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Abstract

The readability assessment task aims to assign
a difficulty grade to a text. While neural models
have recently demonstrated impressive perfor-
mance, most do not exploit the ordinal nature
of the difficulty grades, and make little effort
for model initialization to facilitate fine-tuning.
We address these limitations with soft labels for
ordinal regression, and with model pre-training
through prediction of pairwise relative text dif-
ficulty. We incorporate these two components
into a model based on hierarchical attention
networks, and evaluate its performance on both
English and Chinese datasets. Experimental
results show that our proposed model outper-
forms competitive neural models and statistical
classifiers on most datasets.

1 Introduction

Readability assessment quantifies the difficulty of
a text, that is, the degree to which it can be eas-
ily read and understood (McLaughlin, 1969; Klare,
2000). Since an automatic readability assessment
(ARA) system can assign a text to a difficulty grade,
it is useful for identifying texts or books that are
suitable for individuals according to their language
proficiency, intellectual and psychological devel-
opment. ARA research harks back to the last cen-
tury (Lively and Pressey, 1923; Klare, 1963) and
has attracted rising attention in recent years, with
impressive performance achieved by many neu-
ral approaches (Azpiazu and Pera, 2019; Tseng
et al., 2019; Schicchi et al., 2020; Azpiazu and
Pera, 2020; Deutsch et al., 2020; Martinc et al.,
2021; Lee et al., 2021; Vajjala, 2021; Tanaka-Ishii
et al., 2010; Lee and Vajjala, 2022).

There are however a number of limitations in the
design and training of current ARA models. First,
even though difficulty grades are clearly ordinal in
nature, most systems approach the task as multi-
class classification with independent labels. During
training, texts in adjacent grades (e.g., Grades 2 and

3) are not treated as more similar than those in dis-
tant grades (e.g., Grades 2 and 6). Second, although
a good initialization can optimize performance in
many natural language processing tasks (Tambor-
rino et al., 2020), state-of-the-art ARA systems
generally rely on random initialization (Azpiazu
and Pera, 2019; Martinc et al., 2021).

This paper aims to further improve ARA per-
formance by investigating the following research
questions:

Ordinal information Can the use of soft labels
for ordinal regression (Diaz and Marathe,
2019) improve performance?

Model initialization Can the model be better ini-
tialized through pre–training on pairwise rela-
tive prediction of text difficulty?

In contrast to most previous work, we conduct
both within-corpus and cross-corpus experiments
to answer these questions. Within-corpus evalua-
tion may not accurately reflect ARA performance
when the model is deployed on texts from other col-
lections. Further, some features (e.g., text length,
topics) could be domain-dependent and may not
provide the same performance boost in other do-
mains.

The rest of the paper is organized as follows. Fol-
lowing a review of previous work (Section 2), we
propose our model (Section 3). We then describe
our datasets (Section 4) and the experimental set-
up (Section 5). Finally, we discuss experimental
results (Section 6).

2 Related Work

Early studies in ARA mostly focused on readability
formulas, typically developed through empirical
pedagogy and psychology (Klare, 1963; Davison
and Kantor, 1982). Although these formulas have
the advantage of being easily interpretable, they
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rely on surface features and cannot measure the
structure or semantic complexity of a text.

Traditional machine learning methods have been
applied to train statistical classifiers for ARA.
These classifiers employ a large number of fea-
tures related to vocabulary, semantics and syntax
(Hancke et al., 2012; Sung et al., 2015; Dell’Orletta
et al., 2011; Francois and Fairon, 2012; Denning
et al., 2016; Arfé et al., 2018; Jiang et al., 2019).
Although they often outperform readability formu-
las, feature engineering and selection can be time-
consuming and labor-intensive.

Deep learning methods, which have shown
impressive performance in NLP, have recently
been applied in ARA. Pre-trained word embed-
dings (Mikolov et al., 2013; Pennington et al.,
2014; Bojanowski et al., 2017) and pre-trained lan-
guage models such as BERT (Devlin et al., 2019)
have been exploited by many neural ARA models
(Deutsch et al., 2020; Tseng et al., 2019). Vec2Read
captures important words and sentences through a
multi-level attention mechanism, and uses a Bidi-
rectional Long Short Term Memory (Bi-LSTM)
to create representations of whole sentences and
individual words. It has performed well on multi-
lingual readability assessment by applying transfer
learning (Azpiazu and Pera, 2020).

Most closely related to our model, Hierarchical
Attention Networks (HAN) (Yang et al., 2016) con-
sist of both word and sentence encoders to mimic
the hierarchical structure of documents. The word
encoder uses bidirectional gated recurrent units
(Bi-GRU) (Bahdanau et al., 2014) to embed words
while summarizing the information from the con-
text. A word-level attention mechanism then ag-
gregates the most informative words to form a sen-
tence vector. At the sentence level, another encoder
likewise uses Bi-GRU to embed sentences, and an
attention mechanism aggregates the most formative
sentences into a text vector. Originally developed
for document classification, it has also shown com-
petitive results in ARA (Martinc et al., 2021). Our
proposed model follows the architecture of HAN,
but uses a pre-trained BERT and a Bi-LSTM in-
stead of Bi-GRUs in the word encoder and sentence
encoder, repectively. Further, it adopts soft labels
for ordinal regression and a novel pre-training task
for initialization.

Combining neural models with hand-crafted lin-
guistic features can further improve performance
(Lee et al., 2021). Since our focus is on neural

models that do not require feature engineering, we
do not pursue this direction of research.

3 Proposed Model

We propose an ARA model based on hierarchi-
cal attention networks (HAN) (Yang et al., 2016)
with two novel components: the use of soft la-
bels to exploit the ordinal nature of the readabil-
ity assessment task, and a novel pre-training task
for model initialization. We will henceforth re-
fer to this model as DTRA (deep text readability
assessment).

The proposed model consists of three compo-
nents (Figure 1). The feature representation com-
ponent (Section 3.1), similar to HAN, constructs
the representation for an input text. A fully con-
nected layer following this component is utilized as
a classifier, where the cross entropy loss is adopted
as the loss function. The soft-label component (Sec-
tion 3.2) exploits the ordinal nature of our task by
converting discrete grades into soft labels with a
distance metric between grades. The pre-training
component (Section 3.3) aims to produce a good
initialization for fine-tuning.

3.1 Feature Representation Component

The feature representation component produces the
text-level representation of an input text. As shown
in Figure 1, it consists of the word encoder, word
attention, sentence encoder, and sentence attention
modules.

3.1.1 Word Encoder Module
The word encoder module uses a pre-trained BERT
as the feature extractor. It is stacked by 12-layer
Transformer encoder (Vaswani et al., 2017) through
residual connection. Its input structure consists of
token embedding, segment embedding and position
embedding, same as the original BERT (Devlin
et al., 2019). Each sentence in the input text is
inputted to a BERT, token by token, with all BERTs
sharing the same parameters. Let hti = BERT(xi)
represent the output of the word encoder module
for the i-th sentence xi.

Unlike Vec2Read (Azpiazu and Pera, 2019) and
HAN (Yang et al., 2016), which respectively use
a Bi-LSTM and a Bi-GRU together with a pre-
trained static word embedding in the word encoder
module, we use BERT to take advantage of its
dynamic word embedding, and also to avoid word
segmentation ambiguity for Chinese texts.
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Figure 1: Overview of the proposed model, which consists of the feature representation component (Section 3.1),
the soft-label component (Section 3.2), and the pre-training component (Section 3.3)

3.1.2 Word Attention Module
Similar to Vec2Read (Azpiazu and Pera, 2019), we
use a token-level attention mechanism to pay more
attention to those words of higher significance for
the readability assessment of the text. It consists of
a single hidden layer neural network to assign the
corresponding weight atij to htij , defined as:

atij =
exp(âtij)∑
k exp(â

t
ik)

(1)

where âtij = ReLU(W t
2 ReLU(W t

1h
t
ij + bt1) +

bt2); W t
1 and W t

2 are the weights of hidden and
output layers, respectively; bt1 and bt2 are their
associated biases vectors; and ReLU is the rec-
tified linear unit activation function defined as
ReLU(x) = max{0, x}. Then, we set:

ĥsi =
∑

k

atikh
t
ik (2)

as the representation of the i-th sentence, for i =
1, . . . , l. We denote ĥs := [ĥs1, ĥ

s
2, ..., ĥ

s
l ].

3.1.3 Sentence Encoder Module
We capture the sentence-order information in the
sentence-level representation with a Bi-LSTM, mo-
tivated by its sequential nature. Specifically, we
sequentially feed the sentence-level representation
ĥs to the Bi-LSTM in the original sentence order
of the text to yield a new sentence-level represen-
tation hs = [hs1, h

s
2, ..., h

s
l ] incorporated with the

correct sentence order, i.e., hs = Bi-LSTM(ĥs).

By incorporating the context of its neighboring sen-
tences, this enhanced sentence-level representation
is intended to improve the readability assessment
accuracy, since the sentence order may encode text
logic and cohesion that can facilitate readability
assessment.

3.1.4 Sentence Attention Module
Similar to Vec2Read (Azpiazu and Pera, 2019), we
use a sentence-level attention mechanism to assign
an attention weight to each sentence to reflect its
importance in the readability assessment of the text.
A single hidden layer neural network is used in the
sentence-level attention. Specifically, let asi be the
attention weight corresponding to hsi , defined as:

asi =
exp(âsi )∑
k exp(â

s
k)
, i ∈ {1, 2, ..., l} (3)

where âsi = ReLU(W s
2 ReLU(W s

1h
s
i + bs1) + bs2)

and W s
1 , bs1, W s

2 and bs2 are weights and bias vec-
tors of the hidden and output layers respectively.
The final text-level representation hout of a text for
classification is thus hout =

∑l
k=1 h

s
ka

s
k. Follow-

ing the text module, a fully connected layer serves
as the classifier, trained on cross entropy loss as the
loss function.

3.2 Soft Labels for Ordinal Regression
ARA is an ordinal classification task since the la-
bels have an underlying order from easy to difficult
(e.g., Grade 1 to Grade 12). The severity of a clas-
sification error therefore depends on the distance
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between the gold and predicted labels. During train-
ing, there should be a greater penalty for predicting
a Grade 3 text as Grade 6 (a distance of three), for
example, than as Grade 2 (a distance of one). Since
most existing models use “hard” labels, however,
they interpret all wrong classes to be infinitely far
away from the true class.

We use soft labels (Diaz and Marathe, 2019) to
exploit the ordinal nature of the readability assess-
ment task. Given an ordinal classification task with
K categories, the soft label can be defined as fol-
lows:

yi =
exp (−ϕ(ri, rt))∑K

k=1 exp (−ϕ(rk, rt))
, (4)

where ri ∈ Y = {r1, r2, ..., rK} is the i-th cate-
gory, rt is the true category and ϕ(ri, rt) is a dis-
tance metric between two categories.

The boundary between adjacent grades tends to
be vague. For example, a Grade 3 text may not
be clearly more difficult than a Grade 2 text or
easier than a Grade 4 text. However, it should be
more difficult than those at grades farther away. We
therefore take the distance metric ϕ(ri, rt) in (4) as
the following piece-wise constant function:

ϕ(ri, rt) =





0, i = t

c, |i− t| = 1,

+∞, otherwise

(5)

where c is a positive hyper-parameter that repre-
sents the distance between the true label and its
adjacent labels. During training, we convert origi-
nal hard labels into soft labels according to (4) and
(5). We empirically set c to be 1.2 according to
experimental results in Appendix B.

3.3 Pre-Training Component

A good initialization is crucial for a neural lan-
guage model given the highly nonconvex nature of
the training loss (Tamborrino et al., 2020). To this
end, we propose a pre-training task based on the
prediction of pairwise relative difficulty of texts:
given any two texts, the task is to predict whether
the first has a higher, lower, or the same level of
readability as the other. We hypothesize that accu-
rate performance in this related task would yield a
good initialization of parameters for the fine-tuning
stage of an ARA model. We will refer to this pre-
training task as Text Readability Order Prediction
(TROP).

As shown in Figure 1, we randomly selected
two texts from the training set and used the fea-
ture representation component of the proposed
model to construct their representations h1out and
h2out. We then feed their concatenation hTROP =
[h1out;h

2
out] into a three-way classifier, using cross

entropy loss as the training objective.

CMT CMER
Grade # texts Text length # texts Text length

1 235 108.95 218 145.53
2 320 198.58 217 308.44
3 386 329.48 234 538.35
4 321 425.39 229 628.08
5 282 569.82 200 682.41
6 252 660.89 255 701.29
7 199 1202.13 221 1227.19
8 142 1176.94 205 1324.25
9 134 1443.84 188 1302.54

10 140 1617.08 100 2182.08
11 89 1900.85 96 2252.34
12 121 1930.74 97 2043.69

Table 1: Number of texts and their average length at
each grade in the CMT and CMER corpora

4 Data

Our evaluation makes use of five datasets in English
and Chinese. We used the 8:1:1 ratio for training,
development and test data on all datasets.

Newsela The Newsela corpus1 contains 10,786
texts distributed among levels 2-12 for En-
glish and Spanish. Similar to (Martinc et al.,
2021), we removed the documents for Spanish
while only focused on the readability assess-
ment for those English documents. Thus, the
total number of samples of Newsela used in
our experiments is 9,565.

OneStopEnglish The OneStopEnglish corpus2

was created for English as a second language
learners. It contains a total of 567 English
texts, with each text written in three versions:
elementary, intermediate and advanced.

WeeBit The WeeBit corpus consists of 6,388 En-
glish texts from WeeklyReader3 and BBC-
Bitesize4 in five grades. For a balanced
dataset, we randomly sample 625 texts in each
grade.

CMT China Mainland Textbook (CMT) (Cheng
et al., 2020) consists of a total of 2,723,430

1https://newsela.com
2https://zenodo.org/record/1219041
3http://www.weeklyreader.com
4http://www.bbc.co.uk/bitesize
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characters, distributed in 2,621 texts in twelve
grades, all taken from Chinese textbooks from
the first grade of primary school to the third
grade of high school in mainland China. Ta-
ble 1 reports detailed statistics on CMT.

CMER China Mainland Extracurricular Reading
(CMER) is a new dataset collected by the au-
thors. It consists of texts from extracurricular
reading books for kids and teenagers at China
mainland currently on the book market, with
a total of 3,395,923 characters, distributed in
2,260 texts in 12 levels. Table 1 reports de-
tailed statistics on CMER.5

The two Chinese datasets facilitate cross-corpus
evaluation since they follow the same grade scale
defined by the national standard, but the materials
are compiled independently from different sources.
Cross-corpus evaluation would be difficult for the
English datasets because of the lack of direct corre-
spondence between their scales.

5 Experimental Set-up

This section presents the baselines to which we
will compare our proposed model, the evaluation
metrics, and implementation details.

5.1 Neural model baselines
Vec2Read (Azpiazu and Pera, 2019) uses pre-
trained static word embedding, a Bi-LSTM, word-
and sentence-level attention mechanisms. The em-
bedding size and hidden layer size of Bi-LSTM
were set to be 300 and 128 respectively. When
adapted to Chinese corpora, we used the model
called FastText (Bojanowski et al., 2017) to yield
the pre-trained word embedding.
BERT (Devlin et al., 2019) uses the default BERT
model for fine-tuning and the default learning rate
(2e-5).
ALBERT (Lan et al., 2019) uses the factorized
embedding parameterization and cross-layer pa-
rameter sharing to reduce the size of model (that is,
reducing from 108 M to 12 M).
Longformer (Beltagy et al., 2020) uses a variant of
self-attention mechanism that scales linearly with
sequence length to process long texts.
HAN (Martinc et al., 2021) uses two Bi-LSTMs,
word- and sentence-level attention mechanisms to
encode word and sentence representations. We

5This dataset is accessible at
https://github.com/JinshanZeng/DTRA-Readability

used the same settings as Martinc et al. (2021),
where word and sentence embedding sizes were
200 and 100 respectively.
Lite-DTRA To reduce the requirement of storage
memory of the hardware, we provide a lite version
of the proposed model, where the pre-trained BERT
with frozen parameters is replaced by a lite version
of BERT, i.e., ALBERT (Lan et al., 2019), and thus
allows the model to be trained in an end-to-end
way.

All deep learning models were implemented in
Pytorch, Transformers (Wolf et al., 2020), AMD
3900x, GeForce RTX 3090 environment.

5.2 Traditional classifier baselines
We report performance of the traditional machine
learning methods on the Chinese datasets (CMT
and CMER):
Logistic Regression, Support Vector Machine
(SVM), Random Forest, Naive Bayes. As shown
in Table 7 (Appendix A), we manually extracted 43
features at the lexical, syntactic, semantic and co-
hesion levels, mainly taken from Sung et al. (2015).
These traditional machine learning methods are not
evaluated on the English datasets since their per-
formance has already been extensively reported in
previous research (Martinc et al., 2021; Lee et al.,
2021).

The hyperparameters were tuned on develop-
ment data via 10-fold cross-validation. All meth-
ods were implemented in Matlab R2017b, Intel(R)
Xeon(R) E5-2667 environment.

5.3 Evaluation metrics
Our evaluation metrics include classification ac-
curacy (C-acc), adjacent accuracy (A-acc) and
the macro F1-measure (F1). Adjacent accuracy
is defined as the proportion of samples with the
predicted labels adjacent to the gold labels (Sung
et al., 2015), motivated by the strong ambiguity
between the adjacent classes.

5.4 Implementation details
For DTRA, we used a pre-trained BERT6 for texts
in the word encoder module, where the number of
Transformer encoder layers is 12 and the output
feature size is 768. The sizes of the input, hid-
den and output layers in the token-level attention
mechanism are 768, 192 and 1, respectively. In
particular, we froze parameters of BERT in DTRA

6For English: https://huggingface.co/bert-base-uncased;
For Chinese: https://huggingface.co/bert-base-chinese
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due to the limitation of storage memory of the hard-
ware. The sizes of the input and hidden layers in
the Bi-LSTM are 768 and 256, respectively, and the
sizes of the input, hidden and output layers in the
sentence-level attention are 512, 128 and 1, respec-
tively. Following the sentence attention module,
there is a fully connected layer as the classifier. We
used the cross-entropy loss and Adam algorithm
(Kingma and Ba, 2015) as the optimizer to fine
tune the proposed model. A weighting decay reg-
ularization with the regularization parameter 0.01
was also adopted. In the pre-training component,
the initial learning rates of Adam for the training of
these three modules and fully connected layer were
all 7e-5, while in the fine-tuning stage, they were
set to be 1e-5 and 4e-5 respectively. Lite-DTRA
follows the same settings as DTRA, except that the
frozen BERT is replaced with ALBERT (Lan et al.,
2019).

6 Experimental Results

We report experimental results in English datasets
(Section 6.1) and Chinese datasets (Section 6.2).
We then present an ablation study (Section 6.3) and
a comparison between the soft labels and regression
(Section 6.4). Finally, we discuss results of a cross-
corpus evaluation with few-shot learning (Section
6.5).

(a) Longformer (b) HAN

(c) DTRA (d) Lite-DTRA

Figure 2: Confusion matrices of four deep learning
models over Newsela. The horizontal- and vertical-axis
of each figure represent the predicted categories and the
true categories of the samples, respectively.

6.1 English datasets

As shown in Table 2, DTRA achieved higher accu-
racy on Newsela (83.26%) and OneStopEnglish
(85.00%) than all five baseline neural models.
These compare favorably with the best result
achieved by HAN on Newsela (81.38%) and On-
eStopEnglish (78.72%) reported by Martinc et
al. (2021) and by BERT on OneStopEnglish re-
ported by Lee et al.(2021).7 On WeeBit, however,
BERT achieved the highest accuracy, which is sim-
ilar to the result reported by Martinc et al. (2021).
Evaluation on F1-measure exhibits the same trend.
These experimental results suggest the effective-
ness of the soft labels and pre-training. The indi-
vidual contribution of these components will be
further analyzed in the ablation study.

In all settings, Lite-DTRA offered slightly better
performance than DTRA. This may be attributable
to the end-to-end training with ALBERT, in con-
trast to the pre-trained BERT’s frozen parameters
for feature extraction.

To visualize the performance of proposed mod-
els, Figure 2 shows the confusion matrices of the
top-four models (Longformer, HAN, DTRA and
Lite-DTRA) in terms of accuracy on Newsela. The
values in confusion matrices of DTRA and Lite-
DTRA are more concentrated on the diagonal than
other two models, in particular at the seventh and
ninth grades.

6.2 Chinese datasets

As shown in Table 3, DTRA achieved 44.42% ac-
curacy on CMT and 26.50% on CMER. The lower
accuracy in comparison to the English results is ex-
pected since CMT and CMER contain 2,000 texts
approximately but have 12 grades. On both ac-
curacy and F1-measure, DTRA outperformed all
four neural baseline models as well as all statistical
classifiers. On CMT, HAN achieved the second
highest accuracy (42.53%), while the LR classifier
performed second best (24.98%) on CMER.

6.3 Ablation Studies

We conducted an ablation study to measure the
contribution of the soft labels and the pre-training
to DTRA’s performance. The top of Table 4 com-
pares the performance of the complete DTRA and
its performance upon removal of the pre-training

7The results are not directly comparable since we were not
able to obtain the dataset splits used in Martinc et al. (2021)
and Lee et al. (2021)
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Model Vec2Read BERT ALBERT Longformer HAN DTRA Lite-DTRA

Newsela
C-acc 47.18 77.09 78.77 80.44 80.44 83.26 84.94
A-acc 64.33 98.54 97.80 98.54 97.80 98.85 98.75

F1 24.83 76.80 77.94 80.17 79.95 83.11 84.74

OneStop
English

C-acc 43.33 80.00 83.33 81.67 78.33 85.00 86.67
A-acc 63.33 100 100 100 100 100 100

F1 44.91 79.77 82.71 81.68 78.61 84.91 86.79

WeeBit
C-acc 75.82 87.74 86.77 85.48 80.97 84.84 85.48
A-acc 96.13 98.07 99.36 99.03 97.42 99.03 100

F1 75.31 87.85 86.80 85.53 80.92 84.84 85.45

Table 2: ARA performance on English datasets in terms of accuracy (C-acc), adjacent accuracy (A-acc) and F1, in
percentage. The best and second best results are marked in bold and blue color, respectively.

Model LR SVM RF Bayes Vec2Read BERT ALBERT HAN DTRA Lite-DTRA

CMT
C-acc 32.25 35.85 39.12 33.49 34.59 33.84 36.30 42.53 44.42 44.42
A-acc 68.55 73.22 74.97 70.25 68.05 67.11 70.51 79.58 81.10 82.04

F1 30.65 35.39 37.87 30.82 28.58 31.35 33.26 41.09 43.87 42.87

CMER
C-acc 24.98 24.51 21.57 20.38 24.95 22.74 22.96 23.40 26.50 26.50
A-acc 53.00 54.98 52.41 46.22 53.86 47.68 49.89 54.53 58.50 62.47

F1 23.25 24.06 20.31 16.37 20.57 17.16 22.06 18.48 25.16 22.06

Table 3: ARA performance on the Chinese datasets in terms of accuracy (C-acc), adjacent accuracy (A-acc) and F1,
in precentages. The best and second best results are marked in bold and blue color, respectively.

step and soft labels for ordinal regression. On most
datasets, there was a decrease in both accuracy and
F1 after removal of pre-training, indicating its util-
ity for ARA. The use of soft label improved the
accuracy on all datasets except OneStopEnglish. In
terms of F1-measure, the soft labels were helpful
on Newsela and Weebit but slightly hurt perfor-
mance on OneStopEnglish, CMT and CMER.

The bottom of Table 4 compares Lite-DTRA and
its counterpart version with frozen ALBERT pa-
rameters (referred to as Lite-DTRA-frozen). Lite-
DTRA obtained better results on all metrics for all
datasets, except F1 for CMER. This suggests that
using the trainable ALBERT model is beneficial
for for Lite-DTRA in practice.

6.4 Soft labels vs. regression

ARA can be formulated as a regression, classifi-
cation or ordinal regression task. We further ex-
amined the effect of the soft labels through a com-
parison with standard regression and multi-class
classification.

The version of DTRA without pre-training,
which will be referred to as the Ordinal-DTRA
model, serves as the reference point. We di-
rectly used the features output by the feature rep-
resentation component to train a classification
model, which will be called the Classification-
DTRA model. We used the same features to
train a regression model, which will be called the
Regression-DTRA model.

Table 5 compares the accuracy of these three
models. Ordinal-DTRA gave the best perfor-
mance over all five datasets. Classification-DTRA

achieved the second best performance, and outper-
formed Regression-DTRA with a substantial gap
in most datasets. These results suggest that the soft
labels are more effective in capturing the ordinal
nature of the readability grades than direct use of
multi-class classification or regression.

6.5 Cross-corpus evaluation

Since ARA models may be used in predicting the
difficulty of texts from other sources, we gauge
the robustness of our proposed model in a cross-
corpus evaluation. We conducted experiments in
two settings: (a) train DTRA on CMER, and test
on CMT; and (b) train DTRA on CMT, and test on
CMER. We did not attempt cross-corpus evaluation
in English because of the lack of direct mapping
among the readability scales adopted in Newsela,
OneStopEnglish and WeeBit.

In each setting, we further evaluated the impact
of limited quantities of samples in the target corpus
for few-shot learning. Specifically, we evaluated
model performance when {0, 5, 10, 15, 20, 25, 30}
samples from the target corpus were added to the
training data. As shown in Table 6, when trained
only on CMER, DTRA performed at 31.00% on
CMT, which constitutes a 13% degradation com-
pared to the within-corpus setting (44.42%). It
outperformed all other baselines both on accuracy
and F1. On CMER, DTRA performed at 19.87%
on CMER, a 7% degration compared to the within-
corpus setting (26.5%). While it outperforms all
other baselines on F1, Vec2Read achieved the high-
est accuracy (21.95%). These results suggest that
our models not only captured characteristics pe-
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Model Newsela OneStopEnglish WeeBit CMT CMER
C-acc A-acc F1 C-acc A-acc F1 C-acc A-acc F1 C-acc A-acc F1 C-acc A-acc F1

DTRA 83.26 98.85 83.11 85.00 100 84.91 84.84 99.03 84.84 44.42 81.10 43.87 26.50 58.50 25.16
w/o pre-training 81.59 98.75 81.18 81.67 100 81.21 83.23 99.36 82.83 44.05 80.15 41.04 26.05 56.73 25.04
w/o soft labels 80.96 98.54 80.66 81.67 100 81.26 82.26 98.71 82.30 43.48 78.83 41.33 25.83 56.51 25.12
Lite-DTRA 84.94 98.75 84.74 86.67 100 86.79 85.48 100 85.45 44.42 82.04 42.87 26.50 62.47 22.06
Lite-DTRA-frozen 81.38 98.75 81.06 80.00 100 79.97 84.19 99.36 84.13 43.67 79.77 40.07 25.83 60.71 23.33

Table 4: Ablation study on DTRA (top) and the impact of frozen ALBERT parameters (bottom). The best results
are bolded.

Model Regression-DTRA Classification-DTRA Ordinal-DTRA
Newsela 80.96 80.96 81.59
OneStop
English 73.68 81.67 81.67

WeeBit 78.71 82.26 83.23
CMT 32.97 43.48 44.05
CMER 17.44 25.83 26.05

Table 5: The accuracy of DTRA based on regression,
classification and ordinal regression, in percentages.
The best results are marked in bold.

culiar to textbooks (Section 6.1), but also learned
textual difficulty features that can be effectively
transferred to other texts.

Even a small amount of data from the target cor-
pus could improve model performance. For exam-
ple, just five texts from the training set of the target
corpus per grade could already boost the accuracy
of DTRA by about 5% absolute (36.11% on CMT
and 25.17% on CMER). It also outperformed all
other baselines in both accuracy and F1-measure.
The amount of training samples from the target cor-
pus is mostly positively correlated with model per-
formance. Lite-DTRA tends to perform better than
DTRA in leveraging limited data. With 15 sam-
ples, it achieved 41.59% accuracy on CMT, which
is within 3% of its accuracy in the within-corpus
setting; on CMER, it surpassed its within-corpus
performance with an accuracy of 28.26%, which
may indicate the relatively high quality of the CMT
training data.

7 Conclusion

This paper has proposed a deep learning model
for text readability assessment that achieved com-
petitive performance on the benchmark datasets
Newsela, OneStopEnglish and WeeBit. Our model,
which is based on Hierarchical Attention Network
(HAN) (Yang et al., 2016), incorporates two novel
elements: soft labels for ordinal regression (Diaz
and Marathe, 2019), and a pre-training task on pair-
wise relative text difficulty that aims to improve the
model initialization for fine-tuning.

We conducted experiments on both English
and Chinese datasets to compare this model to

a number of competitive neural models, includ-
ing BERT, Vec2Read and HAN. The proposed
model outperforms all baselines on most datasets
in terms of both accuracy and F1. A lite version
of the proposed model, with reduced storage mem-
ory requirement, also offered competitive perfor-
mance. An ablation study demonstrated that the
pre-training and the soft labels brought benefits in
most datasets. The proposed model also outper-
formed most baselines in the cross-corpus setting,
demonstrating its ability to learn features of text
difficulty that are transferable to other kinds of
texts.

Samples
from target

corpus

Training data CMER CMT
Test data CMT CMER
Model C-acc A-acc F1 C-acc A-acc F1

0

Vec2Read 20.23 56.90 15.05 21.85 55.19 18.38
BERT 20.98 53.69 16.64 20.09 53.20 19.30
HAN 27.22 58.41 20.84 19.34 55.41 18.94

DTRA 31.00 65.97 29.78 19.87 51.88 19.78
Lite-DTRA 29.87 66.16 25.13 18.76 52.10 17.87

5

Vec2Read 29.12 61.91 24.76 22.96 57.84 16.70
BERT 27.60 62.95 25.05 21.19 52.10 18.78
HAN 32.23 70.51 26.62 23.62 54.31 21.73

DTRA 36.11 71.83 34.48 25.17 56.73 24.00
Lite-DTRA 36.11 75.24 33.52 26.27 55.19 23.42

10

Vec2Read 30.95 64.84 26.99 22.30 53.20 19.97
BERT 29.68 58.24 22.31 22.96 51.88 19.77
HAN 34.43 70.33 27.34 22.96 58.72 21.16

DTRA 34.62 71.80 30.05 24.28 58.06 21.67
Lite-DTRA 34.97 75.24 31.29 24.50 57.62 19.28

15

Vec2Read 28.94 64.65 26.17 23.18 55.85 19.72
BERT 29.68 62.76 26.27 22.74 49.67 21.91
HAN 37.55 74.91 33.00 24.72 62.25 21.93

DTRA 36.48 76.37 36.37 24.95 58.50 23.14
Lite-DTRA 41.59 79.01 38.42 28.26 58.50 27.38

20

Vec2Read 30.22 61.91 25.87 24.06 56.29 20.68
BERT 29.85 61.36 20.19 24.28 50.99 23.17
HAN 35.99 72.53 29.83 24.50 56.29 22.19

DTRA 36.67 74.67 35.74 24.72 56.29 22.80
Lite-DTRA 39.89 76.56 37.99 25.17 56.07 24.07

25

Vec2Read 30.95 69.60 26.20 24.06 56.95 19.39
BERT 30.25 56.33 26.79 23.18 48.12 22.39
HAN 37.73 78.02 33.59 26.93 61.37 23.52

DTRA 35.92 75.80 34.19 26.40 56.95 25.72
Lite-DTRA 38.75 76.18 35.61 27.81 59.16 25.80

30

Vec2Read 31.32 68.50 28.51 22.08 53.64 17.42
BERT 30.25 63.14 28.01 23.62 48.12 23.24
HAN 40.66 78.02 34.48 25.61 59.60 23.98

DTRA 38.37 73.91 37.86 27.59 58.94 25.93
Lite-DTRA 40.08 79.02 36.48 25.61 56.29 24.08

Table 6: ARA performance in cross-corpus evaluation.
The best and second best results are marked in bold and
blue color, respectively.

8 Limitations

This research has not considered hybrid models,
which combine manual linguistic features with the
neural networks. Accuracy in the cross-corpus set-
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ting could also be further improved with transfer
learning techniques. There is still much room for
improvement in the performance of the ARA model
before it is ready for deployment in the classroom
for automatic assignment of reading materials to
students.
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Appendix A. Linguistics Features

Table 7 lists the 43 features, based on those pro-
posed by Sung et al. (2015), that were used for train-
ing the Linear Regression (LR), Support Vector
Machine (SVM), Random Forest (RF) and Naive
Bayes (NB) classifiers (Section 5.2).

Appendix B. Hyperparameter Tuning

The hyperparameter c for the soft labels (Sec-
tion 3.2) was tuned on the development set of the
Newsela corpus. As shown in Figure 3, the perfor-
mance of DTRA was optimal when c = 1.2. We
thus set c to be 1.2 in our experiments.
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Figure 3: Classification accuracy of DTRA over differ-
ent values of the hyperparameter c for the soft labels
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Category Feature name Definition

Lexical level

1: Characters Total number of characters
2: Words Total number of words
3: Adverbs Total number of adverbs
4: Verbs Total number of verbs

5: Low stroke-count characters Total number of characters with 1-7
strokes

6: Intermediate stroke-count
characters (8˜15 strokes)

Total number of characters with 8-15
strokes

7: High stroke–count characters
(>15)

Total number of characters with more
than 15 strokes

8: Ratio of Low stroke-count
characters Proportion of ow stroke-count characters

9: Ratio of Intermediate stroke-
count characters (8˜15 strokes)

Proportion of Intermediate stroke-count
characters

10: Ratio of High stroke-count
characters

Proportion of High stroke-count charac-
ters

11: Average strokes Total number of strokes of each charac-
ter divided by the number of characters

12: Two-character words Total number of two-character words
13: Three-character words Total number of three-character words

14: level 0 words Total number of words not in 8,000 Chi-
nese Words

15: level 0 words ratio level 0 words divided by the total num-
ber of words

16-22: level 1,2,...,7 words Total number of words in level 1,2,...,7
respectively

23-29: level 1,2,...,7 words ratio level 1,2,...,7 divided by the total number
of words respectively

30: Average of vocabulary lev-
els in 8k

Total word difficulty, as according to
8,000 Chinese Words, divided by the
total number of words in 8,000 Chinese
Words

31: Average of vocabulary lev-
els

Total word difficulty, as according to
8,000 Chinese Words, divided by the
total number of words

32: Mean square of vocabulary
levels

Sum of the squares of word difficulty,
as defined by 8,000 Chinese Words, di-
vided by the total number of words

33: Mean square of vocabulary
levels in 8k

Sum of the squares of word difficulty,
as defined by 8,000 Chinese Words, di-
vided by the total number of words in
8,000 Chinese Words

34: High-level words
Sum of words belonging to the vantage
and effective operational proficiency lev-
els of 8,000 Chinese Words

35: High-level words ratio
High-level words divided by the to-
tal number of words in 8,000 Chinese
Words

Semantic Level 36: Content words Total number of content words
37: Frequency of content words Frequency of content words

Syntactic level 38: Average sentence length Total number of words divided by the
total number of sentences

Cohesion Level

39: Pronouns Total number of pronouns
40: Conjunctions Total number of conjunctions
41: Personal pronouns Total number of personal pronouns
42: First person pronouns Total number of first person pronouns
43: Third person pronouns Total number of third person pronouns

Table 7: Features used for training the LR, SVM, RF and NB classifiers

4568


