
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 6096–6102
December 7-11, 2022 ©2022 Association for Computational Linguistics

Semantic Dependency Parsing with Edge GNNs

Songlin Yang, Kewei Tu∗

School of Information Science and Technology, ShanghaiTech University
Shanghai Engineering Research Center of Intelligent Vision and Imaging

{yangsl,tukw}@shanghaitech.edu.cn

Abstract

Second-order neural parsers have obtained high
accuracy in semantic dependency parsing. In-
spired by the factor graph representation of
second-order parsing, we propose edge graph
neural networks (E-GNNs). In an E-GNN, each
node corresponds to a dependency edge, and
the neighbors are defined in terms of sibling,
co-parent, and grandparent relationships. We
conduct experiments on SemEval 2015 Task 18
English datasets, showing the superior perfor-
mance of E-GNNs 1.

1 Introduction

Traditional syntactic dependency parsing aims to
produce a tree structure for a given sentence, which
has been well-studied. However, tree-structured
representation is ill-suited for producing meaning
representation, which motivates the proposal of se-
mantic dependency parsing (SDP) (Oepen et al.,
2014). SDP aims to produce a directed acyclic
graph (DAG) instead of a tree to enable represent-
ing more complex semantic relationships.

Graph-based methods have obtained high accu-
racy in SDP (Peng et al., 2017; Dozat and Man-
ning, 2018; Wang et al., 2019). Notably, Wang
et al. (2019) propose a second-order neural CRF
parser and show superior performance compared to
the first-order Biaffine Parser (Dozat and Manning,
2018). To optimize the intractable CRF objective,
they leverage approximate inference algorithms
such as loopy belief propagation (LBP), unrolling
several inference steps as recurrent neural networks
(Zheng et al., 2015) for end-to-end approximation-
aware training (Gormley et al., 2015). However,
their model suffers from the following two prob-
lems: (i) Second-order dependency parsing can be
formulated in terms of factor graphs (Smith and
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1Our code is publicly available at https://github.

com/sustcsonglin/gnn-sdp.
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Figure 1: Factor graph representation of second-order
semantic dependency parsing. The figure is plotted by
Wang et al. (2019). Edge node (i, j) represents an edge
from xi to xj . Three kinds of second-order relation-
ships: sibling, co-parent, and grandparent are shown in
the figure.

Eisner, 2008). However, the corresponding fac-
tor graph for second-order parsing is highly loopy
(Fig. 1). It is known that on loopy graphs, LBP
can easily get stuck on bad local optima, leading to
sub-optimal results and thus undermining the pars-
ing performance. (ii) First-order and second-order
scores are produced based solely on contextual-
ized word representations, which is deemed to be
sub-optimal (Gan et al., 2022).

In this work, we propose edge GNNs (E-GNNs)
to address the aforementioned limitation of Wang
et al. (2019). Inspired by factor graph represen-
tations of second-order SDP where each variable
node corresponds to a dependency edge (Fig. 1),
we take edges as GNN nodes and define neigh-
bors in terms of sibling, co-parent, and grandpar-
ent relationships. The benefit is shown as follows.
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(i) Previous work suggests that GNNs outperform
LBP on loopy graphs (Yoon et al., 2018; Satorras
and Welling, 2021). Thus we can expect that using
E-GNNs will improve the inference quality and
thereby result in better parsing performance. (ii)
E-GNNs are more expressive since they incorpo-
rate edge-level features instead of just word-level
features as in Wang et al. (2019). Edge nodes prop-
agate features among neighbors via GNN layers,
iteratively refining their representations to be more
context-aware, and thereby capturing more infor-
mation regarding long-range dependencies, which
is shown experimentally.

We conduct experiments on SemEval 2015 Task
18 English datasets of SDP, showing superior per-
formance compared with Wang et al. (2019).

2 Model

Word representations. Given a sentence w =
w0 · · ·wn (w0 is the root), we feed it into BERT
(Devlin et al., 2019) to obtain contextualized word
embeddings and apply mean-pooling to the last
layer of BERT to obtain word-level embedding
c = c0 · · · cn. We concatenate c with POS tag and
lemma embeddings

ei = ci ⊕ e
pos
i ⊕ elemma

i

and then feed e0 · · · en into a bidirectional LSTM
(Hochreiter and Schmidhuber, 1997) (BiLSTM):

. . . , (
−→
bi ,
←−
bi ), · · · = BiLSTM([. . . , ei, . . . ])

The final word representation is xi =
−→
bi ⊕

←−
bi

Initial edge representation. To obtain initial
edge representations, we adopt low-rank bilinear
pooling (Kim et al., 2017) in order to capture pair-
wise interactions of parent and child word repre-
sentations:

e0ij = U(σ(V xi) ◦ σ(Wxj))

where σ is the activation function and we choose
tanh in this work; ◦ is Hadamard (element-wise)
product; U,W, V are linear layers (bias terms are
omit for brevity).

E-GNN encoding. Inspired by second-order pars-
ing, we take edges as GNN nodes and define neigh-
bors in terms of sibling (sib), co-parent (cop),
grand-parent (grd) relationships (Fig. 1). Since
grandparent relationship is not symmetric, we con-
sider both grandpa (grdp) and grandson (grds)

relationships. We define rel(i, j), the neighbor
set2 of edge (i, j) with respect to relationship
rel ∈ {sib, cop, grdp, grds} as follows:

sib(i, j) := {(i, k)}k cop(i, j) := {(k, j)}k
grdp(i, j) := {(k, i)}k grds(i, j) := {(j, k)}k

For each rel, we use a deep biaffine scoring func-
tion (Dozat and Manning, 2017) to compute the
un-normalized attention scores from edge (i, j) to
its neighbor (m,n) ∈ rel(i, j):

e
rel,a/b
ij = MLP rel,a/b(eij)

srelij,mn = [erel,aij ; 1]TW rel[erel,bmn ; 1];

Note that we do not need to compute scores for
every pair of (i, j) and (m,n), which needs O(n4)
time. We only need to compute scores for adjacent
edges under specific relationship and thereby need
only O(n3) time. The normalized attention scores
for each relation types are computed as follows:

αsib
ij,ik =

exp{ssibij,ik}∑
k′ exp{ssibij,ik′}

αcop
ij,kj =

exp{scopij,kj}∑
k′ exp{s

cop
ij,k′j}

αgrds
ij,jk =

exp{sgrdsij,jk}∑
k′ exp{s

grds
ij,jk′}

αgrdp
ij,ki =

exp{sgrdpij,ki}∑
k′ exp{s

grdp
ij,k′i}

We compute the feature aggregated from neighbors
as:

tmij =
∑

k

(αsib
ij,ike

m−1
ik + αcop

ij,kje
m−1
kj

+ αgrds
ij,jke

m−1
jk + αgrdp

ij,kie
m−1
ki )

Next, we update GNN node representations based
on their last iteration’s representations and the ag-
gregated feature:

emij = ReLU(Linear(em−1
ij ) + tmij )

2We include the edge itself in its neighbor set because
during E-GNN computation, an edge may not want to attend
to any neighbors and in that case it can put most of the attention
weight on itself.
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DM PAS PSD Avg
Parser ID OOD ID OOD ID OOD ID OOD
Dozat and Manning (2017) +char+lemma 93.7 88.9 93.9 90.6 81.0 79.4 89.5 86.3
Kurita and Søgaard (2019) +lemma 92.0 87.2 92.8 88.8 79.3 77.7 88.0 84.6
Wang et al. (2019) (MF) +char+lemma 94.0 89.7 94.1 91.3 81.4 79.6 89.8 86.9
Wang et al. (2019) (LBP) +char+lemma 93.9 89.5 94.2 91.3 81.4 79.5 89.8 86.8
Pointer +char+lemma 93.9 89.6 94.2 91.2 81.8 79.8 90.0 86.9
Zhang et al. (2019) +char+BERTLARGE 92.2 87.1 - - - - - -
Lindemann et al. (2019) +BERTBASE 94.1 90.5 94.7 92.8 82.1 81.6 90.3 88.3
Lindemann et al. (2020) +BERTLARGE 93.9 90.4 94.7 92.7 81.9 81.6 90.2 88.2
Pointer +char+lemma+BERTBASE 94.4 91.0 95.1 93.4 82.6 82.0 90.7 88.8
LBP† (baseline) +lemma+BERTBASE 94.9 91.7 95.2 93.5 82.6 82.3 90.9 89.2
E-GNN (ours) +lemma+BERTBASE 95.0 92.0 95.5 93.9 82.9 82.4 91.1 89.4

Table 1: Labeled F1 scores on three formalisms of SemEval 2015 Task 18. +char and +lemma means using charac-
ter and lemma embeddings. Pointer: Fernández-González and Gómez-Rodríguez (2020). †: our re-implementation.

Training loss. After l iterations of GNN update,
we obtain elij for each edge. We use an MLP to
map elij into a q-dimensional vector dij , where q
is the label set size (including the special NULL
label). We can associate each edge with a label
index, which is either the index of NULL if the
edge does not exist in the gold SDP graph, or the
index of the gold edge label. We denote this label
index as y⋆ij . Then we use cross-entropy to compute
the loss:

L = −
∑

ij

log
exp{dij(y⋆ij)}∑
y exp{dij(y)}

3 Experiment

3.1 Setup
We conduct experiments on the SemEval 2015 Task
18 English datasets (Oepen et al., 2015). Sen-
tences in the datasets are annotated with three
formalisms: DM (Flickinger et al., 2012), PAS
(Miyao and Tsujii, 2004), and PSD (Hajič et al.,
2012). We use the standard data splitting as used
in previous works (Martins and Almeida, 2014; Du
et al., 2015), which contains 33,964 sentences in
the training set, 1,692 sentences in the develop-
ment set, 1,410 sentences in the in-domain (ID)
test set and 1,849 sentences in the out-of-domain
(OOD) test set from the Brown Corpus (Francis
and Kucera, 1982). We use bert-base-cased
(Devlin et al., 2019) to obtain contextualized word
embedding. The number of GNN layers is set to
3. Other hyperparameters can be found in App. A.
We report the labeled F1 scores (LF1) in the ID and
OOD test sets for each formalism. The reported

results are averaged over three runs with different
random seeds.

3.2 Main result

Table 1 shows the experimental results. We reimple-
ment the LBP-based second-order parser of Wang
et al. (2019) as the baseline (LBP hereafter for
short), using the same neural encoder and the same
settings (e.g., hyper-parameters) as E-GNN for fair
comparison. As we can see, LBP has already sur-
passed Pointer (Fernández-González and Gómez-
Rodríguez, 2020), a strong model, by 0.2 and 0.4
average F1 scores in ID test sets and OOD test sets.
E-GNN further outperforms LBP by 0.2 average
F1 scores on both ID and OOD test datasets.

3.3 Ablation study

We conduct ablation studies on PAS. First, we study
the importance of using different relationship types
to define neighbors in GNNs. As we can see from
Table 2, removing sib/cop/grd (both grdp and
grds) results in 0.17, 0.20, 0.18 LF1 score drops,
respectively, showing that all these relationships
are beneficial to the final performance, which is
consistent with the intuition in second-order pars-
ing. Second, we conduct an ablation study on the
effect of the number of GNN layers. Table 2 shows
that using 0/1/2 layers leads to 0.32/0.18/0.15 F1
score drops, validating the importance of using a
three-layer E-GNN.

3.4 Error analysis

Fig. 2 shows the change of LF1 scores with the
length of dependency edges. We can see that when

6098



1-5 6-10 11-15 16-20 >20

86

88

90

92

94

96
L

F1
(1

00
%

)

(a) DM (ID)

1-5 6-10 11-15 16-20 >20

90

92

94

96

L
F1

(1
00

%
)

E-GNN
LBP

(b) PAS (ID)

1-5 6-10 11-15 16-20 >20

80

82

84

86

88

L
F1

(1
00

%
)

(c) PSD (ID)

1-5 6-10 11-15 16-20 >20

75

80

85

90

95

L
F1

(1
00

%
)

(d) DM (OOD)

1-5 6-10 11-15 16-20 >20
84

86

88

90

92

94

96

L
F1

(1
00

%
)

(e) PAS (OOD)

1-5 6-10 11-15 16-20 >20

76

78

80

82

84

L
F1

(1
00

%
)

(f) PSD (OOD)

Figure 2: LF1 of different edge lengths on three semantic formalisms.

Model LF
E-GNN 95.47

w/o sib 95.30
w/o cop 95.27
w/o grd 95.29

#GNN layer=2 95.32
#GNN layer=1 95.29
#GNN layer=0 95.15

Table 2: Ablation study on PAS test id. set.

the edge length is small (1-5), LBP and E-GNN
have almost identical performance. However, when
the edge length is large (>10), E-GNN outperforms
LBP by a large margin, especially when the edge
length is larger than 20. We hypothesize that E-
GNN can model long-range dependencies more ef-
fectively. Neural encoders such as BiLSTMs have
difficulty in capturing long-range dependencies, so
relying solely on word representations to produce
first/second-order edge scores, as in Wang et al.
(2019), would have difficulty in predicting long
edges. In comparison, for E-GNN, although the ini-
tial edge representation may also have difficulty in
capturing long-range dependencies, during iterative
GNN update, a long edge can gather information
from all its neighbors, refining its representation
to be more context-aware and thus capturing more
long-range information.

4 Related work

Dependency parsing with GNNs. Ji et al. (2019)
used GNNs for dependency parsing. However, they
view words instead of edges as GNN nodes. Con-
sequently, it is tricky to define neighbors and thus
tricky to design node vector update schemes. In
our model, we view edges as GNN nodes, so we
can define neighbors and design node vector update
schemes more naturally by following second-order
dependency relationships. In addition, our model
captures edge-level features and thus is more ex-
pressive.

Algorithmic alignment. One can view the GNN
layers of our model as a learnable inference de-
coder, which mimics the behavior of LBP. Xu
et al. (2020) propose the concept of algorithmic
alignment, finding that neural networks—whose
structures resembling classical algorithms for cer-
tain problems—are easier to train and have better
performance. The design of our model follows
the principle of algorithmic alignment, as E-GNN
nodes resemble variable nodes in the factor graph
of second-order parsing, and the message passing
mechanism of the GNN resembles LBP inference
steps. We can find other successful models comply-
ing with the algorithmic alignment principle in the
field of NLP. Taking DIORA (Drozdov et al., 2019)
for example, it mimics the classical inside-outside
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algorithm to design the network and achieves good
performance in unsupervised constituency parsing.

5 Conclusion

We proposed E-GNNs in the spirit of the factor
graph representation of second-order dependency
parsing. Experiments and ablation studies on Se-
mEval 2015 Task 18 English datasets of SDP vali-
dated the effectiveness of E-GNNs.

Limitations

E-GNN needsO(n3) time to update edge represen-
tations in each GNN layer, while the Biaffine Parser
only needs O(n2) time to score all edges. Besides,
E-GNN needs to store O(n2) edge embeddings in
each GNN layer, consuming more GPU memories
than the Biaffine Parser.
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Architecture hyper-parameters
POS/Lemma dimension 100
Embeddings dropout 0.33
BiLSTM encoder size 1000
BiLSTM layers dropout 0.33
MLP layers dropout 0.33
BiAffine hidden size 300
GNN hidden size 500
GNN layer 3
Training-related hyper-parameters
BERT learning rate 5e-5
Other learning rate 1.5e-3
Optimizer AdamW
Scheduler linear warmup
Warmup rate 0.5
Gradient clipping 5.0
Tokens per batch 3000
Maximum training sentence length 150

Table 3: Summary of hyper-parameters.

A Hyperparameter details

The hyperparamter configuration is summarized
in Table 3. Besides, the number of total training
epoch is set to 30 for DM; 20 for PAS and PSD.
The number of BiLSTM encoder layer is 1 for DM,
and 2 for PAS and PSD.
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