
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6992–7007
December 7-11, 2022 ©2022 Association for Computational Linguistics

Lexi: Self-Supervised Learning of the UI Language

Pratyay Banerjee1∗† Shweti Mahajan2∗ Kushal Arora3† Chitta Baral1 Oriana Riva2

1Arizona State University 2Microsoft Research 3McGill University

Abstract

Humans can learn to operate the user interface
(UI) of an application by reading an instruc-
tion manual or how-to guide. Along with text,
these resources include visual content such as
UI screenshots and images of application icons
referenced in the text. We explore how to lever-
age this data to learn generic visio-linguistic
representations of UI screens and their com-
ponents. These representations are useful in
many real applications, such as accessibility,
voice navigation, and task automation. Prior
UI representation models rely on UI metadata
(UI trees and accessibility labels), which is of-
ten missing, incompletely defined, or not ac-
cessible. We avoid such a dependency, and
propose Lexi, a pre-trained vision and language
model designed to handle the unique features
of UI screens, including their text richness and
context sensitivity. To train Lexi we curate
the UICaption dataset consisting of 114k UI
images paired with descriptions of their func-
tionality. We evaluate Lexi on four tasks: UI
action entailment, instruction-based UI image
retrieval, grounding referring expressions, and
UI entity recognition.

1 Introduction

Over the years, humans have learned to parse ap-
plication user interfaces (UIs). With only a glance
at a previously unseen UI they can understand its
elements and identify those relevant to a desired
task. To some extent, humans have learned the
“UI language”. The words of this language are UI
elements, which can be visual (an icon), textual
(a hyperlink), or both (a text button). If machines
could parse and understand the UI language in the
same way, they could map natural language com-
mands to UI elements, facilitate access to UIs for
visually-impaired users, and ultimately operate UIs
on behalf of users.

∗The two authors contributed equally.
†Work done during an internship at Microsoft Research.

Towards this goal, we are interested in leverag-
ing current vision and language (VL) representa-
tion models (e.g., Li et al., 2019; Lu et al., 2019;
Chen et al., 2020c) to achieve a generic visio-
linguistic feature representation for UIs. However,
some key constraints on data availability and data
access need to be taken into account. Training VL
models requires high-quality paired visio-linguistic
datasets. Approaches to collect such datasets for
UIs currently involve (i) app crawling with human
labelling (Li et al., 2020b,a), and (ii) use of unla-
beled data consisting of UI screens and associated
metadata (He et al., 2021; Bai et al., 2021). While
the former is hard to scale, in case of the latter, UI
metadata, such as accessibility labels and structural
representations of a UI screen (referred to as DOM
tree in webpages and View Hierarchy in Android)
is often missing (Chen et al., 2020a), partially de-
fined, or not accessible for security reasons (on
Android, only apps approved as Accessibility tools
can access it (XDA, 2021)).

To address these limitations, we propose lever-
aging a new data source: instruction manuals, tuto-
rials, and how-to guides that abound in the Internet
(such as in technical support and how-to websites),
exist for many different apps and platforms, and are
easy to crawl. In addition to textual instructions,
for clarity, they often include visual information.
Figure 1 shows two examples where step-by-step
instructions from WikiHow include screenshots of
the Android UI (left figure) and instructions from
the Microsoft Teams manual include images of the
referenced icons (middle figure). We posit that
these visual and textual resources can be leveraged
to learn visually-grounded textual representations
of UI screens and their components.

Applying current VL models to such UI data
raises some new challenges. VL models are trained
using datasets like Conceptual Captions (Sharma
et al., 2018), which contain images of the real world
(i.e., photographs). In the physical world, objects

6992

1.

2. Tap the "Data usage"
option. This should be located
towards the top of the menu. Older
versions of Android may have a
"Mobile Networks" option instead.

1. Open the Settings app. You can
find this in your App Drawer or on
your Home screen. The icon
looks like a gear.

UI screenshot

UI screenshot

<img src="/images/thumb/0/0d/Turn-On-Data-
on-Android-Step-1-Version-3.jpg…" alt="Image
titled Turn On Data on Android Step 1 " …>

<img src=“/images/thumb/f/f4/Turn-On-Data-
on-Android-Step-2-Version-3.jpg…" alt="Image
titled Turn On Data on Android Step 2 " … >

(a) WikiHow Android manual

...

Functional captionUI image

Icon images

UI screenshot

<img src="https://support.content.
office.net/…" alt="Teams-call icons-
general-300" … >

instr: “Select video call or audio
call to start a call. Up to 20 people
can be on the same video call.”
alt-text: “Teams-call icons-general-
300”

instr: “Go to your chat list, and click new
chat to start a new conversation.”
alt-text: “New chat button”

instr: “Select video call or audio call to
start a call.”
alt-text: “Video call button”

instr:“Select video call or audio call to
start a call.”
alt-text: “Audio call button”

<img src="https://support.content.office.net/…"
alt=“New chat button" … >

instr: “Type the name or names
into the to field at the top of your
new chat. Select video call or audio
call to start a call. Up to 20 people
can be on the same video call.”
alt-text: “Teams-call icons-general-
300”

…

(b) Microsoft Teams manual and generated image-caption pairs

Figure 1: Examples of how-to and support websites. In addition to text, they contain UI screenshots and icon
images, which we use to generate image-caption pairs for training Lexi.

of a certain class (cars, bikes, people) share certain
appearance features, while the appearance of a UI
element is less indicative of its meaning or func-
tionality. UI elements may vary their appearance
(in size, color, shape) but have the same function-
ality, or, vice versa, have different functionality
but share similar appearance (e.g., a hand-shaped
icon can mean “Raise hand” in a video conference
app or “Hand tool” in Photoshop). In other words,
the meaning of a UI element is highly context sen-
sitive. A second difference is that, compared to
photographs, UI screens are rich in texts; for some
elements, such as text buttons or hyperlinks, text is
essential. However, current VL models do not per-
form text recognition on the visual input. Finally,
an out-of-the-box language model like BERT (De-
vlin et al., 2019) is inadequate to represent manual
instructions because (i) highly-recurrent technical
terms (“click”, “tap”, “type”, etc.) may prevent it
from distinguishing instructions, and (ii) manuals
use terms (“menu”, “bar”, “button”, etc.) that have
a very different meaning in the general domain.

To address these challenges we curate a new UI
dataset (UICaption) and propose Lexi, a pre-trained
VL model for UI language understanding.

We crawl images of icons and UI screenshots
from support and how-to websites, spanning multi-
ple applications and platforms, and create a visio-
linguistic dataset by pairing each image with one
or multiple captions. To address the context sen-
sitivity of UI elements, we synthesize functional
captions from instructions co-located with the im-
age in the webpage. Rather than describing the
appearance of an image, these captions describe

the functionality of one or multiple UI elements, in
the context of other elements (see Figure 1b).

We build Lexi by replacing the standard ob-
ject detection methods (e.g., Faster R-CNN (Ren
et al., 2015)) used in current VL models with one
specifically designed for UI screens. To leverage
the text-richness of UIs, we augment an image’s
region features with textual features of the rec-
ognized texts. Finally, to accurately distinguish
UI actions, objects, and input parameters in func-
tional captions, we create a new pre-training task
based on (noun-verb) POS tagging. We evaluate
Lexi on 4 downstream tasks: UI action entailment,
instruction-based image retrieval, grounding refer-
ring expressions, and entity recognition.

In summary, we make the following contribu-
tions: (i) a new data source for self-supervised
learning of the UI language and a cross-platform
dataset of 134k pairs of images and functional cap-
tions, which we have released1; (ii) Lexi, a pre-
trained model for UI language understanding which
does not depend on UI metadata; and (iii) an evalu-
ation of Lexi, including baseline comparisons, out
of domain performance, and ablation analysis.

2 Related work

VL models. Multiple single- or two-stream
transformer-based architectures have been pro-
posed to learn a single feature space from visual
and language inputs (e.g., Tan and Bansal, 2019;
Lu et al., 2019; Li et al., 2019; Su et al., 2020;
Chen et al., 2020c; Qi et al., 2020). Unlike pre-

1https://github.com/microsoft/UICaption

6993

https://github.com/microsoft/UICaption

training of language models which can use un-
limited natural language texts (e.g., Wikipedia),
VL models use high-quality paired visio-linguistic
datasets, such as Conceptual Captions (Sharma
et al., 2018), SBU Captions (Ordonez et al., 2011),
and MS COCO (Lin et al., 2014). Our approach
extends prior architectures with a vision encoder
designed to leverage the text richness of UI images;
we revisit VL models in a new problem space, UI
language understanding, with a new set of data
consisting of UI images and functional captions.

UI representation models. Supervised UI un-
derstanding methods depend on the collection of
interaction traces, app crawling infrastructures, and
human labeling. Liu et al. (2018) and Gur et al.
(2019) use human demonstrations to train reinforce-
ment learning agents that execute tasks specified
in natural language by interacting directly with
UIs. Pasupat et al. (2018) and Li et al. (2020a)
curate datasets of natural language commands to
learn how to ground language into low-level UI
elements (buttons, icons, text inputs, etc.) and
actions (click, type, select, etc.). All these sys-
tems learn at the level of UI elements which can
be effective, but only in controlled environments
(UI elements do not change over time (Shi et al.,
2017)) and for application-specific tasks (Branavan
et al., 2009). For better generalization, Mazumder
and Riva (2021) map natural language commands
to “concept-level” actions, but they require labeled
natural language commands and a graph model of
the execution environment.

Unsupervised methods include ActionBert (He
et al., 2021) and UIBert (Bai et al., 2021), consist-
ing of transformer-based multimodal architectures
trained on sequential or single Android UI screens,
respectively. While these systems depend on the
availability of UI metadata (UI trees and accessibil-
ity labels), Lexi assumes only a screenshot is given,
thus being widely applicable. By leveraging web
data, which can be crawled without requiring app
hosting infrastructures, Lexi is trained to handle
mobile and desktop UIs from multiple platforms.

Instruction manuals. To the best of our knowl-
edge we are the first using them to learn UI rep-
resentation models. Yagcioglu et al. (2018) used
them to study recipes in a multimodal setting, and
Bisk et al. (2020) physical commonsense in a text-
only setting. Branavan et al. (2011) used them to
inform the strategy of a game-playing agent.

3 UICaption dataset

We curate a new dataset of UI images (screenshots
and icons) paired with functional captions.

We collect UI images, alt-text, and instructions
accompanying a UI image from three sources: (i)
Instruction manuals extracted from support web-
sites of 23 Microsoft (MS) apps (Teams, Outlook,
Excel, Word, etc.) and Zoom. (ii) Android support
websites, whose URLs are obtained from the An-
droidHowTo dataset (Li et al., 2020a), and (iii) 58k
general tech websites whose URLs are obtained
by submitting search queries containing technical
commands (extracted from MS and Android manu-
als) to Google image search and inspecting the top
60 results. To improve data quality, we perform
data filtering, including a simple hash-based and
text-based near-duplicate image removal, blurred
image removal, and image relevance (e.g., exclud-
ing content-unrelated images such as Facebook and
Twitter icons).

For each collected image, we use the text sur-
rounding it in the webpage to generate from 1 up
to 5 functional captions (the number depends on
the length and structure of the surrounding text). If
available, we also append the alt-text. Rather than
describing the appearance of an image, functional
captions describe the functionality of one or multi-
ple UI elements, in the context of other elements.
Textual context may translate into spatial context
because the instructions to accomplish a task often
involve co-located UI elements. For example, in
Figure 1b, the “Video call” and “Audio call” icons
are associated with the caption “Select Video call
or Audio call to start a call”; the instruction defines
a logical relationship between the two functions,
which corresponds to a spatial relationship, i.e., the
two icons are next to each other in the UI.

We thus obtain the UICaption dataset consist-
ing of 113,971 unique UI images and 133,817
image-caption pairs. This dataset significantly dif-
fers from those used in prior UI understanding mod-
els (He et al., 2021; Bai et al., 2021). The data is
extremely varied in terms of applications (Excel,
GMail, Chrome, Photos, etc.), platforms (mobile
& desktop), number of UI elements (from single
icons to complete desktops), text density (Word
documents, photos, or Excel spreadsheets), pixel
density, and quality (e.g., screenshots may not be
pristine or may have been annotated, such as in
Figure 1a). More details on the dataset and the
crawling process can be found in Appendix A.

6994

[CLS][IMG]

O.

0/1

Co-attentional transformer layers

… place a

call

[ALT]

teamsto

instruction-text: ”to
place a call on hold,
click more actions in
your call window
and select hold”
alt-text: ”teams hold
option during call”

Bounding boxes & recognized text

Functional captionUI screen

MRM-KL ITA
B-VerbB-Verb O B-Noun

POSMLM

V

L RoBERTa language
encoder

Lexi’s visual
encoder

ResNeXt
101 L

D Lexi’s UI element
detector

hold“ ”

…

V

Region
proposal

UI elem.
classifier Text

det. &
recog.

Fusion & alignment

D

V V VV

[MASK]

call

… …

hw1hw0hvMhv2hv0 hw19hw2 hw18hw3 hw17hw4hv1 … … …

“ ” “Leave”

[CLS]

HO

Hi

Hmm

I’ T’

DCLS

RT

call

B-Noun

hwT

.

……
V V L L LL

[MASK]

VV LL VL

Figure 2: Our proposed VL transformer encoder, trained using 4 pre-training tasks: masked language modeling,
masked region modeling with KL divergence, image-text alignment, and POS tagging.

4 Method

Lexi follows the two-stream transformer-based ar-
chitecture of various VL models (Lu et al., 2019;
Tan and Bansal, 2019). As illustrated in Fig-
ure 2, it consists of an image encoder V , a text
encoder L, and co-attentional transformer layers
for cross-modal representation learning. Given a
text input T represented as a set of word tokens
w1, ..., wT and an image I represented as a set of
region features v1, ..., vM augmented with their cor-
responding detected texts, Lexi outputs final rep-
resentations hv0, ..., hvM for the visual stream and
hw0, ..., hwT for the textual stream. The most dis-
tinct aspect of Lexi is the early-infusion of detected
text vector representations with corresponding vi-
sual features, which is motivated by the frequent
presence of text in UI images. Moreover, the vo-
cabulary of functional captions including technical
action verbs and specific named entities motivates
an additional self-supervision task for pre-training.

UI image representation. An input image I is
first resized to a fixed size (224×224), and en-
coded by extracting bounding boxes of its regions
of interest and corresponding visual features v.
To this end, VL architectures (Lu et al., 2019)
rely on pre-trained object detectors (e.g., Faster

R-CNN (Ren et al., 2015) pre-trained on Visual
Genome (Krishna et al., 2017)). Pre-training (or
fine-tuning) object detectors for UI images requires
large-scale datasets of annotated UI screens, which
are generally not available.2 Inspired by Chen et al.
(2020b)’s work, we implement a UI element de-
tection framework, the Lexi detector, which can
handle the cross-platform and cross-app nature of
the UI images in our dataset, without requiring
annotated UI screens. The design is optimized
to leverage the regular layouts and text richness
of UI screens. In short, it works as follows. It de-
tects bounding boxes of UI elements using standard
computer vision techniques (Canny edge detec-
tion (Canny, 1986), contour detection (Suzuki and
be, 1985), non-maximum suppression) and classi-
fies them using a ResNeXt-101 model fine-tuned
on a 9-class dataset of 263k mobile/desktop UI el-
ements.3 In parallel, it uses OCR (PP-OCR (Du
et al., 2020)) to detect text elements and recog-
nize their text. Then, it combines the two types of
prediction by merging boxes based on alignment
and distance, to output a set of classified bounding

2Only the Android Rico dataset exists (Deka et al., 2017).
3We derive the dataset from icon collections (Google,

2021) and mobile app datasets (Deka et al., 2017), and through
data synthesis based on UI markup files of Windows apps.

6995

boxes with recognized text, if any. (Appendix B
provides further details on the implementation.)

For each image I , Lexi’s vision encoder (Fig-
ure 2 bottom-right) computes region features using
our fine-tuned ResNeXt-101 model. It keeps a
maximum of 64 high-scoring boxes, and for each
selected region i, it computes vi (of size 2048) as
the mean-pooled convolutional feature from i. In
state-of-the-art VL models, text appearing in an in-
put image is not directly extracted. To leverage the
text richness of UI screens, each vi is augmented
with textual features of the recognized text (com-
puted as dot-product). Textual features help align
with functional captions (as demonstrated by the
performance of our baseline ViLBERT-UI-dt, §5).
Finally, we encode the spatial location consisting
of region position and fraction of the image area
covered (not shown in Figure 2). This is projected
to match the dimension of the visual/textual fea-
tures and they are summed. We mark the beginning
of the image stream with a special [IMG] token
representing the entire image.

UI text representation. Text is encoded as in
BERT (Devlin et al., 2019), as a sequence of word
tokens pre-pended with the [CLS] token. We con-
catenate the image’s associated instructions and alt-
text using a new special token [ALT]. For a given
word token, the input representation is a sum of a
token, segment, and position embedding. The text
encoder is initialized using RoBERTa (Liu et al.,
2019). We tokenize the text input using a byte-level
BPE (Sennrich et al., 2016) tokenizer.

Formally, given the text T = w1, ..., wT , the im-
age I = v1, ..., vM and the corresponding detected
texts Dv = dv1, ..., dvM , the image encoder V and
the text encoder L, Lexi is represented as follows:

I ′ = V (vi) = DCLS(vi) · RT(vi), T ′ = L(wi)

Hi = [IMG] : I ′ : T ′

Ho = CO-ATT(Hi)

Hmm = Hv0 ·Hw0

where, DCLS(vi) = L(dvi) is the [CLS] token
representation of the detected text in image I, RT is
the fine-tuned ResNeXt-101 visual feature extrac-
tor whose weights are frozen, T ′ is the encoded text
input, Hi is the final input vector using concatena-
tion operator :, and Ho is the final output vector
after the co-attentional transformer layers CO-ATT.
CO-ATT takes as input the vector representations of
the textual and visual streams projected to equal di-
mensions using linear layers. CO-ATT is borrowed

from ViLBERT, in which the keys and values of an
attention-block from each modality are passed as in-
put to the other modality’s multi-headed attention.
This leads to attention-pooled features for each
modality conditioned on the other, i.e, language-
conditioned visual features and visual-conditioned
language features. Hmm is the final multi-modal
hidden representation after a dot-product between
the output representation of [IMG] of the visual in-
put I and [CLS] of the textual input T . The hidden
representations from Ho are further fed through
respective task-specific feed-forward layers.

Pre-training tasks. We train Lexi using four pre-
training tasks, three borrowed from prior work (De-
vlin et al., 2019; Lu et al., 2019) and one new.

Masked Language Modeling (MLM). We borrow
this task from BERT. We randomly mask out input
words with 15% probability, and replace them with
the [MASK] token in the text stream T ′. We task
the model with predicting them by leveraging the
surrounding words and the visual input. We use
standard cross-entropy loss for this task.

Masked Region Modeling with KL Divergence
(MRM-KL). We mask an image’s regions with 50%
probability (and only if the image contains at least
4 regions). To mask image regions, we replace their
features with zeros – we mask 10% of the features
and retain 90% of them. If a masked region con-
tains text, the detected text is automatically masked
out too. The model is tasked with reconstructing
the masked regions given the remaining regions and
the input words. However, the model is unlikely to
be able to reconstruct exact image features. Hence,
as in ViLBERT, the model predicts a distribution
over semantic classes for the corresponding image
region, and minimizes the KL divergence between
the original class probabilities of the unmasked re-
gion and the predicted class probabilities. We use
cross-entropy loss also for this task.

Image-Text Alignment (ITA). This task is useful
for learning representations for downstream cross-
modal tasks. It is a binary classification task: the
cross-modal representation Hmm is fed into a feed-
forward layer to predict a score between 0 and
1. In training, we sample a positive or negative
pair at each step. The negative pair is created by
pairing the true image with a random caption that
is at [0.5− 0.9] distance away in cosine-similarity
with the true caption – due to the prevalence of
common technical terms, functional captions tend
to be semantically very similar. We apply binary

6996

cross-entropy loss to this task.
POS Tagging (POS). A challenge with our text

embeddings is that our text inputs have many tech-
nical terms, which makes it hard to distinguish
them. Some terms (“home”,“bar”, etc.) also have
a different meaning in general domain. Moreover,
in current VL models the attention in the cross-
modality layers focuses on nouns and pronouns
because they are the most informative words in cur-
rent datasets/tasks (Tan and Bansal, 2019), but in
our domain verbs play a key role. To help the model
learn the “foreign” UI language and attend its syn-
tax correctly, we introduce weakly-supervised part-
of-speech (POS) tagging as a new pre-training task,
where the model must predict noun and verb spans
present in the text stream. Prior work uses POS fea-
tures as input to a neural network (Kiperwasser and
Goldberg, 2016), however, we aim to encode this
information in the learned representations during
pre-training. We use spaCy’s POS tagger’s predic-
tions as weak-supervision labels for learning the
task, and adopt the BIO scheme. Each token repre-
sentation is classified as the beginning (B) or the
inside (I) of a noun or verb entity, or as other (O),
i.e., a non-entity token. We use cross-entropy loss.

In summary, the total pre-training loss L with scalar
coefficients α, β, γ, δ ∈ (0, 1] is given by:
L = α · LMLM + β · LMRM−KL + γ · LITA + δ · LPOS

where Lx is the loss for the pre-training task x.

5 Evaluation on downstream tasks

We evaluate Lexi through 4 downstream tasks. In
this section, we describe our experimental setup, in-
troduce datasets and baselines, describe each task’s
settings and results, and provide an ablation study.

5.1 Experimental setup
To pre-train Lexi we apply the four tasks described
in §4 to the UICaption dataset, excluding the Zoom
and Teams portions which are used to conduct an
out-of-domain (OOD) analysis. We create training
(103k UI images, 116k image-text pairs), valida-
tion (5k images, 5.6k image-text pairs), and test
(6k images, 7k image-text pairs) splits by ensur-
ing no overlaps between UI images and functional
captions. In fine-tuning we use a subset of the pre-
training dataset and two Android datasets, UIB-
ert (Bai et al., 2021) and AndroidHowTo (Li et al.,
2020a).

We test two variants of Lexi with 6 (Lexi-6) or
10 (Lexi-10) transformer layers in the visual stream.

We train on 8 Nvidia V100 GPUs for 100 epochs
with a batch size of 128 and a learning rate of 4e-
5. We use the Adam optimizer (Kingma and Ba,
2014). For more details see Appendix C.

5.2 Baseline models
We compare Lexi against three baselines. We mod-
ify the ViLBERT architecture to encode the input
image using the Lexi detector (instead of Faster
R-CNN which is not trained on UI images) and
the input text using RoBERTa. We test two vari-
ants of this baseline depending on whether the
text detected in the image is encoded (ViLBERT-
UI-dt) or not (ViLBERT-UI). The third base-
line, ViLBERT-12-1-UI, is a multi-task ViLBERT
model trained on 12 different datasets (4.5M in-
stances) and 6 tasks (Lu et al., 2020); it uses the
Lexi detector for image encoding and BERT for
text. We fine tune all baselines on our fine-tuning
datasets. In the entity recognition task (§5.6), we
introduce also a text-only baseline, RoBERTa-UI,
the RoBERTa model fine-tuned on our dataset. We
do not consider single-modality baselines in the
other tasks as they cannot produce an output unless
both types of input are given. The ActionBert (He
et al., 2021) and UIBert (Bai et al., 2021) models
require UI metadata (Android View Hierarchy and
accessibility tags) as input, hence they are not di-
rectly comparable with Lexi (and their source code
is not released). However, wherever appropriate,
we refer to their performance as upper bounds.

We test in zero-shot (ZS), fine-tuned (FT), and
OOD settings. In ZS we directly apply the pre-
trained model (i.e., the model is new to the task)
to UI data not used in pre-training. In OOD, we
test on data from the Zoom and Teams manuals.
Both these apps are excluded from pre-training
and fine-tuning, and, in general, when crawling
UICaption no video conferencing app was specified
in the search queries, making this app category
completely unknown to the pre-trained model.

5.3 UI action entailment
This task is inspired by the visual entailment
task (Xie et al., 2019). Given a natural language
instruction (e.g., “Select video call to start a call”)
and an image (screenshot or icon), the goal is to
predict whether the described action can be per-
formed on the image. This task has a practical
use in screen readers to locate UI components by
their name/functionality in the absence of acces-
sibility labels and alt-texts, as it is often the case.

6997

UI action entailment Instruction-based UI image retrieval

Model UICaption T (OOD) Z (OOD) UICaption T (OOD) Z (OOD)
Acc % Acc % Acc % R1 R5 R10 R1 R5 R10 R1 R5 R10

ViLBERT-UI 65.0 31.6 30.7 12.9 42.7 59.3 4.1 17.0 32.0 3.3 16.8 29.5
ViLBERT-UI-dt 68.0 31.8 34.2 14.4 47.1 64.2 5.1 17.4 33.8 3.5 17.6 31.1
ViLBERT-12-1-UI 66.4 33.8 27.6 19.0 52.4 72.7 3.4 16.2 32.0 2.9 12.5 26.8
Lexi-6 (ZS) 52.2 - - 12.4 21.7 29.3 - - - - - -
Lexi-10 (ZS) 57.4 - - 15.0 22.2 29.0 - - - - - -
Lexi-6 (FT) 83.3 40.1 39.6 34.7 78.4 89.1 6.5 25.1 44.3 4.7 22.7 39.9
Lexi-10 (FT) 84.1 39.3 36.1 36.7 80.0 91.8 4.7 27.5 45.8 5.3 21.5 38.2

Table 1: Performance of Lexi on the tasks of UI action entailment and instruction-based UI image retrieval. Models
are used zero-shot (ZS) or fine-tuned (FT) on a 77k subset of UICaption. OOD tests are performed on Teams (T)
and Zoom (Z).

“Point to a theme to
preview how it will
look in your document.
Select a theme.”

“At the top corner of
your screen, select
Settings to open the
Settings pane, then
select Change your
language.”

“At the top corner of
your screen, select
Settings to open the
Settings pane, then
select Change your
language.”

“At the top corner of
your screen, select
Settings to open the
Settings pane, then
select Change your
language.”

(a) Action entailment task.

1. Open the App Store on your iPhone and
tap Search from the bottom menu.

2. Type Alexa into the search bar and tap Search.
3. On the Amazon Alexa app, tap Get

1. Open the App Store on your iPhone and
tap Search from the bottom menu.

2. Type Alexa into the search bar and tap Search.
3. On the Amazon Alexa app, tap Get.

1.

2.
3.

action verb, action object, input param

(b) Entity recognition task.

Figure 3: Examples of two Lexi’s downstream tasks.

While this task is similar to the ITA task used in
pre-training, it is a useful diagnostic task to verify
Lexi has been pre-trained effectively.

In fine-tuning we use a 4-way multiple-choice
setting (Figure 3a). Given an instruction and UI
image (the true pair), we generate 3 negative pairs
by sampling a hard negative from the 1,000 most
similar images to the target image4, by substitut-
ing the true instruction with a random one and the
true image with a random one. For each option we
compute the alignment score (as in pre-training)
and apply a softmax. To make the task more chal-
lenging but also more realistic, the image’s alt-text
is not provided in the input. For training we use a
subset of the UICaption dataset used in pre-training
(train:77k, val:3.7k, test: 6k5).

As Table 1 shows, Lexi (FT) largely outperforms
the strongest baseline by 24% demonstrating the
efficacy of our pre-training tasks. In ZS settings,
Lexi achieves 57.4% accuracy, demonstrating that

4obtained based on the Euclidean distance of their embed-
dings, and by discarding images whose captions are contained
in the true caption or have a similarity below 0.5 or above 0.9.

5The test set was not seen in pre-training.

the model has developed some ability to ground
text without requiring any fine-tuning and without
relying on the image’s alt-text. We test OOD us-
ing 1.7k pairs from Teams (T) and 2.5k pairs from
Zoom (Z), which were not included in fine-tuning
and pre-training. Lexi achieves 39.6–40.1% accu-
racy (a 16–19% gain over baselines). Lexi-6 out-
performs Lexi-10 in the OOD settings, suggesting
the model may be able to generalize better with a
smaller network depth. In Appendix D, we provide
a qualitative analysis of the OOD predictions.

5.4 Instruction-based UI image retrieval

This task is inspired by the image retrieval task
used to test VL models. The goal is to identify a
UI image from a pool of 50 given a description
of its associated instruction(s). We fine-tune the
models using a 4-way multiple-choice setting as
for UI action entailment (but with alt-text included)
on the same 77k subset of UICaption. In-domain
and out-of-domain test sets are as in the UI action
entailment task.

In Table 1 we report recall@k with k=1,5,10.
Our pre-training tasks are effective with significant
gains in the FT settings in in-domain tests (1.9×
higher R@1 than the ViLBERT-12-1-UI baseline).
While the OOD performance is lower, compared
to the strongest baseline R@1 is still 1.4–1.8 per-
centage points higher. The best ZS performance,
achieved by Lexi-10, is inferior to that of the fine-
tuned baseline models, indicating it is challenging
for the pre-trained model to generalize to this new
task. As observed in the previous task, increasing
the number of visual layers has a positive effect on
in in-domain tests, but the OOD performance of
Lexi-6 is better than that of Lexi-10 in some cases.

6998

click on the image
which is in 1st row
2nd column

click on the profile
to the left of 79

move to the text
below music icon

select the first
picture below the
text

Figure 4: Examples of correct (first two) and wrong (last
two) predictions for the grounding referring expressions
task. The referring expression is above the UI screen,
and ground truth UI elements (with a green border) and
Lexi’s predictions (with an orange border) are below.

5.5 Grounding referring expressions

We borrow this task from ActionBert and UIBert.
Given a referring expression in natural language
and a UI screen, the goal is to select the UI element
referenced by the expression from a set of elements
detected in the screen. This task is relevant to
voice-guided app navigation agents, where users
may issue commands such as “click home at the
top of the page” or “play the third song in the list”.

Given the referring expression, we re-rank a set
of image region proposals. We pass the final rep-
resentation hvi for each region vi into a learned
linear layer to predict a matching score for fine-
tuning. As we are given pre-computed image re-
gions, the highest-scoring region is used as the pre-
diction. We train using cross-entropy loss on the
UIBert dataset, using the official splits (train:15.6k,
val:448, test:544). On average, for each expres-
sion the model must choose from 20 candidate UI
elements.

Lexi outperforms the best baseline by 6.4% (Ta-
ble 2). If accessibility labels had to be avail-
able, the performance would likely increase, as
demonstrated by UIBert that, with UI metadata,
achieves 90.8% accuracy. Figure 4 provides a qual-
itative analysis of some predictions (2 correct and
2 wrong). The task is challenging, and the model
makes reasonable errors. For instance, for the third
referring expression, Lexi correctly returns a pic-
ture, but the second rather than the first one under
the text. In the last example, Lexi correctly returns
a profile icon but not the one next to the text “79”,
which, slightly cropped at the very bottom of the
screen, may be hard to locate also for a human .

Ref Exp UI Entity Rec

Model UIBert MS+Android
Acc % Prec Recall F1

RoBERTa-UI - 75.2 80.2 77.2
ViLBERT-UI 51.7 75.7 81.0 77.8
ViLBERT-UI-dt 58.5 76.5 80.1 77.8
ViLBERT-12-1-UI 62.9 79.0 80.4 79.2
Lexi-6 66.9 79.0 82.1 80.2
Lexi-10 65.8 79.1 81.7 80.0

Table 2: Performance of Lexi on the grounding referring
expressions and UI entity recognition tasks. Models are
fine-tuned on UIBert and MS +Android, respectively.

5.6 UI entity recognition

This task is relevant to task completion systems,
to translate natural language commands into exe-
cutable scripts, and was inspired by the Android-
HowTo dataset (Li et al., 2020a).6 Given a UI im-
age and an instruction, the goal is to extract spans
of UI action verbs, UI action objects, and input
parameters (see example in Figure 3b). UI action
verbs describe operations (click, type, etc.) that a
user can take on a UI object (a button or a menu);
some UI objects (a text field) require input parame-
ters (e.g., “Enter a in b”). A challenge here is that
not all instances of a word are of the same entity
type (in Figure 3b, “Alexa” is an input, but “Alexa
app” is not; “Search” is an object, but may be a
verb elsewhere). We model the task as a named-
entity recognition task with Begin (B), Intermediate
(I), and Other (O) class annotations (BIO scheme).
We use a cross-entropy loss function.

We build a dataset for this task as follows. We
ask 4 annotators to label the span of words that
describe these entity types in instructions extracted
from the manuals of 14 MS apps (more details
on the process in Appendix E). We combine our
annotated instructions with similarly-annotated An-
droidHowTo commands adapted to our task (Ap-
pendix F) to obtain 43.4k unique image-instruction
pairs, for a total of 76.7k action verbs, 79.3k ob-
jects, and 1.5k inputs labelled. We refer to this
dataset as MS+Android. For training and testing
we use an 80-10-10 scheme.

As Table 2 shows, Lexi outperforms the
RoBERTa baseline by 3.9% and even the very large
ViLBERT-12-1-UI model by 1.3% (based on F1

6In the tests we do not consider their model as a baseline
because, although related, its goal and metrics are different
(entity extraction vs. sequence generation, see Appendix F for
more details).

6999

Model UI action ent UI entity rec
Acc % F1

ViLBERT-UI 65.0 77.8
ViLBERT-UI-dt 68.0 77.8
ViLBERT-12-1-UI 66.4 79.2
Lexi-10 84.1 80.0
Lexi-6 83.3 80.2
– MLM 83.2 78.6
– MRM-KL 81.7 78.2
– ITA 70.7 79.1
– POS 82.8 78.2
– DetText 75.8 79.2

Table 3: Ablation study of Lexi with respect to the UI
action entailment and UI entity recognition tasks.

scores), thus demonstrating the effectiveness of pre-
training with POS tagging. Learning with a multi-
modal setup improves performance, suggesting the
visual input provides further necessary context.

5.7 Ablation analysis
We perform an ablation analysis where Lexi-6 does
not include one of our four pre-training tasks or
does not use the text detected in the input image.
All Lexi variants are pre-trained as the complete
Lexi model. In the analysis we use the UI action en-
tailment and UI entity recognition tasks, for which
models are fine-tuned on a subset of UICaption
(77k) and MS+Android, respectively. As Table 3
shows, among the 4 pre-training tasks, ITA is the
most relevant to UI action entailment (its absence
causes a 17.8% drop in Lexi-6’s accuracy) while
MLM and POS are the least relevant. On the other
hand, for UI entity recognition, Lexi-6 slightly out-
performs Lexi-10, and we observe how POS and
MRM-KL tasks are important to achieve high per-
formance (their absence causes a 2.6% drop in F1
scores). The inclusion of the detected text is most
beneficial to UI action entailment.

6 Limitations

In this section, we describe some limitations of our
method, dataset, and data collection approach.

Our approach depends on pre-training using pub-
licly available web data, which is crawled at scale
and for a diverse set of applications. Web data
is highly skewed towards popular applications;
less popular application might have less or lower-
quality documentation and images online. In the
future, we will focus on collecting UI data from
other sources, such as instructional videos, online
tutorials, and bug reports. We also observe that for

certain application categories, such as shopping,
transportation, weather, or news, instruction manu-
als are rare or totally missing.

Another limitation that arises from curating pre-
training data from the web is how to ensure zero
overlap between pre-training and downstream eval-
uation tasks. A URL-based filter of the crawled
websites does not eliminate overlaps as aggregator
websites like wikiHow and LifeWire may contain
manuals of different apps and platforms. Partition-
ing data based on application names is also difficult
as the name of the application is not explicitly en-
coded in the webpage source.

Our data and method have been evaluated for
English instructions and UIs that contain text in
English. Future work should expand to different
languages. Currently, the method is trained and
evaluated on instructions whose length is at most
512 tokens.

Pre-training the model even on a modest dataset
like UICaption already requires significant GPU
resources. The obtained model is not optimized
to run on edge devices like mobile phones, thus
possibly raising privacy concerns. For some sce-
narios that motivate this work (e.g., accessibility
support and voice-based navigation in mobile apps)
it would be highly desirable to execute and update
the models locally.

7 Conclusion

We propose to learn generic representation models
for the UI language from instruction manuals and
how-to guides. We apply prior VL models to this
data and encounter new challenges due to the text
richness and context sensitivity of UI screens. To
address them, we build a new dataset based on the
concept of functional caption, design a new vision
encoder which leverages text detected in UIs, and
create a new POS pre-training task. Tested on four
downstream tasks, Lexi largely outperforms our
baselines, including a multi-task ViLBERT model
trained on much larger datasets.

Acknowledgements

We thank Sahisnu Mazumder for early discussion
on the Lexi project and for implementing the first
prototype of the UICaption web crawler. We thank
Weiwei Yang for her feedback on the Lexi archi-
tecture, and Kate Lytvynets for helping implement
the Lexi UI element detector.

7000

References
Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas

Sunkara, Abhinav Rastogi, Jindong Chen, and
Blaise Agüera y Arcas. 2021. UIBert: Learning
generic multimodal representations for UI under-
standing. In Proc. of the 30th International Joint Con-
ference on Artificial Intelligence, IJCAI’21, pages
1705–1712.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi,
et al. 2020. PIQA: Reasoning about physical com-
monsense in natural language. In Proc. of the AAAI
Conference on Artificial Intelligence, volume 34,
pages 7432–7439.

S. R. K. Branavan, Harr Chen, Luke S. Zettlemoyer,
and Regina Barzilay. 2009. Reinforcement Learning
for Mapping Instructions to Actions. In Proc. of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP, ACL
’09, pages 82–90. Association for Computational Lin-
guistics.

S. R. K. Branavan, David Silver, and Regina Barzilay.
2011. Learning to Win by Reading Manuals in a
Monte-Carlo Framework. In Proc. of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies - Volume
1, HLT ’11, pages 268–277.

John Canny. 1986. A computational approach to edge
detection. IEEE Transactions on Pattern Analysis
and Machine Intelligence, PAMI-8(6):679–698.

Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei
Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang.
2020a. Unblind Your Apps: Predicting Natural-
Language Labels for Mobile GUI Components by
Deep Learning. In Proc. of the ACM/IEEE 42nd
International Conference on Software Engineering,
ICSE ’20, pages 322–334.

Jieshan Chen, Mulong Xie, Zhenchang Xing, Chun-
yang Chen, Xiwei Xu, Liming Zhu, and Guoqiang
Li. 2020b. Object Detection for Graphical User In-
terface: Old Fashioned or Deep Learning or a Com-
bination? In Proc. of the 28th ACM Joint Meeting
on European Software Engineering Conference and
Symposium on the Foundations of Software Engineer-
ing, ESEC/FSE 2020, pages 1202–1214. ACM.

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El
Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. 2020c. UNITER: UNiversal Image-
TExt Representation Learning. In Computer Vision
- ECCV 2020 - 16th European Conference, volume
12375 of LNCS, pages 104–120. Springer.

Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hi-
bschman, Daniel Afergan, Yang Li, Jeffrey Nichols,
and Ranjitha Kumar. 2017. Rico: A Mobile App
Dataset for Building Data-Driven Design Applica-
tions. In Proc. of the 30th Annual ACM Symposium

on User Interface Software and Technology, UIST
’17, pages 845–854. ACM.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proc. of the 2019 Conference of the
North American Chapter of the Association for Com-
putational Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), NAACL’19,
pages 4171–4186. Association for Computational
Linguistics.

Yuning Du, Chenxia Li, Ruoyu Guo, Xiaoting Yin, Wei-
wei Liu, Jun Zhou, Yifan Bai, Zilin Yu, Yehua Yang,
Qingqing Dang, et al. 2020. PP-OCR: A practi-
cal ultra lightweight OCR system. arXiv preprint
arXiv:2009.09941.

Google. 2021. Material design icons. https://
github.com/google/material-design-icons.

Izzeddin Gur, Ulrich Rückert, Aleksandra Faust, and
Dilek Hakkani-Tür. 2019. Learning to navigate the
web. In 7th International Conference on Learning
Representations (ICLR ’19).

Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying
Xu, Lijuan Liu, Nevan Wichers, Gabriel Schubiner,
Ruby B. Lee, and Jindong Chen. 2021. ActionBert:
Leveraging User Actions for Semantic Understand-
ing of User Interfaces. In 35th AAAI Conference on
Artificial Intelligence, AAAI 2021, pages 5931–5938.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple
and accurate dependency parsing using bidirectional
LSTM feature representations. Transactions of the
Association for Computational Linguistics, 4:313–
327.

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin John-
son, Kenji Hata, Joshua Kravitz, Stephanie Chen,
Yannis Kalantidis, Li-Jia Li, David A Shamma, et al.
2017. Visual genome: Connecting language and vi-
sion using crowdsourced dense image annotations.
International journal of computer vision, 123(1):32–
73.

Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui
Hsieh, and Kai-Wei Chang. 2019. VisualBERT: A
Simple and Performant Baseline for Vision and Lan-
guage. CoRR, abs/1908.03557.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Ja-
son Baldridge. 2020a. Mapping Natural Language
Instructions to Mobile UI Action Sequences. In Proc.
of the 58th Annual Meeting of the Association for
Computational Linguistics, ACL 2020, pages 8198–
8210. Association for Computational Linguistics.

7001

https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.24963/ijcai.2021/235
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1109/TPAMI.1986.4767851
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3377811.3380327
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1145/3368089.3409691
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1007/978-3-030-58577-8_7
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.1145/3126594.3126651
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://github.com/google/material-design-icons
https://github.com/google/material-design-icons
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
http://arxiv.org/abs/1908.03557
https://www.aclweb.org/anthology/2020.acl-main.729/
https://www.aclweb.org/anthology/2020.acl-main.729/

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong
Li, and Zhiwei Guan. 2020b. Widget Captioning:
Generating Natural Language Description for Mobile
User Interface Elements. In Proc. of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP’20).

Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C. Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In European Conference
on Computer Vision, pages 740–755. Springer.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, and
Percy Liang. 2018. Reinforcement learning on web
interfaces using workflow-guided exploration. In 6th
International Conference on Learning Representa-
tions (ICLR ’18).

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee.
2019. ViLBERT: Pretraining Task-Agnostic Visi-
olinguistic Representations for Vision-and-Language
Tasks. In Proc. of the Annual Conference on Neu-
ral Information Processing Systems 2019, NIPS’19,
pages 13–23.

Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi
Parikh, and Stefan Lee. 2020. 12-in-1: Multi-Task
Vision and Language Representation Learning. In
2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR, pages 10434–10443.

Sahisnu Mazumder and Oriana Riva. 2021. FLIN: A
flexible natural language interface for web naviga-
tion. In Proc. of the 2021 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
NAACL 2021, pages 2777–2788. Association for
Computational Linguistics.

Kevin Moran, Carlos Bernal-Cárdenas, Michael Curcio,
Richard Bonett, and Denys Poshyvanyk. 2020. Ma-
chine learning-based prototyping of graphical user
interfaces for mobile apps. IEEE Transactions on
Software Engineering, 46(2):196–221.

Tuan Anh Nguyen and Christoph Csallner. 2015. Re-
verse engineering mobile application user interfaces
with REMAUI. In Proc. of the 30th IEEE/ACM In-
ternational Conference on Automated Software Engi-
neering, ASE ’15, pages 248–259. IEEE Press.

Vicente Ordonez, Girish Kulkarni, and Tamara L Berg.
2011. Im2Text: Describing images using 1 million
captioned photographs. In Proc. of the 24th Interna-
tional Conference on Neural Information Processing
Systems, NIPS’11, pages 1143–1151. Curran Asso-
ciates Inc.

Panupong Pasupat, Tian-Shun Jiang, Evan Zheran Liu,
Kelvin Guu, and Percy Liang. 2018. Mapping natural
language commands to web elements. In Proc. of the
2018 Conference on Empirical Methods in Natural
Language Processing, EMNLP’18, pages 4970–4976.
Association for Computational Linguistics.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. 2019. PyTorch:
An imperative style, high-performance deep learning
library. In Proc of the Annual Conference on Neu-
ral Information Processing Systems, NIPS’19, pages
8024–8035.

Di Qi, Lin Su, Jia Song, Edward Cui, Taroon Bharti, and
Arun Sacheti. 2020. ImageBERT: Cross-modal Pre-
training with Large-scale Weak-supervised Image-
Text Data. CoRR, abs/2001.07966.

Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian
Sun. 2015. Faster R-CNN: towards real-time object
detection with region proposal networks. In Proc. of
the Annual Conference on Neural Information Pro-
cessing Systems, NIPS’15, pages 91–99.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words with
subword units. In Proc. of the 54th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1715–1725. Association
for Computational Linguistics.

Piyush Sharma, Nan Ding, Sebastian Goodman, and
Radu Soricut. 2018. Conceptual Captions: A
Cleaned, Hypernymed, Image Alt-text Dataset For
Automatic Image Captioning. In Proc. of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2556–
2565. Association for Computational Linguistics.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Her-
nandez, and Percy Liang. 2017. World of Bits: An
Open-Domain Platform for Web-Based Agents. In
Proc. of the 34th International Conference on Ma-
chine Learning, ICML ’17, pages 3135–3144.

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu,
Furu Wei, and Jifeng Dai. 2020. VL-BERT: pre-
training of generic visual-linguistic representations.
In 8th International Conference on Learning Repre-
sentations, ICLR’20.

Satoshi Suzuki and KeiichiA be. 1985. Topological
structural analysis of digitized binary images by bor-
der following. Computer Vision, Graphics, and Im-
age Processing, 30(1):32–46.

Hao Tan and Mohit Bansal. 2019. LXMERT: Learning
cross-modality encoder representations from trans-
formers. In Proc. of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the

7002

https://arxiv.org/abs/2010.04295
https://arxiv.org/abs/2010.04295
https://arxiv.org/abs/2010.04295
https://openreview.net/forum?id=ryTp3f-0-
https://openreview.net/forum?id=ryTp3f-0-
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/c74d97b01eae257e44aa9d5bade97baf-Abstract.html
https://doi.org/10.1109/CVPR42600.2020.01045
https://doi.org/10.1109/CVPR42600.2020.01045
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.18653/v1/2021.naacl-main.222
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/TSE.2018.2844788
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.1109/ASE.2015.32
https://doi.org/10.18653/v1/D18-1540
https://doi.org/10.18653/v1/D18-1540
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
http://arxiv.org/abs/2001.07966
http://arxiv.org/abs/2001.07966
http://arxiv.org/abs/2001.07966
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://doi.org/10.18653/v1/P18-1238
https://openreview.net/forum?id=SygXPaEYvH
https://openreview.net/forum?id=SygXPaEYvH
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/https://doi.org/10.1016/0734-189X(85)90016-7
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514
https://doi.org/10.18653/v1/D19-1514

9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 5100–
5111. Association for Computational Linguistics.

XDA. 2021. Google is trying to limit what
apps can use an Accessibility Service (again).
https://www.xda-developers.com/google-trying-
limit-apps-accessibility-service/.

Ning Xie, Farley Lai, Derek Doran, and Asim Ka-
dav. 2019. Visual entailment: A novel task
for fine-grained image understanding. ArXiv,
abs/1901.06706.

Semih Yagcioglu, Aykut Erdem, Erkut Erdem, and Nazli
Ikizler-Cinbis. 2018. RecipeQA: A challenge dataset
for multimodal comprehension of cooking recipes. In
Proc. of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1358–1368.
Association for Computational Linguistics.

Ethical considerations

One possible application of our technology are
screen readers for visually-impaired users. As ac-
cessibility labels are often missing or incomplete,
Lexi could give them access to a much wider range
of applications. In this regard, it is important that
the pre-training dataset guarantees an unbiased cov-
erage of applications and platforms. Another poten-
tial use case of Lexi is task automation, which has
societal and security implications: What if an agent
clicks the wrong button? Is there an “undo” option
or other recourse? A significant frontier for intelli-
gent task completion systems is architecting them
such that they can increase human productivity, yet
remain amenable to human review.

To test one of our downstream tasks, we asked
four annotators to label instruction manuals of Mi-
crosoft Office applications. The annotations pro-
vided (i.e., spans of verb, object, and input entities)
contain little subjectivity and ambiguity. More de-
tails on how this dataset was curated can be found
in Appendix E.

We have released the UICaption dataset. In
line with existing pre-training data sharing pol-
icy (Sharma et al., 2018; Li et al., 2020a), we have
released the collection of URLs from which we
crawled the image-text pairs and the associated
scripts to generate training samples.

A UI data collection

As described in §3, to curate the UICaption dataset,
we collect UI images from three sources. In the
following we provide more details on the first (in-
struction manuals) and third source (general tech-

nical websites). We also describe how functional
captions were generated.

Instruction manual crawlers. We built crawlers
that use rules specific to a support website to extract
comprehensive instruction manuals consisting of
sets of instructions along with image occurrences,
organized by topic and functionality. We built cus-
tom crawlers for 23 Microsoft products, which we
collectively call MS apps, whose technical manu-
als can be found at support.microsoft.com, and for
Zoom, whose manual can be found at zoom.com.

Mixed data crawler. We also built a crawler that
uses general heuristics to extract UI images along
with their alt-text and surrounding texts from a va-
riety of support and how-to websites, for different
apps and platforms (hence the name “mixed”). The
crawler first collects URLs of technical websites
and how-to guides by synthesizing search queries
and submitting them to web search.

Search queries are generated in two ways. In
one approach, we extract names of UI elements
(e.g., “Home button”, “Settings icon”) from the
crawled instruction manuals of MS apps (where UI
elements are easily recognizable from their HTML
classname attribute) and concatenate them with
their corresponding app name (e.g., “Home button,
Word”). Note that to create an OOD test set, in this
web crawl we avoid using names of UI elements
and instructions from Teams and Zoom manuals,
although overlaps due to common UI elements and
instructions may occur. In a second approach, we
split multi-step PixelHelp (Li et al., 2020a) instruc-
tions crawled from support.google.com/pixelphone
into single-step instructions. PixelHelp instructions
relate to four task categories: configuring accounts,
Gmail, Chrome, and Photos.

Once search queries are generated, the mixed
data crawler submits them to Google image search
and parses the top 60 results. It then visits the URL
of each result, and extracts images (using HTML
tags) as well as preceding and subsequent text.

We found this approach to work well for two
key reasons. First, by carefully selecting the source
webpages, the process ensured that the large ma-
jority of the collected images were indeed icons
and UI screenshots. Second, although our seed
search queries were specific to MS apps and Pixel-
Phone, they were general enough (e.g., “Account
icon OneDrive” derived from the OneDrive manual
or “Tap where you can enter text” derived from

7003

https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
https://www.xda-developers.com/google-trying-limit-apps-accessibility-service/
https://doi.org/10.18653/v1/D18-1166
https://doi.org/10.18653/v1/D18-1166
https://support.microsoft.com/<app-name>
https://zoom.us/
https://support.google.com/pixelphone

PixelHelp) to trigger results for a much larger set
of apps and platforms (e.g., Apple and web).

Caption generation. For each crawled UI image
we generated from 1 up to 5 captions following sim-
ple heuristics. If the preceding text contains a set of
numbered instructions we split them into individual
steps, and generate captions that contain from 1 up
to 5 steps. Otherwise, the entire preceding text goes
into one caption. For Android support websites ob-
tained from AndroidHowTo (Li et al., 2020a), we
used preceding or subsequent text, based on the
annotations provided in the AndroidHowTo dataset.
We discarded image-text pairs where the number
of words in the text was less than 4 or more than
160. Overall, the average length of captions is 32
words, the average length of alt-text is 4.5 and the
average length of instruction text is 29.

UICaption dataset summary. Overall, the
UICaption dataset consists of 134k image-caption
pairs. Based on the crawling source we distinguish
three portions of the dataset: 1) Mixed (104k pairs),
containing UI data for different apps and platforms,
obtained by crawling general technical websites;
2) Android (5k pairs), covering Android apps, ob-
tained by crawling support websites listed in An-
droidHowTo; and 3) MS (12k pairs), Teams (1.7k
pairs), and Zoom (2.5k pairs), covering various MS
apps and Zoom, obtained using custom instruction
manual crawlers. The third category contains the
highest quality data in terms of image-text align-
ment and instruction details. Teams and Zoom are
used only in testing, for an OOD analysis.

B Lexi UI element detector

The design of the Lexi detector is inspired by prior
work (Chen et al., 2020b; Nguyen and Csallner,
2015; Moran et al., 2020) that demonstrated how
off-the-shelf computer vision algorithms coupled
with DNN classifiers can be successfully applied
to UI screen understanding, without requiring ex-
pensive datasets of labeled UI screens.

The Lexi detector consists of two separate de-
tection streams and a fusion layer. In one stream,
it detects the edges of an image’s elements using
Canny’s algorithm (Canny, 1986), applied to a grey-
scale map of the input image. After a dilation
with a 8 × 8 rectangle kernel, it applies contour
detection (Suzuki and be, 1985), and then approx-
imates contours to polygons to obtain rectangular
bounding boxes. Finally, it uses non-maximum

suppression (with an overlap threshold of 75%) to
eliminate overlapping boxes, and it discards boxes
whose area is less than 50 pixels or whose width
or height is smaller than 5 pixels. However, fully-
contained boxes are not eliminated in this stage
(e.g., we do not want to eliminate an icon contained
in a text button). In a parallel stream, the Lexi detec-
tor runs PP-OCR (Du et al., 2020) on the input im-
age7, followed by another round of non-maximum
suppression, this time only for text boxes. In the
final fusion stage, the detector merges contour-
identified boxes with OCR-inferred boxes. Inspired
by REMAUI’s approach (Moran et al., 2020), we
use the following heuristics: (i) we merge bounding
boxes which are vertically or horizontally aligned
and separated by no more than 2 pixels, (ii) we
merge OCR-inferred boxes with contour-inferred
boxes which fully contain them and are of similar
area, and (iii) we eliminate contour-detected boxes
contained in OCR-inferred boxes only if they are
either smaller than 250 pixels or they are at least
85% as big as the containing text box.

Once bounding boxes have been identified, they
are fed to a UI classifier. We fine-tune ResNeXt-
101 using a collection of 263k mobile/web/Win-
dows UI elements (obtained through data synthe-
sis, by cropping UI elements from annotated An-
droid UI screens (Deka et al., 2017), and from
public icon datasets (Google, 2021)). We classify
boxes into 9 classes: “text-button”, “image”, “text-
label”, “image-button”, “radio-button”, “check-
box”, “input-field”, “select”, and “other”.

The final output consists of a set of bounding
boxes, each with a class label, probability vector,
and recognized text (if any).

C Additional training details

All Lexi models are implemented in Py-
Torch (Paszke et al., 2019). The text input size
is 512 tokens. Alt-text is truncated to 64. The
remaining tokens (at least 448) are used for the
instruction text. The image region feature size is
2048. Scalar coefficients for the pre-training loss L
are as follows: α=0.01, β=0.8, γ=0.15, and δ=0.2.

In Table 4, we report additional details on the pre-
training and fine-tuning process for each task, in-
cluding datasets, training, validation and test splits,
effective batch size (BS), learning rate (LR), and
number of training epochs (NE). For fine-tuning

7We discard boxes with recognized text shorter than 2
characters and with a confidence lower than 0.7.

7004

Task Dataset Split sizes BS LR NE
Train Val Test

Lexi pre-training (4 tasks) UICaption (Mixed + MS + Android) 134k 5.6k 7k 128 4e-5 100
UI action entailment UICaption (Mixed + MS + Android) 77k 3.7k 6k 256 2e-5 50
Instruction-based UI image retrieval UICaption (Mixed + MS + Android) 77k 3.7k 6k 256 2e-5 50
Grounding referring expressions UIBert 15.6k 448 544 32 1e-5 50
UI entity recognition AndroidHowTo + UICaption (MS) 34.5k 4.4k 4.5k 32 1e-5 50

Table 4: Training details including dataset sizes (reported as the number of unique image-instruction pairs), effective
batch size (BS), learning rate (LR), and maximum number of epochs (NE). UICaption’s Zoom and Teams data are
used only in testing, for an OOD analysis.

tasks, NE indicates the maximum number of train-
ing epochs, as we have an early stopping using a
validation split with patience of 5. Dropout is fixed
at 10% for all layers that use dropout.

D Analysis of UI action entailment
predictions

In Figure 5, we share 3 correct and 3 incorrect
predictions made by Lexi-6 fine-tuned for the UI
action entailment task. The test dataset consists of
Teams and Zoom image-text pairs. In the figure, the
true pair is always the first one, while the prediction
is highlighted in green (correct) or red (wrong).
The last pair is the hard negative one. Note that
in the UI action entailment task, the model is not
provided with the alt-text associated with the UI
image, even when it is available.

We observe that the model can select the correct
image-instruction pair out of the four given choices
even in cases where the alternative choices contain
text or UI controls with a high overlap with the
instruction text. In the first example in Figure 5
(first row), the instruction describes how to make
calls in Teams; the last pair (the hard negative sam-
ple) consists of a UI screen with a call pad but the
model correctly selects the first UI screen which
contains the same call pad but also the “Recent”
button mentioned in the instruction. In the second
example, the instruction is about joining meetings
in Zoom. While both the first and forth UI screen
contain “Join” buttons, the model correctly selects
the first UI screen which is more appropriate for
the instruction given (”join a meeting” vs. “join
with computer audio”). Finally, in the third exam-
ple, the model correctly selects the first pair despite
the second and forth pairs both containing a UI
screen related to screen sharing and an instruction
referring to the screen share function.

In cases where the model chooses incorrect pairs,
we observe that it still selects very reasonable pairs.

In the fifth example, Lexi selects the last choice
where the UI screenshot and caption are related
to the participant menu; however, the correct UI
screen for that caption (in the first pair) shows an-
other view of the participant menu containing the
“more” button mentioned in the instruction. The
last example is particularly challenging: the instruc-
tions in the first and second pair, which contain the
same UI screen, describe the same functionality
which can be achieved through two slightly differ-
ent UI controls (the “download icon” shown in the
UI screenshot and the “attendance button”).

E Labeling data for UI entity recognition

For the UI entity recognition task we collected a
small dataset to train and test our models. We
asked 4 annotators with technical backgrounds (2
female and 2 male, English speakers, and payed
competitive hourly wages) to annotate some of the
MS instruction manuals. Annotators knew their
annotations would have been used for a research
project. Each annotator was presented with multi-
ple Excel files containing textual instructions for
various Microsoft Office applications (e.g., Excel,
Word, OneNote, Teams, etc.). Each row in each
Excel sheet contained information about a specific
functionality, organized as follows: (1) name of
the application, (2) title of the manual section (i.e.,
functionality name), (3) brief description of the
functionality, and (4) a set of instructions. The an-
notator was asked to read the set of instructions for
each functionality and label the span of words that
described one of three types of entity: (i) UI ac-
tion verbs (by entering the <verb> and </verb> tags),
(ii) UI action objects (by entering the <obj> and
</obj> tags), and (iii) input parameters (by entering
<input> and </input> tags). Each file was annotated
by 3 annotators; in case of disagreement, a forth
annotator was consulted. Before starting the anno-
tation task, annotators were given a definition of

7005

Figure 5: Samples from UI action entailment with Lexi-6 predictions for Zoom and Teams. The correct pair is the
first one in each row. Correct predictions are highlighted in green and wrong ones in red.

our entity types and multiple examples, especially
ambiguous ones. For instance, we showed them a
sample instruction “Specify the PowerPoint presen-
tation that you want to open and then click...” and
labeled “PowerPoint presentation” as action object
(rather than “the PowerPoint presentation that you
want to open”).

F Adapting AndroidHowTo to UI entity
recognition

Li et al. (2020a) propose a phrase tuple extrac-
tion (PTE) model and release the AndroidHowTo
dataset, which inspired our UI entity recognition
task. In PTE, given a natural language instruction
the model extracts a sequence of tuples that best
describe each action contained in the instruction.
Each tuple consists of a UI operation (of 7 possible
types, such as click, input, etc.), a UI object, and

7006

additional arguments. The goal of PTE is sequence
generation. Given the instruction “to complete your
task tap A and B”, the goal of the PTE model is to
output the 2 tuples <operation:"click", object:"A"> and
<operation:"click", object:"B">.

We build a simpler, multi-modal version of this
task focused on entity extraction. We introduce
equivalent entities (UI action verb, UI action object,
and input parameters) and leverage AndroidHowTo
to build a dataset to train our model. For the same
example instruction above, our model’s goal is en-
tity extraction, i.e., tagging “tap” as an action verb,
and “A” and “B” as action objects.

An example of AndroidHowTo instruction with
annotations is the following.

{"instructions": "Keep your phone
updated: to view the most recent
security update, open the

Settings app and tap Security or
System updates. Go to Settings >
Google > Security > Google Play
Protect.",

"operation_list": ["CLICK", "CLICK",
"CLICK", "CLICK", "CLICK", "CLICK
"],

"verb_list": ["open", "tap", "go to",
"go to", "go to", "go to"],

"obj_list": ["the settings app", "
security or system updates", "
settings", "google", "security",
"google play protect"],

"args_list": []}

We adapt this data to build a training dataset
for our task. We keep obj_list and args_list intact
and compute a new action_verb_list derived from
verb_list:

"action_verb_list": ["open", "tap", "
go to"]

7007

