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Abstract

In this work, we combine the two paradigms:
Federated Learning (FL) and Continual Learn-
ing (CL) for text classification task in cloud-
edge continuum. The objective of Federated
Continual Learning (FCL) is to improve deep
learning models over life time at each client
by (relevant and efficient) knowledge transfer
without sharing data. Here, we address chal-
lenges in minimizing inter-client interference
while knowledge sharing due to heterogeneous
tasks across clients in FCL setup. In doing so,
we propose a novel framework, Federated Se-
lective Inter-client Transfer (FedSeIT) which
selectively combines model parameters of for-
eign clients. To further maximize knowledge
transfer, we assess domain overlap and select
informative tasks from the sequence of histor-
ical tasks at each foreign client while preserv-
ing privacy. Evaluating against the baselines,
we show improved performance, a gain of (av-
erage) 12.4% in text classification over a se-
quence of tasks using five datasets from di-
verse domains. To the best of our knowledge,
this is the first work that applies FCL to NLP.

1 Introduction

Federated Learning (Yurochkin et al., 2019; Li
et al., 2020; Zhang et al., 2020; Karimireddy et al.,
2020; Caldas et al., 2018) in Edge Computing1

(Wang et al., 2019) has gain attraction in recent
years due to (a) data privacy and sovereignty- espe-
cially imposed by government regulations (GDPR,
CCPA etc.), and (b) the need for sharing knowl-
edge across edge (client) devices such as mobile
phones, automobiles, wearable gadgets, etc. while
maintaining data localization. Federated Learning
(FL) is a privacy-preserving machine learning (ML)
technique that enables collaborative training of ML
models by sharing model parameters across dis-
tributed clients through a central server - without

1extends cloud computing services closer to data sources

sharing their data. In doing so, a central server ag-
gregates model parameters from each participating
client and then distribute the aggregated parame-
ters, where ML models at each client are optimized
using them - achieving inter-client transfer learn-
ing. In this direction, the recent works such as
FedAvg (McMahan et al., 2017), FedProx (Li et al.,
2020), FedCurv (Shoham et al., 2019) have intro-
duced parameter aggregation techniques and shown
improved learning at local clients - augmented by
the parameters of foreign clients.

On the other hand, the edge devices generate a
continuous stream of data where the data distribu-
tion can drift over time; therefore, the need for Con-
tinual Learning like humans do. Continual Learn-
ing (CL) (Thrun, 1995; Kumar and Daume III,
2012; Kirkpatrick et al., 2017; Schwarz et al., 2018;
Gupta et al., 2020) empowers deep learning mod-
els to continually accumulate knowledge from a
sequence of tasks - reusing historical knowledge
while minimizing catastrophic forgetting (drift in
learning of the historical tasks) over life time.

Federated Continual Learning (FCL): This
work investigates the combination of the two
paradigms of ML: Federated Learning and Con-
tinual Learning with an objective to model a se-
quence of tasks over time at each client via inter-
client transfer learning while preserving privacy
and addressing heterogeneity of tasks across clients.
There are two key challenges of FCL: (1) catas-
trophic forgetting, and (2) inter-client interference
due to heterogeneity of tasks (domains) at clients.
At central server, FedAvg (McMahan et al., 2017)
aggregates-averages model parameters from each
client without considering inter-client interference.
To address this, FedWeIT (Yoon et al., 2021) ap-
proach performs FCL by sharing task-generic (via
dense base parameters) and task-specific (via task-
adaptive parameters) knowledge across clients. In
doing so, at the server, they aggregate the dense
base parameters however, no aggregation of the
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task-adaptive parameters, and then broadcast both
the types of parameters. See further details in Fig-
ure 2 and section 2.2. FedWeIT, the first approach
in FCL, investigates computer vision tasks (e.g.,
image classification), however the technique has
limitations in aligning domains of foreign clients
while augmented learning at each local client us-
ing task-adaptive parameters - that are often mis-
aligned with local model parameters in parameter
space (McMahan et al., 2017) due to heterogene-
ity in tasks. Therefore, a simple weighted additive
composition technique does not address inter-client
interference and determine domain relevance in for-
eign clients while performing transfer learning.

Contributions: To the best of our knowledge,
this is the first work that applies FCL to NLP task
(text classification). At each local client, to max-
imize the inter-client transfer learning and mini-
mize inter-client interference, we propose a novel
approach, Federated Selective Inter-client Trans-
fer (FedSeIT) that aligns domains of the foreign
task-adaptive parameters via projection in the aug-
mented transfer learning. To exploit the effective-
ness of domain-relevance in handling a number of
foreign clients, we further extend FedSeIT by a
novel task selection strategy, Selective Inter-client
Transfer (SIT) that efficiently selects the relevant
task-adaptive parameters from the historical tasks
of (many) foreign clients - assessing domain over-
lap at the global server using encoded data repre-
sentations while preserving privacy. We evaluate
our proposed approaches: FedSeIT and SIT for
Text Classification task in FCL setup using five
NLP datasets from diverse domains and show that
they outperforms existing methods. Our main con-
tributions are as follows:

(1) We have introduced Federated Continual
Learning paradigm to NLP task of text classifica-
tion that collaboratively learns deep learning mod-
els at distributed clients through a global server
while maintaining data localisation and contin-
ually learn over a sequence of tasks over life
time - minimizing catastrophic forgetting, mini-
mizing inter-client interference and maximizing
inter-client knowledge transfer.

(2) We have presented novel techniques: Fed-
SeIT and SIT that align domains and select rele-
vant task-adaptive parameters of the foreign clients
while augmented transfer learning at each client via
a global server. Evaluating against the baselines,
we have demonstrated improved performance, a

Notation Description

c, s current client, global server
t, r current task, current round

C, T , R total number of clients, tasks, rounds
T t
c training dataset for task t of client c
θt
c model parameter set for task t of client c

θG global aggregated server parameter
xti, y

t
i input document, label pair in T t

c

z, ŷ CNN output dense vector; predicted label
Bt

c,A
t
c local base and task-adaptive parameters

αt
c,m

t
c scalar attention parameters, mask parameters

⊕ concatenation operation
Wt

c,W
t
f projection matrices: alignment and augmentation

K number of parameters selected for transfer in SIT
D,D word embedding dimension, dataset
Ld, L

t
c unique labels in dataset d, each task dataset T t

c

F filter size of convolution layer
NF number of filters in convolution layer
λ1, λ2 hyperparameters: sparsity, catastrophic forgetting

Table 1: Description of the notations used in this work
where matrices and vectors are denoted by uppercase
and lowercase bold characters respectively.

gain of (average) 12.4% in text classification over
a sequence of tasks using 5 datasets. Implementa-
tion of FedSeIT is available at https://github.com/
RaiPranav/FCL-FedSeIT (See appendix C and D).

2 Methodology

2.1 Federated Continual Learning

Consider a global server s andC distributed clients,
such that each client cc ∈ {c1, ..., cC} learns a
local ML model on its privately accessible se-
quence of tasks {1, ..., t, ..., T} with datasets Tc ≡
{T 1

c , ..., T t
c , ..., T T

c }, where T t
c = {xti, yti}N

t

i=1 is a
labeled dataset for tth task consisting of N t pairs
of documents xti and their corresponding labels
yti . Please note that there is no relation among the
datasets {T t

c }Cc=1 for task t across all clients. Now,
in each training round r ∈ {1, ..., R} for task t, the
training within FCL setup can be broken down into
three steps:

Continual learning at client: Each client cc ef-
fectively optimizes its model parameters θt(r)

c (for
task t) using task dataset T t

c in a continual learning
setting such that: (a) it minimizes catastrophic for-
getting of past tasks, and (b) it boosts learning on
the current task using the knowledge accumulated
from the past tasks.

Parameter aggregation at server: After train-
ing on task t, each client cc transmits updated
model parameters θt(r)

c to the server s and server
aggregates them into the global parameter θG to
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Figure 1: (a) Illustration of the proposed FedSeIT framework where, task-adaptive parameters of foreign clients
are segregated and domain-aligned for selective utilization. HowToRead: Note the coloring scheme in convolution
filters of local and foreign clients and their application in convolution. (b) Weighted additive filter composition
performed in the baseline model: FedWeIT. Note the composite θt

c vs segregated convolution filters of FedSeIT.

accumulate the knowledge across all clients.
Inter-client knowledge transfer: Server trans-

mits global aggregated parameter θG to all partici-
pating clients for inter-client knowledge transfer in
the next training round r + 1.

Challenges: However, there are two main
sources of inter-client interference within FCL
setup: (1) using a single global parameter θG dur-
ing parameter aggregation at server to capture the
cross-client knowledge (Yoon et al., 2021) due
to model parameters trained on irrelevant foreign
client tasks, and (2) non-alignment of the foreign
client model parameters given the heterogeneous
task domains across clients. This leads to the hin-
drance of the local model training at each client
by updating its parameters in erroneous directions,
thus resulting in: (a) catastrophic forgetting of the
client’s historical tasks, and (b) sub-optimal learn-
ing of client’s current task. For brevity, we will
omit notation of round r from further equations
and mathematical formulation except algorithms.

2.2 Federated Selective Inter-client Transfer

To tackle the above-mentioned challenges, we pro-
pose Federated Selective Inter-client Transfer (Fed-
SeIT) framework which aims to minimize inter-
client interference and communication cost while
maximizing inter-client knowledge transfer in FCL
paradigm. Motivated by Yoon et al. (2021), Fed-
SeIT model decomposes each client’s model pa-
rameters θt

c into a set of three different parameters:
(1) dense local base parameters Bt

c which cap-
tures and accumulates the task-generic knowledge

across client’s private task sequence Tc, (2) sparse
task-adaptive parameters At

c which captures the
task-specific knowledge for each task in Tc, and
(3) sparse mask parameters mt

c which allow client
model to selectively utilize the global knowledge.
For each client cc, Bt

c is randomly initialized only
once before training on the first task and shared
throughout the task sequence Tc, while a new At

c

and mt
c parameters are initialized for each task t.

At the global server, we have global parameter θG

which accumulates task-generic knowledge across
all clients i.e., global knowledge, by aggregating
local base parameters sent from all clients. Finally,
for each client cc and task t, the model parameters
θt
c can be described as:

Bt
c ← θG

θt
c = Bt

c �mt
c + At

c

(1)

where, each client initializes Bt
c using θG received

from the server containing global knowledge, be-
fore training on task t, to enable inter-client knowl-
edge transfer. Therefore, the first term signifies
selective utilization of global knowledge using the
mask parameter mt

c, which restricts the impact of
inter-client interference during server aggregation.
Due to additive decomposition of parameters, the
second term At

c captures task specific knowledge.
Another key benefit of parameter decomposition

is that by accessing task-adaptive parameters At
c

of the past tasks from foreign clients, a client can
selectively utilize task-specific knowledge of the
relevant tasks, thus further minimizing inter-client
interference and maximizing knowledge transfer.
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Figure 2: Inter-client Transfer Learning in FCL:
(top) broadcasting client-to-server model parameters of
client cc after training the task t − 1; (middle) parame-
ter aggregation at the server; and (bottom) reception of
the parameters at the client cc before training the task t

Therefore, before training on task t in FedSeIT,
global server enables distribution of task-adaptive
parameters of the past tasks from all clients i.e,
{At−1

c }Cc=1, to each client. However, as already
discussed earlier, given the heterogeneous task do-
mains across clients, the parameters learned during
training at foreign clients are often non-aligned
in the parameter space. So, FedSeIT addresses
this issue by treating each foreign task-adaptive
parameter separately and align their local model
output vectors via projection to augment the rel-
evant knowledge during learning on the current
task. Also, for each foreign task-adaptive parame-
ter, we introduce an attention parameter α to fur-
ther control the impact of inter-client interference.
Figure 2 illustrates the parameter transmissions be-
tween each client and the server before training on
task t.

Client activity: Before training on task t,
each client cc receives the global parameter θG

and C foreign clients’ task-adaptive parameters
{At−1

c }Cc=1 from the server. Then, each client par-
tially updates its base parameter Bt

c with the non-
zero entries of θG i.e., Bt

c(n) = θG(n) where n
is the nonzero element of θG. After optimizing
local model parameters for task t in the contin-
ual learning setup, the sparsified base parameter
B̂t

c = Bt
c �mt

c and the task-adaptive parameter
At

c are transmitted to the global server s.
Server activity: After training on task t,

the global server receives local base parameters
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Figure 3: A detailed illustration of CNN client model
used in FedSeIT framework.

{B̂t
c}Cc=1 and task-adaptive parameters {At

c}Cc=1

from all clients. To capture global knowledge, the
server aggregates base parameters {B̂t

c}Cc=1 into
the global parameter θG. Then, before training
on the next task t + 1, server transmits the task-
adaptive parameters {At

c}Cc=1 along with the global
parameter θG to each client for inter-client knowl-
edge transfer via selective utilization.

Method: In this work, we use Convolutional
Neural Network (CNN) (Kim, 2014), illustrated in
Figure 3, as the continual learning client model in
federated continual learning setting. So, the client
model parameters Bt

c,A
t
c,θ

t
c ∈ RF×D×NF are a

set of convolutional filters where, F is the filter
size, D is the word embedding dimension and NF
is the count of filters. See appendix B for detailed
model description.

Consider training for task t at client cc using
dataset T t

c ≡ {xti, yti}N
t

i=1, the FedSeIT frame-
work segregates client’s local model parameters
θt
c from the foreign client’s task-adaptive parame-

ters {At−1
c }Cc=1. As illustrated in Figure 1(a), for

an input document x ∈ T t
c an embedding matrix

X ∈ R|x|×D is generated via embedding lookup
and then using X the CNN model computes: (1)
one client dense vector ztc ∈ RNF using local client
parameters θt

c, and (2) C foreign dense vectors
ẑti ∈ RNF using foreign clients’ task-adaptive pa-
rameters {At−1

c }Cc=1 as:

ztc = CNN(x,θt
c)

ẑti = CNN(x, αt−1
i At−1

i )
(2)

where, i ∈ {1, ..., C}, |x| is the count of tokens
in x, α is the attention parameter and CNN is the
convolution & max-pooling function. Then we
align the foreign parameters in parameter space
by concatenating and projecting all foreign dense
vectors {ẑti} to get a single foreign vector ztf ∈
RNF . Finally, we selectively augment the relevant
knowledge from foreign clients by concatenating
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and projecting ztc, z
t
f for prediction of label ŷ as:

ztf = Wt
f{ẑt1 ⊕ ...⊕ ẑtC}

z = Wt
c{ztc ⊕ ztf}

ŷ = Softmax(z)

(3)

where Wt
f ∈ RCNF×NF , Wt

c ∈ R2NF×NF are

the projection matrices, z ∈ RNF is the augmented
vector, Softmax is a softmax layer, ŷ ∈ RLt

c is the
model prediction and Lt

c is the unique label set
in T t

c . By segregation of foreign parameters via
concatenation and projection of the CNN outputs,
FedSeIT enables local client model to align foreign
parameters in feature space and augment knowl-
edge from the relevant foreign tasks. In doing so,
FedSeIT effectively circumvents the inter-client
interference due to heterogeneous task domains
while maximizing inter-client transfers.

Comparison with FedWeIT: As illustrated in
Figure 1(b), in contrast to our approach, in the
baseline FedWeIT framework each client performs
inter-client knowledge transfer via weighted com-
position of foreign task-adaptive parameters i.e.,
convolution filters, along with local parameters as:

θt
c = Bt

c �mt
c + At

c +
∑

i∈C
αt−1
i At−1

i (4)

However, due to heterogeneity of task domains
across clients, the simple additive aggregation of
foreign client parameters with local parameters
leads to inter-client interference and sub-optimal
learning of the local task. Unlike FedWeIT (where
the attention α parameters decide the relevance of
foreign client parameters), the segregation of for-
eign client parameters in our proposed FedSeIT
method enables the local model to selective aug-
ment relevant knowledge from foreign clients’ task-
adaptive parameters via projection.

Training: For task t at each client cc, the FCL
optimization objective for local client model can
be decomposed into three components as:

minimize
At

c,B
t
c,m

t
c

Nt∑

i=1

L(ŷti , y
t
i)

+ λ1Lsp([mt
c,A

1:t
c ])

+ λ2

t−1∑

i=1

||∆Bt
c �mi

c −∆Ai
c||22

(5)

where, ŷti and yti are the predicted and true label
respectively for input xti and Nt is the number of

Algorithm 1 Proposed FedSeIT Framework
Input: Task datasets {T 1:t

c }Cc=1, Global parameter θG

Output: {Bt
c,m

1:t
c , α1:t

c ,A1:t
c ,W1:t

c ,W1:t
f }Cc=1

1: Server initializes θG

2: Each client c ∈ C ≡ {1, ..., C} connects with server
3: for task t = 1, ..., T do
4: for round r = 1, ..., R do
5: Server transmits global parameter θG to all c ∈ C
6: Each client c ∈ C initializes Bt

c using θG

7: if r = 1 then
8: Each client c ∈ C initializes At

c, mt
c

9: if r = 1 and t 6= 1 then
10: Server transmits {A(t−1,R)

c }Cc=1 to all c ∈ C
11: Prepare model parameters: θt

c ← Bt
c�mt

c+At
c

12: Each client c ∈ C minimizes equation 5 using
equations 1,2,3 to learn task t in continual learning setup

13: Each client c ∈ C transmits B̂(t,r)
c to server

14: θG ← Agg({B̂(t,r)
c }c∈C) = 1

|C|
∑C

c=1 B̂
(t,r)
c

15: Server distributes θG to all clients c ∈ C
16: if r = R and SIT is enabled then
17: Each client computes T̂ t

c using equation 6
18: Each client transmits {T̂ t

c ,A
(t,R)
c } to server

19: Server computes task-task similarity using T̂ t
c

20: Server selects top-K parameters ∀c ∈ C
21: Server distributes {A(k,R)}Kk=1 to all c ∈ C
22: if r = R and SIT is not enabled then
23: Each client transmits A(t,R)

c to server
24: Server distributes {A(t,R)

c }Cc=1 to all c ∈ C

documents. The first term is the model training
objective for current task t. The second term is a
sparsity objective to induce sparsity in the mask
mt

c and task specific parameters At
c for efficient

server-client communication, where λ1 is a hyper-
parameter to regulate sparsity. The final term is
the continual learning regularization (Kirkpatrick
et al., 2017) objective to minimize catastrophic
forgetting by controlling the drift in parameters
learned from the past tasks. Here, ∆Bt

c is the
change in Bt

c between the current and previous
task i.e., ∆Bt

c = Bt
c −Bt−1

c , ∆Ai
c is the change

in task-adaptive parameters for task i between the
current and previous time-step and λ2 is the hyper-
parameter to regulate sparsity. The task specific
parameters A1:t−1

c of the past tasks are updated to
balance the change in Bt

c i.e., ∆Bt
c, which min-

imizes drift in the solutions learned for the past
tasks. For higher values of λ2, the training objec-
tive set high penalty on forgetting of the previous
tasks. Algorithm 1 describes the FedSeIT frame-
work where, the server aggregation function Agg

is agnostic to the choice of available methods like
FedAvg, FedProx etc. In FedSeIT , we use FedAvg.

Dense Layer Sharing (DLS): Unlike the convo-
lution filters of CNN model that captures the trans-
ferable n-gram patterns in the data, the dense layer
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parameters {Wt
c, W

t
f} capture fine-grained align-

ment information based on the selection and order-
ing of unique output labels y and foreign client pa-
rameters {At−1

c }Cc=1. In heterogeneity, the server
aggregation and distribution of dense layer param-
eters introduce sub-optimal initialization point for
training of future tasks across clients. Therefore, in
FedSeIT, we do not share projection layer param-
eters with server by default. In doing so, we also
increase client privacy in response to adversarial
attacks. To validate our hypothesis, we evaluate
a variant of our proposed model FedSeIT+DLS,
where we share the dense projection layer parame-
ters {Wt

c, W
t
f} in FedSeIT framework.

2.3 Selective Inter-client Transfer (SIT)

In FedSeIT, before training on task t, each
client receives C foreign task-adaptive parame-
ters {At−1

1 , ...,At−1
C } of the previous task t − 1

from each client via server s for inter-client trans-
fer learning. However, given task heterogeneity,
the previous task parameters might be irrelevant
for learning current task which could lead to inter-
client interference. To resolve this, we could trans-
mit parameters of all historical tasks from all for-
eign clients i.e., {A1

1, ...,A
t−1
C }, to minimize inter-

ference by finding relevant parameters. But, this
could lead to burgeoning of computational com-
plexity and communication cost increasing with
each completed task. Therefore, to tackle this,
we propose Selective Inter-client Transfer (SIT)
method, which uses encoded task representations
to efficiently explore all historical tasks across for-
eign clients via domain overlap, and selects the
relevant parameters to minimize inter-client inter-
ference and maximize knowledge transfer.

Client: For each task t, before training, each
client cc generates the encoded vector represen-
tation x(x) ∈ RD for each document x in task
dataset T t

c via embedding lookup and averaging.
After that, using K-Nearest Neighbor (KNN) or
Gaussian Mixture Model (GMM) algorithm, each

client performs clustering on the encoded vector
representations as follows:

x(x) =
1

|x|

|x|∑

i=1

EmbeddingLookup(xi,E)

T̂ t
c = Clustering({x(x)|∀x ∈ T t

c })
(6)

where, T̂ t
c ∈ RQ×D are the representations of the

cluster centers, Clustering ∈ {KNN,GMM},
Q denotes the number of cluster centers and E
is a pre-trained word embedding repository like
Word2Vec (Mikolov et al., 2013). Ultimately, each
client transmits T̂ t

c to the global server.
Server: Once the server receives representations

of cluster centers T̂ t
c of task t from client cc, it

computes pairwise task-task domain overlap using
average cosine-similarity score between the current
client task T̂ t

c and each historical task across all
clients {T̂ 1

1 , ..., T̂ t−1
C }. The server then selects and

transmits top-K relevant (high similarity) param-
eters to the client for inter-client transfer learning,
where K is a hyperparameter. Therefore, in sce-
narios where task history is long (t > 10) and/or
clients are too many (C > 10), SIT can keep the
computational complexity of client model constant
while minimizing inter-client interference and max-
imizing knowledge transfer. To test this, we apply
SIT in FedSeIT framework with K ∈ {3, 5}.

Comparison with FedWeIT: Such an approach
of parameter selection by assessing domain rele-
vance is missing in baseline FedWeIT framework,
where to control the computational complexity and
communication cost, each client transmits task-
adaptive parameters of only the previous task to
the server. However, as already discussed, these
parameters could be irrelevant for learning current
task, thus resulting in inter-client interference.

3 Experiments and Analysis

To demonstrate the effectiveness of our proposed
FedSeIT framework, we perform evaluation on
Text Classification task using five datasets from
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Without With SIT With SIT Without With SIT With SIT

Baseline SIT (K = 3) (K = 5) SIT (K = 3) (K = 5)

Datasets FedWeIT FedSeIT FedSeIT FedSeIT FedSeIT FedSeIT FedSeIT Gain
+DLS +DLS +DLS (%)

λ
2
=

1
.0

R8 79.1 ± 2.5 90.5 ± 0.6 90.5 ± 0.5 90.6 ± 0.7 83.1 ± 5.0 82.3 ± 5.9 82.4 ± 3.5 ↑ 14.5

TMN 84.2 ± 0.9 88.2 ± 0.2 88.3 ± 0.1 88.6 ± 0.3 84.7 ± 2.4 84.3 ± 1.9 83.6 ± 1.3 ↑ 5.2

TREC6 78.2 ± 1.9 83.6 ± 0.6 83.6 ± 0.5 83.3 ± 0.2 78.2 ± 2.1 78.3 ± 1.5 77.7 ± 1.8 ↑ 6.9

TREC50 85.1 ± 1.1 88.4 ± 2.5 88.5 ± 2.4 88.7 ± 1.9 86.4 ± 1.1 86.3 ± 1.5 85.2 ± 0.2 ↑ 4.2

SUBJ 86.5 ± 0.9 88.5 ± 0.6 88.6 ± 0.6 89.5 ± 0.3 88.9 ± 0.5 89.7 ± 1.7 89.0 ± 0.9 ↑ 3.5

λ
2
=

0
.1

R8 68.1 ± 10.4 89.9 ± 0.7 89.9 ± 1.1 89.7 ± 0.8 60.7 ± 14.5 61.9 ± 14.9 65.3 ± 10.6 ↑ 32

TMN 80.9 ± 0.6 88.5 ± 0.1 88.4 ± 0.07 88.3 ± 0.7 72.8 ± 9.1 73.3 ± 9.8 71.1 ± 8.5 ↑ 9.4

TREC6 77.1 ± 3.6 84.7 ± 1.1 84.9 ± 1.3 84.7 ± 1.2 78.3 ± 1.6 78.9 ± 1.3 76.8 ± 3.0 ↑ 10.1

TREC50 76.1 ± 0.9 81.2 ± 3.5 81.2 ± 2.9 80.9 ± 2.1 69.8 ± 3.9 69.4 ± 4.7 68.9 ± 1.2 ↑ 6.7

SUBJ 85.6 ± 0.6 89.1 ± 0.4 88.8 ± 0.1 90.4 ± 1.5 88.1 ± 1.3 90.2 ± 1.8 84.2 ± 2.6 ↑ 5.6

Table 2: Comparison of our proposed FedSeIT framework (with and without SIT) against FedWeIT baseline model
using Task-averaged Test Accuracy (TTA) scores for two different values of λ2 ∈ {1.0, 0.1}. Best score for each
dataset (row) is shown in bold and Gain (%) denotes Bold vs FedWeIT.

diverse domains and present our qualitative and
quantitative analysis in FCL setup.

Datasets: We present experimental evaluation
results on Reuters8 (R8), Tag My News (TMN),
TREC6, TREC50 and Subjectivity (SUBJ) datasets.
Here, R8 and TMN datasets belong to the News
domain, TREC6 and TREC50 belong to Question
Classification domain and SUBJ is a movie reviews
dataset with binary labels. Please see Appendix A
for more details regarding datasets.

Experimental setup: We follow Yoon et al.
(2021) for our FCL experimental setup where we
use CNN based Text Classification model (Kim,
2014) as the local client model. For all experiments,
we use three clients i.e., C = 3, five tasks per
client i.e., T = 5, 10 rounds per task i.e., R = 10,
with 50 epochs in each round, λ2 ∈ {0.1, 1.0}
and K ∈ {3, 5} for Selective Inter-client Transfer
(SIT). Please see Appendix C for detailed hyperpa-
rameter settings for all of our experiments. To run
the experiments in FCL setup, we need to generate
task datasets T t

c for each task t. Consider a dataset
Dd with a unique label set Ld ≡ {L1, ..., LNd

},
where Nd is the count of unique labels. Now, for
each task dataset T t

c , we randomly pick a fixed
number of unique labels Lt

c ⊆ Ld, where the count
of unique task labels |Lt

c| = 4 is fixed for all tasks
across all clients except subjectivity, which has 2
unique labels shared by all tasks. If label L1 gets
selected for 3 tasks, then we follow the non-iid split-
ting strategy which simply divides the documents

labeled with L1 i.e., Dd(L1), into three mutually
exclusive and equal parts, thus ensuring hetero-
geneity. We use this strategy to split the training
and validation sets. However, to create the test set
for each task dataset T t

c , we select all of the docu-
ments labeled with Lt

c in the complete test dataset
i.e., {Dtest

d (Li)|Li ∈ Lt
c} without splitting. As this

work focuses on the new challenges which arise
due to combination of FL and CL paradigms in
FCL setup, we compare our work with related FCL
methods and not with standalone FL, CL methods.

Baseline: As the only existing work in FCL
domain, FedWeIT has shown significantly superior
performance compared to näive FCL methods that
is why we adopt FedWeIT as the baseline method.

Evaluation Metric: In each experiment, once
the training is finished for all C clients, we freeze
the model parameters for all tasks and compute
Micro-averaged Accuracy (MAA) score for each
of the T past tasks of all C clients. Finally, we
average C × T MAA scores to compute the final
Task-averaged Test Accuracy (TTA) score to com-
pare our proposed model with baseline. For each
experiment, we report an average TTA score of 3
runs using 3 different seed values for ordering of
tasks at each client.

3.1 Results: Comparison to baseline

Table 2 shows final TTA scores after completion of
all tasks across all clients on five Text Classification
datasets. We find the following observations:
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Figure 5: Test set accuracy scores for all 5 tasks of Client-3 in FedSeIT framework using Reuters8 dataset (λ2 =
1.0). Each data point denotes the test accuracy score at the end of each training round for 10 rounds of 50 epochs.

(1) For all the datasets, our proposed model Fed-
SeIT consistently outperforms the baseline method
FedWeIT. For instance, for the data R8, the classifi-
cation accuracy is 79.1% vs 90.5% from FedWeIT
and FedSeIT (without SIT), respectively. Over-
all (column 3 vs column 2), on an average over
the five datasets, FedSeIT model outperforms Fed-
WeIT by 6.4% and 12.4% for λ2 = 1.0 (higher
penalty on catastrophic forgetting) and λ2 = 0.1
(lower penalty) respectively. We then observe that
FedSeIT also applies to sparse-setting, for example,
small (R8) vs large (TMN) corpora. See Table A
for the data statistics. The results suggest that the
selective utilization and domain-alignment of task-
adaptive parameters at local clients prevent inter-
client interference and maximise transfer learning.

(2) To demonstrate the effectiveness of Selective
Inter-client Transfer (SIT) approach by limiting
the number of foreign parameters (K = 3 or 5) at
local client while augment-learning, Table 2 shows
a comparison between FedSeIT models (trained
without and with SIT) and FedWeIT baseline. For
all the datasets, it is observed that the test scores
of FedSeIT trained with SIT (K = 3) are similar
to FedSeIT trained without SIT (C = 3) while
having the same computational expense; however,
reducing the number of parameters when the length
of sequence of historical tasks grows at the clients.

Additionally, we observe an improved perfor-

mance in the classification by increasing K = 5,
i.e., extending the window-size of the number
of foreign parameters (considered in augmented-
learning) from a sequence of historical tasks in
continual learning. For instance, on an average, the
performance gain of FedSeIT vs FedWeIT (column
5 and 2) is: 6.8% and 12.5% for λ2 = 1.0 and λ2
= 0.1, respectively. This suggests that the more
relevant and domain-aligned foreign parameters
boost the augmented-learning at each local client,
i.e, by selecting relevant foreign parameters from
all historical tasks of foreign clients using SIT.

(3) Next, we investigate the application of dense-
layer-sharing (DLS) in FedSeIT , in order to com-
pare with FedSeIT (without DLS) and FedWeIT.
For all the datasets, note that the FedSeIT outper-
forms FedSeIT+DLS, validating our hypothesis
that using exclusive dense layer parameters at local
client boots domain-alignment and identification
of relevant foreign parameters. Overall an average
over the five datasets, FedSeIT outperforms Fed-
SeIT+DLS (column 3 vs 6) by 4.4% and 19.1% for
λ2=1.0 and λ2=0.1, respectively.

In summary, evaluating against the baseline Fed-
WeIT approach, the proposed FedSeIT have shown
improved performance, a average gain of 12.4% in
text classification over a sequence of tasks using
the five datasets from diverse domains.
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3.2 Ablation: Learning over training rounds
Here, we demonstrate the performance of text clas-
sification at a local client (3rd client) for a sequence
of five tasks at each training round (10 rounds). Fig-
ure 5 shows the test set accuracy scores (at the end
of each training round) for all five tasks of Client-3
using R8 dataset. In 4/5 tasks, the test accuracy
score of the FedSeIT model at the end of round
1 is noticeably higher than the FedWeITapproach.
Interestingly, in task 2, we find that FedWeIT out-
performs FedSeIT over rounds, however converge
at the same accuracy in the final round.

In essence, the proposed method FedSeIT in
FCL setup have shown that the alignment and rele-
vance of foreign tasks parameters at each client (for
all the tasks at each model training round) minimise
inter-client interference and improve inter-client
transfer learning without the dense-layer-sharing.

4 Conclusion and Future Work

We have applied Federated Continual Learning to
text classification for heterogeneous tasks and ad-
dressed the challenges of inter-client interference
and domain-alignment in model parameters of local
vs foreign clients while minimizing catastrophic
forgetting over a sequence of tasks. We have pre-
sented two novel techniques: FedSeIT and SIT that
improves local client augmented-learning by as-
sessing domain overlap and selecting informative
tasks from the sequence of historical tasks of each
foreign client while preserving privacy. Further-
more, the novel selection strategy using SIT de-
termines relevant foreign tasks from the complete
historical tasks of all foreign clients by assessing
domain overlap while preserving privacy. We have
evaluated the proposed approaches using five text
classification data sets and shown a gain (average)
of 12.4% over the baseline.

Although we have applied FedSeIT framework
to the document-level text classification task, we
can further apply the proposed framework to ad-
ditional NLP tasks. Inspired by continual Topic
Modeling (Gupta et al., 2020) at document-level
and continual Named Entity Recognition (Mon-
aikul et al., 2021) at token-level classification, we
can further extend these existing works with the
proposed FedSeIT framework in federated settings.

Limitations

In FCL paradigm, the computation complexity of
augmented-learning at a client increases when the

number of foreign clients grows exponentially. In
future work, it is an interesting research direction to
explore hierarchical federated learning techniques
(Abad et al., 2020) to limit the number of foreign
client parameters injected into augmented-learning
(applying convolution filters and projections in
CNN of FedSeIT) at a local client. Additionally,
due to limited compute on edge devices such as
mobiles, wearable devices, sensors, etc., the appli-
cation of FCL in the cloud-edge continuum is still
in early days that requires distillation and pruning
of large ML models such as CNN for text classifi-
cation - as presented in this paper.
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A Datasets

Table 3 shows detailed data statistics of five labeled
datasets used to evaluate our proposed FedSeIT
framework using Text Classification task: Reuters8
(R8) and Tag My News (TMN) datasets belong to
the News domain, TREC6 and TREC50 belong to
the Question Classification domain and Subjectiv-
ity (SUBJ) is a movie reviews dataset with binary
labels.

B Local client model

In FedSeIT we use CNN (Kim, 2014) model
for Text Classification as the local client model.
The CNN model is made up of convolution
(Conv) layers and fully connected (FC) layers.
The CNN model parameters can be described
as follows: (1) For Conv layers: Bt

c,A
t
c,θ

t
c ∈

{RFl×D×NFl }LConv
l=1 are a set of convolutional fil-

ters where, l is the layer indicator, LConv is the
total number of Conv layers, Fl is the filter size for
layer l, D is the input word embedding dimension
and NFl is the count of filters in layer l, and (2)
For FC layers: Bt

c,A
t
c,θ

t
c ∈ {RIl×Ol}LFC

l=1 are a
set of parameter matrices where, l is the layer in-
dicator, LFC is the total number of FC layers and
Il, Ol are the input, output dimensions for layer
l. For all layers, mt

c is the masking vector match-
ing the output dimension of Bt

c. As illustrated in
Figure 3, for an input document x, the CNN model
performs three different tasks: (1) performing word
embedding lookup of x to generate an input matrix
X ∈ R|x|×D, (2) applying convolutional filters and
max-pooling over X to generate an intermediate
dense vector z ∈ RNF , and (3) applying softmax
layer on z to predict the label for input x.

C Experimental Setup

Table 4 shows the settings of all hyperparameters
used in the experimental setup to evaluate our pro-
posed FedSeIT framework on Text Classification
task using 5 datasets.

D Reproducibility: Code

To run the experiments and reproduce the scores
reported in the paper content, we have provided the
implementation of our proposed FedSeIT frame-
work at https://github.com/RaiPranav/FCL-FedSeIT.
Information regarding model training and data pre-
processing is provided in the README file.
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#Train #Test Maximum Mean Median Num
Datasets docs docs length* length* length* Classes
Reuters8 5485 2189 964 102 64 8

TMN 24816 7779 48 18 18 7
TREC6 5451 499 37 10 9 6

TREC50 5451 499 37 10 9 50
SUBJ 7999 1999 120 24 22 2

Table 3: Detailed statistics of the datasets used for evaluation of our proposed FedSeIT framework on Text Classi-
fication task. Here, * indicates that length is equal to the count of word tokens.

Hyperparameter Value Description
λ2 {0.1, 1.0} Higher value minimizes catastrophic forgetting
K {3, 5} Number of tasks sent to each client from server

after assessing domain overlap
LConv 3 Number of convolution layers
F {3, 4, 5} Kernel Sizes of convolution filters
NF 128 Number of convolution filters in each convolution

layer
Stride 1 Stride when applying convolution filter
Dilation Rate 1 Dilation rate when applying convolution filter
Padding Valid Padding when applying convolution filter
Dropout 0.3 -
Learning rate 1e-4 -
Activation Function ReLU -
Batch Size 64 -
λ1 1e-3 Regularization parameter for sparsity constraint
Random Seeds (for task alloca-
tion and parameter initialization)

{1, 2} -

C 3 Number of clients
T 5 Tasks picked per client
R 10 Number of Rounds
Number of epochs per training
round

50 Early stopping due to convergence is possible

Early stopping patience 3 -
Random Seeds (for task genera-
tion)

42 -

Clustering Algorithm for Selec-
tive Inter-client Transfer (SIT)

KNN -

Q 200 Count of cluster centers to extract
D 300 Word embedding dimension

Table 4: Hyperparameter settings used in the experimental evaluation setup of our proposed FedSeIT framework
using Text Classification task.
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