
Findings of the Association for Computational Linguistics: EMNLP 2022, pages 4449–4472
December 7-11, 2022 ©2022 Association for Computational Linguistics

The Curious Case of Absolute Position Embeddings

Koustuv Sinha‡†∗ Amirhossein Kazemnejad ‡∗

Siva Reddy‡ Joelle Pineau†‡ Dieuwke Hupkes† Adina Williams†
‡ McGill University / Mila - Quebec AI; † Meta AI

{koustuv.sinha,amirhossein.kazemnejad}@mail.mcgill.ca

Abstract

Transformer language models encode the no-
tion of word order using positional information.
Most commonly, this positional information is
represented by absolute position embeddings
(APEs), that are learned from the pretraining
data. However, in natural language, it is not
absolute position that matters, but relative posi-
tion, and the extent to which APEs can capture
this type of information has not been investi-
gated. In this work, we observe that models
trained with APE over-rely on positional in-
formation to the point that they break-down
when subjected to sentences with shifted posi-
tion information. Specifically, when models are
subjected to sentences starting from a non-zero
position (excluding the effect of priming), they
exhibit noticeably degraded performance on
zero- to full-shot tasks, across a range of model
families and model sizes. Our findings raise
questions about the efficacy of APEs to model
the relativity of position information, and invite
further introspection on the sentence and word
order processing strategies employed by these
models.

1 Introduction

Recently, Transformer (Vaswani et al., 2017) lan-
guage models (TLMs) have been widely used for
natural language applications. Such models in-
corporate positional encodings: vectors encoding
information about the order of words in context.
Many models, such as RoBERTa (Liu et al., 2019),
GPT3 (Brown et al., 2020) and OPT (Zhang et al.,
2022), utilize absolute position embeddings (APEs)
that directly encode absolute (linear) word order.
APEs appear to contribute to the performance of
such models; although when they are removed,
some models become sensitive to ablative word
scrambles (Sinha et al., 2021), while others work
optimally (Haviv et al., 2022). Thus, what precisely
APEs contribute remains unclear.

*Equal contributions.

Who could Thomas observe without distracting Nathan ?

Who could Thomas observe without distracting Nathan ?

Zero starting position

Non-zero starting position

Figure 1: Transformer models with absolute positional
embeddings have different representations for sentences
starting from non-zero positions.

It is conceivable that APEs may enable the model
to handle the relative distances between words. If
models were somehow learning relative position
information despite using absolute positional em-
beddings, we would expect sentence encodings to
be the same in most cases, regardless of where they
appear in the context window. For example, the
meaning of “smoking kills” should be constant in
“Kim said smoking kills” (positions 2–3) and “It
was commonly believed by most adult Americans
in the 90s that smoking kills” (positions 13–14),
despite the fact that these words appear in different
absolute positions. Given this, our central question
is: do APEs enable the model to learn the relative
distances between the words in a sentence?

Prior work has attempted to explore the conse-
quences of APEs using probing methods (Wang
et al., 2021). APEs have been found to not capture
the meaning of absolute or relative positions (Wang
and Chen, 2020). APEs have also been found to
bias model output with positional artefacts (Luo
et al., 2021), leading to better performance on token
to position de-correlation (Ke et al., 2021). Haviv
et al. (2022) even find that causal TLMs perform
adequately even without an explicit APEs. How-
ever, a systematic study on relativity of positional
encodings is still needed.

To better understand the relativity of absolute

4449

position embeddings, we first need to ascertain the
robustness of relative position understanding for a
given input. TLMs are typically trained in a batch
containing multiple sentences, with a limited se-
quence window size, which is typically much larger
than an average sentence. We hypothesize that a
systematic model should encode the same sentence
equally throughout this context window. However,
evaluating the encoding of a sentence starting from
any position in this window in isolation is hard, as
the representation of the sentence would depend on
the prior context (Misra et al., 2020; Kassner and
Schütze, 2020).

In this work, we subject models from several dif-
ferent architectures and sizes to phase shifting. In
this paradigm, the sentences exposed to the model
are provided contiguous position identifiers start-
ing from a non-zero position (Figure 1). Such in-
spection allows us to gauge the model’s sentence
encodings on different positions, emulating sub-
window sentence representation, while factoring
out the influence of prior context. We investigate
several zero shot, few shot and full shot tasks by
shifting the start positions of the sentences. We
observe the following:

• TLMs display different sub-window sentence
representation capabilities, resulting in de-
creased zero shot task performance and vari-
ability in sentence perplexities.

• Autoregressive models, including the recently
published OPT (Zhang et al., 2022), show er-
ratic zero and few-shot performance on sub-
window representations, highlighting the brit-
tleness of in-context learning evaluation.

• Masked Language Models (MLMs) encode
sentences in non-standard positions better
than their autoregressive counterparts.

• During fine-tuning models suffer drastically
on cross phase-shifted evaluation, suggesting
position specific overfitting.

We aim to raise awareness about issues with APEs,
which are still widely used in pre-training large
language models. Our results highlight the severity
of position shortcuts taken by the model during pre-
training and fine-tuning, and imply that TLMs may
have vastly varying sub-window sentence represen-
tation capability than previously assumed. We will

release the code and analysis used in this work on
Github. 1

2 Approach

Position encodings used by TLMs come in three
broad categories: fixed sinusoidal embeddings as
proposed by Vaswani et al. (2017), absolute or
learned popularized by BERT (Devlin et al., 2019)
family of masked language models, and relative
positions (Shaw et al., 2018) used by T5 (Raffel
et al., 2020). Wang et al. (2021) presents a compre-
hensive overview of current encoding strategies.

Despite being an older method, absolute posi-
tional embeddings (APEs) are reportedly better
than its relative counterparts on several tasks (Rav-
ishankar et al., 2021), and are still used by majority
of the large pre-trained TLMs, including the re-
cently released OPT (Zhang et al., 2022). APEs
compute token representation after adding the in-
put token to the position embedding for the corre-
sponding position: xi = θW [wi] + θP [i], where,
θW ∈ R|V |×d is the token vocabulary of size |V |,
embedding dimension d, and the absolute position
embedding matrix θP ∈ R|T |×d, where T is the
maximum context window size of the model. Now,
a sentence S = [w1, w2...wn] containing n tokens,
is mapped during inference to positions 1,2, ... n
contiguously for all models.

TLMs offer various sizes of context window,
which is the maximum sequence length in tokens
it can train and infer on. Since this context win-
dow is usually larger than the average sentence
length, multiple sentences can be packed together
to “fill" the context window during pre-training.
This allows TLMs to learn that sentences can start
from various positions in their context window. If
models trained with APEs do encode relativity of
position, then the sentence representations should
be roughly equal throughout the context window,
regardless of their starting position.

2.1 Phase Shift Methodology

To understand the relativity of APEs, we examine
the model performance under phase shift condi-
tions. Phase shift2 involves right-shifting the ab-
solute positions of all tokens in the sentence by
an equal distance k, such that the tokens are now

1https://github.com/kazemnejad/lm_pos_investigations
2More related to our work, Kiyono et al. (2021) train a

Transformer model from scratch using shifted positional em-
beddings for machine translation, and observe improved per-
formance in extrapolation and intrapolation setup.

4450

https://github.com/kazemnejad/lm_pos_investigations

0 200 400 600 800
Phase Shifts (k)

50

55

60

65

70

75

80

85

90
Ac

cu
ra

cy

RoBERTa (base)
RoBERTa (large)

BART (base)
BART (large)

GPT2
GPT2 (Medium)

OPT (125M)
OPT (350M)

Figure 2: Acceptability Scores in BLiMP (Warstadt
et al., 2020) dataset across different phase shifts.
RoBERTa only supports context window of size T =
512, so we capped the scores to phase shift k = 300 to
allow for sentences of maximum length in BLiMP to be
evaluated.

mapped to new positions 1+ k, 2+ k, ..., n+ k, or
xi = θW [wi] + θP [i+ k]. As such, phase shifting
changes only the absolute position, but preserves
the relative distances between tokens in the a sen-
tence. Theoretically, we can shift the positions
within the context window as long as k + n ≤ T .
For example, given phase shift k = 100, and sen-
tence length of n, we could have the following
vector of position ids:

p⃗ = [101, 102, 103, . . . , n+ 100]

While computing the task scores and perplexities
of the models, we observed that all of the models
exhibit poor task performance on phase shifts. Due
to the non-shiftable nature of the [CLS] token in
masked language models (MLMs), we first fix the
position of [CLS] token to start position during
phase shifting, which results in significantly im-
proved performance for all models:

p⃗ = [1, 102, 103, . . . , n+ 100]

Futhermore, we observed yet another marked
improvement in task performance when we use
special tokens in the beginning of the sentence:
typically the end-of-sentence ([EOS]) token in case
of MLM models (RoBERTa, BART). An explana-
tion for this ambiguity in results is that typically
when models are pre-trained, multiple sentences
are packed together in the context window by de-
limiting the start of each sentence with an [EOS]

0 100 200 300
0

2

4

6

8
RoBERTa (large)

0 200 400 600 800
0

2

4

6

BART (large)

0 200 400 600 800
0

20

40

60

GPT2 (Medium)

0 200 400 600 800
0.0

2.5

5.0

7.5

10.0

OPT (350M)

Phase Shifts (k)

Pe
rc

en
ta

ge
 o

f d
at

a

Figure 3: Distribution of sentences in BLiMP (Warstadt
et al., 2020) having the lowest perplexities (i.e., are
deemed most acceptable) for each phase shift.

token 3. Thus, in all of our results, we opt with this
configuration (adding an [EOS] token before the
sentence) to ensure fairer evaluation for all model
families. Concretely, the input to a model uses the
following template 4:

[CLS][EOS]<sentence>

3 Impact of phase shifts on grammatical
acceptability

First, we investigate the impact of phase shift-
ing on the model performance. We compute the
perplexities of several publicly available models—
RoBERTa (Liu et al., 2019), BART (Lewis et al.,
2020), GPT2 (Radford et al., 2019) and OPT
(Zhang et al., 2022)—to evaluate the grammati-
cal acceptability capabilities of the model, using
the BLiMP (Warstadt et al., 2020) benchmark.5 We
compute the task score by comparing grammatical
and ungrammatical sentence perplexities, and ap-
plying the phase shift in increasing values of k to
the sentences and models (Figure 2).

We observe that the task performance of all mod-
els, except for RoBERTa, drastically suffers from
phase shifting. Autoregressive models in particu-
lar display worse results. This is likely due to a
mismatch of position information learned due to

3While this is not the case for GPT2, we also observed
improved performance in some cases when we add a beginning
of sentence ([BOS]) token to the sentence and add a special
[EOS] token to delimit the start of a sentence.

4In cases where a model does not have the [CLS] token, we
instead use [BOS]. If none of those are available, we replace
it with [EOS] (so a total of two [EOS]’s will be prepended).

5We adopt the perplexity computation strategy for
RoBERTa and BART from Salazar et al. (2020)

4451

0 200 400 600 800 1000
Phase shift (k)

30

40

50

60

70

80

90
Ac

cu
ra

cy
0-shot

0 200 400 600 800 1000
Phase shift (k)

30

40

50

60

70

80

90

5-shot

OPT (125M) OPT (350M) OPT (2.7B) OPT (13B) OPT (30B)

Figure 4: Aggregate performance of OPT family on six NLP tasks when various phase shifts are applied.

the causal language modelling objective vs the po-
sition information provided to the model during
phase shift (Haviv et al., 2022). We also compare
the perplexities of each sentence across different
phase shifts and plot the frequency of sentences
having the lowest perplexity in each k (Figure 3).
We observe in GPT2 that more than 70% of the
sentences have their best perplexity in k = 0, high-
lighting a severe zero-position bias. OPT350M has
better sub-window sentence representation capac-
ity than similarly sized GPT2, which is also evident
from the acceptability results in Figure 2.

4 Impact of phase shifts on in-context
learning

More recently, zero-shot and few-shot inference,
commonly referred to as in-context learning, have
become a de facto standard in evaluating pretrained
language models (Brown et al., 2020). In this ap-
proach, the model’s predictions are produced by
conditioning it on certain prompts, such as instruc-
tions (zero-shot setting) or a few examples of input-
output pairs (few-shot setup). In both cases, the
model faces an extended input text, and we sus-
pect it will be affected by deficiencies of APE.
To evaluate this hypothesis, we employ an exper-
imental setup similar to §3. Under zero-shot and
five-shot inference regimes, we assess the model
performance on standard NLP tasks when it is fed
with inputs in increasing values of phase shifts. We
choose OPT model family, because it is available
in a wide range of sizes (125M to 30B parameters),
allowing allows us to examine the behavior of APE
at different scales. Moreover, our evaluations take
into account four tasks reported in the original pa-

0 100 200 300 400 500 600 700 800 900 1000
Phase shift (k)

0

5

10

15

20
Co

un
t

OPT (125M)
OPT (350M)
OPT (2.7B)
OPT (13B)
OPT (30B)

Figure 5: Distribution of prompts with best accuracy
across all six tasks.

per: Winogrande (Sakaguchi et al., 2020), COPA
(Gordon et al., 2012), PIQA (Bisk et al., 2020),
and ARC (Clark et al., 2018) as well as two clas-
sification datasets from GLUE benchmark (Wang
et al., 2019): MRPC and RTE. We provide an ag-
gregated view of the models’ performance on all
six accuracy-dominated benchmarks in Figure 4.
The detailed plots for each task are in Appendix B.

In most tasks, the performance deteriorates when
the model process inputs in any other phase shift
than zero, especially in zero-shot inference. More
importantly, the model’s performance is not always
adversely affected by phase shifts. In fact, Figure 5
shows that non-zero starting positions result in the
best accuracy for many prompts. This erratic per-
formance is present in all model sizes, and scaling
the number of parameters does not help. Further-
more, one can see larger models are more affected
by shifted starting position, which suggests that ab-
solute positional embedding might need more data
or training as the number of parameters increases.

4452

0 100 200 300

0
10

0
20

0
30

0

CoLA

0 100 200 300

0
10

0
20

0
30

0

MRPC

0 100 200 300

0
10

0
20

0
30

0

RTE

0.35

0.40

0.45

0.50

0.55

0.75

0.80

0.85

0.625

0.650

0.675

0.700

0.725

Eval Phase Shift

Tr
ai

n
Ph

as
e

Sh
ift

Figure 6: GLUE task heatmap with varying fine-tuning
train and test phase shifts, averaged across all models.
Darker colors represent better task performance.

5 Impact of phase-shifts on fine-tuning

Finally, we investigate the effect of phase shift
in fine-tuning. We ask whether the models can
generalize to out-of-phase sentences for a given
task. We train RoBERTa, BART, GPT2 and OPT
models on CoLA, RTE and MRPC tasks from the
GLUE benchmark (Wang et al., 2019) and evaluate
them on phase-shifts. We choose these three rela-
tively small tasks in order to decrease the number
of gradient updates to position embeddings during
fine-tuning. We perform a cross-phase analysis
by training and evaluating across different phase
shifts (k = 0, 100, 200, 300) for all models on the
same set of datasets, and show the averaged per-
formance. We observe for all models, the task
performance drops during out-of-phase evaluation
(non-diagonals in Figure 6).

The drop in performance of evaluating out-of-
phase sentences might just be simply attributed
to overfitting on position information during fine-
tuning. However, we observe that for all tasks,
training and evaluating on the same phase-shift is
worse when k ̸= 0 (diagonals in Figure 6). Out-of-
phase training appears to be worst for CoLA, which
suffers drastically when fine-tuning on different
phase shifts. These results highlight a potential
task data bias with respect to different positions.

6 Conclusion

In this work, we investigate the abilities of APEs in
encoding the relative positions of the tokens in an
input. We observe that TLMs using APEs encode
sentences differently based on the starting posi-
tion of the sentence in the context window. This
result has major implications in the way we per-
ceive the sentence processing capabilities of TLMs.
Specifically, we observe that the representation of
the same sentence varies depending on where it is
in the context window, such that it impacts zero
shot, few shot and full shot task performance of
sub-window sentences. Future work could leverage

the start position in building robust and position-
generalizable models. We hope our work can in-
form the community on the pitfalls of using APEs,
and inspire development and adoption of alterna-
tive relative position embedding based approaches.

Limitations

Our work primarily focuses on evaluating the rela-
tive position encoding of APEs. We do not focus
on the relative position embeddings (Shaw et al.,
2018; Raffel et al., 2020) (RPE) as our method
of phase-shift analysis is not applicable to those
classes of models. RPEs employ a window based
position information computation on the fly, which
does not require it to store embeddings uniquely
for each position. Thus, a phase shift in RPE would
not change the sentence processing pipeline, as the
model recomputes the position information based
on the shifted window. Thus, we need different
tools to study the relative position encoding of RPE
than the one proposed in this paper.

We also acknowledge that our study is primarily
focused on English language data from BLiMP and
GLUE. It is likely the same results would hold in
a multi-lingual model, however, since many lan-
guages are less word order inflexible than English,
that should be investigated in a follow-up work.

Ethical Consideration

Our work aims at understanding the difference in
sentence representation by shifting position infor-
mation. In practice, this could yield un-intended
results from a TLM deployed in production. Since
we observe a large variation in results, we would ad-
vise for caution when deploying TLMs in sensitive
real world applications, as the relative positioning
of a given sentence might evoke different responses
from the model. We hope our work can be useful
to motivate the use of better positional encoding
schemes in pre-training TLMs in future.

Acknowledgements

We would like to thank Kanishka Misra, Shagun
Sodhani, Stephen Roller and Kushal Arora for their
feedback on the initial versions of this draft. We
are also grateful for anonymous reviewers’ feed-
back. Siva Reddy acknowledges the support by the
Facebook CIFAR AI Chair program.

4453

References
Mikel Artetxe, Shruti Bhosale, Naman Goyal, Todor

Mihaylov, Myle Ott, Sam Shleifer, Xi Victoria
Lin, Jingfei Du, Srinivasan Iyer, Ramakanth Pa-
sunuru, Giri Anantharaman, Xian Li, Shuohui Chen,
Halil Akin, Mandeep Baines, Louis Martin, Xing
Zhou, Punit Singh Koura, Brian O’Horo, Jeff Wang,
Luke Zettlemoyer, Mona T. Diab, Zornitsa Kozareva,
and Ves Stoyanov. 2021. Efficient large scale lan-
guage modeling with mixtures of experts. CoRR,
abs/2112.10684.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. CoRR,
abs/2004.05150.

Yonatan Bisk, Rowan Zellers, Ronan LeBras, Jianfeng
Gao, and Yejin Choi. 2020. PIQA: reasoning about
physical commonsense in natural language. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 7432–
7439. AAAI Press.

Sid Black, Leo Gao, Phil Wang, Connor Leahy,
and Stella Biderman. 2021. GPT-Neo: Large
Scale Autoregressive Language Modeling with Mesh-
Tensorflow. If you use this software, please cite it
using these metadata.

Sidney Black, Stella Biderman, Eric Hallahan,
Quentin Gregory Anthony, Leo Gao, Laurence Gold-
ing, Horace He, Connor Leahy, Kyle McDonell,
Jason Phang, Michael Martin Pieler, USVSN Sai
Prashanth, Shivanshu Purohit, Laria Reynolds,
Jonathan Tow, Ben Wang, and Samuel Weinbach.
2022. GPT-neox-20b: An open-source autoregres-
sive language model. In Challenges & Perspectives
in Creating Large Language Models.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek

Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2022. Palm: Scaling language mod-
eling with pathways.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? try arc, the AI2 reasoning challenge. CoRR,
abs/1803.05457.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber.
2021. The devil is in the detail: Simple tricks im-
prove systematic generalization of transformers. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing, pages 619–
634, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc Le, and Ruslan Salakhutdinov. 2019.
Transformer-XL: Attentive language models beyond
a fixed-length context. In Proceedings of the 57th
Annual Meeting of the Association for Computational
Linguistics, pages 2978–2988, Florence, Italy. Asso-
ciation for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.
In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black,
Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff,
Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. 2021. A
framework for few-shot language model evaluation.

Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, and
Bill Dolan. 2007. The third PASCAL recognizing

4454

http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2112.10684
http://arxiv.org/abs/2004.05150
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://aaai.org/ojs/index.php/AAAI/article/view/6239
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://doi.org/10.5281/zenodo.5297715
https://openreview.net/forum?id=HL7IhzS8W5
https://openreview.net/forum?id=HL7IhzS8W5
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/ARXIV.2204.02311
https://doi.org/10.48550/ARXIV.2204.02311
http://arxiv.org/abs/1803.05457
http://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/2021.emnlp-main.49
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/P19-1285
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/I05-5002
https://aclanthology.org/I05-5002
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://aclanthology.org/W07-1401

textual entailment challenge. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 1–9, Prague. Association for
Computational Linguistics.

Andrew Gordon, Zornitsa Kozareva, and Melissa Roem-
mele. 2012. SemEval-2012 task 7: Choice of plau-
sible alternatives: An evaluation of commonsense
causal reasoning. In *SEM 2012: The First Joint
Conference on Lexical and Computational Seman-
tics – Volume 1: Proceedings of the main conference
and the shared task, and Volume 2: Proceedings of
the Sixth International Workshop on Semantic Eval-
uation (SemEval 2012), pages 394–398, Montréal,
Canada. Association for Computational Linguistics.

Adi Haviv, Ori Ram, Ofir Press, Peter Izsak, and Omer
Levy. 2022. Transformer Language Models without
Positional Encodings Still Learn Positional Informa-
tion. ArXiv preprint, abs/2203.16634.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. 2020. Compositionality decomposed: How
do neural networks generalise? (extended abstract).
In Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20,
pages 5065–5069. International Joint Conferences on
Artificial Intelligence Organization. Journal track.

Nora Kassner and Hinrich Schütze. 2020. Negated and
misprimed probes for pretrained language models:
Birds can talk, but cannot fly. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7811–7818, Online. Asso-
ciation for Computational Linguistics.

Guolin Ke, Di He, and Tie-Yan Liu. 2021. Rethinking
positional encoding in language pre-training. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Shun Kiyono, Sosuke Kobayashi, Jun Suzuki, and Ken-
taro Inui. 2021. SHAPE: Shifted absolute position
embedding for transformers. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 3309–3321, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Brenden M. Lake and Marco Baroni. 2018. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In ICML.

Hector J. Levesque, Ernest Davis, and L. Morgenstern.
2011. The winograd schema challenge. In KR.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: Denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,

pages 7871–7880, Online. Association for Computa-
tional Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ziyang Luo, Artur Kulmizev, and Xiaoxi Mao. 2021.
Positional artefacts propagate through masked lan-
guage model embeddings. In Proceedings of the 59th
Annual Meeting of the Association for Computational
Linguistics and the 11th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 5312–5327, Online. Association
for Computational Linguistics.

Brian W. Matthews. 1975. Comparison of the pre-
dicted and observed secondary structure of t4 phage
lysozyme. Biochimica et biophysica acta, 405 2:442–
51.

Kanishka Misra. 2022. minicons: Enabling flexible be-
havioral and representational analyses of transformer
language models. ArXiv preprint, abs/2203.13112.

Kanishka Misra, Allyson Ettinger, and Julia Rayz. 2020.
Exploring BERT’s sensitivity to lexical cues using
tests from semantic priming. In Findings of the Asso-
ciation for Computational Linguistics: EMNLP 2020,
pages 4625–4635, Online. Association for Computa-
tional Linguistics.

Santiago Ontanon, Joshua Ainslie, Zachary Fisher, and
Vaclav Cvicek. 2022. Making transformers solve
compositional tasks. In Proceedings of the 60th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 3591–
3607, Dublin, Ireland. Association for Computational
Linguistics.

Ofir Press, Noah Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In International Confer-
ence on Learning Representations.

Ofir Press, Noah A. Smith, and Mike Lewis. 2021.
Shortformer: Better language modeling using shorter
inputs. In Proceedings of the 59th Annual Meet-
ing of the Association for Computational Linguistics
and the 11th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 5493–5505, Online. Association for Computa-
tional Linguistics.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

4455

https://aclanthology.org/W07-1401
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://aclanthology.org/S12-1052
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://doi.org/10.18653/v1/2020.acl-main.698
https://openreview.net/forum?id=09-528y2Fgf
https://openreview.net/forum?id=09-528y2Fgf
https://doi.org/10.18653/v1/2021.emnlp-main.266
https://doi.org/10.18653/v1/2021.emnlp-main.266
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://proceedings.mlr.press/v80/lake18a/lake18a.pdf
http://commonsensereasoning.org/2011/papers/Levesque.pdf
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2021.acl-long.413
https://doi.org/10.18653/v1/2021.acl-long.413
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://doi.org/https://doi.org/10.1016/0005-2795(75)90109-9
https://arxiv.org/abs/2203.13112
https://arxiv.org/abs/2203.13112
https://arxiv.org/abs/2203.13112
https://doi.org/10.18653/v1/2020.findings-emnlp.415
https://doi.org/10.18653/v1/2020.findings-emnlp.415
https://doi.org/10.18653/v1/2022.acl-long.251
https://doi.org/10.18653/v1/2022.acl-long.251
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.18653/v1/2021.acl-long.427
https://doi.org/10.18653/v1/2021.acl-long.427
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html

Maithra Raghu, Thomas Unterthiner, Simon Kornblith,
Chiyuan Zhang, and Alexey Dosovitskiy. 2021. Do
vision transformers see like convolutional neural net-
works? Advances in Neural Information Processing
Systems, 34:12116–12128.

Vinit Ravishankar, Andrey Kutuzov, Lilja Øvrelid, and
Erik Velldal. 2021. Multilingual ELMo and the ef-
fects of corpus sampling. In Proceedings of the
23rd Nordic Conference on Computational Linguis-
tics (NoDaLiDa), pages 378–384, Reykjavik, Ice-
land (Online). Linköping University Electronic Press,
Sweden.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavat-
ula, and Yejin Choi. 2020. Winogrande: An adver-
sarial winograd schema challenge at scale. In The
Thirty-Fourth AAAI Conference on Artificial Intelli-
gence, AAAI 2020, The Thirty-Second Innovative Ap-
plications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAI 2020, New
York, NY, USA, February 7-12, 2020, pages 8732–
8740. AAAI Press.

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Ka-
trin Kirchhoff. 2020. Masked language model scor-
ing. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
2699–2712, Online. Association for Computational
Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018.
Self-attention with relative position representations.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464–468, New Or-
leans, Louisiana. Association for Computational Lin-
guistics.

Koustuv Sinha, Robin Jia, Dieuwke Hupkes, Joelle
Pineau, Adina Williams, and Douwe Kiela. 2021.
Masked language modeling and the distributional hy-
pothesis: Order word matters pre-training for little.
In Proceedings of the 2021 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2888–2913, Online and Punta Cana, Dominican Re-
public. Association for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Ben Wang. 2021. Mesh-Transformer-JAX: Model-
Parallel Implementation of Transformer Lan-
guage Model with JAX. https://github.com/
kingoflolz/mesh-transformer-jax.

Benyou Wang, Lifeng Shang, Christina Lioma, Xin
Jiang, Hao Yang, Qun Liu, and Jakob Grue Simon-
sen. 2021. On position embeddings in BERT. In 9th
International Conference on Learning Representa-
tions, ICLR 2021, Virtual Event, Austria, May 3-7,
2021. OpenReview.net.

Yu-An Wang and Yun-Nung Chen. 2020. What do
position embeddings learn? an empirical study of
pre-trained language model positional encoding. In
Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP),
pages 6840–6849, Online. Association for Computa-
tional Linguistics.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mo-
hananey, Wei Peng, Sheng-Fu Wang, and Samuel R.
Bowman. 2020. BLiMP: The benchmark of linguis-
tic minimal pairs for English. Transactions of the
Association for Computational Linguistics, 8:377–
392.

Alex Warstadt, Amanpreet Singh, and Samuel R. Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mi-
haylov, Myle Ott, Sam Shleifer, Kurt Shuster, Daniel
Simig, Punit Singh Koura, Anjali Sridhar, Tianlu
Wang, and Luke Zettlemoyer. 2022. Opt: Open
pre-trained transformer language models. ArXiv,
abs/2205.01068.

4456

https://openreview.net/forum?id=Gl8FHfMVTZu
https://openreview.net/forum?id=Gl8FHfMVTZu
https://openreview.net/forum?id=Gl8FHfMVTZu
https://aclanthology.org/2021.nodalida-main.41
https://aclanthology.org/2021.nodalida-main.41
https://aaai.org/ojs/index.php/AAAI/article/view/6399
https://aaai.org/ojs/index.php/AAAI/article/view/6399
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/2020.acl-main.240
https://doi.org/10.18653/v1/N18-2074
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://doi.org/10.18653/v1/2021.emnlp-main.230
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax
https://openreview.net/forum?id=onxoVA9FxMw
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.18653/v1/2020.emnlp-main.555
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00321
https://doi.org/10.1162/tacl_a_00290
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068

A Experiment Details

A.1 Models
We used 11 publicly available pretrained language
models in this work, ranging across different archi-
tecture families: Encoder, Sequence-to-Sequence,
and Auto regressive models. All of them use abso-
lute positional embeddings (APE) that is learned
during pretraining. In §4, we follow the standard
practice for in-context learning evaluation (Brown
et al., 2020; Black et al., 2022; Gao et al., 2021)
and use autoregressive models. In our initial experi-
ments, we found GPT2 to have a similar behaviour
to OPT models, and since the OPT models are
available in a wider range of sizes, we primarily
focus on them for these experiments. In fine-tuning
(§5) and acceptability (§3) experiments, we assess
all model families. However, because of the com-
putational costs associated with these experiments,
we opt for model variants with < 1B parameters.
The details of all models can be found in Table 1.
We use HuggingFace (Wolf et al., 2020) model hub
to load, fine-tune train, and run infererence for all
models.

A.2 Datasets
We use BLiMP (Warstadt et al., 2020) for the gram-
matical acceptability experiments in §3 as it is typ-
ically employed in a inference-only setting and
does not require additional training. For §5, we
take three tasks from the standard language un-
derstanding benchmark GLUE (Wang et al., 2019)
which is often used for finetuning language models:
MRPC, RTE, and COLA. In addition to these three
tasks, we use four other datasets, COPA, PIQA,
WinoGrande, and ARC, on which the OPT family
have previously demonstrated good performance
(Zhang et al., 2022). Table 2 shows the statistics
of all datasets, and the following provides a brief
description of them:

• BLiMP (Warstadt et al., 2020) is a challenge
set designed to measures the model’s ability to
distinguish between acceptable and unaccept-
able English sentences. This benchmark con-
sists of synthetic examples created based on
expert-crafted grammars, where each instance
comes with two versions: one acceptable and
one unacceptable.

• COPA (Gordon et al., 2012) is an open-
domain commonsense causal reasoning task,
where the model is given a premise and must

correctly identify its cause or effect. COPA
consists of short hand-crafted sentences and
is provided as a multi-choice task.

• PIQA (Bisk et al., 2020) is a physical com-
monsense benchmark dataset, challenging lan-
guage models’ idea of the physical world.
Given a physical goal, a model must choose
the most plausible solution between two
choices. This benchmark is used in the multi-
choice format.

• WinoGrande (Sakaguchi et al., 2020) is a
commonsense reasoning benchmark based
on the Winograd Schema Challenge (WSC)
(Levesque et al., 2011) with increased hard-
ness and scale. The dataset is provided as a
pronoun resolution problem, where the model
must recover an ambiguous pronoun in a given
context.

• ARC (Clark et al., 2018) is collected from
grade-school-level science questions com-
monly asked in exams. This question-
answering dataset is provided in a multi-
choice QA format suitable for evaluating pre-
trained language models. We use the "easy"
subset of this benchmark.

• MRPC (Dolan and Brockett, 2005) is a para-
phrase identification dataset collected from
online news websites and has become a stan-
dard benchmark in the NLP community. We
follow the previous works and treat the data
as a text classification task.

• RTE (Giampiccolo et al., 2007) is one of orig-
inal subtasks in the GLUE benchmark and
comprises textual entailment challenges. We
follow the standard format and use Natural
Language Inference (NLI) protocol for this
dataset.

• CoLA (Warstadt et al., 2019) is a linguistic
acceptability dataset, where each example is
an English sentence annotated with a binary
label showing whether it is a grammatical sen-
tence. This is a text classification dataset and
we follow the standard protocol and report
Matthews correlation coefficient (Matthews,
1975).

4457

Model Type Pretraining Objective Context Size First Position # Layers Hidden Size # Params

RoBERTa family (Liu et al., 2019)

RoBERTaBASE encoder-only Masked Language Modeling 514 2 12 768 123M
RoBERTaLARGE encoder-only Masked Language Modeling 514 2 24 1024 325M

BART family (Lewis et al., 2020)

BARTBASE encoder-decoder Masked Language Modeling 1024 2 6 768 140M
BARTLARGE encoder-decoder Masked Language Modeling 1024 2 12 1024 400M

GPT2 family (Radford et al., 2019)

GPT2 decoder-only Next Token Prediction 1024 0 12 768 125M
GPT2MEDIUM decoder-only Next Token Prediction 1024 0 24 1024 345M

OPT family (Zhang et al., 2022)

OPT125M decoder-only Next Token Prediction 2048 2 12 768 125M
OPT350M decoder-only Next Token Prediction 2048 2 24 1024 350M
OPT2.7M decoder-only Next Token Prediction 2048 2 32 2560 2.7B
OPT13B decoder-only Next Token Prediction 2048 2 40 5120 13B
OPT30B decoder-only Next Token Prediction 2048 2 48 7168 30B

Table 1: Details of the models we used in this paper.

Dataset # Train # Test/Validation

BliMP - 67000
COPA 400 100
PIQA 16113 1838
WinoGrande 40398 1267
ARC (Easy) 2251 2376
MRPC 3668 408
RTE 2490 277
CoLA 8551 1043

Table 2: Dataset statistics we used in this work.

A.3 Grammatical acceptability

We use all 67 subsets (a total of 67K data in-
stances) of BLiMP (Warstadt et al., 2020). A model
achieves a score of 1 if it successfully assigns a
lower perplexity to the grammatical version of each
example. We report the average score across the
entire dataset for starting positions that are shifted
in the intervals of 10. The inputs are fed to the
models in the format explained in §2.1. Recall
that perplexities are ill-defined in case of Masked
Language Models. Thus, we follow the formula-
tion of Salazar et al. (2020) to compute a pseudo-
perplexity for RoBERTa and BART. We adopt the
Minicons (Misra, 2022) library to compute the per-
plexities, which provides a unified interface for
models hosted in HuggingFace (Wolf et al., 2020).

A.4 Prompting

For evaluating zero-shot inference and in-context
learning, we make use of EleutherAI Language
Model Evaluation Harness (Gao et al., 2021), an
open-source library that is used for evaluating au-
toregressive pretrained language models (Black
et al., 2022). In the zero-shot setting, each ex-

Parameter Value

Learning rate {0.0001, 0.0002, 0.0003}
Batch size {16, 32}
Train Epochs 10
Early Stopping On
Early Stopping Tolerance 3
Optimizer AdamW
Learning Rate Schedule Linear
Weight Decay 0.0
Warm Up 6% of initial training steps

Table 3: Summary of hyperparamters used in finetuning
experiments.

ample is converted to a prompt using task-specific
templates. Then, the prompt is fed to the language
model to elicit the answer. Similarly, in the few-
shot setup, a prompt is created from the concate-
nation of few dataset examples base on the same
template and are prepended as a context to valida-
tion instances. In our experiments, we use default
templates provided by the EleutherAI Language
Model Evaluation Harness, which can be found in
Table 4. The task performance is computed over
the validation set of due to the lack of public test
sets, except for ARC, where we evaluate the mod-
els on the test set. We set the number of few-shots
examples to be five and randomly sample them
from the training set of each dataset. We report the
few-shot results averaged over five random seeds.
Note that feeding inputs to the models still follows
the same protocol introduced in §2.1.

A.5 Fine-tuning

We fine-tune all models on CoLA, RTE and MRPC
tasks from the GLUE benchmark on different val-
ues of phase shift k, and evaluate across all pos-

4458

Dataset Template

COPA Prompt <premise> because/therefore <possible-continuation>

Example The water in the teapot started to boil therefore the teapot whistled.

PIQA Prompt Question: <question>\n
Answer: <possible-answer>

Example Question: How can I quickly clean my blender without washing?\n
Answer: Put some ice, water, and a half cup of baking soda in the blender and puree for 3 min.

WinoGrande Prompt <context> because <replaced-pronoun> <continuation>

Example Angela was better suited to conduct the science experiment than Katrina because Katrina was less disciplined.

ARC Prompt Question: <question>\n
Answer: <possible-answer>

Example Question: Amanda is learning about different adaptations of animals. Which is an example of a behavioral adaptation?\n
Answer: migration of songbirds

MRPC Prompt

Sentence 1: <sentence1>\n
Sentence 2: <sentence2>\n
Question: Do both sentences mean the same thing?\n
Answer: <label>

Example

Sentence 1: Inamed shares closed down nearly 12 percent on Nasdaq, where it was one of the top percentage losers.\n
Sentence 2: Inamed shares dropped as much as about 16 percent on Nasdaq, where it was one of the top percentage losers.\n
Question: Do both sentences mean the same thing?\n
Answer: yes

RTE Prompt
<premise>\n
Question: <sentence2>. True or False?\n
Answer: <label>

Example
United States astronaut Sunita Williams, currently on board the International Space Station, has today broken the record for. . .\n
Question: Anousheh Ansari paid to go in space. True or False?\n
Answer: False

CoLA Prompt
<sentence>\n
Question: Does this sentence make sense?\n
Answer: <label>

Example
Brandon read every book that Megan did.\n
Question: Does this sentence make sense?\n
Answer: yes

Table 4: Prompt templates used in EleutherAI Language Model Evaluation Harness library (Gao et al., 2021)

sible phase shifts. Since RoBERTa only supports
512 positions, and maximum sentence length in
these datasets amount to 128, we train models upto
k = 300. For each fine-tuning experiment, we first
run a hyperparameter sweep varying learning rate
(0.0001, 0.0002, 0.0003) and training batch size
(16, 32) (amounting to 6 runs) with 6% warmup
steps, similar to the setting by Liu et al. (2019).
We also set the weight decay to zero in order to
not harm the existing positional encodings which
are not used during training. Table 3 summarizes
all of the parameters. Finally, we choose the best
hyperparams and repeat the experiment over five
different seeds (42 to 46), and present an aggre-
gate over the results. Table 5 lists the outcome of
hyperparameters tuning.

In Figure 7, we further show the difference in
fine-tuned models when trained on no phase shift
(k = 0) and evaluated on different phase shifts
(k = 100, 200, 300). In-line with our experimental
results from §3, we observe worse generalization
results from BART.

B Detailed results on phase shifting with
prompts

We displayed a holistic view of zero-shot and five-
shot experiments in Figure 4, covering the accura-
cies averaged over all six datasets. In this section,
we now report and analyze the result of each dataset
individually. Figure 9 and Figure 10 showcase mod-
els’ performance in zero-shot and five-shot config-
urations. The same pattern can be seen across all
model sizes in COPA, WinoGrande, PIQA, ARC
(Easy), and RTE. Concretely, the zero-shot abilities
of the models sharply decrease as we increase the
starting position. Moreover, five-shot inference,
typically referred to as in-context learning, is also
subject to decreased performance, ranging from
-2% to -40%. However, the degradation is not as
severe as with zero-shot setting. Only MRPC ex-
hibits stable phase shift performance, but even in
this case, larger models are still adversely affected.
Due to the exceptionally poor performance of OPT
family on CoLA, we exclude these results from our
analysis (Figure 10).

The erratic behaviour observed in majority of
evaluated datasets makes it evident that models
struggle to encode the relative distances of words as

4459

0 100 200 300

40

50

60

70

80

90

MRPC

0 100 200 300
40

50

60

70

80

90

RTE

0 100 200 300
0

10

20

30

40

50

60

70

CoLA

0 100 200 300

40

50

60

70

80

90

0 100 200 300
40

50

60

70

80

90

0 100 200 300
0

10

20

30

40

50

60

70

0 100 200 300

40

50

60

70

80

90

0 100 200 300
40

50

60

70

80

90

0 100 200 300
0

10

20

30

40

50

60

70

0 100 200 300

40

50

60

70

80

90

0 100 200 300

Phase Shift (k)

40

50

60

70

80

90

0 100 200 300
0

10

20

30

40

50

60

70

RoBERTa Family

BART Family

GPT2 Family

OPT Family

RoBERTa (base)
RoBERTa (large)

BART (base)
BART (large)

GPT2
GPT2 (Medium)

OPT (125M)
OPT (350M)

Figure 7: GLUE downstream task results on CoLA,
RTE and MRPC. The dashed lines represent the model
performance with no phase shifts. The shaded area show
the standard deviation from five random seeds.

their understanding of inputs heavily change with
various phase shifts. It is important to note that our
findings demonstrate models’ unstable functioning
as opposed to solely highlighting their failure. In-
deed, Figure 5 shows that one can extract better
and improved accuracies with non-zero starting po-
sitions. Namely, OPT30B has the best zero-shot
performance on phase shift k = 300 in the case of
MRPC; the same pattern can also be observed in
RTE five-shot for OPT13B on phase shift k = 300.
Another noteworthy observation is that the perfor-
mance drop is often a non-monotonic function of
phase shifts. i.e., for some prompts, the model
might be more accurate for k = 1000 than for
k = 0. This observation suggests that some posi-
tional biases might be learned during pre-training
and are well-captured by APE. So, increasing val-
ues of k in some occasions lands the model atten-
tions in a “sweet spot” in the processing window,
such that the model benefits from some positional
biases learned during pre-training.

We observe the presence of erratic behavior
across a fairly wide range of model sizes in the
OPT family. Additionally, it can be seen that larger
models are more prone to fail at encoding relative
positions than their smaller counterparts. One pos-
sible explanation for this is that in order for the
models to encode relative positional information,
they need to view all combinations of words and
sentences in every position. This coverage rarely
occurs in natural data, resulting in data sparsity
issues. Hence, models with a large number of pa-
rameters may require more data/training to learn
the relative ordering of words.

C Variation of best perplexity across
phase shifts

In this section, we investigate the perplexity of in-
dividual sentences from the BLiMP dataset across
each phase shift for each model. We plot the dis-
tribution of sentences achieving lowest perplexity
in each phase shift for the range of models in Fig-
ure 8. We observe several modes of phase shift
for RoBERTa and BART models where they have
the least perplexity on phase shifts other than the
standard (zero position). In the case of GPT2 and
OPT, the distribution is more skewed towards zero,
indicating they almost always achieve the lowest
perplexity in the zero position, i.e. when there is
no phase shift.

4460

D Code and reproducibility

For all of the experiments in this work, we used
open-source libraries (Wolf et al., 2020; Gao et al.,
2021; Misra, 2022) and models with publicly avail-
able checkpoints. The code to reproduce the re-
sults can be accessed from https://github.com/
kazemnejad/lm_pos_investigations. Further-
more, Listing 1 provides a short, easy-to-use code
snippet to modify starting position in HuggingFace
models. (We will also release a singularity image
with all dependencies to facilitate reproducibility.)
We ran our experiments on a mix of NVIDIA A100
40G and NVIDIA RTX8000 48G GPUs. In partic-
ular, almost all experiments required only one of
such GPUs. The exception was only in the prompt-
ing section, where the OPT30B model required two
NVIDIA RTX8000 48G GPUs to fit the model and
inputs of batch size 1.

0 100 200 300
0

5

10

RoBERTa (base)

0 100 200 300
0.0

2.5

5.0

7.5
RoBERTa (large)

0 200 400 600 800
0

10

20

BART (base)

0 200 400 600 800
0

2

4

6

BART (large)

0 200 400 600 800
0

10

20

GPT2

0 200 400 600 800
0

20

40

60

GPT2 (Medium)

0 200 400 600 800
0

20

40
OPT (125M)

0 200 400 600 800
0

5

10

OPT (350M)

Phase Shifts (k)

Pe
rc

en
ta

ge
 o

f d
at

a

Figure 8: Distribution of sentences having the lowest
perplexities for each phase shift

E Attention analysis

We further perform attention analysis on GPT2,
RoBERTa and BART to visualize whether the
model’s attention pattern changes with phase shifts.

import torch

from transformers import AutoModelForCausalLM, AutoTokenizer

Download and load the pretrained model

tokenizer = AutoTokenizer.from_pretrained("GPT2-medium")

model = AutoModelForCausalLM.from_pretrained("GPT2-medium")

text = "The capital of France is"

inputs = tokenizer(text, return_tensors="pt")

Create unshifted position ids from the attention_mask, which

is equivalent to

torch.arange(inputs["input_ids"].shape[-1])

↪→
↪→
inputs["position_ids"] = inputs["attention_mask"].cumsum(-1)

-1↪→
print(inputs["position_ids"])

>>> tensor([[0, 1, 2, 3, 4]])

output1 = model(**inputs, return_dict=True)

next_token_id = torch.argmax(output1.logits[0, -1])

print(tokenizer.decode(next_token_id))

>>> Paris

Add special tokens

special_tokens = torch.LongTensor([tokenizer.bos_token_id,

tokenizer.eos_token_id])↪→
special_attention_mask = torch.LongTensor([1,1])

inputs['input_ids'] = torch.cat([special_tokens,

inputs['input_ids'][0]]).unsqueeze(0)↪→
inputs['attention_mask'] = torch.cat([special_attention_mask,

inputs['attention_mask'][0]]).unsqueeze(0)↪→

Recompute position ids

inputs["position_ids"] = inputs["attention_mask"].cumsum(-1)

-1↪→

Shift the position ids by 10

inputs["position_ids"] += 9

inputs["position_ids"][0, 0] = 0

print(inputs["position_ids"])

>>> tensor([[0, 10, 11, 12, 13, 14, 15]])

output2 = model(**inputs, return_dict=True)

next_token_id = torch.argmax(output2.logits[0, -1])

print(tokenizer.decode(next_token_id))

>>> the

Listing 1: Python code example to shift the starting
position of a sentence from k = 0 to k = 10.

Following the experimental protocol of Raghu
et al. (2021), we first collect a summary of atten-
tion weights computed with token distances for
each token-pair in a sentence. This summary met-
ric is then further normalized for sentence length.
The values of this metric show whether the atten-
tion is local (low values)—focused on small token
distances—or global (high values)—i.e. focused
on the whole sentence.

We compute this attention summary metric on a
sample of 5000 sentences drawn from the BLiMP

4461

https://github.com/kazemnejad/lm_pos_investigations
https://github.com/kazemnejad/lm_pos_investigations

0 200 400 600 800 1000

50

60

70

80

Ac
cu

ra
cy

0-shot

0 200 400 600 800 1000

50

60

70

80

5-shot

0 200 400 600 800 1000
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

Ac
cu

ra
cy

0 200 400 600 800 1000
47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

67.5

0 200 400 600 800 1000

55

60

65

70

75

Ac
cu

ra
cy

0 200 400 600 800 1000

55

60

65

70

75

0 200 400 600 800 1000
Phase shift (k)

30

40

50

60

70

Ac
cu

ra
cy

0 200 400 600 800 1000
Phase shift (k)

30

40

50

60

70

COPA

WinoGrande

PIQA

ARC (Easy)

OPT (125M) OPT (350M) OPT (2.7B) OPT (13B) OPT (30B)

Figure 9: Zero-shot and Few-shot performance of OPT family with various phase shifts for each individual dataset
(Part 1)

4462

0 200 400 600 800 1000

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0

Ac
cu

ra
cy

0-shot

0 200 400 600 800 1000

47.5

50.0

52.5

55.0

57.5

60.0

62.5

65.0
5-shot

0 200 400 600 800 1000

35

40

45

50

55

60

65

70

Ac
cu

ra
cy

0 200 400 600 800 1000

35

40

45

50

55

60

65

70

0 200 400 600 800 1000
Phase shift (k)

0

2

4

6

8

10

m
at

th
ew

s_
co

rrc
oe

f

0 200 400 600 800 1000
Phase shift (k)

0

2

4

6

8

10

RTE

MRPC

CoLA

OPT (125M) OPT (350M) OPT (2.7B) OPT (13B) OPT (30B)

Figure 10: Zero-shot and Few-shot performance of OPT family with various phase shifts for each individual dataset
(Part 2)

4463

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

CoLA

0 100 200 300
0

10
0

20
0

30
0

MRPC

0 100 200 300

0
10

0
20

0
30

0

RTE

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

0.80

0.82

0.84

0.86

0.88

0.70

0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.80

0.82

0.84

0.86

0.88

0.68

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.42

0.44

0.46

0.48

0.50

0.74

0.76

0.78

0.80

0.82

0.84

0.86

0.62

0.64

0.66

0.68

0.70

0.72

0.46

0.48

0.50

0.52

0.54

0.56

0.82

0.84

0.86

0.88

0.90

0.70

0.72

0.74

0.76

0.78

0.80

0.82

RoBERTa (base)

RoBERTa (large)

BART (base)

BART (large)

Figure 11: Individual heatmap for each GLUE task and model with varying train (fine-tune) and test phase. (Part 1)

4464

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

CoLA

0 100 200 300
0

10
0

20
0

30
0

MRPC

0 100 200 300

0
10

0
20

0
30

0

RTE

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

0
10

0
20

0
30

0

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

Tr
ai

n
Ph

as
e

Sh
ift

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

0 100 200 300

Eval Phase Shift

0
10

0
20

0
30

0

0.1

0.2

0.3

0.4

0.5

0.55

0.60

0.65

0.70

0.75

0.80

0.50

0.52

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.0

0.1

0.2

0.3

0.4

0.5

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.50

0.55

0.60

0.65

0.70

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.60

0.65

0.70

0.75

0.80

0.54

0.56

0.58

0.60

0.62

0.64

0.66

0.35

0.40

0.45

0.50

0.55

0.74

0.76

0.78

0.80

0.82

0.84

0.66

0.68

0.70

0.72

0.74

GPT2

GPT2 (Medium)

OPT (125M)

OPT (350M)

Figure 12: Individual heatmap for each GLUE task and model with varying train (fine-tune) and test phase. (Part 2)

4465

Phase shifts
k = 0 k = 100 k = 200 k = 300

Model Learning Rate Batch Size Learning Rate Batch Size Learning Rate Batch Size Learning Rate Batch Size

CoLA

RoBERTaBASE 0.00002 32 0.00002 16 0.00002 16 0.00002 16
RoBERTaLARGE 0.00003 32 0.00003 32 0.00001 32 0.00002 16
BARTBASE 0.00002 32 0.00003 16 0.00002 16 0.00002 32
BARTLARGE 0.00002 16 0.00003 32 0.00003 16 0.00003 32
GPT2 0.00002 16 0.00003 32 0.00003 16 0.00003 16
GPT2MEDIUM 0.00002 32 0.00001 16 0.00003 16 0.00003 16
OPT125M 0.00002 16 0.00001 16 0.00001 32 0.00001 16
OPT350M 0.00001 16 0.00001 32 0.00002 32 0.00001 16

MRPC

RoBERTaBASE 0.00002 32 0.00003 16 0.00003 32 0.00001 32
RoBERTaLARGE 0.00002 32 0.00001 16 0.00002 32 0.00002 16
BARTBASE 0.00001 16 0.00003 32 0.00002 16 0.00003 16
BARTLARGE 0.00002 16 0.00003 16 0.00002 16 0.00003 16
GPT2 0.00002 16 0.00003 16 0.00002 16 0.00003 16
GPT2MEDIUM 0.00002 16 0.00003 16 0.00003 16 0.00003 16
OPT125M 0.00003 16 0.00002 32 0.00002 16 0.00003 32
OPT350M 0.00003 32 0.00001 16 0.00001 32 0.00001 32

RTE

RoBERTaBASE 0.00002 16 0.00003 16 0.00002 16 0.00002 16
RoBERTaLARGE 0.00003 32 0.00001 32 0.00003 32 0.00001 32
BARTBASE 0.00003 16 0.00003 32 0.00002 32 0.00003 16
BARTLARGE 0.00003 32 0.00003 16 0.00002 16 0.00003 16
GPT2 0.00001 16 0.00003 16 0.00003 16 0.00003 16
GPT2MEDIUM 0.00002 16 0.00003 16 0.00001 16 0.00002 32
OPT125M 0.00003 16 0.00001 32 0.00001 16 0.00001 32
OPT350M 0.00001 16 0.00001 16 0.00001 32 0.00001 16

Table 5: Result of hyperparamter sweep for finetuning experiments.

dataset (Warstadt et al., 2020). We then plot the
summary values per layer and sort according to
the values for each attention head, as per Raghu
et al. (2021). The idea is to discover whether this
attention summary metric is drastically different
under different phase shift conditions.

We do observe drastic differences in attention
patterns in all layers for GPT2 (Figure 13) and
GPT2-Medium (Figure 14). Comparing this with
of RoBERTa (base) (Figure 15) and RoBERTa
(large) (Figure 16), we can corroborate our find-
ings from §3—RoBERTa is much more robust to
phase shifts. Consequently, BART (Figure 17 and
Figure 18) also displays differences in attention
patterns, but they are not as drastic as GPT2.

F Extended Related Work

Positional encoding has been always an important
part of the Transformer architecture, and since it
original introduction different variants of it have
been deployed by pretrained models (see Table 6
for a summary of positional encoding used by some
of popular state-of-the-art models.)

Positional encodings have garnered a niche com-
munity over the past several years. Wang and Chen
(2020) investigate whether position embeddings
learn the meaning of positions and how do they af-
fect the learnability for different downstream tasks.

Wang et al. (2021) explore different positional en-
codings and establish monotonicity, translation and
symmetry properties of different methods, includ-
ing APEs. They also report that learned APE’s
demonstrate superior performance for text classi-
fication, further adding to the evidence APE’s en-
able exploitation of positional biases. Luo et al.
(2021) report that masked language model embed-
dings consists of positional artefacts which bias
the model output. More related to our work, Kiy-
ono et al. (2021) train a Transformer model from
scratch using shifted positional embeddings for
machine translation, and observe improved per-
formance in extrapolation and intrapolation setup.
Haviv et al. (2022) reports a surprising finding that
autoregressive Transformer models trained without
explicit positional information still perform on-par
with their counterparts having access to positional
information. This result is attributed to the causal
attention structure induced by the autoregressive
training only, as this effect is not observed with
masked language models, as highlighted by both
Haviv et al. (2022) and Sinha et al. (2021). Ke et al.
(2021) proposes a novel technique to de-correlate
the position encodings and token embeddings, and
achieve better downstream performance than base-
lines. Ravishankar et al. (2021) find relative po-
sitional encoding does not improve over APE in

4466

0 2 4 6 8 10

10

15

20

25

30

35

40

Layer : 0

0 2 4 6 8 10
10

15

20

25

30

35

40

Layer : 1

0 2 4 6 8 10

15

20

25

30

35

40

45

Layer : 2

0 2 4 6 8 10

15

20

25

30

35

40

45

50
Layer : 3

0 2 4 6 8 10
10

15

20

25

30

35

40

45

50
Layer : 4

0 2 4 6 8 10

30

35

40

45

50

Layer : 5

0 2 4 6 8 10

25

30

35

40

45

50
Layer : 6

0 2 4 6 8 10

30

35

40

45

50
Layer : 7

0 2 4 6 8 10

25

30

35

40

45

Layer : 8

0 2 4 6 8 10

25

30

35

40

45

50
Layer : 9

0 2 4 6 8 10

25

30

35

40

45

Layer : 10

0 2 4 6 8 10

15

20

25

30

35

40

45

Layer : 11

Figure 13: Attention globality distributions of GPT2 across different heads (sorted according to value) and averaged
over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange, green and red
curves represent k = 100, 200 and 300 respectively.

multi-lingual setting.

On the other hand, multiple works have shown
the advantage of explicit relative positional encod-
ing for length extrapolation. Csordás et al. (2021)
show Transformers equipped with variants of rel-
ative positional encoding (Dai et al., 2019; Shaw
et al., 2018) significantly outperform their abso-
lute counterparts when it comes to length general-
ization. In the same line of work, Ontanon et al.
(2022) also find that for numerous synthetic bench-
marks, the best extrapolation performance can only
be obtained by relative positional encoding. Press
et al. (2022) take the experiments beyond synthetic
datasets and show that APE’s struggle in generaliza-
tion to longer sequence of natural language. All of
these amount to the evidence that points to APE’s
as one of the potential reasons Transformers are
known to fail in length generalization and produc-
tivity (Hupkes et al., 2020; Lake and Baroni, 2018).
Although the benefits of using explicit relative po-
sitional bias is mentioned in various works, they
typically come at the cost of slowing the training
down: (Press et al., 2022) report that training T5
(which uses a relative variant of positional encod-

ing) is almost twice as slow as training a model with
sinusoidal absolute embedding. Thus, the gained
runtime efficiency allows longer training of the
APE model, which in turn enables the further ex-
trapolation capabilities. These works suggest that
we have a lot left to explore about positional encod-
ing and highlight the fact that the consequences of
particular choices is still an open field of ongoing
research.

4467

0 10

25

30

35

40

45

Layer : 0

0 10

20

30

40

Layer : 1

0 10

20

30

40

Layer : 2

0 10

20

30

40

Layer : 3

0 10
10

20

30

40

50
Layer : 4

0 10
10

20

30

40

50
Layer : 5

0 10

20

30

40

50
Layer : 6

0 10

20

30

40

50
Layer : 7

0 10

20

30

40

50
Layer : 8

0 10

35

40

45

50
Layer : 9

0 10

30

40

50
Layer : 10

0 10

20

30

40

50
Layer : 11

0 10

25

30

35

40

45

50
Layer : 12

0 10
20

30

40

50
Layer : 13

0 10

25

30

35

40

45

50
Layer : 14

0 10

30

35

40

45

50
Layer : 15

0 10

30

35

40

45

50
Layer : 16

0 10

25

30

35

40

45

Layer : 17

0 10

20

30

40

50
Layer : 18

0 10

25

30

35

40

45

Layer : 19

0 10

25

30

35

40

45

Layer : 20

0 10

20

30

40

50
Layer : 21

0 10

25

30

35

40

45

Layer : 22

0 10
20
25
30
35
40
45

Layer : 23

Figure 14: Attention globality distributions of GPT2-Medium across different heads (sorted according to value) and
averaged over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange, green
and red curves represent k = 100, 200 and 300 respectively.

4468

0 2 4 6 8 10

20

25

30

35

40

Layer : 0

0 2 4 6 8 10

15

20

25

30

35

40

45

50

Layer : 1

0 2 4 6 8 10

25

30

35

40

45

50
Layer : 2

0 2 4 6 8 10

25

30

35

40

45

50

Layer : 3

0 2 4 6 8 10
30.0

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0
Layer : 4

0 2 4 6 8 10

36

38

40

42

44

Layer : 5

0 2 4 6 8 10

30.0

32.5

35.0

37.5

40.0

42.5

45.0

Layer : 6

0 2 4 6 8 10

30

32

34

36

38

40

42

44
Layer : 7

0 2 4 6 8 10

37

38

39

40

41

42

43

Layer : 8

0 2 4 6 8 10

36

38

40

42

44

Layer : 9

0 2 4 6 8 10

38

39

40

41

42

43

44

45

Layer : 10

0 2 4 6 8 10

25

30

35

40

45

Layer : 11

Figure 15: Attention globality distributions of RoBERTa (base) across different heads (sorted according to value)
and averaged over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange,
green and red curves represent k = 100, 200 and 300 respectively.

Name Release Year Positional Encoding Type

BERT (Devlin et al., 2019) 2019 Learned Absolute
RoBERTa (Liu et al., 2019) 2019 Learned Absolute
GPT2 (Radford et al., 2019) 2019 Learned Absolute
BART (Lewis et al., 2020) 2020 Learned Absolute
LongFormer (Beltagy et al., 2020) 2020 Learned Absolute
T5 (Raffel et al., 2020) 2020 Relative Learned Bias
GPT3 (Brown et al., 2020) 2020 Learned Absolute
GPT-Neo (Black et al., 2021) 2021 Learned Absolute
Fairseq-Dense (Artetxe et al., 2021) 2021 Fixed Absolute
ShortFormer (Press et al., 2021) 2021 Fixed Absolute
GPT-J (Wang, 2021) 2021 Rotary
GPT-NeoX (Black et al., 2022) 2022 Rotary
OPT (Zhang et al., 2022) 2022 Learned Absolute
PaLM (Chowdhery et al., 2022) 2022 Rotary

Table 6: Positional encoding of commonly used pretrained language models.

4469

0 10

32.5

35.0

37.5

40.0

42.5

45.0
Layer : 0

0 10

20

30

40

50

Layer : 1

0 10

20

30

40

50

Layer : 2

0 10
25

30

35

40

45

50
Layer : 3

0 10

35

40

45

50

Layer : 4

0 10
25

30

35

40

45

Layer : 5

0 10
25

30

35

40

45

Layer : 6

0 10

30

35

40

45

Layer : 7

0 10

30

35

40

45
Layer : 8

0 10

30

35

40

45

Layer : 9

0 10

30

35

40

45

Layer : 10

0 10

34

36

38

40

42

Layer : 11

0 10

30

35

40

45

Layer : 12

0 10
34
36
38
40
42
44

Layer : 13

0 10

35.0
37.5
40.0
42.5
45.0
47.5

Layer : 14

0 10

36

38

40

42

Layer : 15

0 10

38

40

42

44

Layer : 16

0 10

38

40

42

44

46

Layer : 17

0 10

40

42

44

46

48
Layer : 18

0 10

35.0

37.5

40.0

42.5

45.0

Layer : 19

0 10

30

35

40

45
Layer : 20

0 10

36

38

40

42

44
Layer : 21

0 10
35

40

45

50

Layer : 22

0 10
25

30

35

40

45

50
Layer : 23

Figure 16: Attention globality distributions of RoBERTa (large) across different heads (sorted according to value)
and averaged over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange,
green and red curves represent k = 100, 200 and 300 respectively.

4470

0 2 4 6 8 10

15

20

25

30

35

40

Layer : 0

0 2 4 6 8 10
20

25

30

35

40

45

Layer : 1

0 2 4 6 8 10

27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5

Layer : 2

0 2 4 6 8 10

36

38

40

42

44

46

48

Layer : 3

0 2 4 6 8 10

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0
Layer : 4

0 2 4 6 8 10
15

20

25

30

35

40

45

50
Layer : 5

0 2 4 6 8 10

15

20

25

30

35

40

Layer : 6

0 2 4 6 8 10
20

25

30

35

40

45

Layer : 7

0 2 4 6 8 10

27.5
30.0
32.5
35.0
37.5
40.0
42.5
45.0
47.5

Layer : 8

0 2 4 6 8 10

36

38

40

42

44

46

48

Layer : 9

0 2 4 6 8 10

32.5

35.0

37.5

40.0

42.5

45.0

47.5

50.0
Layer : 10

0 2 4 6 8 10
15

20

25

30

35

40

45

50
Layer : 11

Figure 17: Attention globality distributions of BART (base) across different heads (sorted according to value) and
averaged over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange, green
and red curves represent k = 100, 200 and 300 respectively.

4471

0 5 10 15

30

35

40

45

50

Layer : 0

0 5 10 15

45

50

55

Layer : 1

0 5 10 15
46

48

50

52

54

Layer : 2

0 5 10 15

20

30

40

50

Layer : 3

0 5 10 15

35

40

45

Layer : 4

0 5 10 15

38

40

42

44

46

48

Layer : 5

0 5 10 15

40

42

44

46

48

Layer : 6

0 5 10 15

40

42

44

46

48

Layer : 7

0 5 10 15

30

35

40

45

Layer : 8

0 5 10 15

40

42

44

46

Layer : 9

0 5 10 15
25

30

35

40

45

Layer : 10

0 5 10 15

35.0

37.5

40.0

42.5

45.0

Layer : 11

0 5 10 15

30

35

40

45

50

Layer : 12

0 5 10 15

45

50

55

Layer : 13

0 5 10 15
46

48

50

52

54

Layer : 14

0 5 10 15

20

30

40

50

Layer : 15

0 5 10 15

35

40

45

Layer : 16

0 5 10 15

38

40

42

44

46

48

Layer : 17

0 5 10 15

40

42

44

46

48

Layer : 18

0 5 10 15

40

42

44

46

48

Layer : 19

0 5 10 15

30

35

40

45

Layer : 20

0 5 10 15

40

42

44

46

Layer : 21

0 5 10 15
25

30

35

40

45

Layer : 22

0 5 10 15

35.0

37.5

40.0

42.5

45.0

Layer : 23

Figure 18: Attention globality distributions of BART (large) across different heads (sorted according to value) and
averaged over all layers and 5000 data points. Blue curve stands for the no phase shift condition, and orange, green
and red curves represent k = 100, 200 and 300 respectively.

4472

