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Abstract

Adopting contextually appropriate, audience-
tailored linguistic styles is critical to the success
of user-centric language generation systems
(e.g., chatbots, computer-aided writing, dialog
systems). While existing approaches demon-
strate textual style transfer with large volumes
of parallel or non-parallel data, we argue that
grounding style on audience-independent exter-
nal factors is innately limiting for two reasons.
First, it is difficult to collect large volumes of
audience-specific stylistic data. Second, some
stylistic objectives (e.g., persuasiveness, mem-
orability, empathy) are hard to define without
audience feedback.

In this paper, we propose the novel task
of style infusion - infusing the stylistic
preferences of audiences in pretrained lan-
guage generation models. Since humans
are better at pairwise comparisons than di-
rect scoring - i.e., is Sample-A more persua-
sive/polite/empathic than Sample-B - we lever-
age limited pairwise human judgments to boot-
strap a style analysis model and augment our
seed set of judgments. We then infuse the
learned textual style in a GPT-2 based text gen-
erator while balancing fluency and style adop-
tion. With quantitative and qualitative assess-
ments, we show that our infusion approach
can generate compelling stylized examples
with generic text prompts. The code and data
are accessible at https://github.com/
CrowdDynamicsLab/StyleInfusion.

1 Introduction

In this paper, we develop a novel approach to infuse
audience-centric styles into pretrained language
generation (NLG) models. Learning to synthesize
subjective styles is crucial to various applications.
For instance, persuasion and memorability in com-
putational advertising and marketing (van Noort
et al., 2020). User-centric applications of language
generation, such as writing aids, chatbots, and di-
alog systems, often require these stylistic adjust-

ments depending on both the audience and the task.
Prior work often defines textual style with large
static sentence collections. However, stylistic ob-
jectives such as persuasiveness, memorability, and
empathy are hard to define without a target au-
dience (Bell, 1984) due to non-uniform stylistic
expectations across diverse user groups. Thus, we
suggest that subjective text styles and traits must be
defined by the target audience instead of audience-
independent data. Our work focuses on two result-
ing challenges - first, how to collect target audience
feedback, and second, how to leverage the limited
feedback efficiently for style infusion.

Textual styles - i.e., different linguistic presen-
tations of the same conceptual content - play an
integral role in persuasive/memorable communi-
cation. For instance, an informal style is less per-
suasive in formal settings (Kim et al., 2019). The
style problem extends across diverse domains, from
empathic styling in mental health (Cameron et al.,
2018) to fact-driven, simplistic styling in tech sup-
port (Okuda and Shoda, 2018). Existing work
in textual style transfer (TST) takes two general
approaches. The strictly supervised approaches
leverage fixed parallel corpora, analogous to ma-
chine translation (Hu et al., 2017b), while semi-
supervised and unsupervised techniques leverage
non-parallel collections of stylized sentences (Shen
et al., 2017). Predefined metrics, heuristics, exter-
nal oracles, and hybrid approaches have also been
considered (Jain et al., 2019; Jin et al., 2019a).

Constructing audience-centric or time-evolving /
adaptive methods for style transfer remains an open
challenge. Existing approaches are guided by rigid
modeling considerations and the distributions of
fixed style-specific corpora. This is innately limit-
ing for stylistic objectives such as persuasiveness,
a trait with a widely disputed definition in existing
literature, and multiple external confounds such
as preexisting biases and independent features of
the persuader (e.g., how many followers they have)
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(Al Khatib et al., 2020; Moran et al., 2016; Lowrey,
1998; Berger and Milkman, 2012; Murphy, 2001).
Furthermore, it is infeasible to collect extensive an-
notated collections of text for each audience, style,
and application (Pennebaker and King, 1999).

Unlike prior work, we define and incorporate
style grounded on our target audience. To address
dynamic settings requiring audience-centric lin-
guistic styles, we propose the novel style-infusion
task. Since human reviewers are better at pair-
wise style comparisons than direct scoring (Shah
et al., 2014), we formulate style infusion as follows:
how do we infuse the stylistic preferences of our
audience, via pairwise sentence comparisons, in
a generative language model (LM)? Unlike con-
ventional style transfer, our task leverages domain
and audience-specific feedback instead of paral-
lel non-parallel sentence collections rendered in
any specific style. Further, we adopt an incremen-
tal training approach rather than retraining models
from scratch.

We bootstrap an initial style analysis model to
discriminate the positive and negative samples from
audience feedback. Our model then selects ad-
ditional samples from a generic topical sentence
collection to expand the seed set of audience judg-
ments. By separating style analysis and text gen-
eration models, we create an adversarial setup to
infuse the audience’s stylistic feedback in any gen-
erative LM. We weight the noisy reward from the
style analysis model (discriminator) with a recon-
struction loss to balance style adoption and fluency.

In summary, our contributions are as follows:

1. Audience-centric Style Infusion: To our
knowledge, we are the first to formulate the
task of style infusion to tether the definition of
style to the target audience. In contrast, prior
work defines style in a purely data-driven man-
ner (Shen et al., 2017; Yang et al., 2018). Ex-
ternal data limits the definition of style to the
context in which it was collected. We pro-
pose a more human-centric approach to text
styling through explicit audience feedback via
pairwise comparisons.

2. Decoupling Style: We decouple the style anal-
ysis and language generation models for versa-
tility and simplicity. Prior work often unifies
these tasks in a single training setup, thus sac-
rificing incremental learning and infusion of
new stylistic preferences of audiences (Jain

et al., 2019; Jin et al., 2019a). We introduce
an automatically weighted loss, combining an
independent reconstruction loss for generation
and discriminator-based loss for style, produc-
ing a more robust representation of style than
in fused settings.

3. Automatic Style Evaluation: To the best
of our knowledge, we are the first to auto-
matically evaluate the transfer of memora-
bility/persuasiveness. Existing literature has
relied on costly manual evaluation as these
two traits are hard-to-define stylistic objec-
tives lacking generative work (Li et al., 2020;
Tan et al., 2016; Danescu-Niculescu-Mizil
et al., 2012). We introduce a new audience-
centric correlation metric using a hierarchi-
cal Bayesian model to compute the correla-
tions of linguistic features with audience feed-
back. We then evaluate our model’s gener-
ations based on their agreements with these
audience correlations.

2 Related Work

Prior work has explored "style transfer" in diverse
settings ranging from “clickbait” headlines to for-
malizing text (Jin et al., 2020; Chawla and Yang,
2020; Xu et al., 2019). While strictly supervised
approaches show high fidelity to input samples (Hu
et al., 2017b; Jhamtani et al., 2017), unsupervised
and minimally supervised learning are widely appli-
cable since parallel samples are unavailable (Shen
et al., 2017; Yang et al., 2018).

Disentanglement, prototype editing, and pseudo-
parallel corpus creation are popular approaches.
Prototype editing applies stylistic markers to prede-
fined sentence templates (Guu et al., 2018; Li et al.,
2018), disentanglement extracts style independent
of the content (Shen et al., 2017; Hu et al., 2017a).
Audience-centric feedback may not conform to
these rigid hypotheses. First, unconstrained genera-
tion allows for freedom in sentence and paragraph-
level constructs to define the style (Li et al., 2020).
Second, the separability of content and style is
harder in specialized domains reliant on domain-
specific jargon (Woodward-Kron, 2008) and ex-
pressions. Our bootstrapping approach shares some
commonalities with pseudo-parallel corpus cre-
ation (e.g. aligning sentences from two mono-style
corpora) (Jin et al., 2019b; Zhang et al., 2018), but
only utilizes a generic topical corpus to expand
the audience-generated “seed set” of pairwise judg-
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ments. Adversarial training has also been used to
quantify style (Yang et al., 2022). Our approach
explicitly decouples the style discrimination and
generation tasks for modularity and incremental
training purposes.

We pick two stylistic objectives that are highly
audience-dependent and hard to define objectively
- memorability and persuasiveness - to evaluate our
approach. Prior work in these styles has been lim-
ited to analysis but not generation. Tan et al. (2016)
and Li et al. (2020) find linguistic patterns, interac-
tion dynamics, and discourse structure are strong
identifiers of persuasive arguments, while convinc-
ingness (Habernal and Gurevych, 2016), memora-
bility (Danescu-Niculescu-Mizil et al., 2012) have
been better explained by linguistic feature correla-
tion. However, there is a lack of work on uncon-
strained generation of persuasive and memorable
text (Dürr and Gloor, 2021; van Noort et al., 2020).
Our approach enables us to bridge some of these
specific gaps while maintaining a generalized over-
all formulation.

3 Discriminative Language Model

In this section, we train a BERT-based style dis-
criminator to provide feedback to our generator.

3.1 Model Architecture and Training

Our style discriminator (style analysis module)
adds a fully connected (FC) layer with dropout
to pre-trained BERT (Devlin et al., 2019). We use
the ’bert-base-uncased’ model (Wolf et al., 2019)
(12-layers, 768 dimension). We concatenate with a
’<SEP>’ token and jointly tokenize the compared
pair of sentences. The FC layer generates a sin-
gle output (R768 → R). We threshold the sigmoid
of the output at 0.5 to decide the preferred sen-
tence. We train all layers (including BERT) on
the pairwise audience feedback (batch size 32, 5
epochs, η = 0.0001, dropout = 0.2). We also
train a Siamese BERT architecture (Reimers and
Gurevych, 2019) with the same settings but find it
to underperform BERT (results in Appendix A).

3.2 Pairwise Feedback Datasets

We select one pairwise feedback dataset for both
the persuasiveness and memorability tasks to eval-
uate our approach. The UKPConvArg1 cor-
pus (Habernal and Gurevych, 2016) presents pairs
of arguments where human annotators select the
more persuasive argument. The authors gener-

ate 16,000 argument pairs over 16 distinct, non-
overlapping topics. Both arguments in a pair be-
long to the same topic and argue for the same
stance (i.e., parallel pairwise feedback). For mem-
orability, we leverage the Cornell Movie-Quotes
Corpus (Danescu-Niculescu-Mizil et al., 2012),
containing 2,200 paired movie quotes with crowd-
sourced memorability annotations.

3.3 Observations and Validation

Our discriminator achieves 89% accuracy over 5-
fold cross-validation for the persuasiveness task.
We further validate for overfitting by holding out
two topics from the test set and training on the re-
maining topics, ensuring the discriminator has no
exposure to these held-out topics during training.
After training from scratch, the discriminator still
achieves 87% accuracy on the held-out topics. On
the Cornell Movie-Quotes corpus, the discrimina-
tor achieves 80% accuracy. We repeat the held-out
topic test to validate the classification performance
for the memorability task.

In summary, these tests validate the ability of
our style discriminator to learn audience style pref-
erences with small volumes of pairwise feedback.
In Section 4, we describe our approach to infuse
the style discriminator feedback into a generative
language model.

4 Style-Aware Language Generation

In this section, we infuse the stylistic preferences
learned by our style discriminator in Section 3 into
a GPT-2 model (Radford et al., 2019) pretrained on
the causal language modeling (CLM) objective 1.
The model takes in a textual prompt and generates
text, y, that we want to infuse with the audience
preferred style. For the persuasiveness task, the
UKPConvArg1 dataset provides prompts for each
argument pair. For the memorability task, we use
the previous sentence as the prompt.

During training, we feed the prompt and feed-
back pair to GPT-2 - the more preferred (styled)
sample, y∗s , and the corresponding less-preferred
(non-styled) sample, y∗ns. We use an adversarial
training paradigm to enable the generator to learn
from the discriminator, illustrated in Figure 1.

4.1 Training

We utilize two losses during training: a reconstruc-
tion loss, LR, and a discriminator loss, LD. The

1https://huggingface.co/gpt2
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Figure 1: Training diagram that shows how the loss is calculated as a weighted sum of the discriminator (LD) and
reconstruction (LR) loss. αS is decided by the discriminator as a form of contrastive learning.

reconstruction loss is meant to maximize the log
probability of the styled training argument, y∗s .

LR = − 1

N

N∑

i=1

log p(y∗(i)s ) (1)

The reconstruction loss teaches the model to
mimic the gold-standard samples. The discrimi-
nator loss is meant to maximize the score of the
discriminator, D, and is formulated as:

LD = D(y∗s , y)−
1

N

N∑

i=1

R̂i log p(y
(i)) (2)

where y(i) is the i-th token of the generated sen-
tence y, and R̂i is a baseline reward meant to reduce
the noise from the discriminator. We elaborate on
the baseline reward in Appendix B.

We find that too strong of a discriminator loss
negatively impacts fluency. Thus, we introduce a
regularization constant, β, to ensure that the dis-
criminator loss remains only a fraction of the loss.
The two losses are weighted together to create the
final loss as follows:

LSD = C · LD + (1− C) · LR (3)

where C = β(1 − αS) and αS = D(y∗s , y
∗
ns).

Note that y∗ns is the non-styled training argument.
Instead of making the weighted ratio between

the two losses constant, we make them sample de-
pendent. The intuition is that when αS is high (e.g.
the sample is persuasive), we can just use the recon-
struction loss to replicate the gold standard which
will directly reflect the style. However, when αS

is low (i.e. we have a weak sample), we instead

switch to learning the trends from the discriminator.
This loss is referred to as the sample-dependent dis-
criminator (SD) loss. We also compare the discrim-
inator loss with a simpler supervised loss defined
as LS = 1

N

∑N
i=1D(y∗s , y

(1..i)).

4.2 Dataset Augmentation Approach

The UKPConv1 and Cornell Movie Quotes corpora
we presented in Section 3.2 provide approximately
16,000 and 2,200 unique pairs for stylistic feed-
back; not nearly enough to train a large language
model. To increase our model’s breadth of knowl-
edge, we generate additional pairwise feedback
with the CNN/Daily Mail dataset (See et al., 2017),
containing over 300,000 unique news articles.

First, we generate the Universal Sentence Em-
beddings (Cer et al., 2018) of all unique sentences
in our style corpora (UKPConv1, Cornell) and ex-
ternal corpora (CNN/Daily Mail). For each candi-
date sentence in the external dataset, si, we find the
top-k similar sentences (y1...yk) in the style corpus
to be augmented. We then perform pairwise com-
parisons ∨jD(si, yj) > 0.5, j ∈ {1, ..., k} where
if the discriminator prefers the candidate external
sentence (si) over any one of the similar sentences
(y1...yk) from the style corpus, we include the pair.
Through this bootstrapped augmentation method,
we ensure we have sentences that are relatively
more “styled”, as defined by our discriminator, and
similar to those in our existing corpus.

4.3 Style-Aware Generation with GPT-2

The OpenAI GPT-2 (Radford et al., 2019) model
is a large transformer-based language model pre-
trained on nearly 8 million web pages, allowing
generalization to many domains and tasks. This
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is closer to the unconstrained scenarios that we
wish to target with our style-infusion task. Alter-
nate generators such as pointer-generators rely on
copying (Xu et al., 2019), thus introducing more
limitations in the extent of style infusion. The abil-
ity to extensively pretrain transformer-based mod-
els makes them more widely applicable for syle
infusion (Gururangan et al., 2020).

In this section, we introduced the adversarial
training mechanism for the style-aware language
generator and the bootstrapped data augmentation
method used to produce robust generations. Next,
we will introduce the baselines, evaluation metrics,
and training settings.

5 Experimental Settings

We compare our architecture against a few strong
baselines:

Pretrained GPT-2 (Radford et al., 2019) We use
this pre-trained model as a representation of aver-
age text, allowing us to show shifts in style that
occur due to training.

Fine-tuning We fine-tune the pre-trained GPT-
2 model using the reconstruction objective on the
style-specific corpus only (e.g. UKPConv1).

Fine-tuning + Data Augmentation We fine-tune
the pre-trained GPT-2 model using the reconstruc-
tion objective on the augmented data.

TitleStylist (Jin et al., 2020) We adapt the stylis-
tic headline generation framework to generate
stylistic text based on a prompt. Jin et al. (2020)
utilize a Denoising Autoencoder with parameter
sharing to disentangle style from content to control
the style with a set of parameters.

Training Settings For all GPT-2 based models,
we use a base GPT-2 model from Huggingface
(Wolf et al., 2019) (1024 dimensions, Adam opti-
mizer, η = 5e − 5). Because of the length of our
text and size of our models, we utilize DeepSpeed
(Rasley et al., 2020) to distribute training over two
32GB V100s, and we train with FP16 mixed preci-
sion. We experiment with the loss parameters of C
and β and discuss our findings in section 8.

Evaluation Metrics We take a deeper look into
the annotator labels in the UKPConvArg1 dataset
and we find that some linguistic features play a
significant role in the persuasiveness of text.

We create a hierarchical Bayesian model to find
the correlation between a set of collected linguistic
features and the desired style. We first take the
unique sentences from a dataset and compute a

set of linguistic features over them. A full list of
features can be found in Appendix C.

For each linguistic feature-topic pair, we infer
the correlation between the feature and the text
that demonstrates the style by running a Markov
Chain Monte-Carlo (MCMC) process using the
No-U-Turn Sampler (NUTS). We elaborate on the
calculations in Appendix C.2. Note that the results
we show are in the logit scale, meaning even a
change of ∓1 has a big effect on the probability
(about a 23% difference in odds of winning).

The models then generate text based on the
prompts in a held-out test set and we calculate
the features of the generations. We run a t-test to
determine if the difference in features between a
pretrained GPT-2 and one of our models is statis-
tically significant. This evaluation shows how our
trained model learns to use these linguistic features
to construct more stylized arguments.

In addition, we use pyrouge library to collect
the ROUGE (Lin, 2004) score, a commonly used
metric that measures the N-gram overlap between
the training and generated arguments. While these
scores will not tell us how persuasive our gener-
ations are, they will ensure that the generations
remain on topic.

Lastly, we compute the BERTScore (Zhang et al.,
2019), another automatic evaluation metric that
computes token similarity using contextual embed-
dings. The BERTScore represents the semantic
similarity of the generations to the test set which
will ensure generations are relevant, but not neces-
sarily persuasive.

6 Results on Persuasiveness

In this section, we analyze our results by showing
a significant usage of linguistic features that resem-
ble persuasive text, showing generated text, and
with standard metrics.

6.1 Linguistic Feature Correlations

Figure 2 shows the correlations between linguistic
features and convincingness in the UKPConvArg1
corpus. The model details are in Appendix C.

We find a strong positive correlation between
readability and winning arguments. This is re-
flected by both readability scores (e.g., SMOG,
Flesch-Kincaid, etc.) and correlation with smaller
words, fewer total dependencies, and a smaller
overall total dependency distance. We notice a
positive correlation with speed and volume. Toubia
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Figure 2: The correlations between linguistic features
and convincingness in the UKPConvArg1 corpus. The
lower x-axis is in the logit scale, and the percentage dif-
ference in odds of winning is on the upper x-axis. The
figure is read as: if the feature for argument A is one
standard deviation greater than the feature for argument
B, the odds of A winning shift by the respective percent
value. Notice that the correlations show a strong pos-
itive correlation with readability (e.g., the Flesh score
is positive while length and average syllables are nega-
tive).

et al. (2021) define speed as the total distance
covered by a text’s word embeddings, normalized
by the length of the text. Volume represents the
amount of material covered by the text, calculated
by estimating the volume enclosed by the word
embeddings (Toubia et al., 2021). We also find a
negative correlation with passive voice and a posi-
tive correlation with misspelled words (not shown
for brevity).

We run a significance test to see how well
our models learned the style (see Appendix C.3).
Most models consistently learn pronounced trends
(i.e., Brunet index, length, speed, and volume). The
augmented data likely led to this change because
fine-tuning on the augmented set displays the same
trends. In cases like total dependencies (TD) and
the ratio of present tense verbs, models trained with
the sample-dependent discriminator (SD) loss are
significantly better at learning the trend, despite the
data not actively showing the trend (or completely
opposing it). In the case of Flesch score, models
trained with SD loss can nullify the trend which
occurs in the incorrect direction. This displays that
models trained with the SD loss are substantially
better at learning from the dataset than the baselines
and models trained with the sample-dependent su-

pervised (SS) loss. One example of failure is the
ratio of jargon, likely because the model could not
generate out of vocabulary words, but this is a limi-
tation of how we define jargon.

6.2 Sample Generations

Table 1: The baseline models and our model (GPT2 with
the SD loss and β = 0.5 on the augmented data). The
models are fed the input “Plastic bottles are bad because”
and “Gaming is good for child development because”,
generating up to 100 tokens using beam search.

MODEL & GENERATED TEXT

EXAMPLE 1:
GPT2: Plastic water bottles are bad because they are not
recyclable," he said. "They are not good for the environment,
they are not recyclable."
GPT2-Aug: Plastic water bottles are bad because it causes
pollution. Also water bottles also cost more than regular
water.
TStylist: Plastic water bottles are bad because plastic water
bottles are bad for our environment.
Ours (SD-0.5): Plastic water bottles are bad because they are
not recycled and end up in landfills which lead to pollution of
our environment. Plastic requires up to 47 million gallons of
oil per year to produce.

EXAMPLE 2:
GPT2: Gaming is good for child development because it
teaches them how to use a computer. It’s good for the
economy, it’s good for the environment, it’s good for the
children, it’s ...
GPT2-Aug: Gaming is good for child development because it
allows the child to grow and develop. I believe eSports (LoL)
should be a spectator sport and not a major part of the sports
calendar.
TStylist: Gaming is good for child development because
gaming is good for your child.
Ours (SD-0.5): Gaming is good for child development
because it allows children to grow up in a world where they
are exposed to a wide variety of ideas and experiences.

Table 1 shows the generations of three baselines
and our best-performing method. We find that for
both prompts, the generations of models trained
with the sample-dependent discriminator (SD) loss
generally have the highest values of speed, volume,
and lexical diversity. For the second prompt, the
speed and volume of our generation are larger than
that of GPT2 and TStylist, but slightly smaller than
that of GPT2 fine-tuned on the augmented data.
Intuitively, this makes sense because the GPT-Aug
generation covers much more information in the
same time frame; however, this information isn’t
relevant to the argument, making our generation
much more sensible. The baselines often suffer
from neural degeneration, but the model trained
with the SD loss does not face this issue. Since
length had a strong negative correlation with per-
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suasiveness, the model likely implicitly learned
from the discriminator to handle this kind of neural
degeneration. However, it is still an issue in some
cases with out-of-domain samples.

Table 2: ROUGE-{1,2, L} scores and BERT scores (F1)
for all models. Baseline models: GPT2, GPT-2 fine-
tuned on UKPConvArg1, GPT-2 with augmented data,
TitleStylist (Jin et al., 2020). Our models are trained on
augmented data and a sample-dependent discriminator
(SD) or sample-dependent supervised (SS) loss with
parameter β. The baseline ROUGE score increases due
to data augmentation; the relevance of our models’ gen-
erations is largely insensitive to loss type and parameter
value.

MODEL RG-1 RG-2 RG-L B-F1

GPT2 0.1856 0.0968 0.1769 89.28
GPT2-UKP 0.2474 0.1061 0.1989 87.21
GPT2-Aug 0.2987 0.1845 0.2774 86.90
TStylist 0.2578 0.1569 0.2391 84.70

SS-0.1 0.2925 0.1802 0.2717 88.95
SS-1.0 0.2862 0.1774 0.2634 89.18
SD-0.1 0.3036 0.1903 0.2802 88.75
SD-0.5 0.3168 0.2296 0.3065 89.56
SD-0.8 0.2872 0.1957 0.2733 89.12
SD-1.0 0.2929 0.2224 0.2848 89.05

6.3 Automatic Metrics
We compare the ROUGE scores of our experimen-
tal models in Table 2, ensuring that the topics in
the test set are not discussed anywhere in the UKP-
ConvArg1 or augmented datasets. The data aug-
mentation leads to a sharp increase in the ROUGE
scores of the generations, showing that it is essen-
tial for robust and relevant generations. The results
are relatively insensitive to variation in β param-
eter that controls the tradeoff between reconstruc-
tion loss (LR) and discriminator loss (LR). These
scores show that our models generate relevant, but
not necessarily persuasive, text. We find similar
insights from the BERTScore; although the aug-
mentation has a slight negative impact on the score,
the difference is negligible.

7 Results on Memorability

In this section, we focus on memorability and show
that our model can generate more robust, relevant,
and memorable text than the baselines.

7.1 Linguistic Feature Correlations
We train a Bayesian hierarchical model for the Cor-
nell Movie Quotes corpus, which produces the cor-
relations shown in Figure 3. We find a strong nega-
tive correlation with long, winding text, shown by

the trends in total dependencies, total dependency
distance, length, and circuitousness. A higher cir-
cuitousness implies that a less direct route was
taken to convey information (Toubia et al., 2021).
Circuitousness is detrimental to memorability as
winding text tends to be harder to remember. The
negative correlation with the punctuation rate and
positive correlation with the average dependencies
show that more memorable text tends to have a
few sentences, independent of the length of sen-
tences. Lastly, there is a strong emphasis on un-
common vocabulary with a negative correlation
with the Brunet index and a positive correlation
with token type ratio. This is supported by find-
ings from (Danescu-Niculescu-Mizil et al., 2012)
who find that memorable quotes are built upon less
common word choices.

Figure 3: The correlations between linguistic features
and persuasiveness in the Cornell Movie-Quotes Corpus.
The lower x-axis is in the logit scale, and the percentage
difference in odds of winning is on the upper x-axis.
Notice that the correlations show a negative correlation
with long and winding text (i.e., circuitousness (Toubia
et al., 2021)).

We run the significance test on a held-out test
set to see how well our models learned to gen-
erate memorable text. In some cases in Table 8,
models trained with the sample-dependent discrim-
inator (SD) loss have similar performance as the
fine-tuned models, indicating that some relevant
features are learned solely from fine-tuning. How-
ever, many other incorrect trends are corrected with
training using the SD loss. The only feature that
does not improve is the pronoun rate, likely be-
cause of shorter sentences with more emphasis on
uncommon word choices.
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7.2 Sample Generations

We look at a few examples of generations to see
how training influenced the model’s generations
in Table 3. There is a visible decrease in the num-
ber of sentences, overall length, and circuitousness
in both the GPT2-Aug and SD-0.5 models. This
reflects the trends shown in Table 8, but we can
see that the model trained with the SD loss gen-
erates sentences that are more sophisticated than
the fine-tuned GPT2 model’s. TitleStylist gener-
ates sentences that are identical to our generation
feature-wise but are not as sophisticated as our gen-
erations.

MODEL & GENERATED TEXT

EXAMPLE 1:
GPT2: The more you know about it, the more likely you are
to believe that it is true. If you don’t believe that it is true,
you’re not alone. If you don’t believe that it is true, you’re not
alone...
GPT2-Aug: The more you smoke, the more you will smoke
TStylist: The more you need to know.
Ours (SD-0.5): The more you learn, the more you see.

EXAMPLE 2:
GPT2: When solving problems, dig a hole in the ground and
dig a hole in the ground and dig a hole in the ground and dig a
hole in the ground and ...
GPT2-Aug: When solving problems, dig your heels in and
try to find a solution, even if you don’t have the answers, and
even if you don’t know the answers.
TStylist: When solving problems, dig better and better.
Ours (SD-0.5): When solving problems, dig deeper than a
grave.

Table 3: Generations of GPT2, GPT2 fine-tuned on
augmented data, and GPT2 with the SD loss (β = 0.5)
on the augmented data. The models are fed in the inputs
“The more you” and “When solving problems, dig”.

7.3 Automatic Metrics

Similar to persuasiveness, Table 4 shows that the
ROUGE scores increase mainly due to data aug-
mentation. Once again, these results demonstrate
that the augmented data leads to more relevant gen-
erations, increasing the breadth of knowledge trans-
ferred to the model. The same trends generally
hold for the BERTScore, which shows that the gen-
erations remain semantically relevant.

We show that our model generates more robust,
relevant, and memorable text than the baselines.
Next, we discuss how tuning the loss parameters
affects generations.

Table 4: ROUGE-{1,2, L} scores and BERT scores
(F1) for all models. Baseline models: GPT2, GPT-2
fine-tuned on UKPConvArg1, GPT-2 with augmented
data, TitleStylist (Jin et al., 2020). Our models are
trained on augmented data, and a sample-dependent
discriminator (SD) or sample-dependent supervised (SS)
loss with parameter β. The baseline ROUGE score
increases due to data augmentation; again, the relevance
of generations is largely independent of loss type and
parameter value.

MODEL RG-1 RG-2 RG-L B-F1

GPT2 0.1503 0.0853 0.1461 81.12
GPT2-IMDB 0.1579 0.0853 0.1510 88.87
GPT2-Aug 0.2737 0.1703 0.2685 87.24
TStylist 0.2542 0.1617 0.2439 85.99

SS-0.1 0.2746 0.1759 0.2668 85.98
SS-1.0 0.2740 0.1723 0.2661 85.93
SD-0.1 0.2743 0.1735 0.2686 86.87
SD-0.5 0.2718 0.1706 0.2680 83.94
SD-0.8 0.2812 0.1705 0.2733 85.81
SD-1.0 0.2739 0.1681 0.2675 86.12

Table 5: Generations of GPT2 trained with the sample-
dependent discriminator loss objective with different
values of β. The generations for SD-0.5 and SD-1.0
tend to be much better than for SD-0.1

MODEL & GENERATED TEXT

SD-0.1: IE sucks and makes development on your computer
much more difficult than it should be. I believe that Internet
Explorer (IE) is far inferior to Internet Explorer (IE) and
Internet Explorer (IE) is far inferior to Internet Explorer (IE)
SD-0.5: IE sucks and makes development more difficult
SD-1.0: IE sucks and makes development on your computer
much more difficult than it should be.

8 Empirical Observations

We analyze how the value of β affects generations,
finding that generations from β = 0.1 suffer the
same degeneration as fine-tuning while higher val-
ues avoid these issues. Because αS is not always
1, the constant in front of the discriminator loss
is less than β. Consequently, the discriminator is
not given enough weight, and the generator cannot
learn as effectively from the discriminator. It is dif-
ficult to distinguish differences between β = 0.5
and β = 1.0, but aside from β = 0.5, β = 1.0
outperforms every other value of β.

We also experiment with hard-coding the coeffi-
cients for the discriminator and reconstruction loss
in Table 6. Putting too much weight on the dis-
criminator loss, LD, (i.e., 0.9) leads to poor quality
arguments having some of the strongest linguistic
feature changes (e.g., shorter length). Conversely,
limiting LD to 0.1 leads to much stronger genera-
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Table 6: Generations of our model trained with a mixed
reconstruction and discriminator loss objective with
hard-coded weights (as opposed to sample-dependent).

MODEL & GENERATED TEXT

EXAMPLE 1:
0.9 Supervised + 0.1 MLE: Schools should teach
physical education because it’s a good thing.
0.1 Supervised + 0.9 MLE: Schools should teach
physical education because PE helps children develop
good habits later on in life. Plus, there’s the benefit of
working together as a team that doesn’t always happen in
other classes.

EXAMPLE 2:
0.9 Supervised + 0.1 MLE: Plastic water bottles
are bad because they are not recyclable.
0.1 Supervised + 0.9 MLE: Plastic water bottles
are bad because they are bad for the environment and they
are bad for the economy.Some people think that bottled
water is bad for consumers and should only be used in
situations such as disasters when no other clean water
is available.

EXAMPLE 3:
0.9 Supervised + 0.1 MLE: Gaming is good for
child development because you can play with other kids.
0.1 Supervised + 0.9 MLE: Gaming is good for child
development because it teaches them how to think and
solve problems. It also teaches them how to communicate
with each other.

tions. We introduced the β parameter to cap LD

at β. Because of the β parameter, the previous
experiments show similar but less obvious trends.

9 Conclusion

In this paper, we introduced style infusion to mo-
tivate infusing audience-centric, stylistic prefer-
ences into unconstrained natural language genera-
tion models. We present a bootstrapped data aug-
mentation method for limited pair-wise audience
feedback and an adversarial training framework
with a decoupling loss to train a style-infused GPT-
2. Through an automatic evaluation method for
the transfer of audience-specific styles, we show
that our approach generates compelling stylized
examples with generic text prompts better than the
baselines.

Synthesizing text with subjective styles, such
as persuasion and memorability, remains a signif-
icant challenge in domains like computational ad-
vertising. Our work takes the first few steps to ad-
dress this problem. We plan to continue improving
our work in many directions, such as incorporat-
ing long-document attention mechanisms (Beltagy
et al., 2020) to capture document-level style fea-
tures and altering the discourse structure to convey
information in a more interpretable manner.

10 Limitations

As with other unconstrained natural language gen-
eration applications, our system is prone to issues
like degeneration from beam search and neural hal-
lucinations. To combat the former, we post-process
generations, but future work will hopefully provide
better methods to prevent this issue. For the lat-
ter, we increase our dataset with samples from the
CNN/DM dataset, partially mitigating the problem,
but out-of-domain topics still suffer. Increasing
the dataset size will only work for so long due to
diminishing marginal returns.

Due to the limited amount of data available, we
considered iteratively training the discriminator
with the augmented data while we trained the gener-
ator. Ultimately, we felt that the weak labels would
dilute the learned trends in the discriminator, but
it may be interesting to see how it affects the per-
formance of the framework. Currently, collecting
pairwise datasets to use with this framework can be
viewed as a limitation. With increasing interest in
the computational synthesis of persuasive text and
imagery, we expect to see more relevant curated
datasets in the near future. Generating pairwise
data through human subject experiments is expen-
sive, which is why the data augmentation methods
introduced in this paper are crucial for future work.

We also note that our framework is limited by
the computational resources available to us. Thus,
we were unable to effectively support long text
generation while preserving the quality of the gen-
erated text. During training, we decrease the batch
size and utilize the DeepSpeed framework (Rasley
et al., 2020), but it is still insufficient to handle long
text. Furthermore, traditional left-to-right genera-
tion struggles with long text as the topics tend to
diverge. Because many styles, like persuasiveness,
are dependent on paragraph-level features in addi-
tion to sentence-level ones, it is beneficial for our
application to support longer texts.

Lastly, one of the biggest limitations of this pa-
per is in showing the effectiveness of the archi-
tecture we choose. Because most baselines are in
style transfer and fundamentally differ from our
task, we find it difficult to make a fair comparison
with prior work. Regardless, style infusion is a
critical step for unconstrained NLG systems such
as dialogue systems and chatbots, especially in the
context of human-centric stylistic objectives, which
are already difficult enough to define.
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11 Ethics Statement and Broader Impact

Our objective for developing a stylistic genera-
tive language model that leverages domain and
audience-specific feedback is to enable uncon-
strained generation applications to appeal to more
human users. For example, generating more per-
suasive real news might help combat misinforma-
tion by propagating the truth faster than falsehoods.
In advertising and communication, persuasiveness
and memorability are critical traits and having an
unconstrained generation model that could repli-
cate these features would have a multitude of pos-
itive applications, especially in targeted interven-
tions. Previous research has mostly focused pre-
dicting audience characteristics and targeting, but
not on synthesizing matching messages.

We acknowledge the dual-use concerns of the
misuse of such a generation framework to, for ex-
ample, spread misinformation. For this reason, we
do not release the model or the pretrained generator
checkpoint used in this work.
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A Siamese BERT Discriminator

To validate our results, we tried another archi-
tecture, similar to Siamese BERT (Reimers and
Gurevych, 2019), where we tokenized the texts
individually and passed them through their own
BERT layers, producing two embeddings, e1 and
e2. We concatenated the two outputs along with
the distance between the two as follows:

[e1; e2; |e2 − e1|]

We passed this new vector of R3×h, where h is
the hidden dimension of BERT, through a fully
connected classification layer.

While the original discriminator achieves ap-
proximately 89% accuracy on the random test set,
the Siamese BERT model achieves a smaller, but
still significant, 83% accuracy. On the Cornell
Movie-Quotes corpus, with the same hyperparame-
ters, the original discriminator achieves 80% accu-
racy and a 77% accuracy with the Siamese BERT
architecture. We choose to use the simpler discrim-
inator architecture because it seems to capture style
better than the Siamese BERT architecture.

B Baseline Reward

The baseline reward is meant to reduce the noise
from the reward given by our discriminator (Ran-
zato et al., 2015). The baseline reward, R̂i, is calcu-
lated using a linear layer, with the input being the
hidden states of our generator at timestep i. The
intuition is that the linear layer approximates the
value of the reward for a certain timestep and in
practice, reduces the variance from the reward. We
train the linear layer with the following loss:

LBR =
1

N

N∑

i=1

|D(y∗s , y)− R̂i|2 (4)

where D(y∗s , y) is the output of the discrimina-
tor when fed a gold argument and the generated
argument (i.e. the reward).

C Linguistic Feature Correlation

C.1 Collected Linguistic Features

We collected the following linguistic features:
length, verb tenses (e.g. future, past, etc.), punctua-
tion rates, readability scores (Flesch score, Flesch-
Kincaid score, Gunning Fog score, SMOG score,
Dale-Chall score), part of speech rates (noun rate,
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Model BI Length TD TDD Syllables Flesch-Kincaid Jargon Flesch TTR Present Speed Volume
GPT2 - - - - - - - - - - - -
GPT2-16k ✓ ✗✗✗✗ ✗✗✗✗ - - - ✗ - ✓✓ ✗✗✗✗ - ✓✓✓✓

GPT2-Aug ✓✓✓✓ ✓✓✓✓ ✓ ✓✓✓✓ - ✗✗✗✗ - ✗✗✗✗ ✓ - ✓✓✓✓ ✓✓

TStylist ✓ ✓✓✓✓ ✓✓✓ - ✓✓ ✗✗✗✗ ✗✗✗✗ ✗✗✗✗ ✓ - ✓✓✓ ✓✓✓

AP-0.1 ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ - ✗✗✗✗ - ✗✗✗✗ ✓✓ ✓ ✓✓ ✓✓✓

AP-1.0 ✓✓✓✓ ✓✓✓✓ ✓ ✓✓✓✓ - ✗✗✗✗ - ✗✗✗✗ ✓✓ - ✓✓✓ ✓✓✓✓

SD-0.1 - - ✓ - ✗✗ ✗✗✗✗ - ✗✗✗✗ ✗ - ✓ -
SD-0.5 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ - - - ✗ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓

SD-0.8 - ✓✓✓✓ ✓✓✓✓ ✓ - ✗✗ - ✗✗✗ ✓✓ ✓ ✓✓✓✓ ✓✓✓✓

SD-1.0 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓ ✗ - - - ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓

Table 7: Significance tests on the change in features between a pretrained GPT-2 model and a trained model. In
order, these features are: Brunet Index (BI), Length (in characters), Total Dependencies (TD), Total Dependency
Distance (TDD), Average Syllables per Word, Flesh-Kincaid readability score, Ratio of Jargon (i.e. out of vocab
words), Flesch readability score, Token Type Ratio (TTR), Ratio of Present Tense Verbs, Speed, and Volume. In the
table, the number of checks or crosses indicates the level of p-value and the correctness of the direction of the trend.
Note that ✓: p < 0.05, ✓✓: p < 0.01, ✓✓✓: p < 0.001, ✓✓✓✓: p < 0.0001.

Model Length BI TDD TD Circuitousness PunctRate Past Pronoun Rate CCW Rate TTR ADD AD
GPT2 - - - - - - - - - - - -
GPT2-IMDB - ✓✓✓✓ ✗✗ - ✗ ✓ ✓✓✓ ✗✗✗✗ ✓✓✓✓ - ✓✓✓✓ ✓✓✓✓

GPT2-Aug ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗

TStylist ✓✓✓✓ ✓✓✓✓ ✓✓✓ ✓✓✓ ✓✓✓ ✓ ✓✓✓✓ ✗✗✗ - ✓✓✓✓ ✗✗✗ ✓✓✓✓

AP-0.1 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ - ✓✓✓✓ ✗✗✗✗ ✗✗✗✗ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗

AP-1.0 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ - ✓✓✓✓ ✗✗✗✗ ✗✗✗✗ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗

SD-0.1 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ - ✓✓✓✓ ✗✗✗✗ ✗✗✗ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗

SD-0.5 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓ ✓✓✓✓ ✗✗✗ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓

SD-0.8 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ - ✓✓✓✓ ✗✗✗✗ ✗✗ ✓✓✓✓ ✗✗✗✗ ✗✗✗✗

SD-1.0 ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓✓✓ ✓✓ ✓✓✓✓ ✗✗✗✗ ✓✓✓ ✓✓✓✓ ✓ ✓✓✓✓

Table 8: Significance tests on the change in features between a pretrained GPT-2 model and a trained model. In
order, these features are: Length (in characters), Brunet Index (BI), Total Dependency Distance (TDD), Total
Dependencies (TD), Circuitousness, Punctuation Rate, Past, Pronoun Rate, Closed Class Word (CCW) Rate, Token
Type (TTR) Ratio, Average Dependency Distance (ADD), Average Dependencies (AD). In the table, the number
of checks or crosses indicates the level of p-value and the correctness of the direction of the trend. Note that ✓:
p < 0.05, ✓✓: p < 0.01, ✓✓✓: p < 0.001, ✓✓✓✓: p < 0.0001.

verb rate, demonstrative rate, adjective rate, ad-
position rate, adverb rate, auxiliary rate, conjunc-
tion rate, determiner rate, interjection rate, numeral
rate, particle rate, pronoun rate, proper noun rate,
punctuation rate, subordinating conjunction rate,
symbol rate, possessive rate), ratios of part of
speech (e.g. noun-verb ratio, noun ratio, pronoun-
noun ratio, closed-class word rate, open-class word
rate), dependency information (total dependency
distance, average dependency distance, total depen-
dencies, average dependencies), content density,
idea density, lexical diversity statistics (Honore
statistic, Brunet index), type token ratio, average
word length, proportion of inflected verbs, propor-
tion of auxiliary verbs, proportion of gerund verbs,
proportion of participles, proportion of mispelled
words, amount of alliteration, passive voice, av-
erage number of syllables, proportion of jargon,
proportion of MTCG verbs (Modal, Tentative, Cer-
tainty, Generalizing), rates of named-entity recog-
nition (NER) tags (e.g. PERSON, DATE, CAR-
DINAL, WORK OF ART, NORP, Certainty, GPE,

ORG, LOC, PERCENT, MONEY, QUANTITY,
TIME, PRODUCT, EVENT, LANGUAGE, FAC),
and word embedding-based measures (i.e. speed,
volume, circuitousness) (Toubia et al., 2021). The
NER tags were obtained from the spaCy library
(Honnibal and Montani, 2017) and many of the lin-
guistic features are obtained from the blabla library
(Shivkumar et al., 2020).

C.2 Bayesian Model
We define the hierarchical Bayesian model as a
binomial distribution around p. Note that text A al-
ways demonstrates the style more strongly than text
B or equally to text B. We calculate p as follows:

logitp = p̄+(α[Aid]−β[Bid])+γ[t]∗(Aft−Bft)
(5)

where p̄ is the intercept, α and β are meant to
capture any existing bias towards either text and
γ measures the correlation between the linguistic
feature and the style for a specific topic t. We
construct α and β for all texts, hence why we index
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Table 9: Percentage agreement with the linguistic feature correlations calculated using the hierarchical Bayesian
model. Baseline models: GPT2, GPT-2 fine-tuned on UKPConvArg1 or the Cornell Movie Quotes corpus, GPT-2
with augmented data, and TitleStylist (Jin et al., 2020). Our models are trained on augmented data and a sample-
dependent discriminator (SD) or sample-dependent supervised (SS) loss with parameter β. We show that our models
are significantly better at learning stylistic features compared to our baselines.

MODEL PERSUASIVENESS MEMORABILITY

GPT2 29.51 40.71
GPT2-FT 41.03 46.22
GPT2-Aug 44.01 51.26
TStylist 35.76 43.86

SS-0.1 42.26 49.70
SS-1.0 48.57 44.97
SD-0.1 43.58 48.73
SD-0.5 48.56 62.35
SD-0.8 50.04 48.14
SD-1.0 50.18 55.61

them with Aid and Bid, respectively. Similarly, we
construct γ for each topic. Aft and Bft are the
features of text A and B, respectively. α, β, and
γ are all constructed similarly. Let’s take α as an
example:

α = ᾱ+ αvασ (6)

where ᾱ ∼ N (0, 0.25) and ασ is drawn from
an exponential distribution with λ = 1. We con-
struct a separate αv for each unique Aid where each
αv ∼ N (0, 1.0). These values are chosen because
they help the MCMC sampling converge. β and γ
follow the same construction except with different
shapes for βv and γv. During the training of the
hierarchical Bayesian model, we use 1000 warmup
steps and generate an additional 1000 samples.

C.3 Feature Agreement
To demonstrate feature agreements, we calculate
a weighted average to quantify the results of Ta-
ble 7 in the context of the full feature set, using the
correlations obtained from the Bayesian model as
weights. The results are shown in Table 9.

1932


