A0A1 Fl %A0A1 Fl1 %A0A1 F1 % A0A1 Fl % A0A1 Fl J%A0A1
1. Words 0.59 0.38 0.46 0.38 0.80 0.65 0.53 0.65 0.57 0.31 0.37 0.31
2. NPattern&V 0.53 0.28 0.54 0.28 0.81 0.67 0.53 0.67 0.56 0.31 0.39 0.31
3. NPattern 0.83 0.65 0.33 0.65 0.96 0.92 0.46 0.92 0.67 0.44 0.37 0.44
4. NPattern + NPattern&V | 0.83 0.65 0.33 0.65 0.95 0.90 0.45 0.90 0.73 0.53 0.44 0.53

[ 5. + VPosition [ 0.99 [ 0.96 [ 0.98 [ 0.00 “ 1.00 [ 1.00 [ 0.99 [ 0.01 “ 0.94 [ 0.88 [ 0.69 [ 0.39 ]

Table 1: Experiments showing the efficacy of Noun Pattern features for determining agent/patient roles in
simple two-noun sentences. The novel verb test sets assess whether the Baby SRL generalizes transitive
argument prediction to unseen verbs in the case of ‘A gorps B’ (increasing %AOAI and thus F1), and
overgeneralizes in the case of ‘A and B gorp’ (increasing %A0AI, which is an error). By varying the
sampling method for creating the test sentences we can start with a biased or unbiased lexical baseline,
demonstrating that the noun pattern features still improve over knowledge that can be contained in
typical noun usage. The simple noun pattern features are still effective at learning this pattern when

trained with more complex Wall Street Journal training data.

nouns is AO and the second of two nouns is A1l for
verbs not seen in training. Feature set 4 includes
both the abstract, non-verb-specific NPattern fea-
ture and the verb-specific version. This feature set
preserves the ability to generalize to unseen verbs;
thus the availability of the verb-specific NPattern
features during training did not prevent the abstract
NPattern features from gathering useful informa-
tion.

3.2 Lexical Cues for Role-Labeling

Thus far, the target nouns’ lexical features pro-
vided little help in role labeling, allowing us to
clearly see the contribution of the proposed sim-
ple structural features. Would our structural fea-
tures produce any improvement above a more re-
alistic lexical baseline? We created a new set of
test sentences, sampling the A nouns based on the
distribution of nouns seen as the first of two nouns
in training, and the B nouns based on the distri-
bution of nouns seen as the second of two nouns.
Given this revised sampling of nouns, the words-
only baseline is strongly biased toward AOA1 (bi-
ased results for feature set 1 in table 1). This high
baseline reflects a general property of conversa-
tion: Lexical choices provide considerable infor-
mation about semantic roles. For example, the 6
most common nouns in the Eve corpus are pro-
nouns that are strongly biased in their positions
and in their semantic roles (e.g., 'you’, ’it’). De-
spite this high baseline, however, we see the same
pattern in the unbiased and biased experiments in
table 1. The addition of the NPattern features (fea-
ture set 3) substantially improves performance on
A gorps B’ test sentences, and promotes over-
generalization errors on ’A and B gorp’ sentences.
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3.3 More Complex Training Data

For comparison purposes we also trained the Baby
SRL on a subset of the Propbank training data
of Wall Street Journal (WSJ) text (Kingsbury and
Palmer, 2002). To approximate the simpler sen-
tences of child-directed speech we selected only
those sentences with 8 or fewer words. This
provided a training set of about 2500 sentences,
most with a single verb and two nouns to be la-
beled. The CDS and WSJ data pose similar prob-
lems for learning abstract and verb-specific knowl-
edge. However, newspaper text differs from ca-
sual speech to children in many ways, including
vocabulary and sentence complexity. One could
argue that the WSJ corpus presents a worst-case
scenario for learning based on shallow representa-
tions of sentence structure: Full passive sentences
are more common in written corpora such as the
WSJ than in samples of conversational speech, for
example (Roland et al., 2007). As a result of such
differences, two-noun sequences are less likely to
display an AO-A1 sequence in the WSJ (0.42 AO-
Al in 2-noun sentences) than in the CDS training
data (0.67 AO-A1). The WSJ data provides a more
demanding test of the Baby SRL.

We trained the Baby SRL on the WSJ data, and
tested it using the biased lexical choices as de-
scribed above, sampling A and B nouns for novel-
verb test sentences based on the distribution of
nouns seen as the first of two nouns in training, and
as the second of two nouns, respectively. The WSJ
training produced performance strikingly similar
to the performance resulting from CDS training
(last 4 columns of Table 1). Even in this more
complex training set, the addition of the NPattern



features (feature set 3) improves performance on
A gorps B’ test sentences, and promotes over-
generalization errors on ’A and B gorp’ sentences.

3.4 Tests with Familiar Verbs

Features Total A0 Al A2 A4
1. Words 0.64 0.83 | 0.74 | 033 | 0.00
2. NPattern&V 0.67 0.86 | 0.77 | 045 | 0.44
3. NPattern 0.66 0.87 | 0.76 | 037 | 0.22
4. NPattern + NPattern&V 0.68 0.87 0.80 0.47 0.44

[ 5.+ VPosition [ 070 T 0.88 T 0.83 T 0.50 [ 0.50 ]

Table 2: Testing NPattern features on full SRL task
of heldout section 8 of Eve when trained on sec-
tions 9 through 20. Each result column reflects a
per argument F1.

Learning to interpret sentences depends on bal-
ancing abstract and verb-specific structural knowl-
edge. Natural linguistic corpora, including our
CDS training data, have few verbs of very high fre-
quency and a long tail of rare verbs. Frequent verbs
occur with differing argument patterns. For exam-
ple, have’ and "put’ are frequent in the CDS data.
"Have’ nearly always occurs in simple transitive
sentences that display the canonical word order of
English (e.g., ’I have cookies’). "Put’, in contrast,
tends to appear in non-canonical sentences that do
not display an agent-patient ordering, including
imperatives ("Put it on the floor’). To probe the
Baby SRL’s ability to learn the argument-structure
preferences of familiar verbs, we tested it on a
held-out sample of CDS from the same source
(Eve sample 8, approximately 234 labeled sen-
tences). Table 2 shows the same feature progres-
sion shown previously, with the full SRL test set.
The words-only baseline (feature set 1 in Table 2)
yields fairly accurate performance, showing that
considerable success in role assignment in these
simple sentences can be achieved based on the
argument-role biases of the target nouns and the
familiar verbs. Despite this high baseline, how-
ever, we still see the benefit of simple structural
features. Adding verb-specific (feature set 2) or
abstract NPattern features (feature set 3) improves
classification performance, and the combination of
both verb-specific and abstract NPattern features
(feature set 4) yields higher performance than ei-
ther alone. The combination of abstract NPattern
features with the verb-specific versions allows the
Baby SRL both to generalize to unseen verbs, as
seen in earlier sections, and to learn the idiosyn-
crasies of known verbs.
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3.5 Verb Position

The noun pattern feature results show that the
Baby SRL can learn helpful rules for argument-
role assignment using only information about the
number and order of nouns. It also makes the error
predicted by the structure-mapping account, and
documented in children, because it has no way to
represent the difference between the A gorps B’
and A and B gorp’ test sentences. At some point
the learner must develop more sophisticated syn-
tactic representations that could differentiate these
two. These could include many aspects of the sen-
tence, including noun-phrase and verb-phrase mor-
phological features, and word-order features. As a
first step in examining recovery from the predicted
error, we focused on word-order features. We did
this by adding a verb position feature (VPosition)
that specifies whether the target noun is before or
after the verb. Now simple transitive sentences in
training should support the generalization that pre-
verbal nouns tend to be agents, and post-verbal
nouns tend to be patients. In testing, the Baby
SRL’s classification of the *A gorps B’ and "A and
B gorp’ sentences should diverge.

When we add verb position information (fea-
ture set 5 in table 1 and 2), performance improves
still further for transitive sentences, both with bi-
ased and unbiased test sentences. Also, for the first
time, the AOA1 pattern is predicted less often for
A and B gorp’ sentences. This error diminished
because the classifier was able to use the verb po-
sition features to distinguish these from ’A gorps
B’ sentences.

Unbiased Lexical
A gorps B A and B gorp
Features F1 % A0A1 F1 %A0A1
1. Words 0.59 0.38 0.46 0.38
3. NPattern 0.83 0.65 0.33 0.65
6. VPosition | 0.99 0.95 0.97 0.00

Table 3: Verb Position vs. Noun Pattern features
alone. Verb position features yield better overall
performance, but do not replicate the error on ‘A
and B gorp’ sentences seen with children.

Verb position alone provides another simple ab-
stract representation of sentence structure, so it
might be proposed as an equally natural initial
representation for human learners, rather than the
noun pattern features we proposed. The VPo-
sition features should also support learning and
generalization of word-order rules for interpret-
ing transitive sentences, thus reproducing some of



the data from children that we reviewed above.
In table 3 we compared the words-only baseline
(set 1), words and NPattern features (set 3), and a
new feature set, words and VPosition (set 6). In
terms of correct performance on novel transitive
verbs (A gorps B’), the VPosition features out-
perform the NPattern features. This may be partly
because the same VPosition features are used in
all sentences during training, while the NPattern
features partition sentences by number of nouns,
but is also due to the fact that the verb position
features provide a more sophisticated representa-
tion of English sentence structure. Verb position
features can distinguish transitive sentences from
imperatives containing multiple post-verbal nouns,
for example. Although verb position is ultimately
a more powerful representation of word order for
English sentences, it does not accurately reproduce
a 21-month-old’s performance on all aspects of
this task. In particular, the VPosition feature does
not support the overgeneralization of the AOALl
pattern to the A and B gorp’ test sentences. This
suggests that children’s very early sentence com-
prehension is dominated by less sophisticated rep-
resentations of word order, akin to the NPattern
features we proposed.

3.6 Informativeness vs. Availability

In the preceding sections, we modeled increases
in syntactic knowledge by building in more so-
phisticated features. The Baby SRL escaped the
predicted error on two-noun intransitive sentences
when given access to features reflecting the posi-
tion of the target noun relative to the verb. This
imposed sequence of features is useful as a starting
point, but a more satisfying approach would be to
use the Baby SRL to explore possible reasons why
NPattern features might dominate early in acquisi-
tion, even though VPosition features are ultimately
more useful for English.

In theory, a feature might be unavailable early in
acquisition because of its computational complex-
ity. For example, lexical features are presumably
less complex than relative position features such as
NPattern and VPosition. In practice, features can
also be unavailable at first because of an informa-
tional lack. Here we suggest that NPattern features
might dominate VPosition features early in acqui-
sition because the early lexicon is dominated by
nouns, and it is easier to compute position relative
to a known word than to an unknown word. Many
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studies have shown that children’s early vocabu-
lary is dominated by names for objects and peo-
ple (Gentner and Boroditsky, 2001).
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Figure 1: Testing the consequences of the assump-
tion that Verb Position features are only active for
familiar verbs. The figure plots the bias of the fea-
tures *_N’ and ’_V’ to predict AO over Al, as the
difference between the weights of these connec-
tions in the learned network. Verb position fea-
tures win out over noun pattern features as the
verb vocabulary grows. Varying the verb familiar-
ity threshold ((a) vs. (b)) and the presence versus
absence of verb-specific versions of the structural
features ((b) vs. (c)) affects how quickly the verb
position features become dominant.

To test the consequences of this proposed infor-



mational bottleneck on the relative weighting of
NPattern and VPosition features during training,
we modified the Baby SRL’s training procedure
such that NPattern features were always active, but
VPosition features were active during training only
when the verb in the current example had been en-
countered a critical number of times. This repre-
sents the assumption that the child can recognize
which words in the sentence are nouns, based on
lexical familiarity or morphological context (Wax-
man and Booth, 2001), but is less likely to be able
to represent position relative to the verb without
knowing the verb well.

Figure 1 shows the tendency of the NPattern fea-
ture *_N’ (first of two nouns) and the VPosition
feature *_V’ (pre-verbal noun) to predict the role
AO as opposed to Al as the difference between
the weights of these connections in the learned net-
work. Figure 1(a) shows the results when VPosi-
tion features were active whenever the target verb
had occurred at least 5 times; in Figure 1(b) the
threshold for verb familiarity was 20. In both fig-
ures we see that the VPosition features win out
over the NPattern features as the verb vocabulary
grows. Varying the degree of verb familiarity re-
quired to accurately represent VPosition features
affects how quickly the VPosition features win
out (compare Figures 1(a) and 1(b)). Figure 1(c)
shows the same analysis with a threshold of 20,
but with verb-specific as well as abstract versions
of the NPattern and the VPosition features. In this
procedure, every example started with three fea-
tures: target noun, target predicate, NPattern, and
if the verb was known, added NPattern&V, VPo-
sition, and VPosition&V. Comparing Figures 1(b)
and 1(c), we see that the addition of verb-specific
versions of the structural features also affects the
rate at which the VPosition features come to dom-
inate the NPattern features.

Thus, in training the VPosition features become
dominant as the SRL learns to recognize more
verbs. However, the VPosition features are inac-
tive when the Baby SRL encounters the novel-verb
test sentences. Since the NPattern features are ac-
tive in test, the system generates the predicted error
until the bias of the NPattern features reaches 0.
Note in figure 1(c) that when verb-specific struc-
tural features were added, the Baby SRL never
learned to entirely discount the NPattern features
within the range of training provided. This result
is reminiscent of suggestions in the psycholinguis-
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Figure 2: Testing the ability of simple features
to cope with varying amounts of noisy feedback.
Even with noisy feedback, the noun pattern fea-
tures support learning and generalization to new
verbs of a simple agent-patient template for un-
derstanding transitive sentences. These results are
lower than those found in table 1 due to slightly
different training assumptions.

tics literature that shallow representations of syn-
tax persist in the adult parser, alongside more so-
phisticated representations (e.g., (Ferreira, 2003)).

3.7 Noisy Training

So far, the Baby SRL has only been trained with
perfect feedback. Theories of human language ac-
quisition assume that learning to understand sen-
tences is naturally a partially-supervised task: the
child uses existing knowledge of words and syntax
to assign a meaning to a sentence; the appropriate-
ness of this meaning for the referential context pro-
vides the feedback (e.g., (Pinker, 1989)). But this
feedback must be noisy. Referential scenes pro-
vide useful but often ambiguous information about
the semantic roles of sentence participants. For ex-
ample, a participant could be construed as an agent
of fleeing or as a patient being chased. In a final
set of experiments, we examined the generaliza-
tion abilities of the Baby SRL as a function of the
integrity of semantic feedback.

We provided noisy semantic-role feedback dur-
ing training by giving a randomly-selected argu-
ment label on 0 to 100% of examples. Following
this training, we tested with the A gorps B’ test
sentences, using the unbiased noun choices.

As shown in Figure 2, feature sets including
NPattern or VPosition features yield reasonable
performance on the novel verb test sentences up to
50% noise, and promote an AO-A1 sequence over



the words-only baseline even at higher noise lev-
els. Thus the proposed simple structural features
are robust to noisy feedback.

4 Conclusion

The simplified SRL classifier mimicked experi-
mental results with toddlers. We structured the
learning task to ask whether shallow representa-
tions of sentence structure provided a useful ini-
tial representation for learning to interpret sen-
tences. Given representations of the number and
order of nouns in the sentence (noun pattern fea-
tures), the Baby SRL learned to classify the first
of two nouns as an agent and the second as a pa-
tient. When provided with both verb-general and
verb-specific noun pattern features, the Baby SRL
learned to balance verb-specific and abstract syn-
tactic knowledge. By treating each noun as an
argument, it also reproduced the errors children
make. Crucially, verb-position features improved
performance when added to the noun-pattern fea-
ture, but when presented alone failed to produce
the error found with toddlers. We believe that
our model can be naturally extended to support
the case in which the arguments are noun phrases
rather than single noun words and this extension is
one of the first steps we will explore next.
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Abstract as on the distributional information about the con-
texts in which they appear. Several computational
We present an incremental Bayesian model for models have been proposed that draw on one or more
the unsupervised learning of syntactic cate- of the above-mentioned properties in order to group
gories from raw text. The model draws infor-  \yords into discrete unlabeled categories. Most ex-
mation from the distributional cues of words isting models only intend to show the relevance of
within an utterance, while explicitly bootstrap-  sych properties to the acquisition of adult-like syn-
ping its development on its own partially-  tactic categories such as nouns and verbs; hence, they
learned knowledge of syntactic categories. do not necessarily incorporate the types of learning
Testing our model on actual child-directed mechanisms used by children (Schiitze, 1993; Red-
data, we demonstrate that it is robust to noise, ington et al., 1998; Clark, 2000; Mintz, 2003; Onnis
learns reasonable categories, manages lexicaland Christiansen, 2005). For example, in contrast to
ambiguity, and in general shows learning be- the above models, children acquire their knowledge
haviours similar to those observed in children.  of syntactic categories incrementally, processing the
utterances they hear one at a time. Moreover, chil-
dren appear to be sensitive to the fact that syntactic

An important open problem in cognitive science an@ategories are partially defined in terms of .other cat-
artificial intelligence is how children successfullyegories, e.g., nouns tend to follow determiners, and
learn their native language despite the lack of explic@n be modified by adjectives.

training. A key challenge in the early stages of lan- \we thus argue that a computational model should
guage acquisition is to learn the notion of abstragk incremental, and should use more abstract cate-
syntactic categories (e.g., nouns, verbs, or determisry knowledge to help better identify syntactic cat-
ers), which is necessary for acquiring the syntactigories. Incremental processing also allows a model
structure of language. Indeed, children as young @sincorporate its partially-learned knowledge of cat-
two years old show evidence of having acquired @ories, letting the moddlootstrapits development.
good knowledge of some of these abstract categorigs our knowledge, the only incremental model of
(Olguin and Tomasello, 1993); by around six years @htegory acquisition that also incorporates bootstrap-
age, they have learned almost all syntactic categorjgig is that of Cartwright and Brent (1997). Their
(Kemp et al., 2005). Computational models help @mplate-based model, however, draws on very spe-
elucidate the kinds of learning mechanisms that mgjfic |inguistic constraints and rules to learn cate-
be capable of achieving this feat. Such studies nggies. Moreover, their model has difficulty with the
light on the possible cognitive mechanisms at wo riability of natural language data.

in human language acquisition, and also on potentialW d4d h h . by develoi
means for unsupervised learning of complex linguis- "/e @ddress these shortcomings by developing an

tic knowledge in a computational system incremental probabilistic model of syntactic category

Learning the syntactic categories of words hgquisition that uses aQomain—generaI learning al.go-
been suggested to be based on the morphological A4y The model also incorporates a bootstrapping

phonological properties of individual words, as Weﬁnechanlsm, and leamns syntactic cgtegorlt_as by lQOk'
Ing only at the general patterns of distributional sim-

©2008.  Licensed under theCreative Commons jlarity in the input. Experiments performed on actual
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cense (http://creativecommons.org/licenses/by-rg-@a/ (noisy) child-directed data show that an explicit boot-

Some rights reserved. strapping component improves the model’s ability to
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learn adult-like categories. The model's learning trds existing clusters, or a new one:

jectory resembles some relevant behaviours seen in

children, and we also show that the categories that ~ BestCluster(F) = argmax P(k|[F) (1)
our model learns can be successfully used in a lexical k

disambiguation task. wherek = 0,1,.., K, including the new cluster

. . k = 0. Using Bayes’ rule, and dropping(F’) from
2 Overview of the Computational Model the denominator, which is constant for &jlwe find:

We adapt a probabilistic incremental model of un- P(k)P(F|k)
supervised categorization (i.e., clustering) proposed P(k|F) = ) P(k)P(Flk) (2
by Anderson (1991). The original model has been

used to simulate human categorization in a variefhe prior probability ofk, P(k), is given by:
of domains, including the acquisition of verb argu-

ment structure (AIishahi_ and Stevenson, 20(_)8_3). Our p k) = Cni’f, 1<k<K (3)
adaptation of the model incorporates an explicit boot- (L=c)+cn
strapping mechanism and a periodic merge of clus- PO) = 1—c 4)
ters, both facilitating generalization over input data.  (I—¢)+en

Here, we explain the input to our model (Section 2.1),

the categorization model itself (Section 2.2), how w&here ny; is the number of frames i, andn is
estimate probabilities to facilitate bootstrapping (Se#€ total number of frames observed at the time of
tion 2.3), and our approach for merging similar clugirocessing frame-. Intuitively, a well-entrenched

ters (Section 2.4). (large) cluster should be a more likely candidate for
categorization than a small one. We reserve a small
2.1 Input Frames probability for creating a new cluster (Eqg. 4). As the

We aim to learn categories of words, and we do th odel processes more input overall, it shquld become
ess necessary to create new clusters to fit the data, so

by looking for groups of similar word usages. Thu 0 d ith | | . i
rather than categorizing a word alone, we categorizep cfl ) decreases with large. In our experiments, we
setc to a large valuef.95, to further increase the

word tokenwith its context from that usage. The ini-. "~ - . T
tial input to our model is a sequence of unannotaté'éel;]hoc’d of usllllng e;qstlfng clustef’s. |
utterances, that is, words separated by spaces. BefBr e probability of a frame” given a ¢ usterk,
being categorized by the model, each word usage.i|4 |k).’ depends on the probab|I|t|es_ Of.the features
the input is processed to producdramethat con- [ given k. We assume that the individual fea-
tains the word itself (the head word of the frame) an%&res n gframe are conditionally independent given
its distributional context (the two words before and’ hence:

after it). For example, in the utterance ‘I gave Josie
a present, when processing the head wiodie we
create the following frame for input to the categoriza-
tion system:

P(F|k) = Pg(wo|k) 1T P(w|k) (5)
ie{—2,—1,+1,4+2}

where Py is the head word probability, i.e., the like-
feature| w_o w_; wyp Wi, Wio lihood of seeingug as a head word among the frames
I gave Jose a present  in clusterk. The context word probability>(w;|k) is
the likelihood of seeingy; in thei*" context position
wherew, denotes the head word feature, ands, ot the frames in clustek. Next, we explain how we
w-1, w41, wyo are the context word features. A CoNggtimate each of these probabilities from the input.
text word may be ‘null’ if there are fewer than two

preceding or following words in the utterance. 2.3 Probabilities and Bootstrapping

For the head word probability’y (wg|k), we use a
smoothed maximum likelihood estimate (i.e., the pro-
Using Anderson’s (1991) incremental Bayesian caportion of frames in clustek with head wordwy).
egorization algorithm, we learn clusters of word usor the context word probability”(w; |k), we can
ages (i.e., the input frames) by drawing on the overddrm two estimates. The first is a simple maximum
similarity of their features (here, the head word anikelihood estimate, which enforces a preference for
the context words). The clusters themselves are rpéating clusters of frames with the same context
predefined, but emerge from similarities in the inputvords. That is, head words in the same cluster will
More formally, for each successive frankeéin the —(———— _ - .

The prior P(k) is equivalent to the prior in a Dirichlet pro-

input, pr_ocessed in the_ order of the input words, Weess mixture model (Sanborn et al., 2006), commonly used for
place F' into the most likely cluster, either from thesampling clusters of objects.

2.2 Categorization
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tend to share the same adjacent words. We call timgorrectly generalizing, leading to clustering errors
word-based estimatB,,,.4. which may be difficult to overcome. Children face

Alternatively, we may consider the likelihood ofa similar problem in early learning, but there is ev-
seeing not just the context word, butsimilarwords idence that they may manage the problem by using
in that position. For example, if; can be used as aconservative strategies (see, e.g., Tomasello, 2000).
noun or a verb, then we want the likelihood of seeinghildren may form specific hypotheses about each
othernouns or verbs in positiohof frames in cluster word type, only later generalizing their knowledge to
k. Here, we use the partial knowledge of the learneiimilar words. Drawing on this observation, we form
clusters. That is, we look over all existing clustersarly small clusters specific to the head word type,
k', estimate the probability that; is the head word then later aid generalization by merging these smaller
of frames ink’, then estimate the probability of usingclusters. By doing this, we ensure that the model only
the head words from those other clusters in positiorgroups words of different types when there is suffi-
in clusterk. We refer to this category-based estimatgent evidence for their contextual similarity.

as Peat: Thus, when a cluster has been newly created, we
require that all frames put into the cluster share the
Pear(wilk) = Py (w;|K')Pi(K'|k) ~ (6) same head word tyfeWhen clusters are small, this
K’ prevents the model from making potentially incorrect
generalizations to different words. Periodically, we
evaluate a set of reasonably-sized clusters, and merge

airs of clusters that have highly similar contexts (see

port this we record the categorizatiqn decisions t ‘i“s}Jow for details). If the model decides to merge two
model has made. When we categorize the frames Qf<iars with different head word types—e.g., one
an utterance, we get a sequence of clusters for tlaﬂ} ’

. - o . ) ster with all instances oflog and another with
utterance, which gives additional information t0 SUR: i has in effect made a decision to generalize

plement t/he frame. We use this information to e_Stfhtuitiver, the model has learned that the contexts
mate P;(k'|k) for future categorizations, again using, the newly merged cluster apply to more than one

a smoothed maximum “ke“h.OOd formula. . . word type. We now say thanyword type could be
In contrast to theP,,,q estimate, the estimate Na member of this cluster, if its context is sufficiently

Ea. (6) .prefers clusters Of. frames that use the sa fhilar to that of the cluster. Thus, when categoriz-

categoriesas context. While some of the results %ha a new word token (represented as a frafje

these preferences will be the same, the Iatterappro% model can choose from among the clusters with

lets the_ model make second-order mference_s ab%%atching head word, and any of these ‘generalized’
categories. There may be no context words in co U

. "Yusters that contain mixed head words.
mon between the current frame and a potential clus-
ter, but if the context words in the cluster have be%l
found to be distributionally similar to those in the[h
frame, it may be a good cluster for that frame.

We equally weight the word-based and th
category-based estimates B(w;|k) to get the like-

lihood of a context word; that is:

where P;(k'|k) is the probability of finding usages
from clusterk’ in position: given clusterk. To sup-

Periodically, we look through a subset of the clus-
rs to find similar pairs to merge. In order to limit

e number of potential merges to consider, we only
examine pairs of clusters in which at least one cluster
Ras changed since the last check. Thus, after pro-
cessing everyl00 frames of input, we consider the
clusters used to hold those recéfnt frames as can-
didates to be merged with another cluster. We only
consider clusters of reasonable size (here, at lgast
frames) as candidates for merging. For each candi-
This way, the model sees an input utterance Siml."@ate pair of clustersk; and ky, we first evaluate a
neously as a sequence of words and as a sequencge®fristic merge score that determines if the pair is
categories. It is thé%,; component, by using devel-gppropriate to be merged, according to some local
oping category knowledge, that yields the bootstragriteria, i.e., the size and the contents of the candi-
ping abilities of our model. date clusters. For each suggested merge (a pair whose
merge score exceeds a pre-determined threshold), we
then look at the set of all clusters, th®bal evidence,

Our model relies heavily on the similarity of wordo decide whether to accept the merge.

contexts in order to find category structure. In nat- The merge score combines two factors: the en-

ural language, these context features are highly vaianchment of the two clusters, and the similarity of
able, so itis difficult to draw consistent structure from

the 'npl_Jt 'n_the eaf'Y Stz_iges Qf an 'ncreme_ntal _mOde * ZHowever, a word type may exist in several clusters (e.g., for
When little information is available, there is a risk ofiistinct noun and verb usages), thus handling lexical auityig

1 1
P(wz|k) ~ §Pwo7"d(wi|k) + §Pcat(wi|k) (7)

2.4 Generalization
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their context features. The entrenchment measun8 (years;months) and 3;0. There are 34 one-hour
identifies clusters that contain enough frames to sh@@ssions per child over the course of a year. The age
a significant trend. We take a sigmoid function oveange of the children roughly corresponds with the
the number of frames in the clusters, giving a sofiges at which children show the first evidence of syn-
threshold approaching@ for small clusters and for tactic categories.
large clusters. The similarity measure identifies pairsWe extract the mothers’ speech from each of the
of clusters with similar distributions of word and cattranscripts, then concatenate the input of all 12 chil-
egory contexts. Given two clusters, we measure theen (all of Anne’s sessions, followed by all of Aran’s
symmetric Kullback-Leibler divergence for each corsessions, and so on). We remove all punctuation. We
responding pair of context feature probabilities (irspell out contractions, so that each token in the input
cluding the category context’ (k’|k), 8 pairs in to- corresponds to only one part-of-speech (PoS) label
tal), then place the sum of those measures on anottmsun, verb, etc.). We also remove single-word ut-
sigmoid function. The merge score is the sum of thterances and utterances with a single repeated word
entrenchment and similarity measures. type, since they contain no distributional informa-
Since it is only a local measure, the merge scoretisn. We randomly split the data into development
not sufficient on its own for determining if a mergeand evaluation sets, each containing approximately
is appropriate. For each suggested merge, we tf@83,000 tokens. We use the development set to fine-
examine the likelihood of a sample of input frametine the model parameters and develop the experi-
(here, the last00 frames) under two states: the sehents, then use the evaluation set as a final test of
of clusters before the merge, and the set of clustergshe model. We further split the development set into
the merge is accepted. We only accept a merge ifatbout 672,000 tokens (about 8,000 types) for training
results in an increase in the likelihood of the sampénd 11,000 tokens (1,300 types) for validation. We
data. The likelihood of a sample set of framés, split the evaluation set comparably, into training and

over a set of clusters, is calculated as in: test subsets. All reported results are for the evaluation
set. A conservative estimate suggests that children

P©S) = [ D PFk)Pk) (8) are exposed to at least 1.5 million words of child-
FeSkek directed speech annually (Redington et al., 1998), so

this corpus represents only a small portion of a child’s

available input.

To test our proposed model, we train it on a sample of

language representative of what children would hedr, Experiment 1: Adult Categories

and _evaluate its categorization a_bllltles. We h.a\ffl M ethods

multiple goals in this evaluation. First, we determine

the model's ability to discover adult-level syntacti¥Ve use three separate versions of the categorization

categories from the input. Since this is intended to f@odel, in which we change the components used to

a cognitively plausible learning model, we also congstimate the context word probability? (w;|k) (as

pare the model’'s qualitative learning behaviours witsed in Eq. (5), Section 2.2). In theord-based

those of children. In the first experiment (Section 4jnodel, we estimate the context probabilities using

we compare the model's categorization with a gofehly the words in the context window, by directly

standard of adult-level syntactic categories and exaH$ing the maximum-likelihood”,,.4 estimate. The

ine the effect of the bootstrapping component. TH¥@otstrapmodel uses only the existing clusters to es-

second experiment (Section 5) examines the moddiate the probability, directly using th&.,; esti-

development of three specific parts of speech. D@ate from Eq. (6). Theombinationmodel uses an

velopmental evidence suggests that children acque@ually-weighted combination of the two probabili-

different syntactic categories at different ages, so W€s, as presented in Eq. (7).

compare the model’s learning rates of nouns, verbs,We run the model on the training set, categoriz-

and adjectives. Lastly, we examine our model’s abilrg each of the resulting frames in order. After every

ity to handle lexically ambiguous words (Section 6)L0,000 words of input, we evaluate the model's cate-

English word forms commonly belong to more thagiorization performance on the test set. We categorize

one syntactic category, so we show how our mode#ach of the frames of the test set as usual, treating the

uses context to disambiguate a word’s category. text as regular input. So that the test set remains un-
In all experiments, we train and test the model useen, the model does not record these categorizations.

ing the Manchester corpus (Theakston et al., 2001 i

from the CHILDES database (MacWhinney, 2000f+2 Evaluation

The corpus contains transcripts of mothers’ conveFhe PoS tags in the Manchester corpus are too fine-

sations with 12 British children between the ages gfained for our evaluation, so for our gold standard

3 Evaluation M ethodology

92



we map them to the following 11 tags: noun, ve 02

auxiliary, adjective, adverb, determiner, conjuncti Svomdbigatio';
. .. . N T I T I I ora—pase
negation, preposition, infinitiveo, and ‘other.” When o151~ — — Bootstrap

we evaluate the model’s categorization performat
we have two different sets of clusters of the words _
the test set: one set resulting from the gold stand "
and another as a result of the model’s categorizat
We compare these two clusterings, using the adju 0.5
Rand index (Hubert and Arabie, 1985), which m
sures the overall agreement between two cluster 0 : : : : : :

. . 0 1 2 3 4 5 6
of a set of data points. The measure is ‘corrected Training set size (words)
chance,” so that a random grouping has an expected

score of zero. This measure tends to be very cofigure 1: Adjusted Rand Index of each of three mod-

servative, giving values much lower than an intuitivg|s’ clusterings of the test set, as compared with the
percentage score. However, it offers a useful relatig®s tags of the test data.

comparison of overall cluster similarity.

0.1r / -------- IR |

x 10°

43 Results 5 Experiment 2: Learning Trends

Fiqure 1 aives the adiusted Rand scores of the thrA common trend observed in children is that differ-
\gu gV Ju et syntactic categories are learned at different rates.
model variantsword-basegd bootstrap and combi-

nation Higher values indicate a better fit with theghIIdren appear to have learned the category of nouns

I . 23 months of age, verbs shortly thereafter, and
gold-standard categorization scheme. The adjustgéectives relativelyglate (Kemp et );I 2005). Our
Rand score is corrected for chance, thus providing%% ¥ ’

. . ! al in this experiment is to look for these specific
built-in baseline measure. Since the expected sc €nds in the behaviour of our model. We thus simu-
for a random clustering is zero, all three model varj; y

ants operate at above-baseline performance _ate an _experiment v_vhere_ a child uses a novel word's
) linguistic context to infer its syntactic category (e.g.,
As seen in Figure 1, the word-based model gaifgmasello et al., 1997). For our experiment, we ran-
an early advantage in the comparison, but its pfomly generate input frames with novel head words
formance approaches a plateau at around 200,Q00ng contexts associated with nouns, verbs, and ad-
words of input. This suggests that while simplgsctives, then examine the model's categorization in
mation early in the model's development, the infoimate the developmental trends of children, who tend

mation is not sufficient to sustain long-term learng |earn the category of ‘noun’ before ‘verb, and both
ing. The bootstrap model learns much more slowlyt these before ‘adjective.”

which is unsurprising, given that it depends on hav-
ing some reasonable category knowledge in orderda Methods

develop its clusters—leading to a chicken-and-eg?/ ) ¢ ing th
problem. However, once started, its performance inj'c 9enerate new input frames using the most com-

proves well beyond the word-based model’s plated[ﬁ‘.on syntactic patterns in the training data. For each
§.the noun, verb, and adjective categories (from the

These results suggest that on its own, each comﬁ ;
nent of the model may be effectively throwing awa9°|d standard), we collect the five most frequent PoS

useful information. By combining the two models>€duences in which these are used, bounded by the
sual four-word context window. For example, the

the combination model appears to gain compleme'ﬁ - ) ‘ 3
tary benefits from each component, outperformi djective set includes the sequence 'V Dt N
II', where the sentence ends after the N. For each

both. The word-based component helps to creat X X
base of reliable clusters, which the bootstrap comp‘a—the three categories, we generate each of 500 input

nent uses to continue development frames by sampling one of the five PoS sequences,
After all of the training text, the combinationweightecj by frequency, then sampling words of the

. right PoS from the lexicon, also weighted by fre-
model uses 411 clusters to categorize the test tok LFency We replace the head word with a novel word
(compared to over 2,000 at the first test point). Whi ' ’

) ; rcing the model to use only the context for cluster-
this seems excessive, we note that 92.5% of the tﬁ% Since the context words are chosen at random
tokens are placed in the 25 most populated clusters, - ’

Tnost of the word sequences generated will be novel.
This makes the task more difficult, rather than sim-
See www.cs.toronto.edu/ chris/syncat for examples. ply sampling utterances from the corpus, where rep-
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etitions are common. While a few of the sequen 5
may exist in the training data, we expect the mo || — Lo

to mostly use the underlying category information 0.2F| _ _ _ adjectives
cluster the frames.

We intend to show that the model uses contex
find the right category for a novel word. To evalu:
the model’'s behaviour, we let it categorize each
the randomly generated frames. We score each fr  o.0s5f
as follows: if the frame gets put into a new clust
it earns score zero. Otherwise, its score is the | %
portion of frames in the chosen cluster matching Training set size (words) «10°
correct part of speech (we use a PoS-tagged version
of the training corpus; for example, a noun frame pligure 2: Comparative learning trends of noun, verb,
into a cluster with 60% nouns would get 0.6). We reand adjective patterns.
port the mean score for each of the noun, verb, and
adjective sets. Intuitively, the matching score ind%P(

T

v
Nouns

0.15f

0.1r

Matching score

recovery (also observed in children; see, e.g.,
eomasello, 2000). When the model merges two clus-
rs, the contents of the resulting cluster can initially
the right type, then it has formed a category for t e quite heterogen_eous. Furthermore, the new cluster
IS much larger, so it becomes a magnet for new cate-

contextual information in that frame. i Thi Its | lizati
We use the full combination model (Eq. (7)) tJorizations. This results in overgeneralization errors,

evaluate the learning rates of individual parts (ﬁlving th_e pe_riodic (jrops seen in Figure 2. While our
speech. We run the model on the training subset 8{mulat|on in Section 2.4 aims to prevent such er-

the evaluation corpus. After every 10,000 words rs, they are likely to occur on accasion. E\_/e_ntually,
input, we use the model to categorize ,the 1,500 colre model recovers from these errors, and it is worth

text frames with novel words (500 frames each f(5}6ting that the fluctuations diminish over time. As the
odel gradually improves with more input, the dom-

noun, verb, and adjective). As in experiment 1, tH2 t clusters b heavil ¢ hed. and i
model does not record these categorizations. Inant clusters become heavily entrenched, and Incon-

sistent merges are less likely to occur.

cates how well the model recognizes that the giv
contexts are similar to input it has seen before. If th
model clusters the novel word frame with others

5.2 Results . . . .
_ _ 6 Experiment 3. Disambiguation
Figure 2 shows the mean matching scores for each

of the tested parts of speech. Recall that since thbe category structure of our model allows a single
frames each use a novel head word, a higher matg¥prd type to be a member of multiple categories. For
ing score indicates that the model has learned to cexample kisscould belong to a category of predom-
rectly recognize the contexts in the frames. This do#mgmntly noun usagesC@an | have a kisg? and also
not necessarily mean that the model has learned din-a category of verb usageigs me). As a result,
gle, complete categories of ‘noun,’ ‘verb, and ‘adthe model easily represents lexical ambiguity. In this
jective, but it does show that when the head worexperiment, inspired by disambiguation work in psy-
gives no information, the model can generalize baselolinguistics (see, e.g., MacDonald, 1993), we ex-
on the contextual patterns alone. The model learamine the model's ability to correctly disambiguate
to categorize novel nouns better than verbs until latategory memberships.
in training, which matches the trends seen in children.
Adjectives progress slowly, and show nearly no learf:l Methods
ing ability by the end of the trial. Again, this appear§&iven a word that the model has previously seen as
to reflect natural behaviour in children, although thearious different parts of speech, we examine how
effect we see here may simply be a result of the overell the model can use that ambiguous word’s con-
all frequency of the PoS types. Over the entire corptext to determine its category in the current usage.
(development and evaluation), 35.4% of the word té-or example, by presenting the wokiks in sepa-
kens are nouns and 24.3% are verbs, but only 2.9%ie noun and verb contexts, we expect that the model
are tagged as adjectives. The model, and similarlyshould categoriz&issas a noun, then as a verb, re-
child, may need much more data to learn adjectivepectively. We also wish to examine the effect of the
than is available at this stage. target word’s lexical bias, that is, the predominance of
The scores in Figure 2 tend to fluctuate, parti@ word type to be used as one category over another.
ularly for the noun contexts. This fluctuation corAs with adults, ifkissis mainly used as a noun, we
responds to periods of overgeneralization, followeskpect the model to more accurately categorize the
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Figure 3: Syntactic category disambiguation. Shown areptbportions of nouns and verbs in the chosen
clusters for ambiguous words used in either noun (N) or VEjlzontexts.

word in a noun context than in a verb context. novel word conditions, we see that the clusters cho-
We focus on noun/verb ambiguities. We artificiallpen for the noun context frames (labeled N) contain
generate input frames for noun and verb contexts @®re nouns than verbs, and the clusters chosen for
in experiment 2, with the following exceptions. Tdhe verb context frames (V) contain more verbs than
make the most use of the context information, we atouns. This suggests that although the model’s past
low no null words in the input frames. We also ensurexperience with the head word is not sufficiently in-
that the contexts are distinctive enough to guide ditprmative, the model can use the word's context to
ambiguation. For each PoS sequence surroundingigambiguate its category. In the ‘unambiguous’ and
noun (e.g., 'V Dethead Prep Det’), we ensure thatthe ‘biased’ conditions, the head words’ lexical biases
over 80% of the instances of that pattern in the coae too strong for the model to overcome.
pus are for nouns, and likewise for verbs. However, the results show a realistic effect of the
We test the model’s disambiguation in six conexical bias. Note the contrasts from the ‘noun only’
ditions, with varying degrees of lexical bias. Uncondition, to the ‘noun biased’ condition, to ‘equibi-
ambiguous (‘noun/verb only’) conditions test wordgsed’ (and likewise for the verb biases). As the lex-
seen in the corpus only as nouns or verbs (10 worggl bias weakens, the counter-bias contexts (e.g., a
each). ‘Biased’ conditions test words with a cledtoun bias with a verb context) show a stronger ef-
bias (15 with average 93% noun bias; 15 with avetect on the chosen clusters. This is a realistic effect
age 84% verb bias). An ‘equibiased’ condition usesof disambiguation seen in adults (MacDonald, 1993).

words of approximately equal bias, and a novel wofltrongly biased words are more difficult to categorize
condition provides an unbiased case. in conflict with their bias than weakly biased words.

For the six sets of test words, we measure the ef-
fect of placing each of these words in both noun anfd Related Work
verb contexts. That is, each word in each conditiog - . L
everal existing computational models use distribu-

was used as the head word in each of the 500 noun ' . ; N
Itlonal cues to find syntactic categories. Schitze

azdcfgg[g%rgo?:mz%ﬁ;ﬁoggmi: d I;graeﬁi[?np &993) employs co-occurrence statistics for common
'words, while Redington et al. (1998) build word dis-

and 500 frame§ wh(?re I IS us_,ed, as a verb. We thf"flrﬂ)utional profiles using corpus bigram counts. Clark
use the fully-trained ‘combination’ model (Eq. (7)) tg

categorize each frame. Unlike in the previous eXpel(ZOOO) also builds distributional profiles, introducing

lfslm iterative clustering method to better handle am-

ment, we do not let the model create new clusters. For. . ;

. o biguity and rare words. Mintz (2003) shows that

each frame, we choose the best-fitting existing clus- .

ter, then examine that cluster's contents. As in ex-o\ Yory simple three-word templates can effec-
’ j & ly define syntactic categories. Each of these mod-

periment 2, We measure the proportions of each P8\§ademonstrates that by using the kinds of simple in-
of the frames in this cluster. We then average theFoermation to which children are known to be sensi-

measures over all tested frames in each condition. .. . .
tive, syntactic categories are learnable. However, the

62 Results specific learning mechanisms they use, such as the
: hierarchical clustering methods of Redington et al.

Figure 3 presents the measured PoS proportions (@298), are not intended to be cognitively plausible.

each of the six conditions. For both the equibias andIn contrast, Cartwright and Brent (1997) propose
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an incremental model of syntactic category acquishantic features, thereby allowing the model to draw
tion that uses a series of linguistic preferences to fih correlations between semantic and syntactic cate-
common patterns across sentence-length templatgsies in learning.

Their model presents an important incremental al-

gorithm which is very effective for discovering catAcknowledgments

egories in artificial languages. However, the modeg/e thank Afra Alishahi for valuable discussions,
reliance on templates limits its applicability to tranang the anonymous reviewers for their comments.
scripts of actual spoken language data, which contifis gratefully acknowledge the financial support of

high variability and noise. NSERC of Canada and the University of Toronto.
Recent models that apply Bayesian approaches

to PoS tagging are not incremental and assumeR&ferences
fixed number of tags (Goldwater and Griffiths, 20074lishahi, A. and S. Stevenson 2008. A computational
Toutanova and Johnson, 2008). In syntactic cate-model for early argument structure acquisitioGog-

gory acquisition, the true number of categories is u'rbl\— r(rjitive Scj]ergefsg)- The adant .
: : nderson, J. R. . The adaptive nature of human cate-
known, and must be inferred from the input. gorization.Psychological Reviey®8(3):409-429.

Cartwright, T. A. and M. R. Brent 1997. Syntactic catego-
rization in early language acquisition: formalizing the
role of distributional analysisCognition 63:121-170.

We 'have developed _a_ f:om.putat'ional model of SY@ark, A. 2000. Inducing syntactic categories by context
tactic category acquisition in children, and demon- distribution clustering. I'CoNLL200Q pp. 91-94.

strated its behaviour on a corpus of naturalistic chilgoldwater, S. and T. L. Griffiths 2007. A fully bayesian
directed data. The model is based on domain-generahpproach to unsupervised part-of-speech tagging. In
properties of feature similarity, in contrast to earlier, Proc. of ACL2007pp. 744751 _ N
more linguistically-specific methods. The incremerfdubert, L. and P. Arabie 1985. Comparing partitions.
tal nature of the algorithm contributes to a substantigl Journal of Classification2:193-218.

. . . L emp, N., E. Lieven, and M. Tomasello 2005. Young chil-
improvement in psychological plausibility over pre- drgn’s knowledge of the “determiner” and “adje?:tive"

vious models _of syntacti_c_ cz_altegory learning. Further- categoriesJ. Speech Lang. Hear. Ri8:592—609.
more, due to its probabilistic framework, our modeyiacDonald, M. C. 1993. The interaction of lexical and
is robust to noise and variability in natural language. syntactic ambiguityJ. Mem. Lang.32:692—-715.

Our model successfully uses a syntactic bootstragacWhinney, B. 2000The CHILDES Project: Tools for
ping mechanism to build on the distributional proper- analyzing talkvolume 2: The Database. Lawrence Erl-

. L _ . baum, Mahwah, NJ, 3 edition.
ties of words. Using its existing partial knowledg(ﬁ/l.

f categories, the model applies a second level o*mz’-T' H. 2003 Frequent frames as a cue for gram-
of categ , Apphes | Olmatical categories in child directed spee€ognition
analysis to learn patterns in the input. By making 90:91-117.
few assumptions about prior linguistic knowledgepiguin, R. and M. Tomasello 1993. Twenty-five-month-
the model develops realistic syntactic categories fromold children do not have a grammatical category of verb.
the input data alone. The explicit bootstrapping com- Cognitive Developmeng:245-272. o
ponent improves the model’s ability to learn adult caf2"nis, L. and M. H. Christiansen 2005. New beginnings

. . . ; nd happy endings: psychological plausibility in com-
egories, and its learning trajectory resembles reIeva”tgutatioreg?/modelgof Ignéuage%cqui%itimgsézow

behaviours seen in children. - Using the ConteXtuﬁledington, M., N. Chater, and S. Finch 1998. Distribu-
patterns of individual parts of speech, we show dif- tional information: A powerful cue for acquiring syn-
ferential learning rates across nouns, verbs, and adtactic categoriesCognitive Science22(4):425-469.
jectives that mimic child development. We also showanborn, A. N., T. L. Griffiths, and D. J. Navarro 2006. A
an effect of a lexical bias in category disambiguation. More rational model of CategorIZfitloﬁo.gSmZOOB

The algorithm is currently only implemented as aﬁchUtze, H. 1993. Part of speech induction from scratch.

. i . In Proc. of ACL1993pp. 251-258.
incremental process. However, comparison Wlth'ﬁ]eakston A L E V Lieven J. M. Pine. and C. F. Row-

batch version of the algorithm, such as by using @|ang 2001. The role of performance limitations in the
Gibbs sampler (Sanborn et al., 2006), would help usacquisition of verb-argument structure: an alternative
further understand the effect of incrementality on lan- account.J. Child Lang, 28:127-152.

guage fidelity. Tomasello, M. 2000. Do young children have adult syn-

While we have only examined the effects of learn- taCtiCIfonsﬂpe:\len'glfﬁogn;i%” 34:209_?5? ol 1997
. . : i : . _Tomasello, M., N. ar, K. Dodson, and L. Rekau :
ing categories from simple distributional information, Differential productivity in young children’s use of
the feature-based framework of our model could eas-nouns and verbsl. Child Lang, 24:373-387.
ily be extended to include other sources of informaptanova, K. and M. Johnson 2008. A Bayesian LDA-
tion, such as morphological and phonological cues.based model for semi-supervised part-of-speech tag-

Furthermore, it would also be possible to include se-9ing. INNIPS2008

8 Conclusions and Future Directions

96



Fully Unsupervised Graph-Based Discovery of Genergbpecific Noun
Relationships from Web Corpora Frequency Counts

Gaél Dias Raycho Mukelov Guillaume Cleuziou

HULTIG HULTIG LIFO
University of University of University of
Beira Interior Beira Interior Orléans

ddg@li . ubi . pt

Abstract.

In this paper, we propose a new metho-
dology based on directed graphs and the
TextRank algorithm to automatically in-
duce general-specific noun relations from
web corpora frequency counts. Different
asymmetric association measures are im-
plemented to build the graphs upon
which the TextRank algorithm is applied
and produces an ordered list of nouns
from the most general to the most specif-
ic. Experiments are conducted based on
the WordNet noun hierarchy and assess
65.69% of correct word ordering.

1 Introduction

rai cho@ul tig.di.ubi.pt

cl euzi ou@ni v- or | eans. pt

In this paper, we are interested in dealing with
the second problem of the construction of an or-
ganized lexical resource i.e. discovering general-
specific noun relationships, so that correct nouns
are chosen to label internal nodes of any hierar-
chical knowledge base, such as the one proposed
in (Dias et al., 2006). Most of the works pro-
posed so far have (1) used predefined patterns or
(2) automatically learned these patterns to identi-
fy hypernym/hyponym relationships. From the
first paradigm, (Hearst, 1992) first identifiesed s

of lexico-syntactic patterns that are easily recog-
nizable i.e. occur frequently and across text genre
boundaries. These can be called seed patterns.
Based on these seeds, she proposes a bootstrap-
ping algorithm to semi-automatically acquire
new more specific patterns. Similarly, (Carabal-

lo, 1999) uses predefined patterns such as “X is a

Taxonomies are crucial for any knowledgekind of Y” or “X, Y, and other Zs” to identify
based system. They are in fact important becaudgpernym/nyponym relationships. This approach
they allow to structure information, thus fostero information extraction is based on a technique
ing their search and reuse. However, it is wefialled selective concept extraction as defined by
known that any knowledge-based system suffetRiloff, 1993). Selective concept extraction is a
from the so-called knowledge acquisition bottleform of text skimming that selectively processes
neck, i.e. the difficulty to actually model the dolelevant text while effectively ignoring surround-
main in question. As stated in (Caraballo, 1999)0g text that is thought to be irrelevant to the do
WordNet has been an important lexical knowmhain.
ledge base, but it is insufficient for domain sped more challenging task is to automatically learn
cific texts. So, many attempts have been made tfee relevant patterns for the hypernym/hyponym
automatically produce taxonomies (Grefenstettéelationships. In the context of pattern extraction
1994), but (Caraballo, 1999) is certainly the firsthere exist many approaches as summarized in
work which proposes a complete overview of thé€Stevenson and Greenwood, 2006). The most
problem by (1) automatically building a hierarWell-known work in this area is certainly the one
chical structure of nouns based on bottom-uproposed by (Snow et al., 2005) who use ma-
clustering methods and (2) labeling the intern&ihine learning techniques to automatically re-
nodes of the resulting tree with hypernyms frorklace hand-built knowledge. By using depend-
the nouns clustered underneath by using patter®dCy path features extracted from parse trees,
such as “B is a kind of A”. they introduce a general-purpose formalization
and generalization of these patterns. Given a
training set of text containing known hypernym
pairs, their algorithm automatically extracts use-
tribution-Noncommercial-Share Alike 3.0 Unported ful dependency paths and applies them to new

license  (http://creativecommons.org/licenses/by-neorpora to identify novel pairs. (Sang and Hof-
sa/3.0/). Some rights reserved.

© 2008. Licensed under théreative Commons At-
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mann, 2007) use a similar way as (Snow et athe degree of generality of terms (Michelbacher

2006) to derive extraction patterns for hyet al.,, 2007). So, different asymmetric associa-
pernym/hyponym relationships by using weliion measures are implemented to build the

search engine counts from pairs of words emraphs upon which the TextRank algorithm is

countered in WordNet. However, the most interapplied and produces an ordered list of nouns,
esting work is certainly proposed by (Bollegaldrom the most general to the most specific. Expe-
et al., 2007) who extract patterns in two stepsiments have been conducted based on the
First, they find lexical relationships betweenWordNet noun hierarchy and assessed that 65%
synonym pairs based on snippets counts and ay-the words are ordered correctly.

ply wildcards to generalize the acquired knowl-

edge. Then, they apply a SVM classifier to de2 Asymmetric Association Measures

termine whether a new pair shows a relation of In (Michelbacher et al., 2007), the authors

synonymy or not, based on a feature vector %ﬁearly point at the importance of asymmetry in

lexical relationships. This technique could b?\latural Language Processing. In particular, we

applied to hypernym/hyponym relationships alZjleeply believe that asymmetry is a key factor for

though the authors do not mention it. . : :
On the one hand, links between words that resif 2" o "9 the degree of generality of terms. It
’ cognitively sensible to state that when some-

from manual or semi-automatic acquisition of> .
relevant predicative or discursive patterngrnt?ege;i;gﬁ Bu?o’wmeer?qii;rr]% l&?ﬁitth?ng:gp'
(Hearst, 1992; Carballo, 1999) are fine and accS— ) ' '

rate, but the acquisition of these patterns is-a t%&r:r;]m;n frllé'tosr \l/)valllria?wz Illietlziéoc;(s)??hgt(e) er:lllg'?s
dious task that requires substantial manual wor =D ' !

On the other hand, works done by (Snow et alah oriented a_ssocigtior_l bc_atwefeuit andmango
2005; Snow et al., 2006; Sang )én(d Hofmanii 7@ngo — fruit) which indicates thamango at-
2007; Bollegala et al., 2007) have proposed mggﬁi Tjg;e;réutmtthie;n:;L(J)l:eaﬁlrglzts;garg%o. aA;; e
thodologies to automatically acquire these paﬁenergl term t,rhaman o y

terns mostly based on supervised learning to IE— 90.

o .Based on this assumption, asymmetric associa-
verage manual work. However, training sets sti ption, asy
need to be built Ion measures are necessary to induce these asso-

ciations. (Pecina and Schlesinger, 2006) and

Unlike other approaches, we propose an unsfi- U
pervised methodology which aims at discoveringr an et al., 2004) propose ex_haustwe lists of as-
ociation measures from which we present the

general-specific noun relationships which can be

o : . ~asymmetric ones that will be used to measure the
assimilated to hypernym/hyponym relationship eéree of attractiveness between two nouns

detectiod. The advantages of this approach arg_ y. wheref(..). P(). P(..) andN are respec-

clear as it can be applied to any language or a Y, ; :
N : ely the frequency function, thmarginal prob-
domain without any previous knowledge, baseability function, the joint probability function dn

on a simple assumption: specific words tend t o total of diarams
attract general words with more strength than the 9 '

opposite. As (Michelbacher et al., 2007) state: sraun- Blanquet= F) _ O
“there is a tendency for a strong forward associa- max(f O+ O6Y), Fy)+1(x0y)

tion from a specific term likadenocarcinoma to PO P

the more general tergancer, whereas the asso- P<X’y>'09P7+P(X’y>'09P7,'

ciation fromcancer to adenocarcinoma is weak”. Jmeasure= max p(§(|y3) - p((;?{y)) @
Based on this assumption, we propose a metho- Pamlea e

dology based on directed graphs and the Tex-

tRank algorithm (Mihalcea and Tarau, 2004) to Confidence= maxP(xly).P(yix)] ®)

automatically induce general-specific noun rela-
tionships from web corpora frequency counts.
Indeed, asymmetry in Natural Language
Processing can be seen as a possible reason for

N.P(x,y)+1 N.P(x,y)+l:| @)

Laplace = max
N.P(x)+2 N.P(y)+2

Conviction = ma{w,w} (5)

) . . . ) P(xy)  P(xy)
We must admit that other kinds of relationshipsyrha

covered. For that reason, we will speak about gdner
specific relationships instead of hypernym/hyponseta-
tionships.
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P(yIx)=P(y) ’ P(xly)-P(x)
1-P(y) 1-P(x)

6) an hyponym of the previous set andte an
hypernym of the same set. The weights asso-
ciated to the edges have been evaluated by the
confidence association measure (Equation 3)
All seven definitions show their asymmetry bybased on web search engine cotints

evaluating the maximum value between two hy-
potheses i.e. by evaluating the attractionxof
upony but also the attraction gf uponx. As a
consequence, the maximum value will decide the
direction of the general-specific association i.e.

x—vy)orfy— X).

growth and growth rate are synonymsisometry
CertaintyFactor = max[ jl

Addedvalue = maxdP(y[x)~P(y),P(xly)-P(x)] )

3 TextRank Algorithm

Graph-based ranking algorithms are essential-
ly a way of deciding the importance of a vertex
within a graph, based on global information re-
cursively drawn from the entire graph. The basic
idea implemented by a graph-based rankiné:
model is that of voting or recommendation.
When one vertex links to another one, it is basi-

cally casting a vote for that other vertex. Thesigure 1 clearly shows our assumption of gene-
higher the number of votes that are cast for a vaijity of terms as the hypernymate only has
tex, the higher the importance of the verteXncoming edges whereas the hyponisometry
Moreover, the importance of the vertex castingnjy has outgoing edges. As a consequence, by
the vote determines how important the vote itserplying a graph-based ranking algorithm, we
is, and this information is also taken into accouryjy, at producing an ordered list of words from
by the ranking model. Hence, the score asSghe most general (with the highest value) to the
ciated with a vertex is determined based on thgost specific (with the lowest value). For that
votes that_ are cast for it, and the score of the V&urpose, we present the TextRank algorithm pro-
tices casting these votes. posed by (Mihalcea and Tarau, 2004) both for

Our intuition of using graph-based ranking algounweighted and weighted directed graphs.
rithms is that more general words will be more

likely to have incoming associations as they wilB.1  Unweighted Directed Graph
be associated to many specific words. On the For a given verten let In(V)) be the set of

opposite, specific words will have few incomin ertices that point to it, and I€wt(V,) be the set
associations as they will not attract general wor%;s{ vertices that vertey, ’points to. The score of a
(see Figure 1). As a consequence, the voting Risrtex V, is defined in Equation 8 whexkis a
radigm of graph-based ranking algorithms Shou'&amping factor that can be set between 0 and 1
give more strength to general words than specifigich has the role of integrating into the model

ones, i.e. a higher voting score. the probability of jumping from a given vertex to
For that purpose, we first need to build a directeghofher randgm \}erteF;( irg the gré.gh
graph. Informally, ifx attracts moregy thany at-

tractsx, we will draw an edge betweerandy as )
follows (x — y) as we want to give more credits ;)= @-d)+d XVID%(:W o] *Sv;) )
to general words. Formally, we can define a di- )

r_ected graph G =2\ E) with the set of vertice¥ 3.2 Weighted Directed Graph

(in our case, a set of words) and a set of efiges
whereE is a subset 0¥xV (in our case, defined In order to take into account the edge weights,
by the asymmetric association measure val@new formula is introduced in Equation 9.
between two words). In Figure 1, we show the

directed graph obtained by using the set of words

V = {isometry, rate of growth, growth rate, rate}

randomly extracted from WordNet wherate of % We used counts returned by http://www.yahoo.com.
4dis usually set to 0.85.

ig. 1. Directed Graph based on synset #13153426 df
growth, growth rate) and its direct hypernymte) and
hyponym {sometry).
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B w; synsets (the hypernym synset, the seed synset
W) = ) lej%(:v,) 3w W) @ and the hyponym synset), a list of constraints can
WSt v)) be established i.e. all words of the hypernym

set must be more general than all the words of

After running the algorithm in both cases, a sco n
d g ﬁg seed synset and the hyponym synset, and all

is associated to each vertex, which represents i 4s of th q b
“importance” of the vertex within the graph. No-IN€ Words of the seed synset must be more gener-
| than all the words in the hyponym synset. So,

tice that the final values obtained after TextRan :

runs to completion are not affected by the choidk We take the synsets presented in Table 1, we
of the initial values randomly assigned to the vefcan define the following set of constraintsaig
tices. Only the number of iterations needed fgr9rowth rate, rate > rate of growth, growth rate >
convergence may be different. As a consequend@?mﬁry’ rate of growth > |sqmetry}.

after running the TextRank algorithm, in both itd"? Order to evaluate our list of words ranked by
configurations, the output is an ordered list Oqlne_levgl of generallty against the WordNet cate-
words from the most general one to the modorization, we just ne_ed to measure the propor-
specific one. In table 1, we show both the listHon of constraints which are respected as shown

with the weighted and unweighted versions dff Equation (10). We caltorrectness this meas-
the TextRank based on the directed graph shoWf®:

in Figure 1. #of commonconstraint
correctness = - (10)
Unweighted Weighted WordNet #of constraint
V) | Word | WV) | Word | Categ.] Word | £qp axample, in Table 1, all the constraints are
0.50 rate 0.81 rate Hyper. rate . .
growth growth growth respected for both weighted and unweighted
027 “rate | 944 | Trae | SYNSe] e graphs, giving 100% correctness for the ordered
rate of rate of rate of lists compared to WordNet categorization
0.19 growth 0.26 growth Synset growth p g .
0.15 | isometry 0.15 isometry | Hypo. | isometry 4.2 Clustering

Table 1.TextRank ordered lists.
Another way to evaluate the quality of the or-

The results show that asymmetric measurekering of words is to apply hard clustering to the
combined with directed graphs and graph-basedbrds weighted by their level of generality. By
ranking algorithms such as the TextRank arevidencing the quality of the mapping between
likely to give a positive answer to our hypothesishree hard clusters generated automatically and
about the degree of generality of terms. Morghe hypernym synset, the seed synset and the hy-
over, we propose an unsupervised methodologypnym synset, we are able to measure the quality
for acquiring general-specific noun relationshipsof our ranking. As a consequence, we propose to
However, it is clear that deep evaluation i§¢l) perform 3-means clustering over the list of

needed. ranked words, (2) classify the clusters by level of
) generality and (3) measure the precision, recall
4  Experiments and Results and f-measure of each cluster sorted by level of

Evaluation is classically a difficult task in generality with the hypernym synset, the seed

Natural Language Processing. In fact, as hum nset and the hyponym synset.

evaluation is time-consuming and generally Sug'hoer lt(rﬁefgztstZISK(;r\i’:ﬁmufﬁ :Es m_gﬁnzsglt%aﬁ:ﬁn of
jective even when strict guidelines are provide 9

measures to automatically evaluate experimerﬁé}"mcu'ar’ we bootstrap the k-means by choosing

must be proposed. In this section, we proposee initial means as follows. For the flrs_t mean,

three evaluation measures and discuss the respve\'((?—Choos‘e the weight (the sqore) of the first word

tive results. In"the TextRank generated list _of words. For_ the
second mean, we take the weight of the middle

4.1 Constraints word in the list and for the third mean, the weight

of the last word in the list.

cl‘—for the second task the level of generality of

each cluster is evaluated by the average level of

WordNet can be defined as applying a set
constraints to words. Indeed, if wowd is the
hypernym of wordk, we may represent this rela-
tion by the following constraing > x, where > is
the order operator stating thatis more general
thanx. As a consequence, for each set of threp:/nitk.sourceforge.net/
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generality of words inside the cluster (or saidelated. It is defined in Equation (14) whetés
with other words by its mean). the distance between every pair of words in the
For the third task, the most general cluster anist ordered with TextRank and the reference list
the hypernym synset are compared in terms of#hich is ordered according to WordNet or the
precision, recall and f-measure as shown in EqM¥eb andn is the number of pairs of ranked
ation (11), (12) and (13) The same process iswords.

applied to the second most general cluster and

the seed synset, and the third cluster and the hy- po1- 6 df ”
ponym synset. n(n?-1)
__ Clustern Synset In particular, the Spearman’s rank correlation
precision = ——— (11) .. .
[Cluster coefficient is a number between -1 (no correla-
tion at all) and 1 (very strong correlation).
recall = I Synset 12 4.4 Experiments
|Synset

In order to evaluate our methodology, we ran-

petecall precison dorr_1|3/3 extrac_ted 800 seed synsets for which we

f - measure =~ @3) retrieved their hypernym and hyponym synsets.
precision-+recall For each seed synset, we then built the associated

directed weighted and unweighted graphs based
4.3 Rank Coefficient Test on the asymmetric association measures referred

The evaluation can be seen as a rank test f@.in section 2and ran the TextRank algorithm

tween two ordered lists. Indeed, one way to evi? Produce a general-specific ordered lists of

luate the results is to compare the list of gererdf™S:

specific relationships encountered by the TeX 41 Results by Constraints

tRank algorithm and the original list given by

WordNet does not give an order of generalit ctness for all seven asymmetric measures, both
inside synsets. In order to avoid this problem, wi" the unweighted and weighted graphs.

can order words in each synset by their estimated _
frequency given by WordNéas well as their Equation Type of Graph Correctness
frequency calculated by web search hits. An eX- Braun-Blanquet |——rweighted 05.68%
f . . . Weighted 65.52%
ample of both ordered lists is given in Table 2 fgr Unweighted 60.00%
the synset #6655336 and its immediate hyper- Jmeasure Weighted 60.34%
nyms and hyponyms- ) Unweighted 65.69%
Confidence -
Weighted 65.40%
WordNet Estimated FrequengyWeb Estimated Frequency Unweighted 65.69%
Category Word Category Word Laplace Weighted 65.69%
H)ép?]rsne)-/tm St:rlg\/?t Hépirsngtm ste;ter:‘ent Conviction Unweighted 61.81%
Sznset reply Sinset res?)‘c)xi,se Weighted 63.39%
Synset response Synset answer Certainty Factor Unweighted 05.59%
Hyponym rescript Hyponym | feedback Weighted 63.76%
Hyponym feedback Hyponym rescript Unweighted 65.61%
Table 2. Estimated Frequency ordered lists for synset Added Value Weighted 64.90%
#6655336. Baseling’ None 55.68%

Table 3.Results for the Evaluation by Constraints.
For that purpose, we propose to use the Spear-
man’s rank correlation coefficient (Rho). TheThe best results are obtained by the Confidence
Spearman’s Rho is a statistical coefficient thaind the Laplace measures reaching 65.69% cor-
shows how much two random variables are cor-

8 We guarantee 98% significance level for an erfod.05
® Where Clustern Synset means the number of wordsfollowing the normal distribution.

common to both Synset and Cluster, and |Synset| afdhe probability functions are estimated by the Maxm
|Cluster| respectively measure the number of wandtheé Likelihood Estimation (MLE).

Synset and the Cluster. 2 The baseline is the list of words ordered by with fre-

" We use WordNet 2.1. quency (without TextRank).
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rectness. However, the Braun-Blanquet, the Cenur approach performs better at higher levels of
tainty Factor and the Added Value give resultgenerality.

near the best ones. Only the J measure and the

Conviction metric seem to perform worst. Equation Graph Precision  Recall F-measure
It is also important to note that the difference Braun- | Unweighted| 59.38 37.38 45.88
between unweighted and weighted graphs |isBlanquet | Weighted 58.75 39.35 47.14
marginal which clearly points at the fact that the j measure |-UnWweighted] 46.49 | 37.00 | 41.20
topology of the graph is more important than its Weighted | 47.19 | 41.90]  44.38
weighting. This is also confirmed by the fact that Confidence|—oweidhted] 5920 | 37.30, 4577

fth . f lik Weighted 58.71 39.22 47.03
most of the asymmetric measures perform alike Unweighted|  59.50 37.78 45.96

Weighted 59.50 37.78 45.96
Unweighted 50.07 35.88 41.80
In Table 4, we present the results of precision Weighted 52.72 40.74 45.96
recall and f-measure for both weighted and un- Certainty | Unweighted| 5590 | 38.29 | 4545
weighted graphs for all the seven asymmetrijc_Factor | Weighted | 51.64 | 4293 | 46.88
measures. The best precision is obtained for theAdded | Unweighted] 5626 | 37.90] 45.29
weighted graph with the Confidence measure— 24 1 b\fveg]héed | Ssﬁlh 4°'°9| 4|7'48
evidencing 47.62% and the best recall is also able 5.Results at the hypernym leve.
obt_alned by the Confld_ence measure also for thez ation Graph Procisioh  Recall Fmeasure
weighted graph reaching 47.68%. Once agaif, graun- | Unweighted|  43.05 37.86 4029
the J measure and the Conviction metric performpianquet | weighted | 46.38 33.14 38.66
worst showing worst f-measures. Contrarily, th Unweighted|  40.82 | 43.72 42.22

Laplace

4.4.2 Results by Clustering

Conviction

4%

Confidence measure shows the best performancé™®*""®| weighted | 4398 | 3380]  38.28
in terms of f-measure for the weighted graph, i.€..  djencel Unweighted|  43.03 37.67 40.17
47.65% while the best result for the unweighted Weighted 46.36 33.02 38.57
graphs is obtained by the Certainty factor with |apace |U0Weighted] 4310 | 387781  40.27
46.50%. Weighted 43.10 37.78 40.27

P | Unweighted|  40.36 38.02 39.16
These results also show that the weighting of theconviction Weighted 12,60 26.39 3259

graph plays an |mportan't issue in our methodql D= Certainty | Unweighted| 44.28 | 40.87 1251
gy. Indeed, most metrics perform better With racior [ weighted | 4414 | 4070 | 42.35

weighted graphs in terms of f-measure. Added | Unweighted|  44.21 40.74 42.40
Value Weighted 45.78 32.90 38.29
Equation Graph Precision| Recall | F-measure Table 6. Results at the seed level.
Braun- Unweighted 46.61 46.06 46.33
Blanquet Weighted 47.60 47.67 47.64 Equation Graph Precision Recall F-measure
Unweighted 40.92 40.86 40.89 Braun- Unweighted 37.39 62.96 46.92
J measure Weighted 42.61 43.71 43.15 Blanquet | Weighted 37.68 70.50 49.12
Confidence Unw.eighted 46.54 46.02 46.28 I measure UnW_eighted 35.43 41.87 38.38
Weighted 47.62 47.68 47.65 Weighted 36.69 55.33 44.12
Laplace Unw.eighted 46.67 46.11 46.39 Confidence UnW_eighted 37.38 63.09 46.95
Weighted 46.67 46.11 46.39 Weighted 37.79 | 70.80 49.27
- Unweighted | 42.13 41.67 41.90 Unweighted 3740 | 63.11 46.97
Conviction - Laplace -
Weighted 43.62 43.99 43.80 Weighted 37.40 63.11 46.97
Certainty | Unweighted | 46.49 46.52 46.50 Conviction Unweighted 35.97 50.94 42.16
Factor Weighted 44.84 45.85 45.34 Weighted 35.54 64.85 45.92
Added Unweighted 46.61 46.59 46.60 Certainty | Unweighted 39.28 60.40 47.60
Value Weighted 47.13 47.27 47.19 Factor Weighted 38.74 53.92 45.09
Table 4.Results for the Evaluation by Clustering. Added Unweighted| 39.36 61.15 47.89
Value Weighted 37.39 68.81 48.45
In Table 5, 6 and 7, we present the same results Table 7.Results at the hyponym level.

as in Table 4 but at different levels of anaIySi?ndeed the precision scores go down from

i.e. precision, recall and f-measure at hyperny
L 9.50% at the hypernym level to 39.36% at the
seed and hyponym levels. Indeed, it is importaijt ponym level with 46.38% at the seed level.

to understand how the methadology performs e same phenomenon is inversely true for the
different levels of generality as we verified tha'%ecall with 42.93% at the hypernym level,
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43.72% at the seed level and 70.80% at the hlg-is interesting to note that in the case of thebw
ponym level. estimated list, the weighted graphs evidence
This situation can easily be understood as mastuch better results than the unweighted ones,
of the clusters created by the k-means present thghough they do not show improved results
same characteristics i.e. the upper level clusteompared to the WordNet list. On the one hand,
usually has fewer words than the middle levahese results show that our methodology is capa-
cluster which in turn has fewer words than thele to map to WordNet lists as easily as to Web
last level cluster. As a consequence, the recalllists even that it is based on web frequency
artificially high for the hyponym level. But on counts. On the other hand, the fact that weighted
the opposite, the precision is high for higher legraphs perform best, shows that the topology of
vels of generality which is promising for the authe graph lacks in accuracy and needs the appli-
tomatic construction of hierarchical thesauri. Ineation of weights to counterpoint this lack.
deed, our approach can be computed recursively
so that each level of analysis is evaluated as if4-2
was at the hypernym level, thus taking advantage An important remark needs to be made at this
of the good performance of our approach at upoint of our explanation. There is a large ambi-
per levels of generality. guity introduced in the methodology by just
looking at web counts. Indeed, when counting
4.4.3 Results by Rank Test the occurrences of a word lilemswer, we count
For each produced list, we calculated thall its occurrences for all its meanings and forms.
Spearman’s Rho both with WordNet and Welfor example, based on WordNet, the ward
Estimated Lists for weighted and unweightedwer can be a verb with ten meanings and a noun
graphs. Table 8 presents the average results foith five meanings. Moreover, words are more

Discussion

the 800 randomly selected synsets. frequent than others although they are not so
general, unconfirming our original hypothesis.
_ Type of Rhowith Rho with Look'ing at Table 2feedback is a clear e_xamp_le
Equation Graph WNetEst. | Web Est. of this statement. As we are not dealing with a
_ list list single domain within which one can expect to
B?;Z‘:E;t Uvr\‘/"gzﬁgzd 00;;8 00;’)0 see the “one sense per discourse” paradigm, it is
Unweighted 0.23 019 clear that the Rho cpe_szluent wo_uld not be as
J measure Weighted 027 027 good as expected as it is clearly biased by “incor-
‘ Unweighted 038 030 rect” counts. One direct implication of this com-
Confidence ™ cighted 039 0.39 ment is the use of web estimated lists to evaluate
Laplace Unweighted 0.38 0.30 the methodology. _ _
Weighted 0.38 0.38 Also, there has been a great discussion over the
Conviction |—Jnweighted 0.30 0.22 last few months in the corpora ffSwhether one
Weighted 0.33 0.33 should use web counts instead of corpus counts
Certainty | Unweighted 0.38 029 to estimate word frequencies. In our study, we
Factor Weighted 0.35 0.35 clearly see that web counts show evident prob-
Added Value Uvr\'/"gzﬁgzd 8_‘2’; gég lems, like the ones mentioned by (Kilgarriff,
— None 014 0.14 2007). However, they cannot be discarded so

Table 8. Results for the Spearman’s rank correlation €asily. !n particqlar, we aim at looking at web
coefficient. counts in web directories that would act as spe-

o ) _ _ cific domains and would reduce the space for
Slmllarly to what we evidenced in section 441amb|gu|ty Of course, experiments with well-

the J measure and the Conviction metric are t%own corpora will also have to be made to un-
measures which less seem to map the correct grstand better this phenomenon.

der by evidencing low correlation scores. On the
other hand, the Confidence metric still gives th6 Conclusions and Future Work

best results equally with the Laplace and Braun- _
Blanquet metrics. In this paper, we proposed a new methodology

based on directed weighted/unweighted graphs
and the TextRank algorithm to automatically in-

M This will be studied as future work.
2 The baseline is the list of words ordered by witb fne-
quency. 3 Finalized by (Kilgarriff, 2007).
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duce general-specific noun relationships from putational Linguistics (COLING 1992), pages 539-
web corpora frequency counts. To our know- 545.

ledge, such an unsupervised experiment has N@ywarriff, A. 2007. Googleology is Bad Science.
er been attempted so far. In order to evaluate ourComputational Linguistics 33 (1), pages: 147-151.

results, we proposed three different evaluatio,olichelbacher L Evert. S. and Schiitze. H. 2007

metrics. 'I_'he resglts_ obtained by using seven Asymmetric Association Measures. In Proceedings
asymmetric association measures based on Wel:" o Recent Advances in Natural Language

frequency counts showed promising results Processing (RANLP 2007).
reaching levels of (1) constraint cohererufe inal R and T b 20 Rank: Bringi
65.69%, (2) clustering mapping of 59.50% irvinalcea, R. and Tarau, P. 200AxtRank: Bringing

- Order into Texts. In Proceedings of the Conference
terms of precision for the hypernym level and . :

. on Empirical Methods in Natural Language

42.72% on average in terms of f-measure and (C-’;)ProceS;iOng (EMNLP 2004), pages 404_411_9 g
ranking similarity of 0.39 for the Spearman’s . ’ o
rank correlation coefficient. Peqlng, P. and Schlesinger, P. Z(Il)ﬁmbmmg Asso-
As future work, we intend to take advantage of Ciation Measures for Collocation Extraction. In
the good performance of our approach at the Proceedings of the International Committee of
hypernym level to propose a recursive process to Computational Linguistics and the Association for
. . Computational Linguistics (COLING/ACL 2006).
improve precision results over all levels of gene- P J ( )
rality. Riloff, E. 1993.Automatically Constructing a Dictio-

Finally, it is important to notice that the evalua- .T?grz fgfr :QLOEZSZ?‘tﬁ“&gﬁé‘;’gﬁif"&?eigc%?]dAr
tion by clustering evidences more than a simple . == : )
evalugtion of thegword order, but shows how trrl)is tificial Intelligence (AAAI 1993), pages 811-816.
approach is capable to automatically map clu$ang, E.J.K. and Hofmann, K. 200&utomatic Ex-

ters to WordNet classification. traction of Dutch Hypernym-Hyponym Pairs. In
Proceedings of Computational Linguistics in the

Netherlands Conference (CLIN 2007).
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Abstract

This paper presents a method of acquiring
knowledge from the Web for noun sense
disambiguation. Words, called selectors,
are acquired which take the place of an
instance of a target word in its local con-
text. The selectors serve for the system to
essentially learn the areas or concepts of
WordNet that the sense of a target word
should be a part of. The correct sense
is chosen based on a combination of the
strength given from similarity and related-
ness measures over WordNet and the prob-
ability of a selector occurring within the lo-
cal context. Our method is evaluated using
the coarse-grained all-words task from Se-
mEval 2007. Experiments reveal that path-
based similarity measures perform just as
well as information content similarity mea-
sures within our system. Overall, the re-
sults show our system is out-performed
only by systems utilizing training data or
substantially more annotated data.

Introduction

}@cs.ucf.edu

sense disambiguation of any noun, incorporating
both similarity and relatedness measures.

As explained in (Brody et al., 2006), there are
generally two approaches to unsupervised WSD.
The first is referred to a®kenbased, which com-
pares the relatedness of a target word to other
words in its context. The second approachyize
based, which uses or identifies the most common
sense of a word over a discourse or corpus, and an-
notates all instances of a word with the most com-
mon sense. Although thigpe based approach is
clearly bound to fail occasionally, it is commonly
found to produce the strongest results, rivaling su-
pervised systems (McCarthy et al., 2004). We
identify a third approach through the usesafec-
tors, first introduced by (Lin, 1997), which help
to disambiguate a word by comparing it to other
words that may replace it within the same local
context.

We approach the problem of word sense dis-
ambiguation through a relatively straightforward
method that incorporates ideas from ttaken
type and selectorapproaches. In particular, we
expand the use delectoran several ways. First,
we revise the method for acquiring selectors to be
applicable to the web, a corpus that is, practically

Recently, the Web has become the focus for manyeaking, impossible to parse in whole. Second,
word sense disambiguation (WSD) systems. Duge describe a path-based similarity measure that
to the limited amount of sense tagged data avails more suited for a portion of our method than the
able for supervised approaches, systems which giQatedness measures useddkenbased systems.
typically referred to as unsupervised, have turmneging|ly, we expand the use of selectors to help with

to the use of unannotated corpora including thgisambiguating nouns other than the one replaced.
Web. The advantage of these systems is that they

can disambiguate all words, and not just a set of Background
words for which training data has been provided.
In this paper we present an unsupervised systetil Word Sense Disambiguation

which uses the Web in a novel fashion to perforrTA popular approach to using the web or unanno-

(©2008.  Licensed under th&reative Commons tated corpora for word sense disambiguation in-
Attribution-Noncommercial-Share Alike 3.0 Unporteld .
yolves the use of monosemous relatives. Monose-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0 X ) .
Some rights reserved. mous relatives are words which are similar to a
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sense of the target word, but which only have onBudanitsky and Hirst, 2006).
sense. By searching text for these words, one canMany similarity measures have been created
build training data for each sense of a target wordvhich only use paths in the WordNet ontology.
This idea was proposed by (Leacock et al., 1998Dne approach is to simply compute the length
More recently, the idea has been used to autef the shortest path between two concepts over
matically create sense tagged corpora (Mihalceghe hypernym/hyponym relationship (Rada et al.,
2002; Agirre and Martinez, 2004) . These meth1989). Other methods attempt to compensate for
ods queried large corpora with relatives rather thagme uniformity problem, the idea that some areas of
with the context. the ontology are more dense than others, and thus
With some resemblances to our approach, (Magll edges are not equal. (Wu and Palmer, 1994)
tinez et al., 2006) present thelatives in context uses the path length from the root to the lowest
method. A key similarity of this method with ours common subsumer(LCS) of two concepts scaled
is the use of context in the web queries. They prddy the distance from the LCS to each concept. An-
duce queries with relatives in place of the targetther method, by (Leacock et al., 1998), normal-
word in a context with a window size of up to 6.izes path distance based on the depth of hierar-
Similarly, (Yuret, 2007) first chooses substituteshy. Our method attempts to produce a normalized
and determines a sense by looking at the probdepth based on the average depth of all concepts
bility of a substitute taking the place of the targewhich are leaf nodes below the lowest common
word within the Web1T corpus. The number ofsubsumer in a tree.
hits each query has on the web is then used to pick We employ several other measures in our sys-
the correct sense. Our approach differs from thegem. These measures implement various ideas
in that we acquire words(selectors) from the websuch asinformation contentJiang and Conrath,
and proceed to choose a sense based on similarit997; Lin, 1997) angjloss overlapg¢Banerjee and
measures over WordNet (Miller et al., 1993). WePedersen, 2003). For our work the path-based and
also attempt to match the context of the entire seimformation content measures are referred to as
tence if possible, and we are more likely to receiveimilarity measureswhile the gloss-based meth-
results from longer queries by including the wild-ods are referred to aglatedness measurefRe-
card instead of pre-chosen relatives. latedness measures can be used to compare words
We adopted the terrselectorfrom (Lin, 1997) from different parts of speech. In past evaluations
to refer to a word which takes the place of anothe®f token based WSD systems, information con-
in the same local context. Lin searched a local corient and gloss-based measures perform better than
text database, created from dependency relatiopath-based measures (Patwardhan et al., 2003; Bu-
ships over an unannotated corpora in order to findanitsky and Hirst, 2006).
selectors. In this case, the local context was repre-
sented by the dependency relationships. Given thdt Method

the task of producing a dependency parse databasr(]e lid hod i find th
of the Web is beyond our abilities, we search fop N general idea of our method is to find the sense

the surrounding local context as text in order t(|9f a targ(—:]t. r;]oun Wh'clh IS T105t similar ;0 all se-
retrieve selectors for a given word. Another dif-Sctors which can replace the target and most re-

ference is that we compare the relatedness of Jgted to other words in context and their selectors.

lectors of other words in the sentence to the targéRur method requires that a test sentence has been

word, and we also incorporate a path-based simpart-of-speech tagged with noun, verb, and adjec-
iye POS, and we use the selectors from all of these

larity measure along with a gloss-based relatednetl¥
measure. parts of speech as well as noun selectors of pro-
nouns and proper nouns. In this work, we only dis-
ambiguate nouns becausenilarity measures for
target selectors are based heavily on the depth that
Semantic similarity and relatedness measures haigepresent in the WordNet noun ontology. How-
an extensive history. The measures reported in thiver, we are still able to use verb and adjective se-
work were included based on appropriateness witlactors from the context througklatednessnea-

our approach and because of past success accasdres working over all parts of speech listed. The

ing to various evaluations (Patwardhan et al., 2003nethod can be broken into two steps:

2.2 Similarity and Relatedness Measures
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1. Acquire probabilities of selectors occurringadjusted so no single word takes up more than 30%
for all nouns, verbs, adjectives, pronouns andf the list.
proper nouns from the Web. The Web is massive, but unfortunately it is not
~large enough to find results when querying with
2. Rank the senses of a target noun according p\yhole sentence a majority of the time. There-
similarity with its own selectors and related-ore e perform truncation of the query to acquire
ness with other selectors in the context. more selectors. For this first work with selectors

These steps are described in detail below. Finallf_,om the web, we chose to create a simple trunca-

we also describe a similarity measure we employ.Ion focused just on syntax in order to run qwckly_.
The steps below are followed and the final step is

3.1 Acquiring Selectors repeated until a stop condition is met.

We acquiretarget selectorsaand context selectors i Shorten to a size of 10 words.

from the Web. Target selectors are those words ii Remove end punctuation, if not preceded by *.
which replace the current target word in the local ii Remove front punctuation, if not proceeded by *.
context, whilecontext selectorare words which  iv Remove determinershe, a, an, this, thatpreceding *.
may replace other words in the local context. v Remove a single word.

There are four different types of context selectors: ) ) )
When removing a single word, the algorithm at-

noun context selectorsessentially the target se-tempts to keep the * in the center. Figure 1 demon-

lectors for other nouns of the sentence. strates the loop that occurs until a stop condition
verb context selectorsverbs which are found to 1S met: enough selectors are found or the query
replace other verbs in the sentence. has reached a minimum size. Since a shorter query

should return the same results as a longer query, we

filter the selectors from longer query results out of

) the shorter results. It is important that the criteria

pro context selectorsnouns which replace pro- v, ¢ontinye searching is based on the number of se-
nouns and proper nouns. lectors and not on the number of samples, because

A query must be created based on the origindl"@Y samples fail to produce a selector.Validation
sentence and target word. This is fairly straightfor?)(perlments were performeq to verlfy that each
ward as the target word is removed and replace'ﬂep of truncation was helpful in returning more re-
with a * to indicate the wildcard. For example sults with valid selectors, although the results are
when searching for selectors of “batter” from «ghd0t reported as the fgcus is on the method in gen-
put the batter in the refrigerator”, a query of “Sheer"’_‘l' Selec.tors are tied to the queries used to ac-
put the * in the refrigerator.” is used. The querieﬁ“'re them in order to help emphasize results from
are sent through the Yahoo! Search Web Serdice!PNger queries. ,
in order to retrieve matching text on the web. The steps to acquire all types of selectors (tar-

The selectors are extracted from the samples r@€t OF any in context) are the same. The part of
turned from the web by matching the wildcard offPe€ch only plays a part in determining the base
the query to the sample. The wildcard match i£0rM OF compounds when using WordNet. Note
thrown out if any of the following conditions are that all selectors for each noun, v_erb, adjective, and
true: longer than 4 wordscontains any punctua- pron.oun/propgr can be acquired in one pass, so that
tion, is composed only of pronouns or the Origi_dupllcate_ gueries are not sent to the W(_a_b. When the
nal word Keep in mind we acquire the nouns thaProcess is complete we have a probablllty value for
replace the pronouns of the original sentence, &Rch selector wordy) to occur in a local context
a selector is never a pronoun. WordNet is use@Ven by the acquisition query). The probability
to determine if the phrase is a compound and tH¥ @s @ppearing iy is denoted as:
base morphological form of the head word. Re-
sults containing head words not found in WordNet
are filtered out. Proper nouns are used if they arg2 Ranking Senses
found in WordNet. Finally, the list of selectors is

adjective context selectorsadjectives which re-
place other adjectives in the sentence.

Pocc (ws ) Q)

There are essentially two assumptions made in or-
http://developer.yahoo.com/search/ der to rank the senses of a noun.

107



Acquire Selectors Rank Senses

[create Web query] shorten Web target _calculate
¥ query —w selectors | -|m| similarity with ranked target
b asp (w,q score(c,,w_, q) noun senses
‘ Web query Tfalse t ] ¥

Tt - target combine scores sort top
search the |selectors| > max noun senses as Score(c,) senses based
Web for samples o . on MFS
length(gquery) < min e A
context calculate #
find selectors in true

—» selectors w»relatedness with

asp (w,q score(c,,w_, q) ranked senses
‘ selectors occt s t s

Figure 1. The overall process undertaken to disambiguate a noun. (Note that selectors only need to be
acquired once for each sentence since they can be reused for each target noun.)

samples

1. Similar concepts (or noun senses) appear in Intuitively, combiningcwsr with p,.. is the ba-

similar syntactic constructions. sis for scoring the senses of each noun. However,
2. The meaning of a word is often related toVe also take several others values into accout, in
other words in its context order to learn most effectively from Web selectors.

The score is scaled by the number of senses of the
The first assumption implies the use of a similarityselector and the length of the query used to ac-
measure witharget selectorsThe meaning of the quire it. This gives less ambiguous selectors and
target selectors should be very similar to that ofhose selectors with a most similar local context
the original word, and thus we compare similaritya stronger role. These values are represented by
between all target selectors with each sense of thenses(w,) andqueight = W
o ginal_length
original word.
The second assumption reflects the information score(c;, ws, q)
provided bycontext selectorsor which we use a
relatedness measure to compare with the original = Poce(ws, q) * cwsr(cy, ws)
word. Note that because context selectors may be
of a different part of speech, we should be sure this
measure is able to har_1d|_e multiple parts of speechne scores are summed with:
Regardless of the similarity or relatedness mea-
sure used, the value produced is applied the same  sumiype(ci) = Z Z score(cy, ws, q)
for bothtarget selectoraindcontext selectorsWe q ws
are comparing the senses (or concepts) of the oriq/iv- .
. : hereq ranges over all queries for a t of
nal target word with all of the selectors. To find the grang q ypgle) .
o selector, andv; ranges over all selectors acquired
similarity or relatedness of two words, rather thar\]/vith uer
two concepts, one can use the maximum value over queryq. . .
Overall, the algorithm gives a score to each
all concepts of the selector word and all the senses

of the target word, (Resnik, 199@prd similarity): f)/epnes:ot?‘:hcg?ekl)ler:;lpo%sthe normalized sums from all

qweight
senses(ws)

wsr(wyg, ws) = max[srm(cy, cs)]
1S Ct\Cs e Score(cy) = E SUMtype(Ct) * scaleyype
e max[sumeype (c)]

wheresrm is a similarity or relatedness measure

andc;, cs represent a sense (concept) of the takwheretyp ranges over a type of selector (target,
get word (v;) and selector wordi(;) respectively. noun context, verb context, adjective context, pro
We would like to get a value for each sense of @ontext),c ranges over all senses of the target word
target word if possible, so we derive similarity or(y,), and scaleyye IS @ constant for each type of
relatedness between one concept and one word 8slector. We experimented with different values
over 60 instances of the corpus to decide on a scale
cwsr(cy, ws) = max[srm(cy, ¢s)] value of 1 fortarget selectorsa value of 0.5 for

Cs
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noun and verlcontext selectorsand a value of tween 0 and 1. Note that concepts are not the
0.1 for adjective and praontext selectors This same as words, and the example above assumes
weights the scores that come from target selectoosie chooses the sense of “water” as a liquid and
equal to that of noun and verb context selectorshe sense of “bottle” and “cup” as a container. Our
while the adjective and pro selectors only play aimilarity measure is based on finding the normal-

small part. ized depth 1id) of a concept €) in the WordNet
Finally, the senses are sorted based on thditierarchy:

Score, and we implement the most frequent sense d(c) = depth(c)

heuristic as a backoff strategy. All those senses ald(c)

within 5% of the top senseScore, are re-sorted, Wheredepthis the length from the concept to the
ranking those with lower sense numbers in Wordroot, andald returns the average depth of all de-
Net higher. The highest ranking sense is taken t§cendants (hyponyms) that do not have hyponyms

be the predicted sense. themselves (average leaf depth):
imilari depth(l
3.3 Similarity Measure ald(c) = ZLelnodes(c) pth(l)
|lnodes(c)|

We use the notion that similarity is a specific type
of relatedness (Rada et al., 1989; Patwardhan & be clear,Inodesreturns a list of only those
al., 2003). For our purposes samilarity measure nodes without hyponyms that are themselves hy-
is used for nouns which may take the place of @onyms ofc. We chose to only use the leaf depth
target word within its local context, while words as opposed to all depths of descendants, because
which commonly appear in other parts of the loca@ld produces a value representing maximum depth
context are measured bglatednessin particular, for that branch in the tree, which is more appropri-
the similarity measure places emphasis strictly o@te for normalization.
theis-arelationship. As an example, “bottle” and Like other similarity measures, for any two con-
“water” are related but not similar, while “cup” cepts we compute the lowest (or deepest) common
and “bottle” aresimilar. Because of this distinc- subsumerics, which is the deepest node in the hi-
tion, we would classify our path-based measure @farchy which is a hypernym of both concepts. The
asimilarity measure. similarity between two concepts is then given by
A well known problem with path-based mea-the normalized depth of theles:
sures is the assumption that the links between con-
cepts are all uniform (Resnik, 1999). As a re-

sponse to this problem, approaches based on "f'hus, a concept compared to itself will have a

fgrmation content are used, _SUCh as (Resnik, 1998é0re of 1, while the most dissimilar concepts will
Jiang and Conrath, 1997; Lin, 1997). These mMeg e a score of 0. Following (Wu and Palmer,

sures still use this-arelationship in WordNet, but 1994; Lin, 1997) we scale the measure by each
they do not rely directly on edges to determine th@once’zpt'sn’d as follows:

strength of a relationship between concepts. (Pat-

wardhan et al., 2003) shows that measures based ) 2 % sim(cy, c2)

on information content or even gloss based mea- scaled_sim(c1, ¢2) = nd(c1) + nd(c2)

sures generally perform best for comparing a word

with other words in its context for word sense disWhere oumormalized deptheplaces thelepthor

ambiguation. However, these measures may nitformation contenvalue used by the past work.

be as suited for relating one word to other Word§1 Evaluation

which may replace ittarget selectors Therefore,

our similarity measure examines the use of links ifZVe evaluated our algorithm using the SemEval

WordNet, and attempts to deal with the uniformity2007 coarse-grained all-words task. In order to

problem by normalizing depths based on averaggchieve a coarse grained sense inventory WordNet

leaf node depth. 2.1 senses were manually mapped to the top-level
All types of relatedness measures return a valuaf the Oxford Dictionary of English by an expert

representing the strength of the relation betwedaxicographer. This task avoids the issues of a fine

the two concepts. These values usually range bgranular sense inventory, which provides senses

sim(c1, c2) = nd(les(c1, ¢2))
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type insts | avgSels glossl| gloss2
target 1108| 68.5 pathl 78.8 | 78.3
noun context 1108| 68.5 path2 80.2 78.6
verb context| 591 70.1 path3 78.7 | 78.6
adj context | 362 37.3 IC1 78.6 79.3
pro context | 372 | 31.9 IC2 785 | 79.2
IC3 78.0 | 78.1
Table 1: Total word instances for which selectors glossl | 78.4 | 80.0
were acquiredifists), and average number of se- gloss2 | 78.6 | 78.9
lectors acquired for use in each instanaegSel$. MFS baseline| 77.4
random | baseline| 59.1

that are difficult even for humans to distinguish._l_ ble 2: Perf ¢ thod. ai by F1
Additionally, considering how recent the event oc- aple . Feriormance ol our method, given by
curred, there is a lot of up-to-date data about th\éalues (precision = recall), with various similarity

performance of other disambiguation systems tg]eﬁsuéej fotLarget:] Zseilectolrsdpgthlztﬁgn_ (r\l/sr—
compare with. (Navigli et al., 2007) malized depth)path2 = scale sim paths = (Wu
o ._and Palmer, 1994)JC1 = (Resnik, 1999)]C2 =
Out of 2269 noun, verb, adjective, or adverb in-, ". )
; : , . Lin, 1997),IC3 = (Jiang and Conrath, 1997), and
stances we are concerned with disambiguating the
. = _relatedness measures fiontext selectorsglossl
1108 noun instances from the 245 sentences in the .
. .. — (Banerjee and Pedersen, 2008lpss2= (Pat-
corpus . These noun instances represent 593 differ- .
) . . woardhan etal., 2003). BaselinddFS = most fre-
ent words. Since we did not use the coarse-graine .
- . . asuent sens@andom = random choice of sense.
senses within our algorithm, the predicted sense
were correct if they mapped to the correct coarse-
grained sense. The average instance had 2.5 posaeasure of (Banerjee and Pedersen, 2003) gave
ble coarse-grained senses. The average numbettioé best results. Note that the path-based and in-
selectors acquired for each word is given in Tabléormation content measures, in general, performed
1. The bottom of Table 2 shows the random basequally.
line as well as a baseline using the most frequent We experimented with using the gloss-based re-
sense (MFS) heuristic. As previously mentionedatedness measures in place of similarity measures.
many supervised systems only perform marginallyhe idea was that one measure could be used for
better than the MFS. For the SemEval workshopoth target selectors and context selectors. As one
only 6 of 15 systems performed better than thigan gather from the bottom of table 2, for the most
baseline on the nouns (Navigli et al., 2007), all opart, the measures performed equally. The experi-
which used MFS as a back off strategy and an exnental runtime of the path-based and information
ternal sense tagged data set. Our results are ptgntent measures was roughly one-fourth that of
sented as precision (P), recall (R), and F1 valuge gloss-based measures.
(F1=2x £2%). Table 3 presents results from experiments where
we only attempted to annotate instances with over
a minimum number of target selectors (tMin) and
Table 2 shows the results when using various simgontext selectors (cMin). We use steps of four for
larity for the target selectors We selected gloss- target selectors and steps of ten for context selec-
based measures (Banerjee and Pedersen, 20Q8s, reflecting a ratio of roughly 2 target selectors
Patwardhan et al., 2003) due to the need for haer every 5 context selectors. It was more common
dling multiple parts of speech for theontext se- for an instance to not have any target selectors than
lectors Functionality for our use of many dif- to not have context selectors, so we present results
ferent relatedness measurements was provided wth only a tMin or cMin. The main goal of these
WordNet::Similarity (Pedersen et al., 2004). Ouexperiments was simply to determine if the algo-
method performs better than the MFS baselingithm performed better on instances that we were
and clearly better than the random baseline. Aable to acquire more selectors. We were able to see
one can see, thecaled_sim (path2) similarity this was the case as the precision improved at the

measure along with the gloss based relatednesspense of recall from avoiding the noun instances

4.1 Results and Discussion
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[tMin [cMin [A | P [ R | F1 | sel [ med | UPV-WSD | NUS-PT | SSI
0 0] 1108] 80.2] 80.2] 80.2 80.2| 71.1 79.33 82.31 | 84.12
4 0| 658 | 84.4|50.1| 62.9
16 0/ 561 | 852] 43.1]/57.2 Table 5: Comparison of noun F1 values with
0 101982 811! 719] 76.2 various participants in the SemEval2007 coarse-

0| 40[908 |81.3]|66.6]73.3 grained all-words task.
4| 10| 603 | 854 46.4]60.1

8 20| 554 | 85.3|42.6|56.9 nouns for the SemEval coarse-grained task, was
12 30| 516 | 86.4] 40.2| 54.9 actually from a system by the authors of the task
16 40 | 497 | 86.5)| 38.8| 53.5 (SSI) (Navigli and Velardi, 2005). All systems

performing better than the MFS used the heuris-
Table 3: Number attemptedif, Precision P), tic as a backoff strategy when unable to output a
Recall R) andF1 values of our method with re- sense (Navigli et al., 2007). Also, the systems per-
strictions on a minimum number of target selectorforming better than ours (including SSI) used more
(tMin ) and context selectorsiin). sources of sense annotated data.

sel | noMFS | 1SPD 5 Conclusion
80.2 79.6 79.8

We have presented a method for acquiring knowl-

dge from the Web for noun sense disambiguation.

Table 4. Results of a variety of experiments usin§2 ther th hina th b with h I
path2andglossifrom the previous tablenoMFS ~~arer than searching the we with pre-cnosen rel-
atives, we search with a string representing the lo-

= no use of most frequent send&PD= use of 1 . .
. cal context of a target word. This produces a list
sense per discourse. :
of selectors, words which may replace the target
word within its local context. The selectors are
that did not have many selectors. then compared with the senses of the target word
Table 4 shows the results when we modify th&ia similarity and relatedness measures to choose
method in a few ways. All these results usehe correct sense. By searching with context in-
the path2 (scaledsim) and glossl (Banerjee andstead of simply relatives, we are able to insure
Pedersen, 2003) measures. The results of Taore relevant results from the web. Additionally,
ble 2 include first sense heuristic used as a backiis method has an advantage over methods which
off strategy for close calls, when multiple sensesse relatives and context in that it does not restrict
have a score withir).05 of each other. There- the results to include pre-chosen words.
fore, we experiment without this heuristic pre- We also show that different types of similarity
sented anoMFS and found our method still per- and relatedness measures are appropriate for dif-
forms strongly. We also implemented one senskrent roles in our disambiguation algorithm. We
per discourse, reported aSPD Our experimental found a path-based measure to be best tadth
corpus had five documents, and for each documegét selectorawvhile a slower gloss-based method
we calculated the most commonly predicted sensgas appropriate focontext selectorén order to
and used that for all occurrences of the word withimandle multiple POS. For many tasks, information
the document. Interestingly, this strategy does n@ontent based measures perform better than path-
seem to improve the results in our method. based measures. However, we found a path-based
measure to be just as strong if not stronger in our
approach.
Table 5 shows the results of our method (sel) com- Results of our evaluation using the SemEval
pared with a few systems participating in the Seeoarse-grained all-words task showed strength in
mEval coarse-grained all-words task. These rehe use of selectors from the Web for disambigua-
sults include the median of all participating systion. Our system was out-performed only by sys-
tems, the top system not using training data (UPMems using training data or substantially more an-
WSD) (Buscaldi and Rosso, 2007), and the topotated data. Future work may improve results
system using training data (NUS-PT) (Chan ethrough the use of sense tagged corpora, a gram-
al., 2007). The best performance reported on thaatical parse, or other methods commonly used in

4.2 Comparison with other systems
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WSD. Additionally, better precision was achievedMartinez, David, Eneko Agirre, and Xinglong Wang.
when requiring a minimum number of selectors, 2006. Word relatives in context for word sense

giving promise to improved results with more disambiguation. InProceedings of the 2006 Aus-
. . . tralasian Language Technology Workshopages
work in acquiring selectors. This paper has shown 4o_gq.

an effective and novel method of noun sense dis-

: : .. McCarthy, Diana, Rob Koeling, Julie Weeds, and John
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Abstract

Catchwords refer to those popular words
or phrases in a time period. In this paper,
we propose a novel approach for
automatic  extraction of  Chinese
catchwords. By analyzing features of
catchwords, we define three aspects to
describe Popular Degree of catchwords.
Then we use curve fitting in Time Series
Analysis to build Popular Degree Curves
of the extracted terms. Finally we give a
formula that can calculate Popular
Degree values of catchwords and get a
ranking list of catchword candidates.
Experiments show that the method is
effective.

1 Introduction

Generally, a catchword is a term which
represents a hot social phenomenon or an
important incident, and is paid attention by
public society within certain time period. On the
one hand, catchwords represent the mass value
orientation for a period. On the other hand, they
have a high timeliness. Currently, there are quiet
a few ranking and evaluations of catchwords
every year in various kinds of media. Only in

year 2005, tens of Chinese organizations
published their ranking list of Chinese
catchwords.

Catchwords contain a great deal of

information from any particular area, and such
words truly and vividly reflect changes of our
lives and our society. By monitoring and analysis
of catchwords, we can learn the change of public

© 2008. Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported
license (http://creativecommons.org/licenses/by-nc-
sa/3.0/). Some rights reserved.

hattason@mail .whu.edu.cn

attention in time. In addition, we may detect the
potential changes of some linguistic rules, which
can help establish and adjust state language
policies.

Currently, two kinds of approaches are
adopted to evaluate catchwords. One is by CTR
(Click-Through Rate) or retrieval times, but the
limitation is that it is just based on frequency,
which is only one feature of catchwords. The
other is by manual evaluation, but it depends on
their subjective judgment to a large extent. In this
paper, we propose a novel approach that can
automatically analyze and extract Chinese
catchwords. By analyzing sample catchwords
and finding out their common features, we
provide a method to evaluate the popular degree.
After ranking, terms that have high values are
picked out as catchword candidates.

The rest of the paper is organized as follows.
In Section 2, we discuss about the linguistic basis
of catchword judgment. In Section 3, we describe
the extraction method in detail. In Section 4, we
present the experimental results as well as some
discussions. Finally, we give the conclusion and
future work in Section 5.

2  Linguistic basis

The popularity of a word or phrase contains two
factors: time and area, namely how long it lasts
and how far it spreads. But neither of them have
definite criterion.

2.1  Linguistic definition of catchword

Many researches of catchwords come from pure
linguistic areas. Wang (1997) proposed that
catchwords, which include words, phrases,
sentences or special patterns, are a language form
in certain times and among certain groups or
communities. Guo (1999) specified that
catchwords are popular words, which are widely
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used in certain period of time among certain
groups of people. To sum up, catchwords are a
language form spreading quickly within certain
area in certain period of time.

According to Zipf’'s Law (Zipf, 1949), the
word that has a higher usage frequency is shorter
than others. Catchwords also follow this
principle: most catchwords are words and
phrases instead of sentences and longer language

units, which are more difficult to extract
automatically. In the paper, we focus on
catchwords as words and phrases.

2.2

Some features of catchwords have been proposed,
but there have been few research to quantify and
weigh the features. Zhang (1999) proposed a
method to judge catchwords by weighing
Circulating Degree of catchwords, which are
based on Dynamic Circulating Corpus. But the
corpus construction and the judgment still
depend on manual efforts.

By analyzing usage frequency of catchwords,
we find that being a language phenomenon
within a period of time, a catchword has two
features: one is high usage frequency, namely a
catchword is frequently used in certain period of
time; the other is timeliness, namely this
situation will lasts for some time. Our
guantification method is based on these features.

Features of catchword

3 Extraction Method

In this section, the extraction method is described
in detail. After term extraction, the features of
terms are weighed by time series analysis. The
algorithm in section 3.4 shows the process to
extract catchword candidates.

3.1 Term Extraction

Catchwords are words or phrases with maximal
meanings, most of which are multi-character
words or phrases. Word segmentation has a low
discrimination for long phrases, while term
extraction has a better way to extract them.
Zhang (2006) proposed a new ATE algorithm,
which is based on the decomposition of prime
string. The algorithm evaluates the probability of
a long string to be a term by weighing relation
degree among sub-strings within the long string.
The algorithm can raise the precision in
extracting multi-character words and long
phrases. In this paper, we use this method to
extract terms.

3.2

For extracted terms, a time granularity should be
defined to describe their features. We select
‘day’ as the time granularity and get every day’s
usage frequency for each term in one year. These
can be described as a time series like below:

Cy ={Cu1sCuzs-es Cur o1 Con | (1)
C,, is the time series of term w. C,, is the

usage frequency of term w in the day t. n is the
number of observation days.

As a latent knowledge, two features of
catchwords mentioned in section 2.2 exist in
their time series. The effective method to find out
the latent knowledge in the time series is Time
Series Analysis, which includes linear analysis
and nonlinear analysis. As the time series of
terms belong to nonlinear series, we use
nonlinear analysis to deal with them.

After getting usage frequency, we use SMA
(Simple Moving Average) method to eliminate

Popular Degree Curve

the random fluctuation of series C, . The
formula is as follows:

m
zcw(t—m+j)
_ j=1

Co = @

C,: is the smoothed usage frequency of term

w in the day t and m is the interval. In SMA
method, a short interval has a little effect, while a
long one may result in low accuracy. So we
should specify a proper interval. Through
experiments we find that an appropriate interval
is between 10 and 20. Smoothed time series is as
follows:

Ew:{EWI’EWZ'""Ewt""’EW”} (3)

Smoothed time series of terms can be
described as curves, in which the coordinate x is

day t and coordinate y is Ewt. Through these

curves we can see that, catchwords appear in
certain period of time and its usage frequency
increases in this period. After reaching the
highest point, usage frequency of catchwords
decrease slowly. We call this process Popular
Degree, which contains three aspects:

1) Popular Trend: the increasing process of
usage frequency; the more obviously the popular
trend changes, the higher the popular degree is.

2) Peak Value: maximum usage frequency
within certain period of time; the larger the peak
value is, the higher the popular degree is.
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3) Popular Keeping: the decreasing process of
usage frequency; the more gently the popular

keeping changes, the higher the popular degree is.

Three aspects above determine popular degree
of catchwords. Figure 1 shows the smoothed
time series curve of the catchword *7.5] 2 2”

evaluated in year 2005:
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Figure 1. Smoothed time series curve of
the catchword “7:2)z7”

To the catchword ‘72|27, its Popular Trend
changes obviously and its Popular Keeping
changes gently. Meanwhile, its Peak Value is
relatively higher than those of most catchwords.
So the catchword ‘7+£[z7”" has a high Popular
Degree.

According to three aspects of Popular Degree,
smoothed time series curve is separated into two
parts: one is ascending period, namely Popular
Trend process; the other is descending period,
namely Popular Keeping process. We use conic
fitting to deal with two parts of series. A conic’s
formula is like below:

Y =a+Dbt +ct?

According to least square method, a standard
equation that can deduce three parameters a, b
and c is as follows:

> Y =na+b) t+cH t?
Dty =a) t+by t+c) t?
Yty =ay t2+by tP+c) !
Assume Ts is the starting time, Tg is the ending
time, and Ty, is the time that time series curve
reaches the highest point. According to conic
fitting method we can get curves of ascending

and descending period. Formulas of two conics
are as follows:

{(p(u):a+bu+cu2 T, <t<T,
w(V)=a'+bv+cv? T, <t<T,

(4)

2 7327 means Sudan red in English.

Variable u and v are usage frequency of a term
in a day, p(u) is the formula of ascending curve,

and w(v) is the formula of descending curve. The

curve described by equation (4) is called Popular
Degree Curve. Figure 2 shows the Popular
Degree Curve of the catchword ‘72z
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Figure 2. Popular Degree Curve of
the catchword ‘72z’

3.3 Popular Degree Value

The decision of catchwords is based on three
aspects of Popular Degree described in section
3.2. We propose a formula to calculate Popular
Degree values of terms. After getting the values,
a ranking list by inverse order is established. The
Popular Degree of a catchword is in the direct
ratio to its place in the ranking list. The formula
is as follows:

PD(w) = PT (w)x PV (w) x PK (w) (5)

PD(w) is the Popular Degree value of the
catchword w. PT(w) is the Popular Trend value
of w:

PT (W) — a.(D(TM)_w(TS) (6)
o(Tw)

o is the adjusting parameter of Popular Trend.
The formula indicates that PT(w) is related to
changing process of Popular Degree Curve.
PV(w) is the Peak Value of w:
max {C,, }

e > max{t,, } + max{c,,}

S is the adjusting parameter of Peak Value.
The formula indicates that PV(w) is related to the
maximum usage frequency of w. PK(w) is the
Popular Keeping value of w:

pK(W):y{l_MJ ()

PV (W) =/ (7)

w(Ty)

y is the adjusting parameter of Popular
Keeping. The formula indicates that PK(w) is
related to changing process of Popular Degree
Curve. Parameter ¢, £ and y control proportion
of three aspects in Popular Degree value.
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All extracted terms are ranked according to
their Popular Degree values. Terms that have
high scores are picked out as catchword
candidates.

3.4 Algorithm

The algorithm of automatic
extraction is described below:

catchwords

Algorithm Extracting catchwords

Input text collections

Output ranking list of catchword candidates

Method

1) use ATE algorithm mentioned in section 3.1 to

extract terms

2) filter terms that contains numbers and

punctuations

3) foreach term

4) calculate its smoothed time series by formula
)

5) use conic fitting method in section 3.2 to get
its Popular Degree Curve like equation (4)

6) use formula (5) ~ (8) to calculate its Popular
Degree value

7) rank all Popular Degree values from high to

low

4  Experimental Results and Analysis
4.1 Text Collection

In the experiment, we use 136,191 web pages
crawled from Sina®’s news reports in year 2005
including six categories: economy, science,

current affairs, military, sports and entertainment.

For the experimental purpose, we extract body
content in every web page by using Noise
Reducing algorithm (Shianhua Lin & Janming
Ho, 2002). Totally, the extracted subset includes
129,328 documents.

4.2  Experiment settings

In the experiment, several parameters should be
settled to perform the catchwords extraction.
°n
A large time granularity may result in low
accuracy for conic fitting. In this paper, we
select ‘day’ as the time granularity.
°m
For the interval m in formula (2), a proper
value should be specified to not only
eliminate random fluctuation but also keep

3 http://www.sina.com.cn/

accuracy of data. In the experiment we find
that the proper interval is between 10 and 20.
* Ts and TE

Catchwords have a high timeliness, so we
should specify a time domain. By analysis of
sample catchwords, we find that popular
time domain for most of them approximately
last for not more than 6 months. So we
specify the time domain is n / 2. Thus the
relationship among the starting time Ts and
the ending time Tg is below:

n
To=Te )

As a proper example, the starting point can
be 60 days away from the highest point.
Thus the Popular Trend process and the
Popular Keeping process both last for nearly
3 months. So the relationship can be
described as formulas below:

n n
TS :TM —lrz—‘u TE ZTM +’VZ-‘

o py

To keep the Popular Degree values of
catchwords within [0, 1], three adjusting
parameters are satisfied to the inequation:
O<a,B,y<1.

Table 1 shows proper values of parameters as
schema 1. We also give other schemas, which
contain different values of parameters, to
compare with the schema 1. In schema 2 to
schema 4, default values of parameters are the
same with schema 1.

parameter Value

n 365

t [1, 365]
m 15

Ts Tu=I n/4]
Te Tu+[ n/4]
a 1

g 1

14 1

Table 1. parameters in schema 1

schema 2: different m values
schema 3: different values of Ts and Tg
schema 4: different values of ¢, fand y

4.3 Evaluation Measure

Currently, there is no unified standard for
catchword evaluation. In year 2005, NLRMRC
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(National Language Resources Monitoring and
Research Centre, held by MOE of China) had
published their top 100 Chinese catchwords. We
use co-occurrence ratio of catchwords for the
evaluation. The formula of co-occurrence ratio is
as follows:

N

r=—%

N

N is the number of ranking catchwords. N¢ is
the co-occurrence of catchwords, namely the
number of catchwords which appear both in our
approach and NLRMRC in top N.

4.4 Results

We use algorithm described in section 3.4 to get
a ranking list of catchword candidates.
According to ATE algorithm mentioned in
section 3.1, we extract 966,532 terms. After
filtering invalid terms we get 892,184 terms and
calculate each term’s Popular Degree value.
Table 2 - 5 shows the co-occurrence ratio with
schemal - 4.

N=20 | N=40
7% 18%

N=60
36%

N=80
53%

N=100
66%

Table 2. Co-occurrence ratio using schema 1

m N=20 | N=40 | N=60 | N=80 | N=100
5 3% 7% | 16% | 29% | 45%
10 4% | 11% | 25% | 44% | 59%
20 7% | 15% | 32% | 49% | 63%
25 6% | 14% | 29% | 46% | 60%
Table 3. Co-occurrence ratio using schema 2

Tn-Ts* | N=20 | N=40 | N=60 | N=80 | N=100

Te-Tu

1:4 0% 3% 8% | 15% | 22%
2:3 4% | 14% | 30% | 49% | 64%
3:2 5% | 15% | 33% | 51% | 63%
4:1 2% 5% | 12% | 21% | 26%
Table 4. Co-occurrence ratio using schema 3

N=20 | N=40 | N=60 | N=80 | N=100
a=0.5 3% 9% | 24% | 42% | 55%
a=0.8 6% | 15% | 31% | 50% | 64%
=05 2% 6% | 16% | 37% | 52%
=08 5% | 13% | 29% | 47% | 59%
7=0.5 3% | 11% | 26% | 43% | 57%
7=0.8 6% | 15% | 32% | 51% | 62%

Table 5. Co-occurrence ratio using schema 4

Table 2 shows the co-occurrence ratio of the
catchwords extracted by our approach and
NLRMRC in top N catchwords ranking list. It
indicates that, when N is 100, co-occurrence of
the catchwords reaches 66%; when N is lower,

the ratio is also lower. On the one hand, we can
see that our approach has a good effect on
automatically extracting catchwords, closing to
the result of manual evaluation with the
increment of N. On the other hand, it proves that
divergence exists between our approach and
manual evaluation in high-ranking catchwords.

Table 3 indicates that, the condition of m = 20
has a better co-occurrence ratio in contrast with
others in schema 2. It is because a short interval
has a little effect, while a long one may result in
low accuracy in SMA.

Table 4 indicates that a better performance can
be made when the proportion of Ty - Ts and T -
Twm is close to 1:1. It proves that Popular Trend
process is just as important as Popular Keeping
process. Therefore the best time domain of these
two processes are both n/ 4.

Three parameters can adjust the weights of PD,
PV and PK in formula (5). Table 5 indicates that
three factors above are all important for weighing
a catchword, while g is a little more important
than « and y Therefore, maximum usage
frequency of a catchword is a little more
important than two other factors.

From Table 2 — 5 we can see that, parameters
in schema 1 is most appropriate for the
evaluation.

Table 6 shows the ranking list of top 10
catchword candidates according to their Popular
Degree values:

candidates* PD value
S 0.251262
S Ead 0.220975
I 0.213843
i ] 0.196326
TD-SCDMA 0.185691
FBAAEE 0.166730
[BE I 0.154803
7 E 0.137211
BB 0.121738
HAER 0.120667

Table 6. Popular Degree values of Top 10
catchword candidates

* ®Z+ 7 means a talent show by Hunan Satellite.

I{1{/7 means petroleum price

HhZp!i2E 2] means textile negotiation

F A means a famous girl called sister lotus

1< ZJ¥) means STS Discovery OV-103

- V&Ezf means a billiards player named Junhui Ding
- 4, £ 1 means Six-Party Talks

}ﬁﬁféﬁ% means swine streptococcus suis
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45  Analysis

In our experiment, Popular Values of some
catchwords by manual evaluation are lower. By
analyzing their time series curves, we find that
usage frequencies of these terms are not high.
We also find that these catchwords mostly have
other expressions. Such as the catchword ‘w5
(LI {4 5= 2 can be also called il £ 4= °.
These two synonyms are treated as one term in
manual evaluation that corresponds to promote
usage frequency. However, relationship between
the two synonyms is not concerned in automatic
extraction. They are treated as separate terms. So
the Popular Degree Values of these two
synonyms are not high either. It proves that parts
of catchwords by manual evaluation are collected
and generalized. A catchword should be treated
not only as a separate word or a phrase, but also
as a part of a word-cluster, which consist of
synonymous words or phrases. Through word
clustering method, we can get an increasing
guantity of the co-occurrence of catchwords
between our approach and manual evaluations.

5 Conclusions

Being as one aspect of dynamic language
research, catchwords have a far-reaching
significance for the development of linguistics.
The paper proposes an approach that can
automatically detect and extract catchwords. By
analyzing evaluated catchwords and finding out
their common feature called popular degree, the
paper provides a method of popular degree
guantification and gives a formula to calculate
term’s popular degree value. After ranking, terms
that have high values are picked out as
catchword candidates. The result can be provided
as a reference for catchword evaluation.
Experiments show that automatic catchword
extraction can promote the precision and
objectivity, and mostly lighten difficulties and
workload of evaluation.

In the experiment, we also find that some
catchwords are not isolated, but have a strong
relationship and express the same meaning. In
the future, we can unite all synonymous
catchwords to a word cluster and calculate the
cluster’s popular degree value. Thus we would
be able to achieve a better performance for
extraction.

5 w2 [ fE (£ 5 means social security system
8 %k {pl {4 4 is the abbreviation of 7 2 [ (4 4
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Abstract

Pictorial communication systems convert
natural language text into pictures to as-
sist people with limited literacy. We define
a novel and challenging problem: picture
layout optimization. Given an input sen-
tence, we seek the optimal way to lay out
word icons such that the resulting picture
best conveys the meaning of the input sen-
tence. To this end, we propose a family
of intuitive “ABC” layouts, which organize
icons in three groups. We formalize layout
optimization as a sequence labeling prob-
lem, employing conditional random fields
as our machine learning method. Enabled
by novel applications of semantic role la-
beling and syntactic parsing, our trained
model makes layout predictions that agree
well with human annotators. In addition,
we conduct a user study to compare our
ABC layout versus the standard linear lay-
out. The study shows that our semantically
enhanced layout is preferred by non-native
speakers, suggesting it has the potential to
be useful for people with other forms of
limited literacy, too.

1 Introduction

A picture is worth a thousand words—especially
when you are someone with communicative dis-
orders, a foreign language speaker, or a young
child. Pictorial communication systems aim to au-
tomatically convert general natural language text
into meaningful pictures. A perfect pictorial

(©2008.  Licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported li-

cense  (http://creativecommons.org/licenses/by-nc-sa/3.0/).
Some rights reserved.

communication system can turn signs and opera-
tion instructions into easy-to-understand graphical
forms; combined with optical character recogni-
tion input, a personal assistant device could create
such visual translations on-the-fly without the help
of a caretaker. Pictorial communication may also
facilitate literacy development and rapid browsing
of documents through pictorial summaries.

Pictorial communication research is in its in-
fancy with a spectrum of experimental systems,
which we review in Section 2. At one end of
the spectrum, some systems render highly realis-
tic 3D scenes but require specific scene-descriptive
language. At the other end, some systems per-
form dictionary-based iconic transliteration (turn-
ing words into icons' one by one) on arbitrary text
but the pictures can be hard to understand. We are
interested in using pictorial communication as an
assistive communication tool. Thus, our system
needs to be able to handle general text yet produce
easy-to-understand pictures, which is in the middle
of the spectrum. To this end, our system adopts
a “collage” approach (Zhu et al., 2007). Given a
piece of text (e.g., a sentence), it first identifies im-
portant and easy-to-depict words (or phrases) with
natural language processing (NLP) techniques. It
then finds one good icon per word, either from a
manually created picture-dictionary, or via image
analysis on image search results. Finally, it lays
out the icons to create the picture. Each step in-
volves several interesting research problems.

This paper focuses exclusively on the picture
layout component and addresses the following
question: Can we use machine learning and NLP
techniques to learn a good picture layout that im-

'In this paper, an icon refers to a small thumbnail image
corresponding to a word or phrase. A picture refers to the
overall large image corresponding to the whole text.
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proves picture comprehension for our target audi-
ences of limited literacy? We first propose a sim-
ple yet novel picture layout scheme called “ABC.”
Next, we design a Conditional Random Field-
based semantic tagger for predicting the ABC lay-
out. Finally, we conduct a user study contrasting
our ABC layout to the linear layout used in iconic
transliteration. The main contribution of this paper
is to introduce the novel task of layout prediction,
learned using linguistic features including Prop-
Bank role labels, part-of-speech tags, and lexical
features.

2 Prior Pictorial Communication Work

At one extreme, there has been significant prior
work on “text-to-scene” type systems, which were
often intended to aid graphic designers in placing
objects in a 3D environment. Example systems in-
clude NALIG (Adorni et al., 1983), SPRINT (Ya-
mada et al., 1992), Put (Clay and Wilhelms,
1996), and others (Brown and Chandrasekaran,
1981). Perhaps the best known system of this type,
WordsEye (Coyne and Sproat, 2001), uses a large
manually tagged collection of 3D polyhedral mod-
els to create photo-realistic scenes. Similarly, Car-
Sim (Johansson et al., 2005) can create animated
scenes, but operates exclusively in the limited do-
main of reconstructing road accidents from traffic
reports. These systems cater to detailed descriptive
text with visual and spatial elements. They are not
intended as assistive tools to communicate general
text, which is our goal.

Several systems (Zhu et al., 2007; Mihalcea and
Leong, 2006; Joshi et al., 2006) attempt to bal-
ance language coverage versus picture sophistica-
tion. They perform some form of keyword selec-
tion, and select corresponding icons automatically
from a 2D image database. The result is a pictorial
summary representing the main idea of the origi-
nal text, but precisely determining the original text
by looking at the picture can be difficult.

At the other extreme, augmentative and alterna-
tive communication software allows users to in-
put arbitrary text. The words, and sometimes
common phrases, are semi-automatically translit-
erated into icons, and displayed in sequential or-
der. Users must learn special icons, which corre-
spond to function words, before the resulting pic-
tures can be fully understood. Examples include
SymWriter (Widgit Software, 2007) and Blissym-
bols (Hehner, 1980).

Other than explicit scene-descriptive languages,
pictorial communication systems have not suffi-
ciently addressed the issue of picture layout for
general text. We believe a good layout can better
communicate the text a picture is trying to convey.
The present work studies the use of a semantically
inspired layout to enhance pictorial communica-
tion. For simplicity, we restrict our attention to the
layout of a single sentence. We anticipate the use
of text simplification (Chandrasekar et al., 1996;
Vickrey and Koller, 2008) to convert complex text
into a set of appropriate inputs for our system.

3 The ABC Layout

A good picture layout scheme must be intuitive to
humans and easy to generate by computers. To
design such a layout, we conducted a pilot study.
Five human annotators produced free-hand pic-
tures of many sentences. Analyzing these pictures,
we found a large amount of agreement in the use
of arrows to mark actions and to provide structure
to what would otherwise be a jumble of icons.

Motivated by the pilot study, we propose a sim-
ple layout scheme called ABC. It features three
positions, referred to as A, B, and C. In addition,
an arrow points from A through B to C (Figure 1).
These positions are meant to denote certain seman-
tic roles: roughly speaking, A denotes “who,” B
denotes “what action,” and C denotes “to whom,
for what.” Each position can contain any number
of icons, each representing a word or phrase in the
text. Words that do not play a significant role in
the text will be omitted from the ABC layout.

There are two main advantages of the ABC lay-
out:

1. The ABC positioning of icons allows users to
infer the semantic role of the corresponding con-
cepts. In particular, we found that verbs can be dif-
ficult to depict and understand without such hints.
The B position serves as an action indicator to dis-
ambiguate between multiple senses of the same
icon. For example, in Figure 1, the school bus icon
clearly represents the verb phrase “rides the bus,”
rather than just the noun “bus.”

2. Such a layout is particularly amenable to ma-
chine learning. Specifically, we can turn the prob-
lem of finding the optimal layout for an input sen-
tence into a sequence tagging problem, which is
well-studied in NLP.
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L]

The girl rides the bus to school in the morning
O A B BBO C 0O B

Figure 1: Example ABC picture layout, original
text, and tag sequence.

3.1 ABC Layout as Sequence Tagging

Given an input sentence, one can assign each word
a tag from the set {A, B, C, O}. The bottom row in
Figure 1 shows an example tag sequence. The tag
specifies the ABC layout position of the icon cor-
responding to that word. Tag O means “other” and
marks words not included in the picture. Within
each position, icons appear in the word order in the
input sentence. Therefore, a tag sequence uniquely
determines an ABC layout of the picture.

Finding the optimal ABC layout of the input
sentence is thus equivalent to computing the most
likely tag sequence given the input sentence. We
adopt a machine learning approach by training a
sequence tagger for this task. To do so, we need
to collect labeled training data in the form of sen-
tences with manually annotated tag sequences. We
discuss our annotation effort next, and present our
machine learning models in Section 4.

3.2 Human Annotated Training Data

We asked the five annotators to manually label 571
sentences compiled from several online sources,
including grade school texts about history and sci-
ence, children’s books, and recent news headlines.
Some sentences were written by the annotators and
describe daily activities. The annotators tagged
each sentence using a Web-based tool to drag-and-
drop icons into the desired positions in the layout?.

To gauge the quality of the manually labeled
data, and to understand the difficulty of the ABC

>The manual tagging actually employs a more detailed tag
set to denote phrase structure: Each A, B, or C tag is com-
bined with a modifier of b (begin phrase) or ¢ (inside phrase).
For example, the phrase “rides the bus” in Figure 1 is tagged
with By, B; B;, and shares one icon. The icons were also
manually selected by the annotator from a list of Web image
search results.

layout, we computed inter annotator agreement
among three of the five annotators on a common
set of 48 sentences. Considering all pair-wise com-
parisons of the three annotators, the overall aver-
age tag agreement was 77%. This measures the to-
tal number of matching tags (across all sentences)
divided by the total number of tags. Matching
strictly requires both the correct tag and the correct
modifier. We also computed Fleiss’ kappa, which
measures the degree of inter-annotator agreement
beyond the amount expected by chance (Fleiss,
1971). The values range from O to 1, with 1 indi-
cating perfect agreement. The kappa statistic was
0.71, which is often considered moderate to high
agreement.

Further inspection revealed that most disagree-
ment was due to annotators reversing A and C
tags. This could arise from interpreting passive
sentences in different ways or trying to represent
physical movement. For example, some annotators
found it more natural to depict eating by placing a
food item in A and the eater in C, treating the ar-
row as the transfer of food. It was also common for
annotators to disagree on whether certain adverbs
and time modifiers belong in B or in C. These dif-
ferences all suggest the highly subjective nature of
conceptualizing pictures from text.

4 A Conditional Random Field Model for
ABC Layout Prediction

We now introduce our approach to automatically
predicting the ABC layout of an input sentence.
While it was most natural for human annotators to
annotate text at the word level, early experiments
quickly revealed that predicting tags at this level is
quite challenging. Most of this stems from the fact
that human annotators tend to fragment the text
into many small segments based on the availability
of good icons. For example, the phrase “the white
pygmy elephant” may be tagged as “O A O A” be-
cause it is difficult for the annotator to find an icon
of this exact phrase or the word “pygmy,” but easy
to find icons of “white” and “elephant” separately.
Essentially, human annotation combines two tasks
in one: deciding where each phrase goes in the lay-
out, and deciding which words within a phrase can
be depicted with icons.

To rectify this situation, we make layout predic-
tions at the level of chunks (phrases); that is, we
automatically break the text into chunks, then pre-
dictone A, B, C, or O tag for each chunk. Since the
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tag choices made for different chunks may depend
on each other, we employ Conditional Random
Fields (CRF) (Lafferty et al., 2001), which are fre-
quently used in sequential labeling tasks like infor-
mation extraction. Our choice of chunking is de-
scribed in Section 4.1, and the CRF models and in-
put features are described in Section 4.2. The task
of deciding which words within a chunk should ap-
pear in the picture is addressed by a “word pictura-
bility” model, and is discussed in a separate paper.
For training, we automatically map the word-
level tags in our annotated data to chunk-level tags
based on the majority ABC tag within a chunk.

4.1 Chunking by Semantic Role Labeling

Ideally, we would like semantically coherent text
chunks to be represented pictorially in the same
layout position. To obtain such chunks, we lever-
age existing semantic role labeling (SRL) tech-
nology (Palmer et al., 2005; Gildea and Jurafsky,
2002). SRL is an active NLP task in which words
or phrases in a sentence are assigned a label indi-
cating the role they play with respect to a particu-
lar verb (also known as the target predicate). SRL
systems like FrameNet (Baker et al., 1998) and
PropBank (Palmer et al., 2005) aim to provide a
rich representation for applications requiring some
degree of natural language understanding, and are
thus perfectly suited for our needs. We shall fo-
cus on PropBank labels because they are easier to
use for our task. To obtain semantic role labels,
we use the automatic statistical semantic role la-
beler ASSERT (Pradhan et al., 2004), trained to
identify PropBank arguments through the use of
support vector machines and full syntactic parses.

To understand how SRL can be useful for deriv-
ing pictorial layouts, consider the sentence “The
boy gave the ball to the girl.” PropBank marks
the semantic role labels of the “arguments” of
verbs. The target verb “give” is part of the frameset
“transfer,” with core arguments “Arg0: giver” (the
boy), “Argl: thing given” (the ball), and “Arg2:
entity given to” (the girl). Verbs can also in-
volve non-core modifier arguments, such as ArgM-
TMP (time), ArgM-LOC (location), ArgM-CAU
(cause), etc. The entities playing semantic roles
are likely to be entities we want to portray in a
picture. For PropBank, ArgO often represents an
Agent, and Argl the Patient or Theme. If we could
map the different semantic role labels to ABC tags
with simple rules, then we would be done.

Unfortunately, it is not this simple, as Prop-
Bank roles are verb-specific. As Palmer et al.
pointed out, “No consistent generalizations can be
made across verbs for the higher-numbered argu-
ments” (Palmer et al., 2005). In the above exam-
ple, we might expect a layout rule of [Arg0]—A,
[Target, Argl]—B, [Arg2]—C. However, this rule
does not generalize to other verbs, such as “drive,”
as in the sentence “The boy drives his parents
crazy,” which also has three core arguments “Arg0:
driver,” “Argl: thing in motion,” and “Arg2: sec-
ondary predication on Argl.” However, here the
action is figurative, and we would expect a lay-
out rule that puts Argl in position C: [Arg0]—A,
[Target]—B, [Argl,Arg2]—C.

In addition, while modifier arguments have the
same meaning across verbs, their pictorial repre-
sentation may differ based on context. Consider
the sentences ‘“Polar bears live in the Arctic.” and
“Yesterday at the zoo, the students saw a polar
bear.”” In the former, a human annotator is likely
to place an icon for the ArgM-LOC “in the Arc-
tic” in position C (e.g., following a polar bear icon
in A and a house icon in B). However, the ArgM-
LOC in the second sentence, “at the zoo,” seems
more appropriately placed in position B since it de-
scribes where this particular action occurred.

Finally, the situation is further complicated
when a sentence contains multiple verbs. SRL
treats each verb in isolation, producing multiple
sets of role labels, yet our goal is to produce a sin-
gle picture. Clearly, the mapping from semantic
roles to layout positions is non-trivial. We describe
our statistical machine learning approach next.

4.2 Our CRF Models and Features

We use a linear-chain CRF as our sequence tag-
ging model. A CREF is a discriminative model of
the conditional probability p(y|x), where y is the
sequence of layout tags in ) ={A,B,C,0}, and x
is the sequence of SRL chunks produced by the
process described in Section 4.1. Our CRF has the
general form

x| K

Z(lx) exp ( D Mfr(Ye, yr1,%,t)

t=1 k=1

pylx) =

where the model parameters are {\;}. We
use binary features fi(vys, y1—1,x,t) detailed be-
low. Finally, we use an isotropic Gaussian prior
N(0,021) on parameters as regularization.
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We explored three versions of the above model
by specializing the weighted feature function
A fr(). Model 1 ignores the pairwise label poten-
tials and treats each labeling prediction indepen-
dently: Ajx1y,—;1 fr(x,t), where 1.y is an indi-
cator function on z. This is equivalent to a multi-
class logistic regression classifier. Model 2 resem-
bles a Hidden Markov Model (HMM) by factoring
pairwise label potentials and emission potentials:
)\ijl{yt—lz’i}1{yt:j}+>\jk1{yt:j}fk(x7 t). Finally,
Model 3 has the most general linear-chain poten-
tial: Aijr 1y, =iy 1{y,—j1 fr(X,t). Model 3 is the
most flexible, but has the most weights to learn.

We use the following binary predicate features
fr(x,t) in all our models, evaluated on each chunk
produced by the semantic role labeler:

1. PropBank role label(s) of the chunk (e.g., Tar-
get, Arg0, Argl, ArgM-LOC). A chunk can have
multiple role labels if the sentence contains multi-
ple verbs; in this case, we merge the multiple SRL
results by taking their union.

2. Part-of-speech tags of all the words in the
chunk. All syntactic parsing results are obtained
from the Stanford Parser (Klein and Manning,
2003), using the default PCFG model.

3. Phrase type (e.g., NP, VP, PP) of the deepest
syntactic parse tree node covering the entire chunk.
We also include a feature indicating whether the
phrase is nested within an ancestor VP.

4. Lexical features: individual word identities in
the top 5000 most frequent words in the Google 1T
Sgram corpus (Brants and Franz, 2006). For other
words, we use their automatically predicted Word-
Net supersenses (Ciaramita and Altun, 2006). Su-
persenses are 41 broad semantic categories (e.g.,
noun.location, verb.communication). By dividing
lexical features in this way, we hope to learn spe-
cific qualities of common words, but generalize
across rarer words.

We also experimented with features derived
from typed dependency relations, but these did not
improve our models. We suspect the PropBank
role labels capture much of the same information.
In addition, the Google 5000-word list was the best
among several word lists that we explored for split-
ting up the lexical features.

4.3 CRF Experimental Results

We trained our CRF models using the MAL-
LET toolkit (McCallum, 2002). Our complete
dataset consists of the 571 manually annotated sen-
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Figure 2: 5-fold cross validation results for dif-
ferent values of the regularization parameter (vari-
ance 02) and three CRF models predicting A, B,
C, or O layout tags.

tences (tags mapped to chunk-level). The only
tuning parameter is the Gaussian prior variance,
o2. We performed 5-fold cross validation, vary-
ing 02 and comparing performance across models.
Figure 2 demonstrates that peak per-chunk accu-
racy (77.6%) and macro-averaged F1 scores are
achieved using the most general sequence labeling
model. As a result, the user study in the next sec-
tion is based on layouts predicted by Model 3 with
02 = 1.0, trained on all the data.

To understand which features contribute most
to performance, we experimented with removing
each of the four types (individually). Peak accu-
racy drops the most when lexical features are re-
moved (76.4%), followed by PropBank features
(76.5%), phrase features (76.9%), and POS fea-
tures (77.1%).

The features in the final learned model make in-
tuitive sense. It prefers tag transitions A—B and
B—C, but not A—C or C—A. The model likes the
word “I”’ and noun phrases (not nested in a verb
phrase) to have tag A. Verbs and ArgM-NEGs are
frequently tagged B, while noun.object’s, Argds,
and ArgM-CAUs are typically C. The model dis-
courages Arg(Os and conjunctions in B, and dislikes
adverbial phrases and noun.time’s in C.

While 77.6% cross validation accuracy may
seem low, it is in fact close to the 81% inter an-
notator agreement?, and thus close to optimal. The
confusion matrix (not shown) reveals that most er-

3The 81% agreement is on mapped chunk-level tags with-
out modifiers (Fleiss’ kappa 0.74), while the 77% agreement
in Section 3.2 is on word-level tags with modifiers.

123



rors probably arise from disagreements in the in-
dividual annotators. The most common errors are
predicting B for chunks labeled O and confusing
tags B and C. Manually inspecting the pictures in
our training set shows that annotators often omit-
ted the verb (such as “is” or “has”) and left the B
position empty, since it could be inferred by the
presence of the arrow and the images in A and C.
Also, annotators tended to disagree on the location
of adverbial expressions, dividing them between
positions B and C. Finally, only 3.3% of chunks
were incorrectly omitted from the pictures. There-
fore, we conclude that our CRF models are capable
of predicting the ABC layouts.

5 User Study

We have proposed the ABC layout, and showed
that we can learn to predict it reasonably well. But
an important question remains: Can the proposed
ABC layout help a target audience of limited lit-
eracy understand pictures better, compared to the
linear layout used in state-of-the-art augmentative
and alternative communication software? We de-
scribe a user study as our first attempt to answer
this question. This line of work has two main chal-
lenges: one is the practical difficulty of working
with human subjects of limited literacy; the other is
the lack of a quantitative measure of picture com-
prehension.

[Subjects]: To partially overcome the first chal-
lenge, we recruited two groups of subjects with
medium and high literacy respectively, in hopes
of extrapolating our findings towards the low lit-
eracy group. Specifically, the medium group con-
sisted of seven non-native English speakers who
speak some degree of English—“medium literacy”
refers to their English fluency; twelve native En-
glish speakers comprised the high literacy group.
All subjects were adults and did not include the
authors of this paper or the five annotators. The
subjects had no prior exposure to pictorial com-
munication systems.

[Material]: We randomly chose 90 test sen-
tences from three sources* representing our
target application domains:  short narratives
written by and for individuals with commu-
nicative disorders (symbolworld.org);
one-sentence news synopses written in simple
English targeting foreign language learners
(simpleenglishnews.com); and the child

*Distinct from the sources of the 571 training sentences.

writing sections of the LUCY corpus (Sampson,
2003). We created two pictures for each test
sentence: one using a linear layout and one
using an ABC layout. For the linear layout,
we used SymWriter. Typing text in SymWriter
automatically produces a left-to-right sequence
of icons, chosen from an icon database. In cases
where SymWriter suggests several possible icons
for a word, we manually selected the best one. For
words not in the database, we found appropriate
thumbnail images using Web image search. This
is how a typical user would use SymWriter. To
produce the ABC layout, we applied the trained
CRF tagger Model 3 to the test sentence. After
obtaining A, B, C, and O tags for text chunks, we
placed the corresponding icons (from SymWriter’s
linear layout) in the correct layout positions. Icons
for words tagged O did not appear in the ABC
version of the picture. Aside from this difference,
both pictures of each test sentence contained
exactly the same icons—the only difference was
the layout.

[Protocol]: All 19 subjects observed each of
the 90 test sentences exactly once: 45 with the
linear layout and 45 with the ABC layout. The
layouts and the order of sentences were both ran-
domized throughout the sequence, and the subjects
were counter-balanced so each sentence’s linear
and ABC layouts were viewed by roughly equal
numbers of subjects. At the start of the study,
each subject read a brief introduction describing
the task and saw an example of each layout style.
Then for each test sentence, we displayed a pic-
ture, and the subject typed a guess of the underly-
ing sentence. Finally, the subject provided a confi-
dence rating (2="almost sure,” 1="maybe correct,”
or 0="no idea”). We measured response time as
the time from image display until sentence/rating
submission. Figure 3 shows a test sentence in both
layouts, together with several subjects’ guesses.

[Evaluation metrics]: As noted above, the
second main challenge is measuring picture
comprehension—we need a way to compare the
original sentences with the subjects’ guesses. In
many ways, this is like machine translation (via
pictures), so we turned to two automatic eval-
uation metrics: BLEU-1 (Papineni et al., 2002)
and METEOR (Lavie and Agarwal, 2007). BLEU-1
computes unigram precision (i.e., fraction of re-
sponse words that exactly match words in the orig-
inal), multiplied by a brevity penalty for omit-
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“we sing a song about a farm.”
“i sing about the farm and animals”
“we sang for the farmer and he gave us animals.”
“Someone went to his grandfather’s farm
and played with the animals”
“i can’t sing in the choir because i have to tend
to the animals.”

“twins sing old macdonald has a farm”

“they sang about a farm”

“they sing old mcdonald had a farm.”

“we have a farm with a sheep, a pig and a cow.”
“two people sing old mcdonald had a farm”
“we sang old mcdonald on the farm.”

“they both sing ‘old macdonald had a farm’.”

Figure 3: The linear and ABC layout pictures for the test sentence “We sang Old MacDonald had a
farm.” and some subjects’ guesses. Note the predicted ABC layout omits the ambiguous “had” icon.

ting words. In contrast, METEOR finds a one-to-
one word alignment between the texts that allows
partial matches (after stemming and by consider-
ing WordNet-based synonyms) and optionally ig-
nores stop words. Based on this alignment, uni-
gram precision, recall, and weighted F measure are
computed, and the final METEOR score is obtained
by scaling F to account for word-order preserva-
tion. We computed METEOR using its default pa-
rameters and the stop word list from the Snowball
project (Porter, 2001).

[Results]: We report average METEOR and BLEU
scores, confidence ratings, and response time for
the 4 conditions (native vs. non-native, ABC vs.
linear) in Table 1. The most striking observation
is that native speakers perform better (in terms of
METEOR and BLEU) with the linear layout, while
non-native speakers do better with ABC. >

To explain this finding, it is worth noting that
SymWriter pictures include function words, whose
icons are abstract but distinct. We speculate that
even though none of our subjects were trained to
recognize these function-word icons, the native
speakers are more accustomed to the English syn-
tactic structure, so they may be able to transliter-
ate those icons back to words. In an ABC lay-

3 Using a Mann-Whitney rank sum test, the difference in
native speakers’ METEOR scores is statistically significant
(p = 0.003), though the other differences are not (native
BLEU, p = 0.085; non-native METEOR, p = 0.172; non-
native BLEU, p = 0.170). Nevertheless, we observe some
evidence to support our hypothesis that non-native speak-

ers benefit from the ABC layout, and we intend to conduct
follow-up experiments to test the claim further.

Non-native Native
ABC | Linear ABC | Linear
METEOR | 0.1975 | 0.1800 | 0.2955 | 0.3335
BLEU 0.1497 | 0.1456 || 0.2710 | 0.3011
Conf. 0.50 0.47 0.90 0.89
Time 47.4s 47.8s 38.1s 38.6s

Table 1: User study results.

out, the sentence order is mostly removed, and
some phrases might be omitted due to the O tag.
Thus native speakers do not get as many syntactic
hints. On the other hand, non-native speakers do
not have the same degree of built-in English syn-
tactic knowledge. As such, they do not gain much
from seeing the whole sentence sequence includ-
ing function-word icons. Instead, they may have
benefited from the ABC layout’s added organiza-
tion and potential exclusion of irrelevant icons.

If this reasoning holds, it has interesting impli-
cations for viewers who have lower English liter-
acy: they might take away more meaning from a
semantically structured layout like ABC. Verifying
this is a direction for future work.

Finally, it is interesting that all subjects feel
more confident in their responses to ABC layouts
than linear layouts, and, despite their added com-
plexity, ABC layouts do not require more response
time than linear layouts.
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6 Conclusions

We proposed a semantically enhanced picture lay-
out for pictorial communication. We formulated
our ABC layout prediction problem as sequence
tagging, and trained CRF models with linguistic
features including semantic role labels. A user
study indicated that our ABC layout has the poten-
tial to facilitate picture comprehension for people
with limited literacy. Future work includes incor-
porating ABC layouts into our pictorial communi-
cation system, improving other components, and
verifying our findings with additional user studies.
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Abstract the stem, and sometimes spelling changes within
the stem. These numerous forms can be further
We propose a data-driven method for au-  complicated by accents, and by additional spelling
tomatically analyzing the morphology of  changes at morpheme boundaries for phonological
ancient Greek. This method improves on  reasons. The overall effect can yield an inflected
existing ancient Greek analyzers in tWo  form in which the roct is barely recognizable.
ways. First, through the use of a nearest- Indeed, a staple exercise for students of ancient
neighbor machine learning framework, the  Greek is to identify the root form of an inflected
analyzer requires no hand-crafted rules. yerp. This skill is essential; without knowing the
Second, it is able to predict novel roots, oot form, one cannot understand the meaning of
and to rerank its predictions by exploitinga  the word, or even look it up in a dictionary.
large, unlabelled corpus of ancient Greek. For Classics scholars, these myriad forms also
pose formidable challenges. In order to search for
occurrences of a word in a corpus, all of its forms
The civilization of ancient Greece, from which themust be enumerated, since words do not frequently
Western world has received much of its heritageggppear in their root forms. This procedure be-
has justly received a significant amount of scholcomes extremely labor-intensive for small words
arly attention. To gain a deeper understanding dhat overlap with other common words (Crane,
the civilization, access to the essays, poems, ad@®91).
other Greek documents in the original language is Automatic morphological analysis of ancient
indispensable. Greek would be useful for both educational and
Ancient Greek is a highly inflected Indo-research purposes. In fact, one of the first analyz-
European languade A verb, for example, is in- ers was developed as a pedagogical tool (Packard,
flected according to its person, number, voicel973). Today, a widely used analyzer is embed-
tense/aspect and mood. According to (Craneled in the Perseus Digital Library (Crane, 1996),
1991), “a single verb could have roughly 1,00Gn internet resource utilized by both students and
forms, and, if we consider that any verb may beesearchers.
preceded by up to three distinct prefixes, the num- This paper presents an analyzer of ancient Greek
ber of forms explodes to roughly 5,000,000.” Thehat infers the root form of a word. It intro-
inflections are realized by prefixes and suffixes tduces two innovations. First, utilizes a nearest-
T ©2008.  Licensed under thereative Commons neighbor frameworkhat requires no hand-crafted

Attribution-Noncommercial-Share Alike 3.0 Unportédé  rules, and provides analogies to facilitate learning.
cense (http://creativecommons.org/licenses/by-nc-sa/3.0f).
Some rights reserved. The root is also called the “base” or “lexical look-up”
All Greek words are transcribed into the Roman alphaform, since it is the form conventionally used in dictionary en-
bet in this paper. The acute, grave and circumflex accentges. For verbs in ancient Greek, the root form is the first per-
are represented by diacritics, as@no andd, respectively. son singular present active indicative form. (cf. for English,
Smooth breathing marks are omitted; rough breathing marksis the infinitive.) For nouns, it is the nominative singular
are signalled byn. Underbars used ie ando represent eta form. For adjectives, it is the nominative singular masculine
and omega. form.
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Person/Num Form || Person/Num Form of an unseen verb.

1st/singular | 100 || 1st/plural lGomen The nearest-neighbor machine learning frame-
2nd/singular| lGeis || 2nd/plural lOete work is utilized to provide these analogies. Given
3rd/singular | lbei || 3rd/plural lGousi(n)| awordinan inflected form (e.gphéreis, the algo-

rithm searches for the root forrplero) among its
Table 1: Paradigm table for the present active intneighbors”, by making substitutions to its prefix
dicative verb. It uses as example the vHIb (“to  and suffix. Valid substitutions are to be harvested
loosen”), showing its inflections according to perfrom pairs of inflected and root forms (e.gl0ieis
son and number. 100)) in the training set; these pairs, then, can serve
as analogies to reinforce learning.

a large, unlabelled corpus to improve the predicleamed automatically, reducing the amount of en-
tion of novel roots. gineering efforts. They also increase the trans-
The rest of the paper is organized as follows. wearency of the analyzer, showing explicitly how it

first motivate these innovation§2) and summa- derives the root.

rize previous research in morphological analysi

(§3). We then describe the dati] and our adap- 3'2 Novel Roots

tations to the nearest-neighbor framewosg-6), Ancient Greek, in its many dialects, has been

followed by evaluation result$7). used from the time of Homer to the Middle
_ Ages, in texts of a wide range of genres. Even
2 Innovations the most comprehensive dictionaries do not com-

pletely cover its extensive vocabulary. To the best

) i . of our knowledge, all existing analyzers for ancient
Typically, a student of ancient Greek is expectegs eek require a pre-defined database of stems:

to memorize a series of “paradigms”, such as thg, ;s they are likely to run into words with un-
one shown in Table 1, which can fill several pagegnqwn or novel roots, which they are not designed
in a grammar book. Although the paradigm table, analyze.

shows the inflection of only one particular verb, Rather than expanding an existing database to
Go (*to loosen”), the student n_eeds to apply th‘:fncrease coverage, we create a mechanism to han-
patterns to other verbs. In practice, rather than alye 4| novel roots. Since words do not often appear
St'faCt'ng the patterps, many students simply MEMK their root forms, inferring a novel root from a
orize these “paradigmatic” verbs, to be used 8Surface form is no easy task (Lied, 2008). We

analogies for identifying the root form of an un-, e the use of unlabelled data to guide the de-
seen verb. Suppose the unseen verlphgreis termination of a novel root.

(“you carry”); the reasoning would then be, “I

know thatlUeisis the second person singular form3  previous Work

of the rootllg; similarly, phéreismust be the sec-

ond person singular form @héro.” After a brief discussion on morphological analysis
The use of analogy can be especially usefun general, we will review existing analyzers for

when dealing with a large number of rules, forancient Greek in particular.

example with the so-called “contract verbs”. The ] ]

stem of a contract verb ends in a vowel; when &-1 Morphological Analysis

vowel-initial suffix is attached to the stem, spellingA fundamental task in morphological analysis is

changes occur. For instance, the stglero- (“to0  the segmentation of a word into morphemes, that

fill") combined with the suffix-omenbecomes is, the smallest meaningful units in the word. Un-

pler-oli-men due to interaction between two omi-supervised methods have been shown to perform

crons at the boundary. While itis possible to derivavell in this task. In the recentA3cAL challenge,

these changes from first principles, or memorizéhe best results were achieved by (Keshava and

the rules for all vowel permutations (e.go’*+“ 0"  Pitler, 2006). Their algorithm discovers affixes

= “oll"), it might be easier to recall the spelling by considering words that appear as substrings of

changes seen in a familiar verb (e.pler6bo — other words, and by estimating probabilities for

plerolimer), and then use analogy to infer the rootmorpheme boundaries. Another successful ap-
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proach is the use of Minimum Description Length| Surface Morphological | Root

which iteratively shortens the length of the mor{ Form Annotation Form

phological grammar (Goldsmith, 2001). kai (and Conjunction | kai
Spelling changes at morpheme boundaries (e.g.PNeEima(spirit) Noun 3rd decl | pndima

denybut deni-a)) can be captured by orthographic| thedi (God) Noun 2nd decl| theos

rules such as “changg to i- when the suffix is | Peplereto(hover) | Verb phero
-al”. Such rules are specified manually in the two- _
level model of morphology (Koskenniemi, 1983),Table 2: Sample data from parts of Genesis 1:2
but they can also be induced (Dasgupta, 2007). Af-and the Spirit of God was hovering over .."). The
lomorphs (e.g., deni’ and “deny) are also auto- original annotation is more extensive, and only the
matically identified in (Dasgupta, 2007), but thaoortion utilized in this research is shown here.
general problem of recognizing highly irregular

forms is examined more extensively in (Yarowsky3 3 Ancient Greek Morphological Analysis

and Wicentowski, 2000). They attempt to align ev-

. o . The two most well-known analyzers for ancient
ery verb to its root form, by exploiting a combina- L
. S D .. Greek are both rule-based systems, requiaipg-
tion of frequency similarity, context similarity, edit

) . . ori knowledge of the possible stems and affixes,
distance and morphological transformation proba- | . . .

o . which are manually compiled. To give a rough
bilities, all estimated from an unannotated corpus.

. . . 1dea, some 40,000 stems and 13,000 inflections are
An accuracy of 80.4% was achieved for highly ir- . .
. known by the MorRPHEUSSYstem, which will be
regular words in the test set.

described below.

The algorithm in MoRPH (Packard, 1973)
3.2 Challenges for Ancient Greek searches for possible endings that would result in

a stem in its database. If unsuccessful, it then at-

Ancient Greek presents a few difficulties that Pretempts to remove prepositions and prefixes from
vent a naive application of the minimally superhe peginning of the word. Accents, essential for
vised approach in (Yarowsky and Wicentowskigisambiguation in some cases, are ignored. The
2000). First, frequency and context analyses alhalyzer was applied on Platosologyto study
sensitive to data sparseness, which is more prgye distribution of word endings, for the purpose
nounced in heavily inflected languages, such gst optimizing the order of grammar topics to be
Greek, than in English. Many inflected forms doyoyered in an introductory course. Evaluation of
not appear more than a few times. Second, manke analyzer stressed this pedagogical perspective,
root forms do not appedin the corpus. In Finnish anq the accuracy of the analyses is not reported.
and Swalhili, also highly inflected languages, only MORPHEUS (Crane, 1991) augments &RPH
40 to 50% of words appear in root forms (L&, \yith a generation component which, given a stem,
2008). The same may be expected of ancieRlymerates all possible inflections in different di-
Greek. alects, including accents. When accents are con-

Indeed, for these languages, predicting novalidered during analysis, the precision of the ana-
roots is a challenging problem. This task ha$yzer improves by a quarter. However, the actual
been tackled in (Adler et al., 2008) for modermprecision and the test set are not specified.
Hebrew, and in (Linén, 2008) for Finnish. In  Inthis paper, we have opted for a data-driven ap-
the former, features such as lettergrams and proach, to automatically determine the stems and
word-formation patterns are used to predict theffixes from training data.
morphology of Hebrew words unknown to an ex-
isting analyzer. In the latter, a probabilistic ap4 Data
proach is used for harvesting prefixes and suf4_1 Morphology Data
fixes in Finnish words, favoring the longer ones. )
However, no strategy was proposed for irregulaf/e used the Septuagint co.rﬁqsrepared by the
spelling in stems. Cen'Fer for Computer A_naIyS|s of Texts at Fhe Uni-
versity of Pennsylvania. The Septuagint, dat-
ing from the third to first centuries BCE, is a

3The root forms of contract verbs, eggler6o, arenoteven
inflected forms. “http://ccat.sas.upenn.edu/gopher/text/religion/biblical/
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Part-of-speech Percentt 5 Nearest-Neighbor Approach

Verbs 68.6%

Adjectives 10.4% The memory-based machine learning framework
Nouns (1st declension) 5.6% performs well on a benchmark of language learn-
Nouns (2nd declension masculine}.3% ing tasks (Daelemans, 1999), including morpho-
Nouns (2nd declension neuter) | 2.8% logical segmentation of Dutch (van den Bosch,
Nouns (3rd declension) 7.6% 1999). In this framework, feature vectors are
other 0.7% extracted from the training set and stored in a

database of instances, called thsetance baseA
Table 3: Statistics on the parts-of-speech of thdistance metric is then defined. For each test in-
words in the test set, considering only uniquét@nce, its setof nearest neighbors is retrieved from
words. the instance base, and the majority label of the set
is returned.

Greek lati fthe Heb Bible. Th We now adapt this framework to our task, first
reex transation of the Hebrew Bible. ecorlou?ﬁlefining the distance metric (current section), then

is morphologically analyzed, and Table 2 ShOWt':jlescribing the search algorithm for nearest neigh-
some sample data. bors €6)

The corpus is split into training and test sets.
The training set is made up of the whole Septus 1 pistance Metric

agint except the first five books. It consists of about ) )
470K words, with 37,842 unique words. The firsEVery word consists of a stem, a (possibly empty)

five books, also known as the Torah or PentateucRr€fix and a (possibly empty) suffix. If two words
constitute the test set. It contains about 1201hare a common stem, one can be transformed to
words, of which there are 3,437 unique words notlhe.other by substl.tutlng its prefix and sufﬁ).( with
seen in the training set, and 7,381 unique wordgeir counterparts in the other word. We will call
seen in training set. A breakdown of the parts-ofth€se substitutions thprefix transformationand
speech of the test set is provided in Table 3. Prop&f€ suffix transformation

nouns, many of which do not decline, are excluded The “distance” between two words is to be de-

from our evaluation. fined in terms of these transformations. It would
be desirable for words that are inflected from the
4.2 Unlabelled Data same root to be near neighbors. A distance met-

ric can achieve this effect by favoring prefix and

the Thesaurus Linguae Graeca@erkowitz and suffix transform_aﬂons that are frequently observed
mong words inflected from the same root. We

Squitter, 1986) corpus. The corpus contains mo . i .
q ) corp b thus provisionally define “distance” as the sum of

than one million unique words, drawn from a Wideth ; s of th p 4 suffix t
variety of ancient Greek texts. e frequency counts of the prefix and suffix trans-

formations required to turn one word to the other.

To guide the prediction of novel roots, we utilize

4.3 Evaluation ]
_ 5.2 Stems and Affixes
Many common words in the test set are also seen

in the training set. Rather than artificially boosting?€fining “Stem” To count the frequencies of pre-
the accuracy rate, we will evaluate performance ofX @nd suffix transformations, the stem of each
unigue words rather than all words individually. Werd in the training set must be determined. Ide-
Some surface forms have more than one posﬁ“y' all words inflected from the same root shogld
ble root form. For example, the wogliron may share thg same stem. pnfortunately, for ancient
be inflected from the noupura (“altar”), or puros Greek, it is difficult to insist upon such a common
(“wheat"), orplir (“fire”). It would be necessary to SteM- In some cases, the stems are f:ompletely dif-
examine the context to select the appropriate noufgrent; in others, the common stem is obfuscated
but morpholqgical disambiguation (H?'kkamm_ SEach verb can have up to six different stems, known as
et al., 2002) is beyond the scope of this paper. lhe “principal parts”. In extreme cases, a stem may appear

these cases, legitimate root forms proposed by oggmpletely unrelated to the root on the surface. For example,
| b iected. but thi .~ .oisoandénegkorare both stems of the ropbéro (“to carry”).
analyzer may be rejected, but we pay this price 1y comparable example in English is the inflected verb form

return for an automatic evaluation procedure.  wentand its root formgo.
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Word Prefix Stem Suffix Prefix Suffix
Transformation Transformation

(root) 1o - 10 o (root,1) €€ 0 « eto

(1) elbeto e o eto (root,2) € <> para 0 « sali

(2) paraliisai para 0 sai (root,3) € > ek 0 « th esontai

(3) ekluthesontai ek lu thesontai|| (1,2) e «— para eto « sai
1,3) e — ek eto <« th esontai
(2,3) para < ek sai <« th gsontai

Table 4: The verb rodilo (“to loosen”) and three of its inflected forms are shown. Each inflected fo
is compared with the root form, as well as the other inflected forms. The “swefihed as the longest
common substring, is determined for each pair. The prefix and suffioranations are then extracted.
€ represents the empty string.

in surface forms due to spelling chanfes the transformation can be applfednhile signifi-
We resort to a functional definition of “stem” — cantly reducing recall, these additional restrictions
the longest common substring opair of words. yield only a limited boost in precision.

Some examples are shown in Table 4. .
6 Algorithm

Refinements to Definition Three more refine- In the training step, a set of prefix and suffix trans-
ments to the definition of “stem” have been foundormations, along with their counts, is compiled
to be helpful. First, accents are ignored when deor each part-of-speech. These counts enable us to
termining the longest common substring. Accentsompute the distance between any two words, and
on stems often change in the process of inflectiomence determine the “nearest neighbor” of a word.
These changes are illustrated in Table 4 by the stem At testing, given an inflected form, its neighbor
lu, whose letteu has an acute accent, a circumfles any word to which it can be transformed using
accent, and no accent in the three inflected formghe affix transformations. We first try to find its
Second, a minimum length is required for thenearest neighbor in the training s€6(1); if no
stem. On the one hand, some pairs, suclags neighbor is found, a novel root is predicté® 2).
(“to lead”) andaxg, do have a stem of length one
(*a”). On the other hand, allowing very short
stems can hurt performance, since many spuriolithe input word itself appears in the training set,
stems may be misconstrued, such dstietween we simply look up its morphological analysis.
phéro andénegkon The minimum stem length is I the input word is not seen in the training set,
empirically set at two for this paper. its root form or another inflected form may still be
Length alone cannot filter out all spurious stemgound. We try to transform the input word to the
For example, for the pajsateo (“to walk”) and an nearest such word, i.e., by using the most frequent
inflected formkatemtjsan there are two equa”y prefiX and suffix tranSformationS, according to the
long candidate stemgate and pat The latter distance metric§s.1).
yields affixes such asé&d’ and “-esart, which are
relatively frequent. On this basis, the latter stemIrregular Stem Spelling Typically, if there are
is chosen. no spelling changes in the stem, the input word
Some further ways to reduce the noise are 62" b_e transformed directl_y to the root, e.g, from
require an affix transformation to occur at leasPfereisto phero. If the spelling of the stem is sub-
a minimum number of times in the training Set,stantlally different, it is likely to be transformed

and to restrict the phonological context in whicH© another inflected form of the root that contains
the same irregular stem. For example, the word
SFor example, the steoein the root formozo(“to smell”) ~ Prosexnegkenbears little resemblance to its root

is changed t@sin exbsthesan an aorist passive form. phéro, but it can be mapped to the woédegken
"The frequency of each affix is counted in a preliminary____—

round, with each affix receiving a half count in cases of tied 8For example, a certain suffix transformation may be valid

stem length. only when the stem ends in certain letters.
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in the training set, from which we retrieve its rootdistance metric still helps discriminate against
form phéro. invalid candidates, the increased ambiguity leads
to lower accuracy. We address this issue by
Search Order Some affixes are circumfixes; thatexploiting a large, unlabelled corpus.
is, both the prefix and the suffix must occur to-
gether. For example, the suffigto cannot be ap- Use of Unlabelled Corpudf a proposed root form
plied on its own, but must always be used in conis correct, it should be able to generate some in-
junction with the prefixe-, to form words such as flected forms attested in a large corpus. Intuitively,
elletqg as shown in Table 4. the “productivity” of the root form may correlate
Other affixes, however, can freely mix with onewith its correctness.
another, and not all combinations are attested in the To generate inflected forms from a root, we sim-
training set. This is particularly common when theply take the set of affix transformations observed
prefix contains two or more prepositions. For exfrom inflected forms to roots, and reverse the trans-
ample, the combinatiodia-kata occurs only two formations. Continuing with the above example,
times in the training set, but it can potentially paiwe generate inflected forms for both candidate
with a large number of different suffixes. roots, the adjectivdtnhomongtrios, and the hypo-
Hence, the search for neighbors proceeds in twigetical neuter noutthomongtrion. While a few
stages. In the first stage (denotetRCUMFIX), the inflected forms are generated by both candidates,
search is restricted to circumfixes, that is, requithree are unique to the adjective hemongtrios,
ing that at least one word-pair in the training sefomonétrioi andhomongtrian — the nominative
contain both the prefix and suffix transformationsmasculine singular and plural, and the accusative
This restriction is prone to data sparseness; if ng¢minine singular, respectively. None of these
neighbor is found, the prefix and suffix transforcould have been inflected from a neuter noun.
mations are then allowed to be applied separately A straightforward notion of “productivity” of

in the second stage (denoted #FIx/SUFFIX). a root would be simply the number of inflected
forms attested in the large corpus. It can be fur-
6.2 Proposing Novel Roots ther refined, however, by considering the preva-

. . lence of the inflected forms. That is, a form gen-
A word may be derived from a root of which no : ! -
erated with more common affix transformations

inflected fo.rm is seen in the train'ing set. N.atu'should be given greater weight than one gener-
rally, no neighbor would be found in the Previous . 4 \vith less common ones. Suppose two candi-
step, and a novel roqt must be prqposed. we WBate roots, the adjectivelespldros (“bringing to
ply the prefix and suffix transformations learned man end”) and the hypothetical vertelesphobo
.§5'2’ using only circumfixes observed bgtween e being considered. Both can generate ﬂ;e in-
inflected form an da rqot form. For obwou; €8 ected formtelespldrou, the former as the mascu-
sons, the resulting string is no longer required t

fine genitive adjective, and the latter as either an

be a neighbor, i.e., a word seen in the training set. L . .
imperfect indicative or present imperative contract

Typlcall);,l_ctjhe various trlimsformatul)ns I;’:Oduc%erb. Since the inflection of the adjective is more
hmany Ca? : ?ée roo]:[sr.] or examrp]) e:, the Worfjrequent in the training set than that of the rela-
omomériou ("born of the same mother”), a mas'tively rare class of contract verbs, the existence of

culine genitive adjective, can be transformed to 't§elesplﬂ>rou should lend greater weight to the ad-
root adjectivehomongtrios, but it could equally jective

well be transformed into a hypothetical neuter

L ) Hence, the “productivity” metric of a novel root
noun,*homontgtrion. Both are perfectly plausible P y

is the number of words in the large corpus that it

roots. i . . )
) ) ) can generate with affix transformations, weighted

_ The automatically discovered affix transformay, e frequencies of those transformations.

tions inevitably contain some noise. When dealing

with known roots, much of the noise is suppressed Experiments

because misapplications of these transformations

seldom turn the input word into a real word foundSome statistics on the test set are presented in Ta-
in the training set. When proposing novel rootsble 3. Of the 7,381 words that are seen in the train-
we no longer enjoy this constraint. Although theng set, 98.2% received the correct root form. The
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| Transformation Typg Proportion| Accuracy | Evaluation Method Accuracy
CIRCUMFIX 77.5% 94.5% BASELINE 45.0%
PREFIX/SUFFIX 10.8% 61.2% TLG RERANK 50.0%
Novel Roots 11.7% 50.0% +lgnore accents 55.2%
Overall 100% 85.7% +Oracle POS 65.5%

Table 5: After excluding known words, which at-Table 6: Results for predicting novel roots, for
tain an accuracy of 98.2%, the performance othe 402 words for whom no neighbor was found.
the remaining 3437 unique words in the test set iBASELINE uses the distance metrig5(1) as be-
shown above. Please sgg for discussions. Re- fore; TLG RERANK exploits the unlabelled The-

sults for novel roots are presented in further detaiaurus Linguae Graecae corpus to re-rank the top
in Table 6. candidates§6.2) proposed by BSELINE.

remaining 1.8% had multiple possible roots; an €x5ened to match the roteing, rather than the true
amination of the context would be needed for disfootteino.

ambiguation (see comments{d.3). . A third source is confusion between parts-of-
Table 5 presents the accuracy of the predicted

) speech, most commonly noun and verb. For ex-
roots, ‘f"ﬁer excluding the 7’38_1 seen words. Th mple, the nearest neighbor of the genitive noun
result is broken down according to the type o

) updn was the verbupései yielding the verb root
transformation; for the “Novel Roots” type, mor P2 PESEl ¥ g

e, p

detailed results are presented in Table 6. lupeorather than the nouttipe
As discussed in§6.1, the algorithm first

searched with GRCUMFIX. For 77.5% of the /-2 NovelRoots

words, a neighbor was found using this SlJb'Asabaseline, the distance metr§& (1) was used

set of affix trapsformat|ons. The rest were the'&Ione to rank the novel candidate roots. As seenin

processed using the back-up procedur&keP

. ) ; Table 6, performance dropped to 45.0%.
FIX/SUFFIX, allowing prefix and suffix transfor- )
mations culled from different word-pairs. This When the Thesaurus Linguae Graecae corpus

procedure found neighbors for 10.8% ofthewords";"as utilized to rerank the novel candidate roots

novel roots were hypothesized for the remainder.pr()posehc,i by ;he ia?ehﬁe’ an;ﬁ)sollcutﬁ i]aﬁﬁ%k
Not surprisingly, known roots were more relj-Was achieved. urther 5.2% of the mistakes

ably predicted (94.5%) with circumfixes than with V€"€ due to placing the accent incorrectly, such as

separate prefixes and suffixes (61.2%), but bo{ﬂglotrophosrather tharktenotrophos mostly on

categories still achieved higher accuracy than tHEOUNS and adjectives. These mistakes are difficult

challenging task of proposing novel roots (50.0%)t.° rectify, since multiple positions are oiten possi-

0
We now take a closer look at the errors for boﬂlf)le1 :

known and novel roots. Finally, to measure the extent to which part-of-
speech (POS) confusions are responsible, we per-
7.1 Known Roots formed an experiment in which the gold-standard

There are three main sources of error. The first 825 of each word was supplied to the a”’?"}’zef
“Oracle POS” in Table 6). When deriving

noise in the affix transformations. For example, théSee ) X
spurious prefix transformatigm—ph was derived novgl roots, only those affix transformatlons b,e'
from the paiphéro andperierégkasan When ap- Iopglng to the oracle POS were considered. With
plied onpasato, along with a suffix transformation, 1S constraint, accuracy rose to 65.5%.
it yielded the false root forrphaska

A second source can be attributed to incorrect °‘The significance level is gt = 0.11, according to Mc-

ffix b dari E lektd ¢ emar’s test. The improvement is not statistically significant,
arfx boundaries. or examplekiananteswas 5,4 may be a reflection of the relatively small test set.

misconstrued as having@*” rather than the prepo-  °The accent in an inflected noun retains its position in the
sition ek as prefix. This prefix is by itself per- root, unless that position violates certain phonological rules.

. o “ In many cases, there is no reliable way to predict the accent
fectly viable, but - and “-ante$ cannot occur ,,siiion in the root noun from the position in the inflected
together as a circumfix. The resulting string hapform.
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Abstract

In this paper, we present a novel morphol-
ogy preprocessing technique for Arabic-
English translation. We exploit the Arabic
morphology-English alignment to learn a
model removing nonaligned Arabic mor-
phemes. The model is an instance of
the Conditional Random Field (Lafferty et
al., 2001) model; it deletes a morpheme
based on the morpheme’s context. We
achieved around two BLEU points im-
provement over the original Arabic trans-
lation for both a travel-domain system
trained on 20K sentence pairs and a news
domain system trained on 177K sentence
pairs, and showed a potential improvement
for a large-scale SMT system trained on 5
million sentence pairs.
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Context-based Arabic Morphological Analysisfor Machine Translation
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German-English translation. Goldwater and Mc-
closky (2005) improved Czech-English translation
by applying different heuristics to increase the
equivalence of Czech and English text.

Specially for Arabic-English translation, Lee
(2004) used the Arabic part of speech and English
parts of speech (POS) alignment probabilities to
retain an Arabic affix, drop it from the corpus or
merge it back to a stem. The resulting system
outperformed the original Arabic system trained
on 3.3 million sentence pairs corpora when using
monotone decoding. However, an improvement
in monotone decoding is no guarantee for an im-
provement over the best baseline achievable with
full word forms. Our experiments showed that an
SMT phrase-based translation using 4 words dis-
tance reordering could gain four BLEU points over
monotone decoding. Sadat and Habash (2006) ex-
plored a wide range of Arabic word-level prepro-
cessing and produced better translation results for
a system trained on 5 million Arabic words.

Statistical machine translation (SMT) relies heav- What all the above methodologies do not pro-
ily on the word alignment model of the sourceVide IS a means to disambiguate morphologi-
and the target language. However, there is ¢al analysis for machme translatlon_based on the
mismatch between a rich morphology Ianguag@’?rds’ contexts. Thgt is, for an Arablc word anal-
(e.g Arabic, Czech) and a poor morphology lanYS!S Qf the formpreflx*—stgm—sufflx*a morpheme
guage (e.g English). An Arabic source word ofOnly is either always retained, always dropped qff
ten corresponds to several English words. Pr&" aways merged to the stem regardless of its
vious research has focused on attempting to agurrounding text. In the example in Figure (1),
ply morphological analysis to machine translatiot® Arabic word "AInAfi*h"(*window” in English)

in order to reduce unknown words of highly in-Was segmented as “Al nAfi* ap”. The morpheme
flected languages. NieRen and Ney (2004) rep@P” is removed so that "Al nAfi*” aligned to “the
resented a word as a vector of morphemes arindow” of the English sentence. In the sentence

gained improvement over word-based system fof!l ldyk MGAEd bjwAr AinAf*h 2" (*do you have
window tables ?” in English) the word “AlnAfi*h”

©2008.  Licensed under théCreative Commons js also segmented as “Al nAfi* ap”. But in this
Attribution-Noncommercial-Share Alike 3.0 Unporteli . .
sentence, morphological preprocessing should re-

cense (http://creativecommons.org/licenses/by-ng-@&/ )
Some rights reserved. move both “Al” and “ap” so that only the remain-
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(@ nryd mA}dh bjAnb AlnAf*h
(b) nu riyd u ||| mA}id ap ||| bi jAnib ||| Al nAfi*ap ||| .

IR A

(c) we want to have a table near the window .
(d) nu riyd u mA}lid ap bi jAnib Al nAfi*.

Figure 1: (a) Romanization of original Arabic sentence,@oifput of morphological analysis toolkit—
words are separated bjf|’, (c) English translation and its alignment with full moxgdbgical analysis
(d) Morphological analysis after removing unaligned maenpies.

ing morpheme “nAfi*” aligned to the word “win- of the full morphology corpus still doubles the
dow” of the English translation. Thus an appropri-original Arabic’s word token count and is approx-
ate preprocessing technigue should be guided lipately 1.7 times the number of tokens of the En-
English translation and bring the word context intaylish corpus. As stated above, using original Ara-
account. bic for translation introduces more unknown words
In this paper we describe a context-based moin test data and causes multiple English words to
phological analysis for Arabic-English translationmap to one Arabic word. At the morpheme level,
that take full account morphemes alignment to Eran English word would correspond to a morpheme
glish text. The preprocessing uses the Arabic moin the full morphology corpus but some prefixes
phology disambiguation in (Smith et al., 2005) forand suffixes in the full morphology corpus may not
full morphological analysis and learns the removbe aligned with any English words at all. For ex-
ing morphemes model based on the Viterbi alignample, the Arabic article "Al” (“the” in English)
ment of English to full morphological analysis. Weprefixes to both adjectives and nouns, while En-
tested the model with two training corpora of 5.29lish has only one determiner in a simple noun
millions Arabic words(177K sentences) in newsphrase. Using the full morphological analysis cor-
domain and 159K Arabic words (20K sentencespus for translation would introduce redundant mor-
in travel conversation domain and gain improvephemes in the source side.
ment over the original Arabic translation in both The goal of our morphological analysis method
experiments. The system that trained on a suller machine translation isemoving nonaligned
sample corpora of 5 millions sentence pairs comprefixes and suffixes from the full morphology cor-
pora also showed one BLEU score improvemerfus using a data-driven approach. We use the word
over the original Arabic system on unseen test sedlignment output of the full morphology corpus to
We will explain our technique in the next sectionthe English corpus to delete morphemes in a sen-
and briefly review the phrase based SMT model i(ence. If an affix is not aligned to an English word
section 3. The experiment results will be presentei@ the word alignment output, the affix should be

in section 4. removed from the morphology corpus for better
one-to-one alignment of source and target corpora.
2 Methodology However, given an unseen test sentence, the En-

glish translation of the sentence is not available to
We first preprocess the Arabic training corpus ancemove affixes based on the word alignment out-
segment words into morpheme sequences of tipait. We therefore learn a model removing non-
form prefix* stem suffix* Stems are verbs, adjec-aligned morphemes from the full morphology Ara-
tives, nouns, pronouns, etc., carrying the contefic training corpus and its alignment to the English
of the sentence. Prefixes and suffixes are funcorpus. To obtain consistency between training
tional morphemes such as gender and case madorpus and test set, we applied the model to both
ers, prepositions, etc. Because case makers do woabic training corpus and test set, obtaining pre-
exist in English, we remove case marker suffixeprocessed morphology corpora for the translation
from the morphology output. The output of thistask.
process is dull morphological analysiscorpus. In this section, we will explain in detail each
Even after removing case markers, the token cousteps of our preprocessing methodology:
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e Apply word segmentation to the Arabic train-GIZA++ outputs Viterbi alignment for every sen-
ing corpus to get the full morphological anal-tence pair in the training corpus as depicted in (b)
ysis corpus. and (c) of Figure (1). In our experiment, only 5%

) ) of English words are not aligned to any Arabic

e Annotate the full morphological analysis cor-,oheme in the Viterbi alignment. From Viterbi
pus based on its word alignment to the Engpqjish-morpheme alignment output, we annotate

glish training corpus. We tag a morpheme ag,,hhemes either to be deleted or retained as fol-
“Deleted” if it should be removed from the lows:

corpus, and “Retained” otherwise.
e Annotate stem morphemes as “Retained’(R),

e Learn the morphology tagger model. in dependant of word alignment output.

e Apply the model to both Arabic training cor- e Annotate a prefix or a suffix as “Retained” (R)
pus and Arabic test corpus to get prepro- ifitis aligned to an English word.

cessed corpus for translation. _ _
P e Annotate a prefix or a suffix as “Deleted” (D)

2.1 Arabic Word Segmentation if it is not aligned to an English word.

Smith et al. (2005) applies a source-channel model Note that the model does not assume that
to the problem of morphology disambiguation.GIZA++ outputs accurate word alignments. We
The source model is a uniform model that detessen the impact of the GIZA++ errors by only
fines the set of analyses. For Arabic morphologysing the word alignment output of prefix and suf-
disambiguation, the source model uses the list dix morphemes.
un-weighted word analyses generated by BAMA Furthermore, because the full morphology sen-
toolkit (Buckwalter, 2004). The channel modeltence is longer, each English word could align to a
disambiguates the morphology alternatives. It is separate morpheme. Our procedure of annotating
log-linear combination of features, which capturenorphemes also constrains morphemes tagged as
the morphemes’ context including tri-gram mor-“Retained” to be aligned to English words. Thus
pheme histories, tri-gram part-of-speech historiei$ we remove “Deleted” morphemes from the mor-
and combinations of the two. phology corpus, the reduced corpus and English
The BAMA toolkit and hence (Smith et al., corpus have the property of one-to-one mapping
2005) do not specify if a morpheme is an affix omwe prefer for source-target corpora in machine
a stem in the output. Given a segmentation of amanslation.
original Arabic word, we considered a morpheme
a; as a stem if its parts of speegh is either a 23 Reduced Morphology Model
noun, pronoun, verb, adjective, question, punctuaFhe reduced morphology corpus would be the
tion, number or abbreviation. A morpheme on thdest choice of morphological analysis for machine
left of its word’s stem is a prefix and it is a suffix translation. Because it is impossible to tag mor-
if otherwise. We removed case marker morphemeghemes of a test sentence without the English ref-

and got the full morphology corpus. erence based on Viterbi word alignment, we need
to learn a morpheme tagging model. The model
22 Annotate Morphemes estimates the distributions of tagging sequences

To extract the Arabic morphemes that align t@jiven a morphologically analysed sentence using
English text, we use English as the source cothe previous step’s annotated training data.

pus and aligned to Arabic morpheme corpus us- The task of tagging morphemes to be either
ing GIZA++ (Och and Ney, 2003) toolkit. The “Deleted” or “Retained” belongs to the set of se-
IBM3 and IBM4 (Brown et al., 1994) word align- quence labelling problems. The conditional ran-
ment models select each word in the source sedem fields (CRF) (Lafferty et al., 2001) model has
tence, generate fertility and a list of target wordshown great benefits in similar applications of nat-
that connect to it. This generative process wouldral language processing such as part-of-speech
constrain source words to find alignments in théagging, noun phrase chunking (Sha and Pereira,
target sentence. Using English as source corpu&)03), morphology disambiguation(Smith et al.,
the alignment models force English words to gen2005). We apply the CRF model to our morpheme
erate their alignments in the Arabic morphemedagging problem.
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Let A = {(A,T)} be the full morphology train-  In our experiments, we used the freely available
ing corpus where\ = a1 |p; as|ps ... am|pmisa CRF++ toolkit to train and decode with the mor-
morphology Arabic sentence; is a morpheme in pheme tagging model. The CRF model smoothed
the sentence ang isits POS.T =t t5 ... t,,iS the parameters by assigning them Gaussian prior
the tag sequence &, eacht; is either “Deleted” distributions.
or “Retained” . The CRF model estimates param-
eter@” maximizing the conditional probability of 3 Phrase-based SMT System

the sequences of tags given the observed data: We used the open source Moses (Koehn, 2007)

phrase-based MT system to test the impact of the

0 = e > (1) preprocessing technique on translation results. We
N (A, T)eA _ kept the default parameter settings of Moses for
P((A,T))logp (T|A, ) translation model generation. The system used the

- ) . o “grow-diag-final” alignment combination heuris-
wherep ((A,T)) is the empirical distribution of i The phrase tabl