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Abstract

Automatic document summarization aims to
produce a concise summary covering the in-
put document’s salient information. Within a
report document, the salient information can
be scattered in the textual and non-textual con-
tent. However, existing document summariza-
tion datasets and methods usually focus on the
text and filter out the non-textual content. Miss-
ing tabular data can limit produced summaries’
informativeness, especially when summaries
require covering quantitative descriptions of
critical metrics in tables. Existing datasets and
methods cannot meet the requirements of sum-
marizing long text and multiple tables in each
report. To deal with the scarcity of available
data, we propose FINDSum, the first large-
scale dataset for long text and multi-table sum-
marization. Built on 21,125 annual reports
from 3,794 companies, it has two subsets for
summarizing each company’s results of oper-
ations and liquidity. To summarize the long
text and dozens of tables in each report, we
present three types of summarization methods.
Besides, we propose a set of evaluation metrics
to assess the usage of numerical information
in produced summaries. Dataset analyses and
experimental results indicate the importance
of jointly considering input textual and tabular
data when summarizing report documents.

1 Introduction

Report documents, like financial reports, investiga-
tive reports, and technical reports, are essential
information sources. These reports usually contain
textual and tabular content. As shown in Figure 1,
the salient information can be scattered in long text
and multiple tables in each report, which makes it
difficult for non-specialized readers to efficiently
read and gather salient information from these re-
port documents. Automatic document summariza-
tion techniques can produce these reports’ sum-
maries, which can support readers quickly brows-
ing salient information in these reports. Our tar-
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As of December 31, 2018, the U.S. federal and state net
operating loss carryforwards were $7.88 billion ... 
We have federal tax credit carryforwards of $290 million ... 
we entered into a $2.0 billion senior unsecured revolving
credit facility, and any amounts outstanding under this facility
will be due and payable on May 20, 2021 ...

Target Summary
Liquidity: Cash and cash equivalents, and marketable securities
were $41.11 billion as of December 31, 2018, a decrease of $597
million from December 31, 2017, mostly due to $13.92 billion for
purchases of property and equipment, $12.88 billion for repurchas
-es of our Class A common stock, and $3.21 billion of taxes paid
related to net share settlement of equity awards, offset by $29.27
billion of cash generated from operations and a $500 million
increase in overdraft in cash pooling entities ... As of December
31, 2018, our federal net operating loss carryforward was $7.88
billion ... As of December 31, 2018, we had $290 million of federal
tax credit carryforward ... we entered into a $2.0 billion senior
unsecured revolving credit facility, and any amounts outstanding
under the facility will be due and payable on May 20, 2021 ...

Figure 1: An example from the FINDSum dataset. The
content found in the target summary is color-coded.

get is to let the computer generate an informative,
fluent, and non-redundant summary for the long
text and multiple tables in each report. To achieve
this target, we need to deal with some challenging
issues: the scarcity of available data, identifying
the salient information scattered in a large amount
of input content, incorporating different types of
content when generating summaries, and models’
efficiency in processing long inputs and outputs.

Previous document summarization datasets usu-
ally regard non-textual content as noises and filter
them out. When target summaries only focus on
narratives and qualitative descriptions, removing
non-textual content has little effect since the docu-
ment’s text already contains most of the required
information. However, when it comes to report
documents, like financial reports, their summaries
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Figure 2: An overview of our solution for long text and multi-table summarization.

should cover both the narrative content and quan-
titative descriptions of critical metrics recorded in
tables, which are essential for readers’ analysis and
decision-making (SEC, 2021). Existing datasets
cannot meet the requirements of summarizing long
text and multiple tables in each report document.

To deal with the scarcity of available data, we
propose FINDSum, the first large-scale dataset for
long text and multi-table summarization. FIND-
Sum has two subsets named FINDSum-ROO and
FINDSum-Liquidity for summarizing companies’
results of operations and liquidity. As shown in
Table 1, each example’s inputs include tens of thou-
sands of words and dozens of tables from a report
document. Besides, FINDSum’s target summaries
usually contain more numerical values than previ-
ous datasets. Meanwhile, most numerical values
in target summaries cannot be found in the corre-
sponding input text. Only focusing on text is not
enough for summarizing financial reports.

Figure 2 shows our solution for long text and
multi-table summarization. It has three main steps:
data pre-processing, content selection, and summa-
rization. The content selection step aims to com-
press long inputs while maximizing the recall of
salient content in long text and dozens of tables.
Specifically, we adopt the Maximum Marginal Re-
call Gain (MMRG) method to select salient text seg-
ments as a part of inputs. As for the tabular content,
we transform each table cell into a tuple and regard
the salient tuple selection as a binary classification
problem. The summarization step should jointly
consider the text and tabular data. We present three
types of summarization methods: generate-and-

combine (GC), combine-and-generate (CG), and
generate-combine-and-generate (GCG).

The complexity of the transformer’s self-
attention mechanism scales quadratically with the
input length (Vaswani et al., 2017). It can limit
transformer-based models’ efficiency. Thus we em-
ploy content selection methods and sparse attention
mechanisms to reduce the complexity and enable
finetuning large pre-trained models over long in-
puts on an off-the-shelf GPU. Besides, existing au-
toregressive models still have difficulty in generat-
ing long sequences (Ranzato et al., 2016; Holtzman
et al., 2019). We employ a divide-and-conquer-
based approach to generate summary segments in
parallel and combine them as the final summary.

We benchmark advanced extractive and abstrac-
tive summarizers as baselines on our FINDSum
dataset. To compare their performance, we conduct
automatic evaluation and human evaluation. In ad-
dition to the commonly used ROUGE scores (Lin,
2004), we propose a set of evaluation metrics to
assess the usage of numerical information in pro-
duced summaries. Experimental results show that
our methods can outperform competitive baselines.

Our contribution is threefold:

• Our primary contribution is building FIND-
Sum, the first large-scale dataset for long text
and multi-table summarization.

• We present three types of methods incorporat-
ing text and tables into summary generation.

• We propose evaluation metrics to assess the
usage of numerical information in summaries.
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Dataset Pairs Words
(Doc)

Sents
(Doc)

Words
(Sum)

Sents
(Sum)

Num
(Sum)

% Covered
Num Cov. Dens.

CNN/DM 312,085 810.6 39.8 56.2 3.7 0.6 78.7 0.9 3.8
PubMed 133,215 3049.0 87.5 202.4 6.8 3.3 68.2 0.8 5.8
arXiv 215,913 6029.9 205.7 272.7 9.6 0.7 53.9 0.9 3.8

FINDSum-ROO 21,125 45,566.0 1250.5 660.7 16.3 24.3 26.3 0.9 9.7
FINDSum-Liquidity 21,125 45,566.0 1250.5 1,057.6 26.7 32.3 41.2 0.9 9.6

Table 1: Statistical information of summarization datasets. "Pairs" is the number of examples. "Words" and "Sents"
denote the average number of words and sentences in input text or target summary. "Num" is the average number of
numerical values in target summaries, and "Covered Num" is the ratio of the target summary’s numerical values
found in the input text. "Cov." and "Dens." are the extractive fragment’s coverage and density.

2 Related Work

2.1 Automatic Document Summarization

Automatic document summarization techniques
can produce a concise summary covering the
salient information within the input document.
In recent years, both large-scale summarization
datasets and advanced neural models boosted the
improvements in the quality of produced sum-
maries. Expect for the widely studied news summa-
rization (Grusky et al., 2018; Fabbri et al., 2019),
summarizing long documents received more at-
tention in recent years. There are some datasets
collected from different domains, including sci-
entific literature (Cohan et al., 2018; Liu et al.,
2022a), government reports (Huang et al., 2021),
and books (Kryściński et al., 2021). The Financial
Narrative Summarisation shared task in 2020 (El-
Haj et al., 2020) delivered an annual report dataset
from firms listed on the London Stock Exchange.
These datasets only focus on the text, regard tabular
data as noises, and filter them out.

Previous summarization methods can be gen-
erally classified into two categories: extractive
(Erkan and Radev, 2004; Mihalcea and Tarau,
2004) and abstractive (Nallapati et al., 2016; Zhang
et al., 2020; Liu et al., 2022b) summarization meth-
ods. To model longer input sequences with lim-
ited GPU memory, Huang et al. (2021) compare
various efficient attention mechanisms for the en-
coder and propose an encoder-decoder attention
named Hepos. Liu et al. (2022a) identify and en-
code salient content in different aspects from di-
verse and long input content by category-based
alignment and sparse attention mechanisms. Zhang
et al. (2022) divide the summarization process into
multiple stages and keep segmenting, summariz-
ing, and concatenating long inputs till they are
compressed to a fixed length. Mao et al. (2022)

adopt the extract-then-generate method and jointly
train the extractor and generator by combining loss
functions. Except for these summarization meth-
ods only focusing on the text, Jangra et al. (2021)
comprehensively review the multi-modal summa-
rization but still neglect tabular data in documents.

2.2 Table Summarization

There are some table summarization or table-to-
text generation datasets, like the WEATHERGOV
(Liang et al., 2009), WikiBio (Lebret et al., 2016),
ROTOWIRE (Wiseman et al., 2017), and SBNA-
TION (Wiseman et al., 2017). Some advanced
methods, like hierarchical-encoder (Rebuffel et al.,
2020), macro-plan (Puduppully and Lapata, 2021),
and LATTICE (Wang et al., 2022), achieved good
performance on these datasets. However, existing
datasets and methods are usually limited to gener-
ating short descriptions for limited cells in a few
tables with similar schemas. Conversely, each fi-
nancial report usually contains numerous cells in
dozens of different shaped tables. Selecting salient
ones from thousands of cells can be challenging.
In addition to summarizing multiple tables, we ob-
serve that human-written summaries can combine
the information from both the text and multiple ta-
bles within the report document. Unstructured text
and structured tabular data have different natures. It
is also challenging to effectively integrate different
types of input data when generating summaries. To
fill in the gap between existing datasets’ limitations
and the actual requirement of long text and multi-
table summarization, we propose the FINDSum
dataset and three types of summarization methods.

3 FINDSum Dataset

Financial report document summarization (FIND-
Sum) is the first large-scale dataset for long text

1997



Dataset % of novel n-grams in target summary
unigrams bigrams trigrams 4-grams

CNN/DM 19.50 56.88 74.41 82.83
PubMed 18.38 49.97 69.21 78.42
arXiv 15.04 48.21 71.66 83.26

FINDSum-
ROO 17.79 50.59 72.13 81.66

FINDSum-
Liquidity 26.45 59.63 80.43 88.48

Table 2: The proportion of novel n-grams in target sum-
maries of different summarization datasets.
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Figure 3: Distributions of extractive fragment density
and extractive fragment coverage.

and multi-table summarization1. This section in-
troduces our data collection and pre-processing
procedures and describes FINDSum’s two subsets.
We conduct descriptive statistics and in-depth anal-
ysis on our FINDSum dataset and compare it with
existing summarization datasets.

3.1 Data Collection and Pre-processing
Form 10-K is the annual report that comprehen-
sively describes a company’s financial performance
in the prior fiscal year (SEC, 2021). We collected
HTML files of 10-K forms from the Electronic
Data Gathering, Analysis, and Retrieval (EDGAR)
system 2. The U.S. Securities and Exchange Com-
mission (SEC) makes companies’ 10-K forms avail-
able to the public through the EDGAR system. The
SEC stipulates the 10-K form’s format and required
content. It usually contains four parts and sixteen
items (SEC). The item "Management’s Discussion

1Our dataset: https://github.com/StevenLau6/FINDSum
2www.sec.gov/edgar/searchedgar/companysearch.html

and Analysis of Financial Condition and Results of
Operations" (MD&A) contains the management’s
summary of the company’s results of operations
and liquidity (NARA). Our FINDSum dataset uses
the text in MD&A’s two sections: "results of op-
erations" and "liquidity and capital resources" as
target summaries and the rest content of each report
document as the input.

After collecting tens of thousands of 10-K forms’
HTML files, we parse them and split each item’s
text and tables. To align tables and text and keep
tables’ positional information, we add a special
token containing each table’s index into the table’s
original position in the document’s text. Extracted
text and tables are stored in separate files. Text
and tabular data require different pre-processing
procedures, considering their different natures.

Our text pre-processing procedures include: re-
moving noises (e.g., cover pages before the first
item and special characters composing a style) and
dividing text in different parts of 10-k form into
text segments. To pre-process tabular data, we need
to extract table content (e.g., names of rows and
columns, cell content), remove noises in table con-
tent, and transform each cell into a tuple: (row
name, column name, cell value, date, table id, row
id, column id). The cell value in the tuple concate-
nates the original cell value and the rounding result
with an ampersand. Besides, we remove duplicate
samples and outliers with too-short input text, trun-
cate too-long input text, split the training (80%),
validation (10%), and test (10%) sets. Considering
that the same company’s annual reports in different
years usually have duplicate content, we split these
three sets by company to minimize their overlaps.

3.2 Dataset Description

We built the FINDSum dataset based on collected
report documents. FINDSum has two subsets,
which will be introduced in this subsection.
FINDSum-ROO is the subset focusing on each
company’s results of operations (ROO). In the "re-
sults of operations" section of MD&A, the com-
pany’s management usually compares and explains
critical items of revenue and expense in the cur-
rent and prior period (SEC). This section’s text
can be regarded as the target summary written by
the expert. Table 1 exhibits that the average num-
ber of numerical values in FINDSum-ROO’s target
summaries is dozens of times larger than that of
previous datasets. However, nearly three-quarters
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of these numerical values cannot be found in the
rest text of each report. A lot of critical numerical
information is only recorded in tables. Therefore,
we use both the rest parts’ text and all the tables in
each report document as inputs for each example.
FINDSum-Liquidity is built for summarizing each
company’s liquidity and capital resources. The
"liquidity and capital resources" section in MD&A
mainly analyzes the company’s ability to generate
and obtain cash and its plans for cash (NARA). This
section’s text can be used as the target summary
in FINDSum-Liquidity. Similarly, most numerical
values in target summaries are not included in the
rest parts’ text. FINDSum-Liquidity’s inputs also
include the rest text and all the tables in each report.

3.3 Dataset Analysis

We conduct statistics and analysis on FINDSum’s
two subsets. Table 1 shows that both the input doc-
uments and target summaries of these two subsets
are much longer than those of previous summariza-
tion datasets. These two subsets’ target summaries
contain much more numerical information, while
most of them cannot be found in the input text.

To measure how abstractive our target sum-
maries are, we count the percentage of summaries’
novel n-grams not appearing in inputs. Table 2
shows that FINDSum-Liquidity has a larger ratio
of novel n-grams in target summaries, compared
with other datasets. It reflects that the FINDSum-
Liquidity is more abstractive, while the FINDSum-
ROO’s abstractiveness is similar to that of exist-
ing datasets. Besides, we calculate the coverage
and density of extractive fragment (Grusky et al.,
2018) to assess these datasets’ extractive nature.
Table 1 shows that the extractive fragment density
of our dataset is higher than that of previous sum-
marization datasets, while their extractive fragment
coverage is similar. We also visualize the distribu-
tions of coverage and density by the kernel density
estimation in Figure 3. The variability along the
y-axis (density) suggests the varying writing styles
of target summaries in our FINDSum dataset.

4 Method

Summarizing long text and multiple tables has sev-
eral challenging issues: identifying the salient infor-
mation from a large amount of input content, incor-
porating the text and tabular content into the sum-
mary generation, and efficiently processing long
input and output sequences. This section presents

our solution to the above issues.

4.1 Content Selection
As shown in Figure 2, our solution has three steps:
data pre-processing, content selection, and summa-
rization. After the pre-processing step, we can get
dozens of text segments and thousands of tuples
from dozens of tables in each report document. The
salient content usually scatters in text and tables,
making it challenging to select the salient content
accurately. We add the content selection step as
a rough selection to compress long inputs while
maximizing the recall of salient content that should
be preserved in summaries. Then the compressed
inputs are fed into the summarizer for further se-
lection. Content selection methods’ output length
should not exceed a fixed length, as summarization
models’ complexity can scale with its input length.

We employ separate methods to select salient
content from textual and tabular data consider-
ing their different natures. To select salient text
segments, we adopt a method named Maximum
Marginal Recall Gain (MMRG) on our training set.
Specifically, MMRG keeps adding the text segment
bringing the maximum gain of n-gram’s recall into
the combination of selected segments till reaching
the length limit. Finally, we can get selected salient
segments’ ids and choose text segments with the
same ids for samples in our test set. MMRG’s
pseudocode is in Appendix A.1. We also follow
Liu et al. (2018) to try extractive summarizers, like
Textrank (Mihalcea and Tarau, 2004) and Lexrank
(Erkan and Radev, 2004), for salient text selection.
We use the recall of n-grams to evaluate these meth-
ods’ performance in selecting the salient text of the
same length. Table 9 in Appendix A.1 indicates
that MMRG outperforms these extractive summa-
rizers, so we use it for text segment selection.

As for those thousands of tuples extracted from
tables, we regard the salient tuple selection as a
binary classification problem. Based on the FIND-
Sum dataset, we annotate a tuple selection dataset
for training and evaluating different classification
methods (e.g., logistic regression, support vector
machine, Adaboost (Hastie et al., 2009), and XG-
Boost (Chen and Guestrin, 2016))3. We also try
utilizing various features, including positional fea-
tures (e.g., indexes of the row, column, table, and
section, together with their normalized values) and

3We use the implementation of XGBoost from xg-
boost.readthedocs.io/en/stable/ and other classifiers from
scikit-learn.org/stable/
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text features (e.g., word embedding or one-hot
keywords representation of row name and column
name). Considering the content selection step fo-
cuses more on the recall of salient content, we sort
these tuples by their positive probability predicted
by the trained classifier and use the top-n tuples’
recall to evaluate these classifiers. Table 10 in Ap-
pendix A.1 shows evaluation results. The XGBoost
model equipped with positional features and Glove
embedding (Pennington et al., 2014) outperforms
other classifiers, so we use it for tuple selection.

4.2 Summarizing Textual and Tabular Data

To incorporate text and tabular data into sum-
mary generation, we present three types of meth-
ods: generate-and-combine (GC), combine-and-
generate (CG), and generate-combine-and-generate
(GCG). We show their structures in Figure 2 and
introduce them in this subsection.
GC treats the long text and multi-table summa-
rization as two parallel processes. It assigns the
maximum output lengths for the text summary and
table summary, generates these two summaries sep-
arately, and concatenates them to form the final
summary. GC has obvious limitations: 1) It cannot
merge the information from text and tables when
generating each summary sentence. 2) The pre-
defined length assignment is not flexible enough to
adapt to diverse examples.
CG first concatenates the selected text segments
and tuples with a special symbol and then feeds
them into a sequence-to-sequence summarizer. It
requires the summarizer to learn text-to-text and
tuple-to-text generation and jointly consider these
two types of input content when generating sum-
maries. Considering the selected tuples are from
different tables whose shapes differ greatly, we
only keep the first four items of each input tuple
and leave out the ids of the row, column, and table.
GCG employs a tuple-to-text generator to produce
input tuples’ text descriptions. It concatenates the
input text with the generator’s output text and feeds
them into the summarizer. Compared with the CG,
GCG simplifies the requirement on the summarizer
to focus on summarizing text, but the extra tuple-
to-text generation process can lose some tuples’
information. We annotate a tuple-to-text generation
dataset based on our FINDSum dataset for training
and evaluating various generators. Table 4 indicates
that the BART-large outperforms other baselines,
so we use it as the tuple-to-text generator.

4.3 Dealing with Long Inputs and Outputs

Input documents in our FINDSum-ROO and
FINDSum-Liquidity subsets contain tens of thou-
sands of words. The average length of target
summaries in FINDSum-Liquidity exceeds 1,000
words. Long inputs and outputs bring some prob-
lems: 1) The transformer model’s self-attention
mechanism (Vaswani et al., 2017) scales quadrati-
cally with the length of the input sequence, which is
prohibitively expensive for long input (Choroman-
ski et al., 2020) and precludes the usage of large
pre-trained models with limited computational re-
sources. 2) Existing autoregressive abstractive sum-
marization methods still have difficulty in gener-
ating long text in terms of efficiency and quality
(Ranzato et al., 2016; Holtzman et al., 2019). To
deal with the first problem, we employ sparse atten-
tion mechanisms (Zaheer et al., 2020; Beltagy et al.,
2020) in our summarization models’ encoders. The
content selection step in our solution also reduces
the length of input sequences. To handle the second
problem, we follow a divide-and-conquer method
(Gidiotis and Tsoumakas, 2020) and decompose
the long summary generation problem into multi-
ple sub-problems of summary segment generation.
These summary segments can be generated in paral-
lel and combined as a final summary. To minimize
output summaries’ redundancy, we add a constraint
that the MMRG in the content selection step should
not select the same combination of input text seg-
ments for generating different summary segments.

4.4 Evaluation Metrics

We propose a set of evaluation metrics to assess the
usage of numerical information in produced sum-
maries. It is necessary for long text and multi-table
summarization. We use D, S, and H to denote the
input document, human-written target summary,
and the summarizer’s output summary. Dn, Sn,
and Hn are sets of numbers contained in them.
|Dn|, |Sn|, |Hn| denote the sizes of these number
sets. For a produced summary H , we first extract
the number set Hn from it.4 Then M(Hn, Sn)
counts numbers in both the produced summary
H and the target summary S. M(Dn, Sn) counts
numbers appearing in both the input document D
and the target summary S.

We mainly consider three metrics: Number Pre-
cision (NP), Number Coverage (NC), and Number
Selection (NS). Calculated by Equation (1), NP is

4We do not count numbers in a word, like COVID-19.
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the ratio of numbers in the produced summary that
also appears in the target summary. It measures
how well the produced summary matches the tar-
get summary in terms of contained numbers. NC
measures how well the produced summary covers
the numbers appearing in both the target summary
and the input document. Some of the numbers in
the target summary cannot be directly found in the
inputs (including textual and tabular data) and need
numerical reasoning. Some of them may be lost
when preparing the summarization model’s inputs,
which can limit produced summary’s number re-
call computed by Equation (2a). To evaluate the
summarization model’s coverage capability, we di-
vide the produced summary’s number recall by the
input document’s number recall in Equation (2b).
NS calculates the harmonic mean of NP and NC
in Equation (3) and reflects the quality of number
selection in the produced summary.

NP(Hn, Sn)=
M(Hn, Sn)

|Hn|
(1)

NR(Hn, Sn)=
M(Hn, Sn)

|Sn|
(2a)

NC(Dn, Hn, Sn)=
NR(Hn, Sn)∗ |Sn|

M(Dn, Sn)
(2b)

NS(Dn, Hn, Sn)=
2 ∗NP ∗NC

NP+NC
(3)

5 Experiments

5.1 Baselines

In our experiments, we adopt advanced extractive
and abstractive summarization models as baselines
only using input text.
LexRank and TextRank (Erkan and Radev, 2004;
Mihalcea and Tarau, 2004) are two graph-based
ranking methods that can be used for unsupervised
extractive summarization.
BART (Lewis et al., 2020) is a denoising autoen-
coder built with a sequence-to-sequence model that
is pre-trained to reconstruct the original input text
from the corrupted text.
PEGASUS (Zhang et al., 2020) is a transformer-
based model pre-trained with the Gap Sentences
Generation (GSG) and Masked Language Model
(MLM) objectives.
T5 (Raffel et al., 2020) is an encoder-decoder
model pre-trained on a mixture of multiple unsu-
pervised and supervised tasks.

BigBird-PEGASUS (Zaheer et al., 2020) adopts
the BigBird encoder with sparse attention mecha-
nisms and the PEGASUS decoder.
Longformer-Encoder-Decoder (LED) (Beltagy
et al., 2020) follows BART’s architecture and
adopts sparse attention mechanisms in its encoder.

5.2 Experimental Setting

The vocabulary’s maximum size is 50,265 for these
abstractive summarization models. When finetun-
ing these pre-trained models on our datasets, we
use the learning rate of 5e−5, and adopt the learn-
ing rate warmup and decay. The optimizer is Adam
with β1=0.9 and β2=0.999. We use dropout with
the probability 0.1. In the generation process, we
use beam search with a beam size of 5. Trigram
blocking is used to reduce repetitions. We adopt
the implementations of BART, PEGASUS, Big-
Bird, and LED from HuggingFace’s Transformers
(Wolf et al., 2020). All the models are trained on
one NVIDIA RTX 8000 GPU.

5.3 Results and Discussion

We present and analyze our experimental results
in this subsection. To compare the quality of sum-
maries produced by different models, we conduct
automatic and human evaluations. We also perform
the ablation study to validate the effectiveness of
components in our methods. Output examples of
different summarization models and tuple-to-text
generators are presented in Appendix A.4.

In the automatic evaluation, we calculate the
ROUGE F1 scores (Lin, 2004), including the over-
laps of unigrams (R-1), bigrams (R-2), and longest
common subsequence (R-L)5, and our NP, NC, and
NS scores. Table 3 reports the final combined sum-
maries’ scores. Each summary segment’s ROUGE
scores are exhibited in Table 12 of Appendix A.3.
These abstractive summarizers based on pre-trained
models outperform unsupervised extractive sum-
marizers. Besides, baselines equipped with sparse
attention mechanisms (Zaheer et al., 2020; Beltagy
et al., 2020) can model longer context and achieve
higher ROUGE scores. Covering more salient con-
tent scattered in longer inputs can benefit output
summaries’ informativeness.

Our CG and GCG methods outperform these
text-only baselines on FINDSum’s two subsets. In-
corporating tabular information is conducive to im-
proving the NP, NC, NS, and ROUGE scores. GCG

5github.com/falcondai/pyrouge/
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Type Method FINDSum-Liquidity FINDSum-ROO
R-1 R-2 R-L NP NC NS R-1 R-2 R-L NP NC NS

Only
Text

LexRank 40.67 10.61 16.28 12.58 14.50 13.47 34.43 7.73 14.92 14.77 9.73 11.73
TextRank 41.71 10.90 16.54 13.37 13.02 13.19 35.93 7.74 15.08 14.68 10.96 12.55

BART 52.37 17.91 19.59 21.18 22.78 21.95 49.00 16.88 19.14 14.38 23.72 17.91
PEGASUS 52.57 18.46 19.75 16.98 22.74 19.44 51.92 19.31 21.47 10.90 21.89 14.55

LED 53.52 18.91 19.75 18.68 22.56 20.44 53.06 20.33 22.28 14.25 22.99 17.59
BigBird-

PEGASUS 53.42 19.39 20.07 17.16 22.44 19.45 53.08 20.85 20.94 13.15 23.82 16.95

GC GCLED 52.30 20.09 19.61 15.13 44.47 22.58 53.19 21.97 22.84 12.83 41.54 19.60
GCBigBird 51.61 20.00 19.86 14.76 44.21 22.13 53.13 22.03 23.11 12.49 41.30 19.18

CG CGLED 54.12 20.26 20.46 21.86 35.14 26.95 54.24 22.08 23.10 16.41 33.89 22.11
CGBigBird 53.82 20.15 20.39 20.98 34.29 26.03 54.40 22.48 23.21 16.46 35.84 22.56

GCG GCGLED 54.55 20.36 20.41 21.15 34.52 26.23 54.32 21.92 23.03 16.03 32.54 21.48
GCGBigBird 53.90 20.47 20.59 20.67 36.43 26.38 54.12 22.11 23.02 15.33 32.82 20.90

Table 3: Automatic evaluation results on test sets of FINDSum-Liquidity and FINDSum-ROO.

R-1 R-2 R-L BLEU

ROO
T5-base 45.45 24.77 28.84 12.20
T5-large 45.81 24.64 29.04 12.87
BART-base 42.08 20.45 25.86 10.57
BART-large 47.21 25.63 31.08 13.14

Liquidity
T5-base 48.90 28.34 31.98 15.44
T5-large 49.03 28.05 32.02 15.86
BART-base 45.71 24.75 29.28 13.66
BART-large 49.78 28.24 32.59 16.05

Table 4: Evaluation results of tuple-to-text generation.

methods perform better on FINDSum-Liquidity,
while CG methods perform better on FINDSum-
ROO. Table 1 shows that target summaries in the
FINDSum-ROO subset have a larger ratio of nu-
merical information not found in the input text and
rely more on tables. The table content passes one
generation process in CG methods but needs to pass
through two generation processes in GCG methods.
The extra tuple-to-text generation can lose some
required tabular information and accumulate more
errors. In FINDSum-Liquidity, a larger ratio of the
numerical information can be found in the input
text, and the loss of tabular information in the extra
generation process has less effect.

We evaluate multiple tuple-to-text generators by
the ROUGE (Lin, 2004) and BLEU scores6 (Pa-
pineni et al., 2002). Table 4 depicts the perfor-
mance of different tuple-to-text generators on ROO
and Liquidity subsets. The large model of BART
(Lewis et al., 2020) performs the best on these two
subsets. These generators perform better on the
Liquidity subset. The better performance of the

6www.nltk.org/api/nltk.translate.bleu_score.html. We re-
port the cumulative 4-gram BLEU score.

tuple-to-text generator also contributes to the GCG
methods’ performance on the FINDSum-Liquidity.

These GC methods do not perform well, which
is due to GC’s limitations mentioned in subsection
4.2. Table 3 shows the evaluation result of com-
bined summaries, in which half of the content is
text summary and the other half is table summary.
Although they can achieve high NC scores, their
NP and ROUGE scores are unsatisfactory. The re-
sult reflects that it is not appropriate to treat long
text and multi-table summarization as two parallel
processes. The inflexible length assignment is diffi-
cult to set for diverse examples. We show its effect
on generated summaries’ quality in Table 5.

We performed the human evaluation to compare
different models’ output summaries in terms of in-
formativeness (the coverage of information from
input documents), fluency (content organization
and grammatical correctness), and non-redundancy
(less repetitive information). We randomly selected
30 samples from the test sets of the FINDSum-
ROO and FINDSum-Liquidity subsets, respec-
tively. Four annotators are required to compare
two models’ output summaries that are presented
anonymously. We also assess their agreements by
Fleiss’ kappa (Fleiss, 1971). Table 6 and 7 exhibit
that GCG-BigBird and CG-BigBird significantly
outperform the BigBird-PEGASUS only using in-
put text in terms of informativeness and are compa-
rable in terms of fluency and non-redundancy.

We also conduct the ablation study to validate the
effectiveness of components in our GCG-BigBird
method. In Table 8, "w/o tabular data" refers to the
BigBird-PEGASUS model only using input text.
The results show that incorporating tabular data
benefits the report document summarization. The
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Text/
Tuple Method FINDSum-Liquidity FINDSum-ROO

R-1 R-2 R-L NP NC NS R-1 R-2 R-L NP NC NS

1:1 GCLED 52.30 20.09 19.61 15.13 44.47 22.58 53.19 21.97 22.84 12.83 41.54 19.60
GCBigBird 51.61 20.00 19.86 14.76 44.21 22.13 53.13 22.03 23.11 12.49 41.30 19.18

2:1 GCLED 52.28 18.37 19.12 16.63 22.45 19.11 53.56 21.95 22.78 13.45 36.54 19.66
GCBigBird 52.99 20.18 19.81 14.43 35.62 20.54 53.51 22.02 22.69 12.82 38.74 19.26

3:1 GCLED 52.57 18.47 19.21 16.13 22.24 18.70 53.66 21.88 22.48 13.62 36.21 19.79
GCBigBird 53.33 20.15 19.81 14.58 32.30 20.09 53.59 22.07 22.73 13.18 35.84 19.27

Table 5: GC methods’ automatic evaluation results on test sets of FINDSum-Liquidity and FINDSum-ROO.
"Text/Tuple" denotes the assigned length ratio between the text and table summary in each combined summary.

Win Lose Tie Kappa

FINDSum-ROO
Informativeness 43.3% 20.8% 35.8% 0.653
Fluency 27.5% 24.2% 48.3% 0.613
Non-Redundancy 33.3% 21.7% 45.0% 0.644

FINDSum-Liquidity
Informativeness 41.7% 21.6% 36.7% 0.655
Fluency 25.8% 25.0% 49.2% 0.611
Non-Redundancy 32.5% 23.3% 44.2% 0.638

Table 6: Human evaluation results. “Win” represents
the generated summary of our GCG-BigBird method is
better than that of BigBird-PEGASUS in one aspect.

Win Lose Tie Kappa

FINDSum-ROO
Informativeness 44.2% 20.8% 35.0% 0.626
Fluency 26.7% 25.8% 47.5% 0.616
Non-Redundancy 35.0% 23.3% 41.7% 0.632

FINDSum-Liquidity
Informativeness 40.8% 20.8% 38.3% 0.620
Fluency 25.0% 24.2% 50.8% 0.615
Non-Redundancy 31.7% 22.5% 45.8% 0.626

Table 7: Human evaluation results. “Win” represents
the generated summary of our CG-BigBird method is
better than that of BigBird-PEGASUS in one aspect.

sparse attention mechanisms in the encoder also
benefit our model’s performance. Besides, we tried
only using the tuple-to-text generation result as
the produced summary. "w/o input text" denotes
the output of the BART-large-based tuple-to-text
generator7. The performance degradation reveals
that it is important to jointly consider input textual
and tabular data in the report summary generation.

In the future, we intend to explore more methods
and evaluation metrics for long text and multi-table
summarization. There is still room to improve the
produced summaries’ quality and summarization
methods’ efficiency. Evaluation metrics assessing
the produced summaries’ factual correctness and fi-

7As summaries, they are compared with target summaries
instead of target outputs in the tuple-to-text generation.

R-1 R-2 R-L

FINDSum-ROO
GCG-BigBird 54.12 22.11 23.02
w/o tabular data 53.08 20.85 20.94
w/o sparse attn 51.92 19.31 21.47
w/o input text 47.19 17.89 21.09

FINDSum-Liquidity
GCG-BigBird 53.90 20.47 20.59
w/o tabular data 53.42 19.39 20.07
w/o sparse attn 52.57 18.46 19.75
w/o input text 44.17 15.60 18.49

Table 8: Ablation study on test sets of FINDSum-ROO
and FINDSum-Liquidity.

delity to the input content are also necessary. Long
text and multi-table summarization is still an open
problem, and there is still a lot of work to do.

6 Conclusion

In this paper, we introduce FINDSum, the first
large-scale dataset for long text and multi-table
summarization. Built on tens of thousands of an-
nual report documents from thousands of compa-
nies, FINDSum has two subsets for summarizing
these companies’ results of operations and liquidity.
Besides, we propose a solution for the long text and
multi-table summarization. It has three main steps:
data pre-processing, content selection, and sum-
marization. We adopt different content selection
methods to select the salient content from the long
text and dozens of tables in each report document.
As for the summarization step, we present and com-
pare three types of summarization methods incor-
porating text and tabular data into the summary
generation. To assess the usage of numerical infor-
mation in produced summaries, we propose a set
of evaluation metrics. Dataset analyses and exper-
imental results indicate the importance of jointly
considering input textual and tabular data when
generating summaries for report documents.
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Limitations

Our work still has some limitations. Although we
adopt content selection methods, sparse attention
mechanisms, and the divide-and-conquer-based
training approach to enable finetuning large pre-
trained models over long inputs and outputs on
an off-the-shelf GPU, finetuning still needs tens
of hours. These abstractive summarization mod-
els’ efficiency needs further improvements. When
observing generation results, we found current neu-
ral abstractive summarization and text generation
models have flaws in the fidelity to the input con-
tent, which can bring hallucinations in output text
(Zhao et al., 2020). It is a common problem in text
generation research and needs further study.
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regular filings of listed companies. The U.S. Secu-
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its public APIs. Models trained with our dataset
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ing the efficiency of financial analysis instead of a
substitute for human experts.
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A Appendix

A.1 Content Selection Methods
As introduced in subsection 4.1, the content selec-
tion step filters out the non-prominent content and
retains the salient content as summarizers’ inputs.
We employ different methods to select salient con-
tent from text and tabular data, considering their
different natures. To select the salient text seg-
ments, we adopt a statistics-based method named
Maximum Marginal Recall Gain (MMRG) on our
training set. MMRG’s outputs include selected
salient segments’ ids. Then we choose text seg-
ments with the same ids for samples in our test
set. Algorithm 1 is MMRG’s pseudocode. We also
try some extractive summarization methods, like
textrank and lexrank. Table 9 shows that MMRG
outperforms these extractive summarizers, so we
use it in the text segment selection.

As for those thousands of tuples extracted from
tables, we regard the salient tuple selection as a
binary classification problem. We train and evalu-
ate different classification methods, including the
logistic regression (LR), support vector machine
(SVM), Adaboost, and XGBoost, on our annotated

Algorithm 1 Maximum Marginal Recall Gain (MMRG)

Input: Input m examples I ← [e1, ..., em], each example
ei contains n parts for selection ei ← [p1i , ..., p

n
i ], the list

of target item T ← [t1, ..., tm], and the maximum number
of selected parts n′ (n′ ≪ n)

Output: The list of selected parts’ id S ← [j, ..., k] and the
selected inputs I ′ ← [e′1, ..., e

′
m], in which each example

e′i has selected parts e′i ← [pji , ..., p
k
i ] (|e′i| = |S| ≤ n′)

function RECALLGAIN(I, I ′, T, j)
i← 1;
rgainsum ← 0;
while i ≤ m do

pji ← I[i][j];
concat_str ← Concat(I ′[i], pji );
// Calculate the recall gain brought by the j-th part
rgain ← Recall(concat_str, T [i]) −

Recall(I ′[i], T [i]);
rgainsum ← rgainsum + rgain;
i← i+ 1;

end while
rgainavg ← rgainsum/m;
return rgainavg

end function

function SELECTPART(I, I ′, T, S)
j ← 1;
rgainmax ← 0;
jselect ← 0;
//Find the part pjselect bringing the largest average

recall gain
while j ≤ n do

if j not in S then
rgainavg = RecallGain(I, I ′, T, j);
if rgainavg > rgainmax then

jselect ← j;
rgainmax ← rgainavg;

end if
end if
j ← j + 1;

end while
return jselect;

end function

function MMRG(I, T, n′)
S ← [ ];
e′1, ..., e

′
m ← “”, ..., “”;

I ′ ← [e′1, ..., e
′
m];

while |S| < n′ do
jselect = SelectPart(I, I ′, T, S);
if jselect > 0 then

S ← S ∪ [jselect];
while i ≤ m do

I ′[i]← Concat(I ′[i], pjselecti );
end while

end if
end while
return S, I ′;

end function
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FINDSum-ROO FINDSum-Liquidity

Method Segment 1 Segment 2 Segment 1 Segment 2 Segment 3
Recall1 Recalla Recall1 Recalla Recall1 Recalla Recall1 Recalla Recall1 Recalla

LexRank 56.01 22.14 53.96 20.72 49.71 18.59 48.92 17.97 46.45 17.00
TextRank 58.38 22.94 56.25 21.53 55.18 20.94 54.02 20.40 51.72 19.49
MMRG 63.38 28.01 61.68 27.85 58.61 24.28 56.69 23.09 53.94 21.62

Table 9: Evaluation results of input text selection methods. Recall1 denotes the recall of unigram, and Recalla is
the average recall of unigram, bigram, trigram, and 5-gram.

Method Features
Liquidity ROO

Top-100 Top-200 Top-100 Top-200
ACC Recall ACC Recall ACC Recall ACC Recall

LR Pos 94.53 40.36 89.32 61.95 94.54 41.53 89.27 56.08
LR Pos+Glove 94.64 52.96 89.36 66.84 94.56 43.39 89.31 60.58
SVM Pos 94.55 43.19 89.34 64.27 94.55 42.86 89.28 57.14
SVM Pos+Glove 94.64 53.73 89.36 66.58 94.56 43.65 89.31 60.58
Adaboost Pos 94.61 50.13 89.35 65.04 94.56 43.12 89.30 58.99
Adaboost Pos+Glove 94.69 58.87 89.42 73.78 94.57 45.24 89.31 60.05
XGBoost Pos 94.61 49.61 89.38 69.15 94.59 47.62 89.32 62.17
XGBoost Pos+FreqPhrases 94.72 63.24 89.43 74.55 94.61 49.47 89.35 65.08
XGBoost Pos+Glove 94.74 65.30 89.46 78.15 94.63 52.65 89.36 67.20

Table 10: Evaluation results of salient tuple selection. "Pos" denotes positional features, "Glove" is row and column
names’ Glove embedding, and "FreqPhrases" is the one-hot representation of the fifty most frequent phrases in
salient tuples’ row and column names. "ACC" and "Recall" are the accuracy and recall of the selected top-n tuples.

Model Param Enc/Dec
Layers

Input
Len

Batch
Size

Summarizer

BARTlarge 406M 12 1,024 16
PEGASUSlarge 568M 16 1,024 16
LEDlarge 460M 12 3,072 16
BigBird-
PEGASUS 577M 16 3,072 16

Tuple-to-Text Generator

BARTbase 139M 6 512 8
BARTlarge 406M 12 512 8
T5base 223M 12 512 8
T5large 737M 24 512 8

Table 11: Details of summarizers and text generators.

tuple selection dataset. Salient tuples (positive sam-
ples) are usually sparse in these report documents.
To deal with the class imbalance problem, we per-
form undersampling over negative samples to en-
sure the ratio of positive and negative samples is
1:10 in the training set. Table 10 shows introducing
the word embeddings can benefit recall. The XG-
Boost equipped with positional features and Glove
embedding (Pennington et al., 2014) outperforms
other combinations of classifiers and features, so
we use it for the salient tuple selection.

A.2 Model Details
Table 11 presents the number of parameters and
some hyperparameters of summarization models

and tuple-to-text generators used in this work.

A.3 Evaluation Results
To handle autoregressive abstractive summariza-
tion methods’ difficulty in generating long text,
we follow a divide-and-conquer method (Gidiotis
and Tsoumakas, 2020) and decompose the long
summary generation problem into multiple sub-
problems of summary segment generation. These
summary segments can be generated in parallel and
combined as the final summary. Table 12 presents
ROUGE scores of each output summary segment
produced by different models.

A.4 Examples of Generation Results
Table 13 compares different tuple-to-text genera-
tion models’ outputs and target outputs in an exam-
ple. Table 14 and 15 show different summarization
models’ output summaries and the target summary
in an example. We show the output summaries’
first segments in these two tables.
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FINDSum-ROO

Type Method Segment 1 Segment 2 Combined
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Only
Text

LexRank 34.64 8.88 16.42 35.73 9.76 17.20 34.43 7.73 14.92
TextRank 35.15 9.06 16.65 36.00 9.79 17.20 35.93 7.74 15.08

BART 43.13 13.82 21.10 40.99 11.74 18.38 49.00 16.88 19.14
PEGASUS 44.79 15.17 21.53 44.46 14.21 19.70 51.92 19.31 21.47

LED 46.11 16.17 22.49 45.52 15.17 20.26 53.06 20.33 22.28
BigBird-

PEGASUS 46.25 16.78 22.67 45.34 15.28 20.23 53.08 20.85 20.94

CG CG-LED 46.99 17.44 23.14 47.42 17.04 21.18 54.24 22.08 23.10
CG-BigBird 47.27 18.02 23.24 46.94 16.77 21.02 54.40 22.48 23.21

GCG GCG-LED 46.98 17.23 23.06 47.36 16.83 21.01 54.32 21.92 23.03
GCG-BigBird 47.28 17.87 23.15 46.79 16.48 20.85 54.12 22.11 23.02

FINDSum-Liquidity

Type Method Segment 1 Segment 2 Segment 3
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Only
Text

LexRank 32.43 6.84 15.49 32.01 6.87 15.61 30.64 6.06 14.67
TextRank 33.43 7.22 15.75 33.09 7.09 15.79 31.74 6.26 14.96

BART 42.58 12.91 19.94 39.74 10.93 18.23 36.99 8.31 16.34
PEGASUS 43.95 14.20 20.55 40.59 11.05 18.06 37.25 8.80 16.40

LED 43.49 13.37 20.03 40.69 11.12 18.03 38.70 9.61 16.84
BigBird-

PEGASUS 44.58 14.49 20.59 40.97 11.46 18.25 38.16 9.63 16.87

CG CG-LED 44.45 14.28 20.42 41.96 12.59 18.89 39.78 10.63 17.51
CG-BigBird 45.19 15.36 21.04 41.68 12.29 18.60 38.45 9.92 16.96

GCG GCG-LED 44.57 14.48 20.67 41.84 12.14 18.61 39.84 10.57 17.52
GCG-BigBird 45.34 15.56 21.07 42.30 12.64 18.84 38.73 10.35 17.22

Table 12: Automatic evaluation results of each output summary segment and final combined summary on test sets
of FINDSum-ROO and FINDSum-Liquidity.

Example of tuple-to-text generation
Input
Tuples interest bearing deposits with banks | | 2 & 2,038 | , interest bearing deposits with banks | | 15.7 & 15,700 | ,

interest bearing deposits with banks & federal funds sold and securities purchased under agreements to resell
| | 17.8 & 17,838 | , interest bearing deposits with banks & federal funds sold and securities purchased under
agreements to resell | | 10.2 & 10,168 | , ficial assets & short-term ficial assets & federal funds sold and securities
purchased under agreements to resell | | 17.8 & 17,838 | , ficial assets & short-term ficial assets & federal funds
sold and securities purchased under agreements to resell | | 10.2 & 10,168 | total short-term borrowings | | 3.7 &
3,659 | 2019

Target
Output interest bearing deposits with banks totaled $ 2,038 million and $ 15,700 million at december 31. federal

funds sold and securities purchased under agreements to resell totaled $ 17,838 million and $ 10,168 million at
december 31. short-term borrowings totaled $ 3,659 million at december 31.

BART-
large interest bearing deposits with banks totaled $ 2,038 million at december 31, 2019, compared to $ 15,700 million

at year-end 2018. federal funds sold and securities purchased under agreements to resell totaled $ 17,838 million
and $ 10,168 million at the end of 2019 and 2018. short-term borrowings totaled $ 3,659 million.

BART-
base interest bearing deposits with banks totaled $ 2.0 billion at december 31, 2019, an increase of $ 15.7 billion, or

8.1 percent, at an average rate of 4.8 percent. federal funds sold and securities sold under agreements to resell
totaled $ 17.8 billion. short-term borrowings held at the federal fhl and fhl totaled $ 3.2 billion. the federal funds
held and securities held with banks held with the fhl increased totaled $ 1.0 million, or 3.7 percent, were an
increase in federal and flo borrowings.

T5-large federal funds sold and securities purchased under agreements to resell were $ 17.8 million and $ 10.2 million for
the years ended december 31, 2019 and 2018, respectively. short-term borrowings totaled $ 3.7 million.

T5-base interest bearing deposits with banks totaled $ 2,038 million at december 31, 2019, compared to $ 15,700 million,
$ 17,838 million and $ 10,168 million in 2019 and 2018. short-term borrowings were $ 3,659 million in 2018, an
increase of $ 2 million from 2018. the increase was primarily attributable to a $ 3.7 million increase in borrowings
under our revolving credit facility, partially offset by an increase in federal funds sold and securities purchased
under agreements to resell of $ 17.8 million and a decrease in short term borrowings of $ 15.7 million.

Table 13: An example of tuple-to-text generation results.
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Example from the FINDSum-Liquidity
Target
Summary the following table sets forth a summary of the primary sources and uses of cash ( in thousands ) : cash used

in operating activities during the year ended december 31 , 2019 , cash used in operating activities was $
85.0 million , which consisted of a net loss of $ 94.4 million , adjusted by non-cash charges of $ 15.1 million
and cash used due to changes in our operating assets and liabilities of $ 5.7 million . the non-cash charges
consisted primarily of depreciation and amortization expense of $ 3.4 million , stock-based compensation
of $ 5.3 million , and non-cash operating lease expense of $ 6.4 million . the change in our operating assets
and liabilities was primarily due to a decrease of $ 4.3 million as a result of the deferred revenue recorded in
connection with our collaboration agreement with bluebird , a decrease of $ 3.3 million due to pre-payments
made per our lease agreements , and a decrease of $ 0.3 million in deposits and other long-term assets ,
offset by increases of $ 1.5 million in accrued research and development expenses and $ 0.7 million in
accrued compensation . during the year ended december 31 , 2018 , cash used in operating activities was $
38.2 million , which consisted of a net loss of $ 64.8 million , adjusted by non-cash charges of $ 6.4 million
and cash used due to changes in our operating assets and liabilities of $ 20.2 million . the non-cash charges
consisted primarily of depreciation and amortization expense of $ 3.4 million and stock-based compensation
of $ 3.0 million .

Model Output
GCG-Bigbird the following table sets forth the primary sources and uses of cash for each of the periods set forth below (

in thousands ) : operating activities net cash used in operating activities was $ 85.0 million for the year
ended december 31, 2019, primarily resulting from our net loss of $ 94.4 million, which was partially offset
by non-cash charges of $ 50.0 million for depreciation and amortization, $ 0.7 million for stock-based
compensation, and $ 6.4 million for operating lease expense. the changes in our operating assets and
liabilities were primarily due to an increase in prepaid expenses and other current assets of $ 2.5 million
and a decrease in accounts payable of $ 41.8 million and accrued research and development expenses of
$ 1.5 million. these increases were offset by decreases in deferred revenue of $ 5.5 million and accounts
receivable of $ 1.2 million and an increase of $ 0.4 million in other non-current assets. net cash ( used in )
provided by operating activities of $ 38.2 million was primarily the result of $ 75.2 million in net proceeds
from our ipo, net of underwriting discounts and commissions and offering costs, as well as cash proceeds
of $ 69.7 million from our at-the-market offering and $ 60.0 million from the sale of our common stock
under the sales agreement with cowen, offset in part by a $ 15.8 million increase in cash used for investing
activities, including purchases of property and equipment of $ 5.7 million and purchases of available-for-sale
marketable securities of $ 80.0 million and cash outflows of $ 12.0 million related to changes in the fair
value of our marketable securities.

CG-Bigbird since our inception, we have incurred significant losses and negative cash flows from operations. we have an
accumulated deficit of $ 221.0 million through december 31, 2019. we expect to incur substantial additional
losses in the future as we conduct and expand our research and development activities and invest in our
manufacturing facility. cash flows the following table sets forth the primary sources and uses of cash for
each of the periods set forth below ( in thousands ) : operating activities net cash used in operating activities
was $ 81.0 million for the year ended december31, 2019, and consisted primarily of a net loss of $ 94.4
million, partially offset by non-cash charges of $ 55.0 million and net cash provided by changes in our
operating assets and liabilities of $ 15.8 million. the net loss was primarily due to an increase in the net
deferred revenue of $ 4.3 million due to the timing of payments, a decrease in accounts payable of $ 41.8
million as a result of timing of cash receipts, an increase of $ 1.5 million in accrued expenses and other
current assets, offset by a decrease of $ 1.6 million in accounts receivable due to timing of collections, $
5.3 million in stock-based compensation expense and $ 6.4 million in operating lease expense related to
the operating lease of our new corporate headquarters building. these decreases in cash used were partially
offset, in part, by a net increase in deferred revenues of $ 7.3 million due primarily to the recognition of
milestone payments under our collaboration agreement with bluebird bio, inc., or bluebird, of $ 2.5 million
and a net decrease in accrued compensation expense of $ 0.5 million related to our former chief executive
officer.

BigBird-
PEGASUS since our inception, we have incurred significant losses and negative cash flows from operations. we have

funded our operations to date primarily from private placements of our convertible preferred stock, the net
proceeds from our initial public offering, or ipo, which we completed in october 2018, from our follow-on
public offering ( which was completed in april 2019 ), as well as cash proceeds from bluebird under the
collaboration agreement we entered into in august 2018. we expect to continue to incur net operating
losses for at least the next several years as we advance our personalized cancer immunotherapy through
clinical development, seek regulatory approval, prepare for and, if approved, proceed to commercialization,
continue our research and development efforts and invest in our manufacturing facility. cash flows the
following table sets forth the primary sources and uses of cash for each of the periods set forth below :
operating activities during the year ended december 31, 2019, net cash used in operating activities was $
64.6 million, primarily resulting from our net loss of $ 92.2 million and changes in our operating assets and
liabilities, partially offset by non-cash charges totaling $ 19.9 million. the net loss was primarily due to
the costs incurred in connection with the development of our slate, granite and bisab product candidates
and general and administrative expenses associated with our operations, including the costs associated with
being a public company.

Table 14: An example of output summaries from the FINDSum-Liquidity.
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Example from the FINDSum-ROO
Target
Summary the following table sets forth the percentage relationships of expense items to total operating revenue for

the periods indicated: year ended december 31 , 2012 compared with the year ended december 31 , 2011
operating revenue increased $ 17.1 million ( 3.2 % ) , to $ 545.7 million for the year ended december 31 ,
2012 from $ 528.6 million for the year ended december 31 , 2011. the increase in revenue was the result
of a $ 4.6 million ( 4.3 % ) increase in fuel surcharge revenue from $ 107.8 million in 2011 to $ 112.4
million in 2012 and an increase in line haul and other revenues of $ 12.5 million ( 3.0 % ). fuel surcharge
revenues represent fuel costs passed on to customers based on customer specific fuel charge recovery rates
and billed loaded miles. fuel surcharge revenues increased mostly as a result of a 3.2 % increase in average
doe diesel fuel prices during the year ended december 31 , 2012 compared to the same period of 2011. line
haul revenues increased mainly as a result of freight rate increases offset by a slight decrease in loaded
miles. salaries , wages , and benefits increased $ 0.4 million ( 0.2 % ) , to $ 167.1 million for the year ended
december 31 , 2012 from $ 166.7 million in the 2011 period. the increase was the result of a $ 0.8 million
increase ( 0.7 % ) in driver wages , a $ 2.2 million increase in amortization of stock-based compensation
awards , a $ 2.7 million ( 38.5 % ) decrease in workers’ compensation , and a $ 0.1 increase in other
compensation and benefits. the company driver wage increase was mainly due an increase in miles driven.

Model Output
GCG-Bigbird years ended december 31, 2012, 2011, and 2010 operating revenue operating revenue increased $ 17.1

million ( 17.1 % ), to $ 545.7 million for 2012 from $ 528.0 million for 2011. the increase in revenue was
mainly the result of an increase in fuel surcharge revenue from $ 107.8 million in 2011 to $ 102.5 million in
2012. line haul and other revenues decreased $ 3.4 million ( 0.8 % ) on a decrease in total miles, offset
by a increase in freight rates per total mile. fuel surcharge revenues increased mostly as a result of a 28.4
% increase in average doe diesel fuel prices during the year ended december 2011 compared to the same
period of 2010, as well as an improvement in loaded miles versus total miles comparing the two periods.
salaries, wages and benefits salaries and benefits increased $ 1.3 million ( 0.6 %, ) to $ 167.1 million for the
year 2012 from the year 2011 primarily due to an increase of $ 2.1 million in driver wages, a $ 0.4 million
increase in office and shop wages and a $ 1.0 million increase of workers’compensation. rent and purchased
transportation rent and purchase transportation decreased $ 1.9 million ( 20.4 % ), to $ 3.0 million for 2011
from $ 9.5 million in the 2010 period. the decrease is mainly attributable to fewer independent contractors
driving for the company. during the 2011 period, independent contractors accounted for 2 % of the total
fleet miles compared to approximately 3 % for the comparable period of 2010. the company’s driver wage
decrease was mainly due to fewer miles driven year over year, which was partially offset by an overall
decrease in the overall company average wage rate per mile due mainly to the mix of company drivers based
on operating region locations.

CG-Bigbird the following table sets forth, for the periods indicated, the percentage that certain items in the statements
of operations bear to operating revenue. year ended december 31, 2012 compared with the year ended
january 1, 2011 operating revenue increased $ 30.0 million ( 17.0 % ), to $ 540.0 million for the yearended
december 31 2012 from $ 528.6 million for 2011. the increase in revenue was mainly the result of a $ 32.5
million ( 43.2 % fuel surcharge ) increase in fuel surcharge revenue from $ 107.8 million in 2011 to $ 107.7
million in 2012. line haul and other revenues decreased $ 0.4 million ( 0.8 % ) on a decrease in total miles,
offset by an increase in freight rates per total mile. fuel surcharge revenues represent fuel costs passed on
to customers based on customer specific fuel charge recovery rates and billed loaded miles. there was an
improvement in loaded miles versus total miles compared to the same period in 2011. fuel cost per mile,
net of fuel surcharge, increased 14.9 % in the 2012 period compared to 2011, as a result of increased fuel
prices, $ 34.4 million, which was offset by a decrease of $ 20.6 million in volume. salaries, wages, and
benefits increased $ 0.9 million ( 0.9 %, primarily due to a $ 0.6 million increase in non-driver personnel
wages. property and land improvements decreased $ 0.1 million ( 0.1 %. ) insurance and claims decreased
$ 0.2 million ( 0.2 % ; ) rent and purchased transportation decreased $ 0.3 million ( 0.3 % ). the decrease is
mainly attributable to lower amounts paid to independent contractors due to fewer miles driven. during
the fourth quarter of 2012, independent contractors accounted for 2 % of the total fleet miles compared to
approximately 3 % for the same quarter in 2011.

BigBird-
PEGASUS the following table sets forth, for the periods indicated, the percentage of total revenues represented by

certain items reflected in the company’s consolidated statements of income. year ended december 31, 2012
compared with the year ended january 1, 2011 operating revenue increased $ 17.8 million ( 14.9 % ), to $
528.6 million for the yearended december 31, 2012 from $ 528.8 million for 2011. the increase in revenue
was mainly the result of a $ 32.5 million ( 43.2 %, fuel surcharge revenues ) increase in fuel surcharge
revenue from $ 75.3 million in 2011 to $ 107.8 million in 2012, offset by a decrease in line haul and other
revenues of $ 3.4 million, or 0.8 %. operating expenses, net, increased $ 8.7 million ( 9.9 % , excluding the
impact of the fuel surcharge increase, which was $ 11.9 million ) to $ 284.8 million for 2012 from operating
expenses of $ 264.5 million for 2011. the increase is mainly attributable to a $ 18.6 million ( 21.4 % ), or $
13.0 million increase in salaries, wages, and benefits, primarily due to an increase in non-driver personnel in
2012 compared to the same period in 2011, as well as a $ 2.7 million increase in other benefits and payroll
taxes, mainly due to a higher percentage of other benefits paid to independent contractors as a result of
fewer independent contractors driving for the company, partially offset by an increase of $ 2.2 million in
rent and purchased transportation, a decrease of $ 1.9 million in workers’compensation and a $ 1.0 million
decrease in health insurance, both of which were due to frequency and severity of claims. depreciation
decreased $ 4.7 million ( 7.6 % decrease in depreciation expense, which is primarily attributable to the
decrease in average depreciation per tractor.

Table 15: An example of output summaries from the FINDSum-ROO.
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