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Abstract

Logical reasoning is a challenge for many cur-
rent NLP neural network models since it re-
quires more than the ability of learning infor-
mative representations from data. Inspired by
the Dual Process Theory in cognitive science —
which proposes that human cognition process
involves two stages: an intuitive, unconscious
and fast process relying on perception called
System 1, and a logical, conscious and slow
process performing complex reasoning called
System 2 — we leverage neural logic reason-
ing (System 2) on top of the representation
learning models (System 1), which conducts
explicit neural-based differentiable logical rea-
soning on top of the representations learned
by the base neural models. Based on experi-
ments on the commonsense knowledge graph
completion task, we show that the two-system
architecture always improves from its System 1
model alone. Experiments also show that both
the rule-driven logical regularizer and the data-
driven value regularizer are important and the
performance improvement is marginal without
the two regularizers, which indicates that learn-
ing from both logical prior and training data is
important for reasoning tasks.

1 Introduction

Current NLP neural network models such as BERT
(Devlin et al., 2018), RoBerta (Liu et al., 2019) and
many more recent language models have revolu-
tionized how representations and semantic informa-
tion can be extracted from language, which have
led to large improvements on various tasks. One
challenge, however, is how to perform logical rea-
soning, which relies on the informative representa-
tions learned from data but also requires reasoning
abilities on top of it.

Our paper builds an architecture that explicitly
conducts neural logical reasoning inspired by cog-
nitive science theory of the human mind. Accord-
ing to the Dual Process Theory (Sloman, 1996;

Figure 1: Overview of the two-system architecture

Gilovich et al., 2002), humans’ cognition processes
involve two systems: an intuitive, unconscious and
fast process called System 1, and a logical, con-
scious and slow process called System 2. System
1 relies mainly on perception, which is employed
to get an intuitive judgment of the current situ-
ation and reach an experience-based conclusion.
Meanwhile, System 2 is used for more complex
logical reasoning processes such as solving nu-
merical problems, logical deduction problems, and
even logical and coherent everyday communica-
tions. System 1 is unconsciously deployed which
generates representations and helps make intuitive
judgments. When complex reasoning is needed,
System 2 is used to work together with System
1 and reason over the representations from Sys-
tem 1 for decision making. Most existing models
mainly focus on the System 1 stage, leveraging gi-
gantic deep neural networks to learn high-quality
representations such as language models (Devlin
et al., 2018; Brown et al., 2020), vision represen-
tations (LeCun et al., 1995; He et al., 2016; Rad-
ford et al., 2021) and graph embeddings (Bordes
et al., 2013; Grover and Leskovec, 2016; Kipf and
Welling, 2017). Based on the Dual Process Theory,
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equipping a reasoning layer that works as the Sys-
tem 2 on top of the representations from System 1
would work better at complex reasoning tasks.

In this paper, we use the Common Sense Knowl-
edge Graph (CSKG) link prediction task to illus-
trate that models integrating the representation
learning ability and the logical reasoning ability
perform better than models that only perform repre-
sentation learning. Technically, our model incorpo-
rates logical reasoning with representation learning
to enhance the link prediction task based on the
observation that a correct proposition (triple) usu-
ally has a relevant chain of propositions (triples)
that helps validate it. For example, suppose there
is a candidate proposition (obesity, CauseDesire,
exercise), from these two known propositions (lose
weight, HasPrerequisite, exercise) and (obesity,
CausesDesire, lose weight), we can infer that (obe-
sity, CauseDesire, exercise) is likely to be valid. If
the model can pay attention to the chain of propo-
sitions in the knowledge graph to determine, it
would be able to improve the graph completion
task. A similar idea is introduced by Wei et al.
(2022), where the model is trained to generate a
chain of thoughts that leads to the final answer in a
numerical question answering task. The training of
generating explicit reasoning process facilitates the
acquisition of reasoning ability in language models.

Our work does not abandon the existing suc-
cessful representation learning models, instead, we
leverage the representations and develop a general
architecture that infuses logical reasoning ability
on top of the representations for improved perfor-
mance. The reasoning layer is flexible enough to
be plugged into any representation learning model
as long as outputs of these models are embeddings.
Here are our main contributions: (1) Conceptually,
we demonstrate the advantage of applying Dual
Process Theory to facilitate the logical reasoning
ability and (2) Technically, we develop a neural-
symbolic two-system architecture for chain of logic
reasoning based on both rule-driven logical regu-
larizers and the data-driven value regularizers.

2 Related Work
2.1 Common Sense Knowledge Graphs
Common Sense Knowledge Graph (CSKG) is a
subcategory of knowledge graph where each node
is free text and each triple represents a common-
sense relation. Extensive efforts have been made
in CSKG (Carlson et al., 2010; Sap et al., 2019;
Hwang et al., 2021; Bosselut et al., 2019; Nguyen

et al., 2021; Mishra et al., 2017; Tandon et al.,
2014, 2017; Romero et al., 2019; Romero and
Razniewski, 2020), and two representative CSKGs
are ConceptNet-100k (Speer et al., 2017) and We-
bChild (Tandon et al., 2014, 2017). Many efforts
have been devoted to building models for knowl-
edge graph link prediction, such as TransE (Bordes
et al., 2013), DistMult (Yang et al., 2014), Sim-
plE (Kazemi and Poole, 2018), Complex (Trouil-
lon et al., 2017), HGN (Yan et al., 2021), ConvE
(Dettmers et al., 2018), ConvTransE (Shang et al.,
2019), NSKGE (Li et al., 2021), NTN (Socher
et al., 2013), HypER (Balažević et al., 2019), PGPR
(Xian et al., 2019), AttnIO (Jung et al., 2020),
CAFE (Xian et al., 2020), DPMPN (Xu et al.,
2019) and PLM (Geng et al., 2022). Besides, GCN
(Malaviya et al., 2020) leverages a much larger
graph neural network to learn representations with
the help of transfer learning from pretrained mod-
els to enrich representations. These models focus
on representation learning and use semantic match-
ing to retrieve the correct tail out of a pool of tails.
Our work leverages the representation and infuses
logical reasoning ability on top of it for improved
performance than representation learning alone.

2.2 Neural Symbolic Reasoning

Neural-symbolic system leverages the representa-
tion learning ability of connectionism (the neu-
ral system) and the reasoning ability of symbol-
ism (the symbolic system) to effectively integrate
learning and reasoning. Various designs of neural-
symbolic reasoning models have been presented
by researchers (Garcez et al., 2022; Zhang et al.,
2021; Moghimifar et al., 2021; Yang et al., 2017).
This work adopts the neural logic reasoning (NLR)
paradigm, where logical operators such as AND,
OR, NOT are learned as neural modules based on
self-supervised logic regularization, while inputs to
the operators are representation vectors (Shi et al.,
2020). The advantage of NLR paradigm is that it
can be easily infused into any established repre-
sentation learning model. NLR helps various tasks
such as solving logical equations (Shi et al., 2020),
recommender systems (Chen et al., 2021), graph
neural networks (Chen et al., 2022a), compositional
reasoning (Chen et al., 2022b), analogy learning
(Fan and Zhang, 2022), and visual reasoning (Li
et al., 2022). Instead of the neighbor-based neural
logic reasoning in previous works, we propose a
chain of logic reasoning model which provides a
clearer reasoning path.
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Proposition Triple The Corresponding Chain of Propositions
(ice cream, AtLocation, freezer) (ice cream, IsA, food), (food, AtLocation, freezer)

(play lacrosse, HasSubevent, run) (play lacrosse, SIM, play hockey), (play hockey, MotivatedByGoal, exercise),
(exercise, HasSubevent, run)

(bathe, HasPrerequisite, water) (bathe, UsedFor, get clean), (get clean, HasSubevent, take shower),
(take shower, HasPrerequisite, water)

(orange, IsA, colour) (orange, HasProperty, yellow), (yellow, IsA, colour)

(bath, UsedFor, relaxation) (bath, AtLocation, your house), (bed, AtLocation, your house),
(bed, UsedFor, relaxation)

(classroom, AtLocation, university) (classroom, UsedFor, education), (education, AtLocation, university)

Table 1: Examples of proposition triples and their corresponding chains

3 Preliminaries: Chain of Propositions

This section introduces the definition of chain used
in the model and its coverage in the dataset.

Definition 3.1 (Chain). Let q = (ehq, relq, etq) be
a query proposition triple of CSKG G = (E,R),
where E is the set of entities and R is the set of re-
lations. Notice that q could be an existing triple in
G (for training) or a non-existing one that needs to
be predicted in inference. An ordered list of propo-
sitions p1, p2, · · · , pn where pi = (ehi, reli, eti)
is a chain for q if and only if: (1) for each pi,
ehi, eti ∈ E and reli ∈ R, (2) p1 = (ehq, rel1, et1)
and pn = (ehn, reln, etq) for some et1, ehn ∈ E,
and (3) for each pi, ehi = et(i−1).

The above is a very strict definition for proposi-
tional reasoning chain. To increase coverage, we
apply two extensions to the above definition.

3.1 Extension 1: Reversed Relations

To cover propositions such as (ferret, AtLocation,
pet store) which is supported by a potential list of
triples (ferret, IsA, mammal), (cat, IsA, mammal),
(cat, AtLocation, pet store), we extend the defini-
tion to allow reversed links. We can rewrite the
reversed link (et, rel, eh) as (eh, rel−1, et). Based
on this, the definition of chain remains unchanged
except that for each triple (ehi, reli, eti) in the chain,
reli ∈ R ∪R−1.

3.2 Extension 2: Graph Densification

CSKG is notorious for the sparsity, for example,
81% of the entities occur only once in ConceptNet-
100k. One of the reasons is that free-formed text
can differ even though they refer to the same entity
or event. For example, “watch movie” and “watch
film” are two separate entities in the dataset while
they refer to the same event. Such sparsity imposes
difficulty on generating chains, which requires den-
sification of the graph. One method is to find simi-
lar pairs of entities and generate new triples using

Dataset Train Validation Test
ConceptNet-100k 22.5% 70.42% 78.83%
WebChild-comparative 46.88% 41.58 % 43.75%

Table 2: Statistics of coverage on two datasets

a newly created relation “SIM”, so that we can add
two new triples (watch movie, SIM, watch film)
and (watch film, SIM, watch movie) to the dataset.

We extend the knowledge graph with these
triples by computing the similarity between entity
embeddings as in Malaviya et al. (2020). To form
these edges, we fine-tune a BERT model on sen-
tences transformed from each triple using simple
heuristic rules. Then we extract node represen-
tations and use these representations to compute
the cosine similarity between all pairs of nodes in
the graph: the format of the input to the model
is [CLS] + e_phrase + [SEP], where e_phrase is
the free-formed text of an entity node. The em-
bedding of each node is the embedding of the
[CLS] token. Upon computing the pairwise co-
sine similarities, we use a threshold τ to filter
the pairs of nodes that are most similar. We use
τ = 0.955 and create 87,292 more triples on the
dataset ConceptNet-100k. This extension is only
applied on ConceptNet-100k due to its sparsity.

3.3 Coverage of Chains

For each proposition in the training, validation and
testing dataset, we exhaustively compute all of its
chains with length within four. Table 2 shows the
coverage of chains on the ConceptNet-100k (Speer
et al., 2017) and WebChild (Tandon et al., 2014,
2017) datasets, where coverage is the percentage
of known propositions in the graph that are accom-
panied by at least one chain. Each proposition
may have multiple chains and the model selects
the shortest chain during training and evaluation.
Table 1 lists some example chains. We will see
in the experiments that chain-based neural logical
reasoning significantly helps link prediction.
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Figure 2: Overview of the model structure, where System 1 learns representations and System 2 conducts logical
reasoning. The final output vector Q is compared with the constant true vector T to decide the final output.

4 The Two-System Architecture

Our architecture consists of two components: a rep-
resentation learning component and a neural logic
reasoning component on top of it, as shown in Fig-
ure 2. The representation learning component can
be any model that encodes proposition triples into
vector embeddings, and the neural logic reasoning
component conducts reasoning in a latent logical
space based on neural logical operators.

Given a query proposition q and its chain
{p1, p2, · · · , pn}, the model determines whether
q is valid by determining whether the following
logical expression is True or False:

p1 ∧ p2 ∧ p3 · · · ∧ pn → q (1)

According to the definition of material implication
(→)1, the above expression can be transformed to:

¬p1 ∨ ¬p2 ∨ ¬p3 · · · ∨ ¬pn ∨ q (2)

where each variable is represented as an embed-
ding in ∈ Rd. Since the above expression only
involves negation and disjunction, the neural logic
component involves only these two logical oper-
ators. We use a multi-layer feed-forward neural
network with GELU activation function to instanti-
ate both logical operators as neural modules. The
negation operator N(·) is a unary operator: it takes
in an embedding and outputs an embedding of the
same dimension. The disjunction operator D(·, ·)
is a binary operator: it takes in a concatenation of
two embeddings and outputs one embedding in Rd.
The overall embedding Q of the whole expression
is computed by applying the two neural logic opera-
tors over the proposition embeddings and the query
embedding, as shown in Figure 2. Notice that the
model architecture is dynamic which builds differ-
ent computational graphs for different input logical
expressions since the number of prerequisite propo-
sitions could be different. To evaluate whether the

1Material implication (→) can be represented by basic
operations: x → y ⇔ ¬x ∨ y

whole expression is true, the model computes the
similarity between the final expression embedding
Q and a predefined constant true vector T. T is
defined as an all-ones vector, functioning as the
anchor vector of the logical space.

4.1 Logical and Value Regularizers

For now the disjunction and negation modules are
just multi-layer neural networks. To ensure that
they are indeed performing the expected logical rea-
soning operations, and that the known expressions
are correctly embedded into the logical reasoning
space, we employ two regularizers:
(1) The self-supervised logical regularizers for the
disjunction and negation modules. They make sure
that the modules satisfy a collection of basic logical
rules shown in Table 3. The regularizers are applied
over all expression embeddings v ∈ V (including
the intermediate expressions) appeared during the
process of computing the score for a triple, which
force all the logical rules to be satisfied.
(2) The supervised value regularizers for expres-
sions of known values, which guarantee that the em-
beddings of the intermediate expressions—whose
true/false value is known—are close to their de-
served true (T) or false (F = N(T)) embeddings.
The value regularizer enriches the model training
by fusing the ground-truth true/false information
into the intermediate expression embeddings.

Here is an example: Given a query triple q (obe-
sity, CausesDesire, exercise) which has a chain of
length two: proposition p1 (obesity, CausesDesire,
lose weight) and p2 (lose weight, HasPrerequisite,
exercise), the model evaluates whether p1∧p2 → q
is valid by computing the similarity score between
T and Q = D(D(N(p1),N(p2)),q), where the
latter computes the final embedding for this ex-
pression. The logical regularizer requires that all
expression embeddings v ∈ V that appeared in the
calculation process (i.e., p1, p2, q, N(p1), N(p2),
D(N(p1),N(p2)) and D(D(N(p1),N(p2)),q))
satisfy the basic logical requirements in Table 3,
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NOT Negation ¬v ̸= v r1 =
∑

v∈V ∪{T} Sim(N(v),v)

Double Negation ¬(¬v) = v r2 =
∑

v∈V ∪{T} 1− Sim(N(N(v)),v)

OR Identity v ∨ F = v r3 =
∑

v∈V ∪{T} 1− Sim(D(v,N(T)),v)

Annihilator v ∨T = T r4 =
∑

v∈V ∪{T} 1− Sim(D(v,T),T)

Idempotence v ∨ v = v r5 =
∑

v∈V ∪{T} 1− Sim(D(v,v),v)

Complementation v ∨ ¬v = T r6 =
∑

v∈V ∪{T} 1− Sim(D(v,N(v)),T)

Table 3: Self-supervised logical regularizers over the logical modules

while the value regularizer requires the intermedi-
ate expressions to be close to their deserved true
or false embeddings, e.g., p1 should be close to
T since it is a known triple in the graph, while
N(p1) should be close to F due to the negation,
and similar for other intermediate expressions.

If a query triple q has no corresponding chain,
then we evaluate the true/false value of the simple
expression T → q to decide if q is true or false.

4.2 Learning Proposition Embeddings

Following common practice (Bosselut et al., 2019;
Malaviya et al., 2020), we use transfer learning
to enhance representation learning from language
models. Transfer learning from language model to
knowledge graph has been shown effective for com-
monsense knowledge graph completion (Bosselut
et al., 2019). Same as (Malaviya et al., 2020), we
fine-tune a BERT-large (Devlin et al., 2018) model
on phrases of all nodes in the knowledge graph us-
ing masked language modeling. The rich semantics
from the language model enhances the node repre-
sentations. We initialize the node embeddings in
ConceptNet-100k, and both node embeddings and
relation embeddings in WebChild (since there are
more than 6k relations) using fine-tuned models.

4.3 Training by Negative Sampling

The model is trained using negative sampling
where each negative example consists of a neg-
ative triple and its chain. For each head entity eh
and a relation rel, we sample k tails e′t from the
set of all entities to construct k triples (eh, rel, e′t)
that do not belong to the knowledge graph. How-
ever, computation of chains for randomly selected
negative triples takes a long time. Thus, instead of
randomly sampling tail entities, we sample nega-
tive tails from those entities that have a chain from
the head entity.

Figure 3 is an example. This small graph G has
nodes {A,B,C,D,E, F,G,H} and relations r, r′.
Suppose (A, r,B) is the gold triple. Our goal is
to create negative triples (A, r, e′t) that do not exist

Figure 3: Example graph to illustrate negative sampling

in the graph. We first create a negative tail entity
set E′

t which is initialized as ∅. Then, randomly
sample k entities e′t that is connected to the head
entity by a chain of length one and that (A, r, e′t)
does not belong to the graph. In this example,
nodes {C,D,E} are added to the set E′

t. Then for
each sampled entity, we randomly sample another
k entities e′t that is connected to it by a chain of
length one and that (A, r, e′t) does not belong to
the graph. Again, nodes {F,G,H} are added to
the set E′

t. We sample iteratively four times which
gives us negative tail entities within four hops of
the head entity and they are added into the set E′

t.
We then randomly sample another k entities from
the rest of the entities without a chain and add them
to set E′

t. Finally, we randomly sample k entities
from the set E′

t and k negative triples (A, r, e′t) are
created for the positive triple (A, r,B). We refer
to the new sampling method as chain sampling.

4.4 Model Optimization
The loss consists of three parts. The first is a con-
trastive loss: for each triple q in the training dataset,
we sample k negative tails to create k negative
triples q′. The model computes the logical expres-
sion embedding Q for q and Q′ for all q′s based
on their chains. The contrastive loss maximizes the
difference between the score s of Q and Q′:

Lc =
∑

q∈G

∑

q′∈neg(q)
log σ(α · (sQ − sQ′)) (3)

where α is the amplifying parameter, σ(·) is the
sigmoid function, s is the cosine similarity score
between Q (or Q′) and T, and neg(q) is the set of
negative triples for the positive triple q.
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The second part minimizes the distance between
Q and T as well as the distance between Q′ and F,
which encodes the ground-truth supervision signal
into the learned proposition embeddings:

Ld =
∑

q∈G

∑

q′∈neg(q)
∥Q−T∥22 + ∥Q′ − F∥22 (4)

The third part consists of two regularizers: logi-
cal regularizer Ll and value regularizer Lv:

Ll = r1 + r2 + r3 + r4 + r5 + r6

Lv =
∑

v∈V
Iv=T ∥v −T∥22 + Iv=F ∥v − F∥22 (5)

where V is the set of all intermediate expressions
during the model calculation (see Section 4.1) and
I is an indicator function whose value is 1 if the
condition holds and 0 otherwise.

The final loss function is:

L = Lc + Ld + λl · Ll + λv · Lv (6)

where λl is the weight for logical regularization
and λv is the weight for value regularization.

4.5 Inference

Each model is evaluated in two inference settings:
(1) retrieval out of 1,000 randomly sampled candi-
dates and (2) retrieval of 1,000 candidates based
on chain sampling. We explore the two inference
settings because we noticed that the distribution of
negative triples in random sampling (which is used
in previous works) and in chain sampling are differ-
ent: randomly sampled negative triples are in gen-
eral much easier to be distinguished than negative
triples based on chain sampling, since the chain-
sampled negatives are closer to the correspond-
ing positive triple. As a result, chain-sampling
presents a more challenging task that is worth study.
For random-sampling setting, we first compute the
chains for each triple q by Breadth First Search; if
no chain is found, T is used as the null chain. In
chain-sampling setting, each triple already has its
chain which is used to inference the final expres-
sion score. We rank the triples based on the scores
and select the top-ranked triples for evaluation.

5 Experiments

5.1 Datasets

We experiment with two prominent commonsense
knowledge graphs: ConceptNet-100k (Speer et al.,

2017) and WebChild (Tandon et al., 2014, 2017).
ConceptNet-100K contains general commonsense
facts of 78,093 entities and 34 relations. The entity
has 2.85 words on average. We use the original
splits of the dataset and combine the two provided
validation sets to create a larger validation set. The
validation and test sets has 1,200 triples each.
WebChild is a large collection of commonsense
knowledge from the Web. We take the Webchild-
comparative dataset which contains 800k compar-
isons among 576k entities. We randomly select
1,200 triples for validation and another 1,200 for
testing and use the remaining for training.

5.2 Baselines and Evaluation Metrics

We take fine-tuned BERT-large (Devlin et al., 2018)
to initialize the node embeddings (see Section 4.2).
Since our method is a general framework that can
be applied on existing CSKG completion methods,
we apply our Neural Logic (NL) layer (System 2)
on top of the following methods (System 1) to see
if adding the System 2 reasoning layer can help to
improve the System 1 performance:

Neural Tensor Network (NTN) (Socher et al.,
2013), which uses a bilinear tensor layer to learn
how head, relation and tail embeddings interact
across multiple dimensions. DistMult (Yang et al.,
2014), which is an embedding-based bilinear di-
agonal model to learn entity and relation embed-
dings. SimplE (Kazemi and Poole, 2018), which
decomposes an entity’s embedding by two vectors,
each capturing the entity’s behaviour as the head
or as the tail of a relation. A relation’s embed-
ding is decomposed by two vectors: itself and its
reverse. ConvE (Dettmers et al., 2018), which
uses 2D convolution over entity and relation em-
beddings and multiple layers of nonlinear features
to model knowledge graphs. ConvTransE (Shang
et al., 2019), which is a model built upon the ConvE
model but additionally models the translational
properties of TransE (Bordes et al., 2013). HypER
(Balažević et al., 2019), which uses a hypernet-
work (one network generates weights for another
network) to generate convolutional filter weights
based on each relation to process the input entities.

Since the neural logic layer works on the triple
embeddings while the outputs of the above base-
lines are usually scores, we minimally modify the
baseline models such that its output is an embed-
ding for each triple. The triple embedding is either
directly used to calculate its score by computing
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Dataset ConceptNet-100k WebChild-comparative
Metric MRR↑ Hits@1↑ @3↑ @10↑ @100↑ MR↓ MRR↑ Hits@1↑ @3↑ @10↑ @100↑ MR↓
Unit % % % % % 1 % % % % % 1
Bert+DistMult 38.90 29.92 44.52 55.50 71.00 146.48 21.98 15.25 24.08 34.50 59.25 178.10
Bert+DistMult* 53.90 42.50 61.83 73.67 91.33 39.56 47.68 37.50 53.08 67.33 88.08 46.61
Bert+DistMult*+NL 66.22 59.08 71.58 77.05 87.31 71.72 61.00* 50.75* 69.28* 81.52* 94.04* 24.20*
Bert+ConvE 59.00 45.25 65.83 85.50 98.58 10.51 9.54 8.42 9.50 10.00 22.25 417.03
Bert+ConvE* 58.15 48.33 54.38 70.78 87.99 58.59 11.79 10.58 11.83 12.97 23.08 427.45
Bert+ConvE*+NL 76.23 54.73 84.63 91.73 97.19 8.01 20.45 25.07 38.40 49.43 61.54 216.22
Bert+ConvTransE 71.57 62.25 79.17 86.25 94.08 12.73 21.39 12.58 24.67 38.58 69.67 118.21
Bert+ConvtransE* 71.72 63.42 77.42 79.57 91.58 26.19 21.92 13.42 24.33 37.92 69.00 120.00
Bert+ConvTransE*+NL 83.00* 75.88* 89.47* 94.42* 99.12* 4.98* 24.21 25.28 36.45 51.82 77.36 82.42
Bert+HypER 65.26 51.75 75.25 90.33 97.83 8.77 32.32 22.92 35.08 51.25 81.92 72.48
Bert+HypER* 55.21 41.58 63.17 82.75 97.08 13.30 36.45 26.00 41.67 55.17 84.58 61.24
Bert+HypER*+NL 65.78 56.73 72.00 81.84 92.92 33.38 50.56 37.56 60.78 74.04 92.29 31.64
Bert+SimplE 25.15 12.16 28.83 53.58 91.00 35.10 10.66 6.08 11.50 19.17 46.17 254.80
Bert+SimplE* 24.64 12.00 28.58 51.08 90.42 38.22 13.77 7.50 14.50 25.58 58.42 166.88
Bert+SimplE*+NL 38.34 27.12 40.93 61.88 94.54 22.70 31.65 23.75 33.25 48.79 75.21 97.56
Bert+NTN 18.49 7.08 20.50 42.33 89.08 40.09 13.74 11.16 14.50 17.50 30.00 415.58
Bert+NTN* 26.98 12.25 30.42 59.25 94.58 26.81 4.02 1.50 4.08 9.50 30.17 436.56
Bert+NTN*+NL 28.99 14.25 38.19 65.65 92.33 28.45 22.51 15.04 26.33 36.18 45.52 228.24

Table 4: Evaluation using random sampling on ConceptNet-100k and WebChild-comparative

its similarity with the constant T vector (denoted
as baseline*) or routed through the Neural Logic
layer (System 2) to get the final expression em-
bedding and score (denoted as baseline*+NL). We
experiment the baseline models with open-source
implementations.2

We evaluate the performance of retrieving the
correct tail given a head and a relation. The evalua-
tion metrics include Mean Reciprocal Rank (MRR),
Mean Rank (MR) and Hits@k among 999 negative
tails plus the gold tail for k in {1, 3, 10, 100}. The
implementation details are provided in Appendix.

5.3 Main Results
Table 4 and Table 5 show the results on random
sampling setting and chain sampling setting, re-
spectively. The best number in each base model
is bolded, and the overall best value in each col-
umn is starred. By comparing Bert+baseline with
Bert+baseline*+NL in Table 4 and 5, we can see
that adding System 2 reasoning layer on top of
System 1 representation learning layer almost al-
ways improves the performance on both datasets,
especially on WebChild-comparative which has no
exception at all. Besides, in most cases, the global
best performance on each metric is achieved by the
System 2 enhanced model which has the neural
logic reasoning layer.

By comparing results in Table 4 and Table 5, we
can see that the performance of all models dramati-
cally decreases under chain sampling based evalua-
tion. This indicates that the negative triples with tail
entity close to the head entity are more difficult to

2https://github.com/TimDettmers/ConvE,
https://github.com/ibalazevic/HypER

distinguish than random negative triples. Retrieval
on chain sampling poses a much more challenging
problem than retrieval on random sampling. How-
ever, Bert+baseline*+NL still achieves improve-
ments in both datasets under most scenarios except
for ConvtransE and HypER on ConceptNet-100k.

5.4 Ablation Study

The model performs neural logical reasoning by
learning the logical operators NOT and OR using
neural modules. The model uses logical regular-
izer to help the learning of logical operators, and
uses value regularizer to facilitate the learning of
whether an expression is true or false. To study the
effectiveness of the two regularizers, we present the
Bert+ConvTransE*+NL model as an example for
the ablation study and other models have similar
results. We compare the following four versions
of the model: model without either regularizer (no
reg.), model with only logical regularizer (logi-
cal reg.), model with only value regularizer (value
reg.), and model with both regularizers (both reg.).

Table 6 reports the results. The model without
any regularizer already performs better than the
baseline model, showing that simply providing ex-
tra triple information is helpful. The performance
is better with either the logical regularizer or the
value regularizer, with the model value reg. per-
forming slightly better than the model logical reg.,
showing that explicitly infusing the logical reason-
ing ability during the model computation for every
step helps the prediction, either by directly enforc-
ing the true/false value of each intermediate ex-
pression or enforcing the negation and disjunction
operator to function logically. The two regularizers
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Dataset ConceptNet-100k WebChild-comparative
Metric MRR↑ Hits@1↑ @3↑ @10↑ @100↑ MR↓ MRR↑ Hits@1↑ @3↑ @10↑ @100↑ MR↓
Unit % % % % % 1 % % % % % 1
Bert+DistMult 15.42 7.23 16.93 32.36 75.06 95.83 0.96 0.00 0.42 1.75 14.08 437.66
Bert+DistMult* 21.58 9.41 25.08 47.83 82.50 93.77 8.61 4.25 8.25 16.42 51.00 197.72
Bert+DistMult*+NL 31.88 20.01* 38.39 60.08 92.15 42.18 31.13 17.61 42.96* 52.82* 78.87* 69.85*
Bert+ConvE 27.03 12.58 32.58 54.92 93.83 29.78 2.54 0.75 2.50 5.17 17.58 451.19
Bert+ConvE* 29.28 12.25 33.00 54.67 96.83* 29.55 2.12 0.58 1.92 4.30 16.08 475.91
Bert+ConvE*+NL 26.11 14.12 32.20 55.51 96.15 23.08 34.47* 27.63* 39.47 47.37 68.42 107.34
Bert+ConvtransE 27.65 15.43 35.36 58.55 93.49 25.07 8.77 4.25 8.33 17.33 46.58 245.41
Bert+ConvtransE* 26.36 11.33 31.92 58.42 95.08 24.82 6.85 3.17 6.42 13.58 41.75 276.07
Bert+ConvtransE*+NL 26.96 16.85 32.83 51.62 91.14 29.02 24.90 17.52 27.43 39.24 57.90 145.95
Bert+HypER 33.63* 17.58 40.58* 67.25* 96.00 20.16* 6.90 2.58 6.75 15.33 45.08 220.93
Bert+HypER* 30.54 14.16 38.08 63.50 96.13 21.36 6.26 2.17 6.00 13.08 42.25 221.28
Bert+HypER*+NL 30.07 18.00 40.30 53.82 91.94 28.36 17.18 9.79 20.98 29.37 59.44 151.28
Bert+SimplE 8.53 3.58 9.17 17.33 48.67 180.68 8.93 4.83 9.42 15.33 42.42 272.08
Bert+SimplE* 6.03 2.08 5.58 12.92 44.41 230.13 11.16 5.92 11.33 20.58 51.83 217.49
Bert+SimplE*+NL 15.18 7.58 15.67 30.58 75.08 87.69 26.62 11.44 22.72 33.28 59.25 172.10
Bert+NTN 0.00 0.00 0.00 0.00 0.00 501.10 3.25 1.42 2.92 7.17 16.42 562.61
Bert+NTN* 2.31 0.50 1.42 4.33 30.08 285.50 0.81 0.08 0.42 1.58 9.42 609.86
Bert+NTN*+NL 10.98 5.75 11.42 21.83 51.33 171.94 27.20 10.11 15.37 20.93 35.04 385.14

Table 5: Evaluation using chain sampling on ConceptNet-100k and WebChild-comparative

together improves the model even more, showing
that regularizing the logical operators and regulariz-
ing the true/false value of intermediate expressions
are both important and helpful.

Model MRR↑ Hits@1↑ @3↑ @10↑ @100↑ MR↓
baseline 71.57 62.25 79.17 86.25 94.08 12.73
no reg. 74.40 66.21 86.27 92.57 97.26 7.76
logical reg. 79.21 70.98 86.64 92.23 98.14 7.14
value reg. 80.24 70.61 88.85 93.82 98.14 7.40
both reg. 83.00 75.88 89.47 94.42 99.12 4.98

Table 6: Ablation study result on ConceptNet-100k

5.5 Parameter Sensitivity for Regularization
The default values for the regularizer weights λl

and λv in Eq.(6) are both 0.5. In this section, we try
multiple values λl, λv ∈ {0.01, 0.05, 0.1, 0.5, 1, 5}
for each of the two regularizer weights respectively
while holding the other weight as the default value.
The MRR of each experiment is shown in Figure
4. We can see that (1) too small λ and too large λ
both show negative effect while the latter decreases
performance much more, and (2) too large λ of the
logical regularizer shows worse performance than
that of the value regularizer.

5.6 Qualitative Analysis
We analyze some error cases and find three error
types: (1) Wrong reasoning conducted on the chain
of propositions; (2) Correct reasoning conducted
on the chain but the chain contains a mistaken triple
which leads to a wrong answer. For example, (fish,
AtLocation, at beach) is invalid, but the provided
chain (fish, HasPrerequisite, water), (water, At-
Location, at beach) validates it. This mistake is
made due to the wrong triple (water, AtLocation,

Figure 4: Parameter Sensitivity on ConceptNet-100k

at beach); (3) Correct reasoning conducted on the
chain containing an imprecise triple which leads
to a wrong or unnatural triple. For example, it is
questionable whether (door, AtLocation, street) is
correct, but given the chain (door, PartOf, car), (car,
AtLocation, street), it is a correct conclusion. A
more natural triple would be considered correct
if we replace “door” by “car door” here. This
shows that some ground-truth triples are not precise
enough to conduct valid logical reasoning. Some
examples of the three error types and false negative
cases on ConceptNet-100k are presented in Table 7
and Table 8 of the Appendix, respectively.

6 Conclusions and Future Work

As a simple instantiation of the Dual Process The-
ory, this paper demonstrates the advantage of incor-
porating a System 2 reasoning model on top of a
System 1 representation learning model on CSKG
link prediction tasks. The positive results verify the
potential of our method. As a flexible reasoning
model that is differentiable and that can be easily
infused with any representation learning model, we
intend to incorporate our method with larger pre-
trained language models and extend to more NLP
tasks in the future.
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Error Type 1

(go to bed, HasPrerequisite, take book off shelf) (go to bed, HasLastSubevent, read book),
(read book, HasPrerequisite, take book off shelf)

(book, UsedFor, print) (book, HasA, paper page), (paper page, UsedFor, print)
(glass, UsedFor, hang clothe) (glass, AtLocation, closet), (closet, UsedFor, hang clothe)
Error Type 2
(fish, AtLocation, at beach) (fish, HasPrerequisite, water), (water, AtLocation, at beach)

(think, Causes, feel sad) (think, UsedFor, discover truth), (discover truth, HasSubevent, feel hurt),
(feel hurt, SIM, feel sad)

(chat with friend, HasSubevent, argue) (chat with friend, SIM, talk to friend), (talk to friend, SIM, talk to someone),
(talk to someone, HasSubevent, argue)

(relax, HasSubevent, stop breathe) (relax, HasPrerequisite, listen to music), (listen to music, HasSubevent, die),
(die, Causes, stop breathe)

Error Type 3

(read newspaper, HasPrerequisite, buy food) (read newspaper, HasSubevent, eat breakfast),
(eat breakfast, HasPrerequisite, buy food)

(door, AtLocation, street) (door, PartOf, car), (car, AtLocation, street)
(seat, AtLocation, repair shop) [seat, PartOf, bicycle), (bicycle, AtLocation, repair shop)

Table 7: Examples of three error types

False Negatives
(do housework, Causes, muscle growth) (UsedFor, do housework, exercise), (Causes, exercise, muscle growth]
(boat, UsedFor, mobility] (boat, IsA, vehicle), (vehicle, UsedFor, mobility)
(clock, CapableOf, indicate passage of time) (clock, UsedFor, indicate passage of time)
(leaf, AtLocation, garden) (leaf, PartOf, plant), (plant, AtLocation, garden)

(chat with friend, HasSubevent, breath) (chat with friend, SIM, talk to friend), (talk to friend, SIM, talk to someone),
(talk to someone, HasSubevent, breath)

Table 8: Examples of false negatives

7 Limitations

The current model requires a pre-computed chain
between a head entity and a tail entity which has
no guarantee that it helps validate the target triple.
Although empirical experiments demonstrated that
most of the chains are helpful to determine the va-
lidity of the target triple, noise could be introduced.
It is also difficult to improve the accuracy of the
chains through which we may further improve the
performance of the neural logic reasoning model.
In future work, we aim to build trainable models
that are able to learn to find or generate chains to
help validate the target triple, aiming at both com-
prehensiveness and accuracy.

In the current version of the model, each training
datapoint has k negatives with different length of
chains, and thus it is difficult to batch the training
data. For example, expressions p1 ∧ p2 → q1 and
p3∧p4∧p5 → q2 cannot be put into the same batch
since the different length leads to different neural
logic network structures. One method we will try
in the future to solve the problem is to append the
constant true embedding T to the proposition chain
so as to align the length. For example, expression
p1∧p2 → q1 can be rewritten as T∧p1∧p2 → q1
and thus it can be batched with p3 ∧ p4 ∧ p5 → q2
since they are same-length expressions which share
the same System 2 network structure.

Appendix

1.1 Implementation Details
The embedding size for expression embedding is
1024 unless otherwise specified. The embedding
size is 100 for NTN on WebChild-Comparative
since this embedding size gives NTN its best per-
formance. The number of layers of the logical mod-
ules is 5. The weights for the logical regularizer and
value regularizer are both 0.5, i.e., λl = λv = 0.5.
For the number of negative samples k, we use
k = 10 to train the model on ConceptNet-100k and
k = 100 to train model on WebChild-comparative
because WebChild-comparative is a much larger
dataset. The α amplifying parameter is set to be 10.
The optimization function is AdamW with learning
rate 1e-5. The scheduler is linear warm-up with 500
steps. The batch size is 1 with 5 accumulate gradi-
ent descent steps. Each baseline model is trained
for at most 200 epochs and each neural logic model
is trained for 10 epochs where the System 1 module
is initialized by a trained checkpoint.

1.2 Case Study
Some examples of the three error types and false
negative cases on ConceptNet-100k are presented
in Table 7 and Table 8, respectively.
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