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Abstract

Large-scale language models coupled with
prompts have shown remarkable performance
on few-shot learning. However, through sys-
tematic experiments, we find that the few-shot
performance of small language models is poor,
and using prompts on them brings fewer im-
provements than on larger ones. In this paper,
we propose SMASH, an approach to improve
SMAll language models’ few-SHot ability by
training on intermediate tasks before prompt-
based fine-tuning on downstream tasks. We de-
sign intermediate tasks for sentence-pair tasks
and sentiment classification tasks by creating
training examples with prompt templates sim-
ilar to downstream tasks using sentences sam-
pled from a large-scale unsupervised corpus,
and apply knowledge distillation to distill from
outputs of larger pre-trained models as the train-
ing objective. We conduct extensive experi-
ments and show that SMASH can make a 6-
layer DistilRoBRETa-base achieve comparable
performance on few-shot datasets with a 12-
layer RoBERTa-base at a low cost. 1

1 Introduction

Language models at scale, such as GPT-3 (Brown
et al., 2020), have shown remarkable performance
on prompt-based few-shot learning on a wide vari-
ety of tasks given only a natural language prompt
and few demonstrations. However, the ability of
few-shot learning usually comes with heavy com-
putation and a huge amount of parameters. Re-
cent works (Gao et al., 2020; Li and Liang, 2021)
investigated prompt-based few-shot learning on
moderately-sized language models such as BERT-
large (Devlin et al., 2019), RoBERTa-large (Liu
et al., 2019) and GPT-2 (Radford et al., 2019), but

∗ Corresponding author: Dongyan Zhao.
1Our model and code is publicly available at https://

github.com/yellow-binary-tree/SMASH.

MNLI QQP RTE SST-2
(acc) (f1) (acc) (acc)

Distil
RoBERTa

-base

PT 46.8 53.0 54.5 85.7
FT 38.5 53.1 50.5 75.5
∆ 8.3 -0.1 4.0 10.2

RoBERTa
-base

PT 58.4 63.9 59.6 89.0
FT 40.7 59.1 50.8 82.1
∆ 17.7 4.8 8.8 6.9

RoBERTa
-large

PT† 68.3 65.5 69.1 92.7
FT† 45.8 60.7 54.4 81.4
∆† 22.5 4.8 14.7 11.3

Table 1: Fine-tuning performance (FT), prompt-based
fine-tuning performance (PT) and relative improvement
of PT comparing to FT (∆) on models with different
sizes on 16-shot training and validation dataset. †: re-
sults from (Gao et al., 2020). Bold results indicates the
largest relative improvement.

these models are still difficult to be deployed on
edge devices such as mobile phones.

In this paper, we investigate whether we
can make small language models, such as
DistilRoBERTa-base (Sanh et al., 2019), better few-
shot learners. Prompt-based fine-tuning has been
seen as a promising method for few-shot learn-
ing as it uses language modeling heads instead of
introducing new parameters as task-specific classi-
fication heads during fine-tuning, thus narrowing
down the gap between pre-training (e.g., masked
language modeling for RoBERTa) and applying
to downstream tasks. However, Table 1 shows
that when annotated data is insufficient, prompt-
based fine-tuning on DistilRoBERTa-base does not
make improvements over fine-tuning as large as on
RoBERTa-base or RoBERTa-large for most down-
stream tasks. We assume that’s because the models’
abilities to respond to gaps between tasks are pro-
portional to their sizes, and the gap of transferring
from pre-training to the prompt-based fine-tuning
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on downstream tasks directly is still too wide for
small language models. This suggests that addi-
tional adaptations are required when applying small
language models on few-shot downstream tasks.

To tackle this problem, we propose SMASH,
an approach of further training SMAll language
models on intermediate tasks before applying them
to few-SHot downstream tasks. Intuitively, if we
can design intermediate tasks similar to both the
pre-training task and downstream tasks, we can mit-
igate this problem by replacing one large gap (from
the pre-training task to downstream tasks) with two
smaller gaps (from the pre-training task to interme-
diate tasks, then to downstream tasks). Noticing
that same manual prompt templates (or similar tem-
plates with minor differences) are often used when
prompt-based fine-tuning models on a group of sim-
ilar tasks (e.g., template <s>x0?<mask>, x1.</s>
for sentence-pair tasks in GLUE benchmark (Wang
et al., 2019), such as MNLI, QNLI, RTE, etc.), we
consider using this prompt template and sample
sentences from a large-scale unsupervised corpus
to form the inputs of the intermediate task. To
construct supervision signals we leverage knowl-
edge distillation (Hinton et al., 2015) by feeding
the inputs to a larger pre-trained language model
and using its outputs as the training objective. In
this way, the intermediate task can be both simi-
lar to the pre-training task (by training on similar
distributions of data, e.g. large scale corpus from
the web) and downstream tasks (by using similar
prompt templates). From the perspective of knowl-
edge distillation, the intermediate task can also be
seen as a kind of data augmentation using a large-
scale unsupervised corpus to transfer knowledge of
solving a group of similar tasks from larger models
to smaller models, which can be exploited later by
prompt-based fine-tuning on downstream tasks.

As the intermediate task depends on the input
format of downstream tasks, it’s not feasible to ex-
periment with SMASH on all NLP tasks at once.
In this paper, we only take sentence-pair tasks and
sentiment classification tasks, two groups of tasks
that are popular in NLP as an example, and design
two intermediate tasks respectively. Note that prac-
titioners can also use SMASH on other groups of
downstream tasks by designing their own interme-
diate tasks under the training framework we pro-
posed. Experiments on the GLUE benchmark and
several other tasks show that using SMASH can
make a 6-layer DistilRoBERTa-base achieve com-

parable performance with a 12-layer RoBERTa-
base on few-shot datasets at a low cost. We find
that SMASH provides more improvements on more
complicated tasks like natural language inference
and sentence similarity than easier tasks like sen-
timent classification, and is robust over different
templates, verbalizers, and model structures. In
summary, our key contributions are:

• Conducting systematic experiments to verify
the effectiveness of existing few-shot learning
methods on small language models;

• Proposing SMASH, a general method to im-
prove few-shot prompt-based fine-tuning per-
formance for small language models on a
group of downstream tasks;

• Designing intermediate tasks for sentence-pair
tasks and sentiment classification tasks, and
showing their effectiveness on several down-
stream tasks.

2 Related Work

Prompt-based learning. Prompt-based learning
has become a new paradigm in NLP fueled by
the series work of GPT (Radford et al., 2018,
2019; Brown et al., 2020). There are a large
body of works on mining sequences of tokens as
discrete prompts (Jiang et al., 2020; Shin et al.,
2020) or training continuous prompts (Li and
Liang, 2021; Liu et al., 2021; Lester et al., 2021;
Hambardzumyan et al., 2021; Zhang et al., 2022).
Prompt-based learning has been seen as a promis-
ing method for few-shot learning. PET (Schick
and Schütze, 2021a,b) focuses on prompt-based
fine-tuning an ensemble of models to create a soft-
labeled dataset from unlabeled in-domain examples
and use it to fine-tune a classifier model. LM-BFF
(Gao et al., 2020) proposes methods to generate
prompts and find demonstrations from few-shot
datasets. The work most related to us is PPT (Gu
et al., 2021), which leverages unsupervised data to
pre-train representations of prompt tokens.

General distillation of Pre-trained Language
Models (PLMs). General Distillation aims at dis-
tilling student models at the pre-training stage using
unsupervised data to foster its ability on solving
various types of tasks. DistilBERT (Sanh et al.,
2019) performs general distillation using soft cross-
entropy loss over logits and cosine embedding loss.
TinyBERT (Jiao et al., 2020) proposes transformer
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distillation method that aligns embedding layer,
hidden states, attention matrices, and output logits
between teacher model and student model. CoDIR
(Sun et al., 2020) adopts a contrastive learning
framework where the student’s representations are
enforced to be close to the corresponding repre-
sentations of the teacher and far apart from nega-
tive ones. MiniLM (Wang et al., 2020) proposes
self-attention distillation at the pre-training stage,
and MiniLMv2 (Wang et al., 2021) proposes multi-
head self-attention relation distillation that has no
restrictions in terms of the number of teacher’s
and student’s attention heads. MGSKD (Liu et al.,
2022) proposes to transfer the structural relations
among multi-granularity representations to the stu-
dent hierarchically. Though the effects of different
training objectives have been studied extensively,
most previous works conducted general distillation
on the masked language modeling task using raw
text input. To the best of our knowledge, our work
is the first work that performs prompt-based gen-
eral distillation using input sequences assembled
by prompt templates.

3 Method

3.1 Preliminaries: Prompt-Based Fine-tuning
An burgeoning approach of fine-tuning pre-trained
language models is prompt-based fine-tuning,
where input is formulated as a “blank-filling task"
with natural language prompts. Take sentiment
classification task as an example, given an input
sentence x ∈ V∗ (where V is the vocabulary of the
language model M, and V∗ denotes a sequence
of tokens from V) and its label y ∈ Y , a template
f : V∗ → V∗ maps x into a new token sequence
f(x) containing the input sentence, several prompt
tokens, and at least one <mask> token for M to
predict. Then a verbalizer v : R|V| → Y is used
to map p, the output distribution of M to a label
v(p) = y ∈ Y . For example, we can formulate a
sentiment classification task t = (f, v) as:

f(x) = <s> x. It was <mask>.</s>

and let M decide whether it is more appro-
priate to fill in “terrible" (negative) or “great"
(positive) for <mask>. Then the verbalizer v =
[great, terrible] maps the output distribution of
M to a label:

v(p)=

{
positive p(“great”)>p(“terrible”)
negative otherwise

Same as (Gao et al., 2020), we treat regression
tasks in a bounded interval [l, u] as interpolation
between two opposing words in verbalizer v =
[yl, yu]. In this way, we calculate ŷ as:

ŷ = l × p(yl|x) + u× p(yu|x)

where p is the output probability of model M
and p(yl|x)+ p(yu|x) = 1. We train the model M
to minimize the following objective function using
KL divergence:

Lkl = KL(ppred|pgold),

where

ppred = [p(yl|x), p(yu|x)]

pgold = [
u− y

u− l
,
y − l

u− l
]

3.2 SMASH

In this subsection we propose SMASH to lever-
age unsupervised corpus to transfer the ability of
solving a group of downstream tasks from a pre-
trained teacher model Mtea to a pre-trained student
model Mstu to further narrow down the gap be-
tween pre-training and prompt-based fine-tuning.
Formally, suppose a group of downstream task T
containing n downstream tasks {t1, ..., tn}, where
ti = (fi, vi). We design an intermediate task
tdis = (fdis[, vdis]) for group T . 2 After dis-
tilling Mstu from Mtea with tdis, we continue to
train Mstu for each task t in T with prompt-based
fine-tuning on task-specific data.

In this work, we focus on two groups of down-
stream tasks: sentence-pair classification and senti-
ment classification, and provide the design of their
intermediate tasks respectively. We emphasize that
SMASH can be applied to any downstream tasks,
and practitioners can design their own correspond-
ing intermediate tasks by themselves.

Sentence-Pair Tasks. Sentence-pair tasks such
as natural language inference take two sentences
(x1, x2) as input. Following (Gu et al., 2021),
we construct a dataset from unlabeled raw text
documents, and set the two sentences from dif-
ferent documents as label 0, those from the same
document but not adjacent as label 1, and those
next to each other as label 2. We sampled the

2The verbalizer of intermediate tasks is optional as Mstu

can learn from the output distribution of the whole vocabulary
from Mtea directly.
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Figure 1: Overview of SMASH on sentence-pair tasks.

same amount of training examples for each la-
bel to avoid distribution bias. We use template
fdis = <s>x1? <mask>, x2</s>. Figure 1 is an
overview of SMASH on sentence-pair tasks.

Sentiment Classification Tasks. Sentence classi-
fication tasks take only one sentence x as input. In
order to comply with the setting where annotated
data is difficult to obtain, we filter sentences with
low-classification probability with a pre-trained
RoBERTa-large model instead of a model fine-
tuned on another sentiment analysis task in (Gu
et al., 2021). To filter the low-classification proba-
bility sentences, we use template

ffilter = <s>x1 It was <mask>. </s>

and verbalizer

vfilter = [terrible, bad, okay, good, great]

After filtering we distill Mstu using template
fdis = ffilter.

We experimented on three transformer distil-
lation objectives: prediction distillation, hidden
states distillation, and multi-head attention distilla-
tion.

For prediction distillation, we train Mstu using
the output distribution of Mtea by minimizing the
following objective function:

Lce = −
∑

i∈V
ti × log(si) (1)

where ti and si are probabilities of token i esti-
mated by Mtea and Mstu respectively.

For hidden states distillation, the objective is
defined as:

Lhidn =

Mstu∑

m=0

MSE(Hstu
m , Htea

g(m)) (2)

where MSE denotes mean squared error loss,
M stu is the number of layers of the student model,
Hm refers to the hidden states of mth layer, and
H0 denotes the representations after embedding
layer. g(m) denotes the layer mapping function
from student to teacher, which means mth layer of
Mstu learns from g(m)th layer of Mtea. We use
uniform strategy described in (Jiao et al., 2020),
where g(m) = m× (M tea/M stu).

For multi-head attention distillation, the objec-
tive is defined as:

Lattn =

Mstu∑

m=1

H∑

h=1

MSE(Astu
mh, A

tea
g(m)h) (3)

where H is the number of attention heads, Amh

refers to the hth attention head of mth layer. We
use the same layer mapping function as hidden
states distillation, i.e. g(m) = m ∗ (M tea/M stu).
Note that hidden states distillation and multi-head
attention distillation requires Mstu and Mtea to be
the same type of transformer language model with
the same number of attention heads and hidden size,
while prediction distillation has no requirements
for the model structure of Mstu and Mtea.

After conducting experiments on all the above-
mentioned distillation objectives described in detail
in Section 4.4, we only use prediction distillation in
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other experiments due to its superior performance
and simplicity.

4 Experiment

4.1 Setup

Datasets. We evaluate our methods on SNLI
(Bowman et al., 2015), a number of tasks from the
GLUE benchmark (Wang et al., 2019), and three
more sentiment analysis datasets: SST-5 (Socher
et al., 2013b), MR (Pang and Lee, 2005) and CR
(Hu and Liu, 2004). Our few-shot dataset is the
same as (Gao et al., 2020), with K = 16 examples
per label sampled from the original training set as
our training set and validation set, and use the orig-
inal validation set as our test set. For each task, we
sampled 5 different few-shot datasets and report
the average (standard deviation) metric of 5 trials.
For intermediate tasks, we sampled 2560k sentence
pairs for sentence-pair task and 2560k sentences
for sentiment classification task from Wikipedia 3,
so every training example is used only once.

Implementation Details. During the intermedi-
ate task, we use RoBERTa-large as the teacher
model and DistilRoBERTa-base 4 as the student
model. We set batch size as 128 and learning rate
as 1e-4. During prompt-based fine-tuning, we per-
form grid search and take learning rates from {1e-5,
2e-5, 5e-5} and batch sizes from {2, 4}. We set
the max length of input sequences as 64 for senti-
ment classification tasks and 128 for sentence-pair
tasks. We use templates and verbalizers same as
(Gao et al., 2020). For more implementation details
please refer to Appendix A.

Baselines. We compare to several base-
lines including: (1) prompt-based fine-tuning
DistilRoBERTa-base (prompt-based fine-tune);
(2) prompt-based zero-shot performance of
DistilRoBERTa-base (zero-shot); (3) fine-tuning
DistilRoBERTa-base (fine-tune); (4) knowl-
edge distillation by adding the soft label loss
(Eq. 1) between logits from RoBERTa-large
and DistilRoBERTa-base when prompt-based
fine-tuning DistilRoBERTa-base (distill), and
use back-translation (Sennrich et al., 2015)
to augment the training set 10 times larger
(distil bt10); (5) LM-BFF (Gao et al., 2020)

3https://huggingface.co/datasets/wikipedia
4We use model checkpoint from

https://huggingface.co/distilroberta-base, with 6 layers,
768 dimension, 12 heads, and 82M parameters.

which uses automatically-searched prompts and
demonstrations; (6) Vanilla PPT (Gu et al.,
2021) which leverages unsupervised corpus to
pre-train soft-prompts; and (7) prompt-based
fine-tuning (PT) RoBERTa-base, RoBERTa-
large, and prompt-based zero-shot performance of
RoBERTa-base.

4.2 Main Results

Table 2 shows our main results. On most
tasks SMASH is comparable with the 2× larger
RoBERTa-base model on both prompt-based fine-
tuning and zero-shot performance, and it also out-
performs LM-BFF and Vanilla PPT, which shows
the effectiveness of SMASH.

For sentence-pair tasks, prompt-based zero-shot
performance of DistilRoBERTa-base is worse than
or slightly better than the majority baseline, but it
can be improved by SMASH; For sentiment classi-
fication tasks, prompt-based zero-shot performance
of DistilRoBERTa-base is much better than the ma-
jority baseline, and SMASH cannot provide further
improvements. We suppose that’s because in the
pre-training stage DistilRoBETa-base only sees one
sentence at a time, so transferring from pre-training
to sentence-pair tasks is harder, thus training on
SMASH intermediate task is more beneficial.

We observed that distilling directly from
RoBERTa-large using prompt-based methods per-
forms worse than prompt-based fine-tuning on few-
shot datasets, as it’s hard to train a strong task-
specific teacher model and transfer knowledge from
teacher model to student model due to lack of train-
ing data. It is counter-intuitive that the student
model performs even worse with the use of back-
translation, we suppose that’s because the teacher
model is not powerful enough to resolve the noise
introduced by the augmented examples.

We also observed that on most tasks, prompt-
based fine-tuning improvements of SMASH are
significantly greater than zero-shot improvements
(e.g., for RTE, prompt-based fine-tuning improve-
ment is 59.4− 54.5 = 4.9, and zero-shot improve-
ment is 53.8 − 51.3 = 2.5). This verifies our as-
sumption that instead of making the student model
learn to solve downstream tasks directly, SMASH
works like general distillation that transfers the po-
tential ability to solve a group of similar tasks to
the student model, which can be exploited later by
prompt-based fine-tuning on downstream tasks.
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MNLI-m MRPC QQP SNLI QNLI RTE
(acc) (f1) (f1) (acc) (acc) (acc)

majority† 32.7 81.2 0.0 33.8 49.5 52.7

prompt-based fine-tune 46.8 (1.5) 70.0 (6.5) 53.0 (1.5) 50.1 (5.0) 54.1 (2.2) 54.5 (3.9)
zero-shot 44.8 73.0 50.1 37.5 50.6 51.3
fine-tune 38.5 (1.5) 65.4 (15.1) 53.1 (5.5) 39.8 (2.0) 54.6 (2.5) 50.5 (1.4)

distill 46.6 (1.5) 67.1 (9.9) 53.3 (1.9) 49.9 (3.7) 53.7 (2.1) 54.9 (2.5)
distill bt10 44.2 (3.4) 72.3 (2.8) 53.0 (2.5) 48.4 (2.9) 52.8 (2.8) 54.9 (1.8)
LM-BFF 50.3 (2.0) 64.3 (4.4) 52.5 (5.5) 51.0 (6.7) 54.8 (2.4) 52.8 (3.1)

Vanilla PPT 39.6 (0.7) 75.3 (2.9) 59.8 (2.6) 44.4 (2.7) 62.1 (3.6) 51.5 (2.0)
SMASH 56.8 (1.1) 74.7 (5.5) 64.4 (2.4) 59.7 (4.7) 66.9 (3.8) 59.4 (3.2)

SMASH zero-shot 46.7 76.0 52.8 47.3 50.9 53.8

RoBERTa-base PT 58.4 (1.7) 72.1 (10.9) 63.9 (4.0) 61.6 (4.2) 61.3 (5.0) 59.6 (6.6)
RoBERTa-base zero-shot 48.1 53.0 51.6 48.6 50.8 53.1

RoBERTa-large PT† 68.3 (2.3) 74.5 (5.3) 65.5 (5.3) 77.2 (3.7) 64.5 (4.2) 69.1 (3.6)

MNLI-mm STS-B SST-2 SST-5 MR CR
(acc) (pear.) (acc) (acc) (acc) (acc)

majority† 33.0 - 50.9 23.1 50.0 50.0

prompt-based fine-tune 48.2 (3.3) 42.3 (15.4) 85.7 (1.4) 42.7 (1.5) 80.4 (1.4) 85.8 (1.8)
zero-shot 45.7 -5.7 81.8 28.4 78.0 84.0
finetune 39.3 (1.5) 56.7 (10.1) 75.5 (4.0) 35.5 (0.9) 67.9 (3.8) 74.5 (4.2)
distill 48.7 (1.8) 42.2 (15.6) 86.3 (1.0) 41.2 (1.1) 80.4 (1.6) 86.7 (1.6)

distill bt10 46.6 (3.2) 33.6 (13.3) 82.9 (2.2) 40.2 (1.5) 78.9 (1.6) 84.1 (1.9)
LM-BFF 52.9 (1.9) 42.0 (15.3) 86.1 (0.7) 38.4 (2.6) 79.8 (2.4) 84.7 (2.7)

Vanilla PPT 39.8 (1.4) 55.7 (3.0) 83.6 (0.9) 36.8 (1.8) 80.2 (0.6) 86.5 (0.6)
SMASH 58.8 (0.9) 64.3 (7.4) 88.3 (0.4) 42.4 (2.6) 81.9 (2.2) 88.0 (0.8)

SMASH zero-shot 47.9 19.5 75.7 31.1 74.0 77.6

RoBERTa-base PT 60.6 (1.4) 69.1 (3.0) 89.0 (1.2) 44.5 (1.6) 84.3 (1.3) 89.2 (1.4)
RoBERTa-base zero-shot 49.2 14.5 77.8 32.8 72.3 79.7

RoBERTa-large PT† 70.5 (1.9) 71.0 (7.0) 92.7 (0.9) 47.4 (2.5) 87.0 (1.2) 90.3 (1.0)

Table 2: Main results. †: results from (Gao et al., 2020). Bold Results indicates the best result achieved using
DistilRoBERTa-base and no extra in-domain training data.

4.3 Comparisons to Baselines with Stronger
Data Requirements

In this subsection we also compare our methods
to iPET (Schick and Schütze, 2021a), which iter-
atively trains ensembles of PET models to label
in-domain unlabeled examples. We use RoBERTa-
large as PET models and DistilRoBERTa-base as
the final classifier. Note that this comparison is
not fair as SMASH only requires web-scraped cor-
pus, while iPET requires up to 10000 unlabeled
examples per label from the same downstream task,
which can play a key role in few-shot learning.

Results of some representative tasks are shown
in Table 3 (see Table 5 in Appendix for more re-

sults). SMASH results in inferior performance than
iPET on some of the tasks, as iPET fine-tunes the
final classifier on soft-labeled in-domain examples
several orders of magnitude larger than the 16-shot
dataset. However, we find that SMASH and iPET
are compatible, as simply changing the training
method of iPET final classifier from fine-tuning to
prompt-based fine-tuning (+PT) and using models
trained on SMASH intermediate tasks as initializa-
tion (+SMASH init) brings further improvements.

4.4 Comparisons of Different Distillation
Settings

To verify the effectiveness of different distillation
settings, we compare the following settings for
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MNLI MRPC QNLI QQP SST-2 CR
(acc) (f1) (acc) (f1) (acc) (acc)

SMASH 56.8 (1.1) 74.7 (5.5) 66.9 (3.8) 64.4 (2.4) 88.3 (0.4) 88.0 (0.8)
iPET 66.5 (3.0) 71.0 (10.7) 77.2 (2.8) 59.9 (4.5) 90.9 (0.3) 87.9 (0.7)
+ PT 67.2 (2.7) 69.3 (10.8) 77.9 (3.3) 63.7 (4.4) 90.6 (0.3) 88.5 (0.7)
+ SMASH init 69.5 (2.9) 69.9 (10.8) 79.0 (2.6) 63.5 (4.3) 91.2 (0.2) 89.2 (0.6)

Table 3: Results of iPET, and modifications of iPET. Bold results indicates the best results.
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Figure 2: Few-shot Performance with different distil-
lation settings. Shaded area indicates standard devia-
tion. We omit standard deviation of RoBERTa-base and
DistilRoBERTa-base for simplicity.

sentence-pair tasks: (1) SMASH with objective
Lce (Eq.1) and RoBERTa-large teacher (Rl ce); (2)
SMASH with objective Lce (Eq.1) and RoBERTa-
base teacher (Rb ce); (3) SMASH with objec-
tive Lce + 0.01Lhidn (Eq.2) and RoBERTa-base
teacher (Rb ce+hidn); (4) SMASH with objective
Lce+0.01Lattn (Eq.3) and RoBERTa-base teacher
(Rb ce+attn); (5) perform further pre-training us-
ing raw text from Wikipedia on masked language
modeling task and training objective same as Dis-
tilBERT (Sanh et al., 2019) and RoBERTa-base
teacher (Rb distilbert); and (6) using rule-based
label described in Section 3.2 as objective and min-
imize cross-entropy loss using prompt-based fine-
tuning with template same as (1) and verbalizer
vdis = [No,Maybe, Y es] (rule). We trained all

these models for up to 200k steps and prompt-based
fine-tune on MNLI.

Figure 2(a) shows the results of the comparison.
Performance of all settings stabilizes at around
100k steps, and fluctuations after 100k steps are
probably due to high variance caused by small train-
ing and validation sets of downstream tasks. For
settings (2)-(4) with RoBERTa-base teacher, dis-
tilling only with Lce achieves better performance
than using other transformer distillation objectives
such as Lhidn or Lattn consistently. We suppose
that’s because during the pre-training stage of
DistilRoBERTa-base, its self-attention heads and
hidden states are not trained to imitate RoBERTa-
base, so its self-attention heads (and hidden states)
may capture different information (and lie in dif-
ferent spaces) from RoBERTa-base. Hence adding
these objectives actually introduces noise to the dis-
tillation process. Setting (5) shows that further pre-
training using (Sanh et al., 2019) objective does not
make further improvements, as this setting still uses
the masked language modeling task and can not nar-
row down the gap between the pre-training task and
downstream tasks. This observation makes sense
as DistilRoBERTa-base has been trained with set-
ting (5) for millions of steps during the pre-training
stage and already converges. Based on previous
observations we find that using Lce as training ob-
jective gets the best results despite its simplicity
and compatibility, as it has no requirements of the
structure of the teacher model. So in setting (1),
we use RoBERTa-large as a stronger teacher with
Lce objective, and it outperforms all other settings.

Setting (6) shows that training using rule-based
labels results in inferior performance, indicating
that without knowledge distillation, these rule-
based labels are not appropriate optimization tar-
gets for natural language inference downstream
tasks. In summary, choosing an intermediate task
similar to downstream tasks and using knowledge
distillation are both essential.
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Figure 3: Prompt-based fine-tuning using different tem-
plates and verbalizers. Shaded area indicates standard
deviation. We omit standard deviation of SMASH and
DistilRoBERTa-base for simplicity.

Figure 2(b) shows comparisons on SST-2 us-
ing setting (1), (5), and a new setting (7) us-
ing the hard label annotated during the fil-
ter process in Sec.3.2 and verbalizer vdis =
[terrible, bad, okay, good, great] as supervision
(Rl hard label). Note that the verbalizer of SST-2
v = [terrible, great] is a subset of vdis. Though
setting (7) seems similar to (6), labels in setting
(7) are acquired using a RoBERTa-large instead of
rules, so it can be viewed as a kind of “knowledge
distillation” which transfers knowledge using hard
labels on a 5-class single-sentence classification
task. The performance of setting (7) is comparable
with setting (1), which shows that using prompt-
based fine-tuning as intermediate task also works,
as long as the label is given by a teacher model.

4.5 Robustness Under Different Templates
and Verbalizers

Previous works (Gao et al., 2020; Gu et al., 2021;
Liu et al., 2021) mentioned that the choice of tem-
plate and verbalizer leads to substantial differences
in performance. Note that the superior results in
Table 2 are achieved using manual downstream
task templates and verbalizers, in this subsection
we validate the robustness of SMASH when chang-
ing templates or verbalizers, especially when using
templates that are different from the intermediate
task. Figure 3 presented results changing the man-
ual template to one of the 5 best templates or chang-
ing the manual verbalizer to one of the 5 best verbal-
izers from the generated prompts provided by (Gao
et al., 2020). Note that these templates/verbalizers
are generated based on RoBERTa-large and may
not be the best ones for DistilRoBERTa-base. Re-
sults show that SMASH provides consistent im-
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Figure 4: Comparisons of different downstream dataset
sizes. Shaded area indicates standard deviation.

MNLI QQP MRPC
(acc) (f1) (f1)

T5-small 42.5 (2.0) 54.0 (3.5) 65.2 (5.8)
SMASH 48.3 (2.0) 60.0 (3.4) 69.4 (6.3)

T5-base 52.9 (2.1) 63.8 (0.6) 71.3 (4.3)

Table 4: Few-shot performance of T5 models. Bold
results indicates the best result achieved using T5-small.

provements even the template of the downstream
task is different from the intermediate task.

4.6 Impact on Downstream Datasets of
Different Sizes

Figure 4 illustrates comparisons of prompt-
based fine-tuning DistilRoBERTa-base (dR-b
PT), RoBERTa-base (R-b PT) and SMASH on
DistilRoBERTa-base when K increases. SMASH
still provides improvements when using training
set and validation set up to K = 256 samples per
label, but the improvements reduce as K increases.

4.7 SMASH on Different Language Models

To explore the impact of SMASH on language mod-
els other than RoBERTa, We use T5-large (Raffel
et al., 2019) as the teacher model and T5-small
as the student model. We distill for 200k steps
and prompt-based fine-tune on downstream tasks.
We compare with two prompt-based fine-tuning
baselines: T5-small and T5-base. Table 4 shows
that SMASH improves the few-shot performance
of T5-small on several sentence-pair tasks.

5 Conclusion

In this paper, we present SMASH, an approach of
using knowledge distillation on an unsupervised
corpus to improve small language models’ few-shot
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performance. The principle of this approach is dis-
tilling the model using input similar to downstream
tasks sampled from unsupervised corpus as an inter-
mediate task to transfer knowledge of solving these
tasks and further narrow down the gap between
pre-training and prompt-based fine-tuning. We de-
sign intermediate tasks for sentence-pair tasks and
sentiment classification tasks. We show that our
approach results in significant improvements on
few-shot datasets, especially for harder tasks like
natural language inference. We analyse SMASH
on different distillation objectives, and verify its ro-
bustness over different templates, verbalizers, and
model structures.

Possible future directions of this work include:
apply SMASH on more types of downstream tasks,
especially those that can not be easily formulated
using prompts or are difficult to simulate using
unsupervised corpus (e.g., text-to-SQL); or explore
intermediate tasks that are more data-efficient.

Limitations

Like many other prompt-based approaches,
SMASH requires expert knowledge when design-
ing templates and verbalizers for different groups
of tasks, and the performance can be much or less
affected by the choices of them. Though in this pa-
per we demonstrated the effectiveness of SMASH
on several classification tasks, it is non-trivial to ap-
ply SMASH on tasks that are difficult to simulate
using unsupervised corpus like machine transla-
tion, text-to-SQL, dependency parsing, etc. Due to
computational constraints, we only experimented
with a 6-layer DistilRoBERTa-base as our small
model. Theoretically SMASH is also applicable to
larger "small models" such as RoBERTa-base or
RoBERTa-large with the usage of a larger teacher,
but the effects on these models remain unexplored.

Ethical Statement

The risks and potential harms of pre-trained lan-
guage models are widely discussed in papers such
as (Bender et al., 2021; Bender and Koller, 2020).
As models in this work are trained under a few-
shot learning setting, these models may have biases
due to the lack of diversity of training data. The
performance of these models can also be strongly
influenced by prompts, and inattentively designed
prompts may cause the model to exhibit unexpected
behaviors.
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A Experimental Details

A.1 Hyper-Parameters

Experiments in Section 4.2. During distillation
stage, we use batch size = 128, learning rate = 1e-4,
max input length = 128 for sentence-pair task and
64 for sentiment classification task. We distill for
200k steps, which takes about 4 days for sentence-
pair task and 2 days for sentiment classification
task on 2 GTX 1080 Ti GPUs. We sampled 2560k
sentences (or sentence pairs) from Wikipedia for
sentiment classification (or sentence-pair) task, and
training for 200k steps takes exactly 1 epoch. Dur-
ing prompt-based fine-tuning stage, we perform
grid search and take learning rates from {1e-5, 2e-
5, 5e-5} and batch sizes from {2, 4}. We prompt-
based fine-tune the model for up to 1000 steps and
save checkpoints every 100 steps. We take the best-
performing checkpoint on validation set to get test
set results. 5

For LM-BFF baseline, we use auto templates
and manual verbalizers with SBERT (Reimers and
Gurevych, 2019) to select demonstrations. For
Vanilla PPT baseline, we use the same data as
SMASH to pre-train soft-prompts for sentence-pair
tasks, and a RoBERTa-base fine-tuned on Yelp-full
(Zhang et al., 2015) to filter the pre-training corpus
for sentiment classification tasks. For iPET base-
line, we made minor modifications on the provided
prompts to train PET models on the tasks not ex-
perimented in (Schick and Schütze, 2021a). We
use 3 generations in iPET, in each generation we
train 3 different models for each of the 4 patterns.
We follow (Schick and Schütze, 2021a) to set other
hyper-parameters.

Experiments in Section 4.4 For settings (1)-(4),
we use the same hyper-parameters as Section 4.2.
For setting (5), we use learning rate = 1e-5, max

5When the validation set is small, the best checkpoint tends
to over-fit to the validation set. We observed in some cases the
test set performance of the best grid-searched hyper-parameter
is even worse than an arbitrary hyper-parameter.
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MNLI-mm SNLI RTE SST-5 MR
(acc) (acc) (acc) (acc) (acc)

SMASH 58.8 (0.9) 59.7 (4.7) 59.4 (3.2) 42.4 (2.6) 81.9 (2.2)
iPET 68.5 (3.0) 69.8 (3.8) 52.6 (2.9) 46.6 (0.8) 86.3 (0.6)
+ PT 69.0 (2.9) 70.7 (3.7) 46.4 (3.1) 47.8 (1.1) 86.7 (0.4)
+ SMASH init 70.6 (2.9) 72.1 (3.9) 46.9 (2.2) 48.1 (1.0) 87.3 (0.3)

Table 5: Results of iPET and modifications of iPET. We do not report results on STS-B as iPET do not apply to
regression tasks. Bold results indicates the best results.

Task Template Verbalizer
MNLI <s>x0?<mask>, x1.</s> {contradiction:No, entailment:Yes, neutral:Maybe}
MRPC <s>x0<mask>, x1.</s> {0:No, 1:Yes}
QQP <s>x0<mask>, x1.</s> {0:No, 1:Yes}
SNLI <s>x0?<mask>, x1.</s> {contradiction:No, entailment:Yes, neutral:Maybe}
QNLI <s>x0?<mask>, x1.</s> {not entailment:No, entailment:Yes}
RTE <s>x0?<mask>, x1.</s> {not entailment:No, entailment:Yes}

STS-B <s>x0<mask>, x1.</s> {0:No, 1:Yes}
SST-2 <s>x0 It was <mask>.</s> {0:terrible, 1:great}
SST-5 <s>x0 It was <mask>.</s> {0:terrible, 1:bad, 2:okay, 3:good, 4:great}
MR <s>x0 It was <mask>.</s> {0:terrible, 1:great}
CR <s>x0 It was <mask>.</s> {0:terrible, 1:great}

Table 6: Manual templates and verbalizers used.

input length = 512, weight of Lce = 5, weight of
Lmlm = 2 and weight of Lcos = 1. We use batch
size = 4 and gradient accumulation steps = 32, and
consider each gradient update as a training step for
a fair comparison with other settings. For setting
(6) and (7), we use learning rate = 1e-5.

Experiments in Section 4.6 We prompt-based
fine-tune for up to {1000, 1000, 2000, 2000, 4000}
steps for K = {16, 32, 64, 128, 256} respectively.
Other hpyer-parameters are same as Section 4.2.

Experiments in Section 4.7 When distilling
and prompt-based fine-tuning T5, we format
sentence-pair tasks as replace corrupted spans task
same as the pre-training stage by using template
x1? <extra_id_0>, x2</s>. We use the out-
put probability of the second generated token, as
the first generated token is always <extra_id_0>.
Other hyper-parameters are same as Section 4.2.

A.2 Tasks Used in the GLUE Benchmark

We use MNLI (Williams et al., 2018), QQP 6,
QNLI (Rajpurkar et al., 2016), RTE (Dagan et al.,
2006), MRPC (Dolan and Brockett, 2005), STS-B
(Cer et al., 2017) and SST-2 (Socher et al., 2013a)

6https://quoradata.quora.com/

from the GLUE benchmark in our experiments. We
ommited results on WNLI 7 due to its adversarial
dev set and CoLA (Warstadt et al., 2018) due to its
input may be a non-grammatical sentence and is
out of the distribution of the pre-training corpus, as
mentioned in (Gao et al., 2020).

A.3 Templates and Verbalizers
Table 6 shows our templates and verbalizers used
on RoBERTa models, which is the same as (Gao
et al., 2020). For T5 models, we use the same
verbalizers and similar templates by removing <s>
and replacing <mask> with <extra_id_0>.

7https://cs.nyu.edu/ davise/papers/WinogradSchemas/
WS.html
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