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Abstract

Few-shot Text Classification predicts the se-
mantic label of a given text with a handful of
supporting instances. Current meta-learning
methods have achieved satisfying results in
various few-shot situations. Still, they often
require a large amount of data to construct
many few-shot tasks for meta-training, which
is not practical in real-world few-shot scenar-
ios. Prompt-tuning has recently proved to be
another effective few-shot learner by bridg-
ing the gap between pre-train and downstream
tasks. In this work, we closely combine the
two promising few-shot learning methodolo-
gies in structure and propose a Prompt-Based
Meta-Learning (PBML) model to overcome
the above meta-learning problem by adding
the prompting mechanism. PBML assigns la-
bel word learning to base-learners and tem-
plate learning to meta-learner, respectively. Ex-
perimental results show state-of-the-art perfor-
mance on four text classification datasets un-
der few-shot settings, with higher accuracy and
good robustness. We demonstrate through low-
resource experiments that our method alleviates
the shortcoming that meta-learning requires too
much data for meta-training. In the end, we use
the visualization to interpret and verify that the
meta-learning framework can help the prompt-
ing method converge better. We release our
code to reproduce our experiments1.

1 Introduction

Humans can quickly learn new knowledge from a
few examples, reflecting a high degree of intelli-
gence. The meta-learning method was proposed
to implement such human-like intelligence and
achieved promising results in various few-shot sit-
uations. It lifts the training unit from data point
to task and trains a meta-learner over many tasks
(called episodes) to grasp the few-shot learning

∗Corresponding author.
1Code at https://github.com/MGHZHANG/PBML
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Figure 1: An example of prompting. We concatenate
the original text with a template. Then a pre-trained lan-
guage model (PLM) will fill in [MASK] with words from
a predefined label word set. A verbalizer will further
map the predicted label word into the corresponding
task label.

(FSL) pattern. In this paper, we tackle the few-
shot text classification, which aims to predict a
given text’s label with only a handful of support
instances.

Current methods to solve the few-shot text classi-
fication problem are based on meta-learning (Finn
et al., 2017; Dong et al., 2020; Bao et al., 2020;
Geng et al., 2020) or prompt-tuning (Brown et al.,
2020; Gao et al., 2021; Zhao et al., 2021; Liu et al.,
2021; Schick and Schütze, 2021). These two ap-
proaches deal with "few-shot" from different per-
spectives. On the one hand, the meta-learning al-
gorithm aims to train a meta-learner across many
episodes to extract transferable meta-knowledge.
For each episode, the meta-learner further trains
an individual base-learner for task-specific adap-
tation. While existing meta-learning algorithms
allow models to rapidly learn new concepts based
on previous experience, they often require a large
amount of meta-training data to construct meta-
tasks. This bottleneck makes meta-learning meth-
ods less practical in real-world few-shot scenarios
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where diverse and sufficient meta-tasks may not
be available. Prompt-tuning, on the other hand,
has recently emerged as another effective few-shot
learning methodology. It transforms the original
problem into a cloze-test to bridge the gap between
pre-train and downstream tasks (Figure 1). By do-
ing so, prompt-tuning is more likely to stimulate the
knowledge from the pre-training stage and can effi-
ciently adapt the masked language model (MLM)
to downstream tasks with fewer training data.

Given that the above two approaches both
achieved satisfying results in various few-shot sit-
uations, we hope to alleviate the shortcomings
of meta-learning methods by adding a prompting
mechanism. In this work, we use an elegant way
to closely combine these two approaches in struc-
ture and propose Prompt-Based Meta-Learning
(PBML) to push the performance on few-shot
text classification. In terms of prompts, we adopt
the "soft" strategy (i.e., use continuously differ-
entiable label words and templates). Regarding
meta-learning, our meta-learner mainly learns soft
template embeddings and an MLM-based encoder.
The core idea of our combination of the two ap-
proaches is to assign template&encoder learning to
the meta-learner and label word learning to base-
learners, respectively. The intuition is that different
tasks may involve different classes, and label words
need to consider specific classes, so the learning
of label words is handled over to base-learners for
task-specific adaptation. Correspondingly, the out-
put embedding at [MASK] position by the prompt-
ing method reflects the model’s understanding of
the text. Various tasks should share this ability of
natural language understanding (NLU), which is
why the learning of template and encoder is as-
signed to the meta-learner.

Experimental results demonstrate the good
compatibility between meta-learning and prompt-
tuning. Our PBML (1) achieved a new state-of-the-
art performance on four datasets under few-shot
settings, with higher accuracy and good robust-
ness. (2) Through low-resource experiments, we
can clearly see that the prompting mechanism helps
PBML maintain good performance when the avail-
able meta-training data is significantly reduced. (3)
Comparison with prompt-tuning baseline demon-
strates that meta-learning enables prompt-tuning to
adapt more efficiently to new tasks. (4) The visu-
alization results verify that the “learning-to-learn”
framework could result in better convergence for

prompts.

2 Preliminaries

2.1 Few-Shot Text Classification

Given a text x, we aim to predict its label y with
a few annotated examples (xi, yi). We follow the
commonly adopted N -way K-shot setting, where
N is the number of classes and K is the number of
examples per class. Each task provides a support
set S containing N × K support instances and a
query set Q. We train a classifier on S and evaluate
it on Q. Higher N and lower K indicate a more
challenging task. An example of a 5-way 3-shot
scenario is given in Appendix A.

2.2 Meta-learning

The purpose of meta-learning is to train a meta-
learner through diverse meta-tasks such that the
meta-learner can quickly obtain a task-specific
base-learner on a small support set.

Formally, we consider two phases: meta-training
and meta-testing. During meta-training, we sample
a batch of tasks {Tb}Bb=1 from a task distribution
p(T ). Then the meta-learner trains a base-learner
for each task Tb using the loss on the support set Sb.
The base-learner is then tested on the query set Qb,
and we optimize the meta-learner by minimizing
the query loss. During meta-testing, new tasks are
sampled, and the accuracy of query instances will
be measured. The two phases share no overlapping
classes, so we can estimate the model’s ability to
handle new classes.

2.3 Prompt

Prompt aims to bridge the gap between the pre-train
and downstream tasks. It concatenates the origi-
nal text x with a template containing at least one
[MASK] token, converting the problem into a cloze-
test. We note the concatenated text xprompt. A pre-
trained language model M is applied to predict the
label word at [MASK] position. Then, a function
called verbalizer ϕ : w ∈ W 7→ y ∈ Y maps the
set of label words W to the set of task labels Y .
For instance, we can set ϕ("technology") = TECH.
We formulate the probability of instance x predict-
ing class y as follows:

P (y|x) = P ([MASK] = wy|xprompt)

=
exp(wy · h)∑

w∈W exp(w · h)
(1)
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Figure 2: a) Overall model architecture: the work flow is numbered from 1 to 5. Meta-encoder (subsection 3.1)
encodes instances using MLM and obtains embeddings at the [MASK] position (steps 1, 4); Label word initialization
(subsection 3.2) explores an external knowledge graph to initialize label word embeddings W(0) (step 2); Fast-tuning
(subsection 3.3): A base-learner continuously tunes the label word embeddings based on the support set (step 3).
Meta-optimization (subsection 3.5): optimizing meta-parameters with the loss on query set (step 5); b) Fast-tuning:
using contrastive loss to update label word embeddings.

where ϕ(wy) = y, wy is the label word embedding
of wy and h is the output hidden state of [MASK].

3 Methodology

This section presents the details of our proposed
framework, PBML (Figure 2). PBML consists of
3 parts: Firstly, the meta-learner (Meta-Encoder)
encodes instances and gets the embedding of the
[MASK] token for each instance. Secondly, we ex-
plore an external knowledge graph for continuous
label word initialization. Then a base-learner will
update the label word embeddings using predicted
embeddings of support instances. Inference for
queries is based on the adapted label word embed-
dings, and we use the loss on the query set Q for
meta-optimization.

3.1 Meta-encoder and Template Design
Given a statement x, we first concatenate a tem-
plate to x and obtain xprompt. If we take the topic
classification task as an example, the prompted text
can be given as:

xprompt = x The topic is [MASK].

where “The topic is [MASK]” are template tokens
(details of template designs are in Appendix C).
Then a masked language model, noted M, serving
as the meta-encoder, takes xprompt as input and out-

puts h, the hidden state of [MASK] as the predicted
answer representation.

Though we manually select template tokens
from vocabulary items, we treat them “softly” (i.e.,
continuous template). They are replaced by learn-
able embeddings, initialized with the exact embed-
dings as manually selected real words. This soft
strategy allows templates to be optimized continu-
ously instead of being limited by discrete tokens.
We note the encoder parameters as θe and soft tem-
plate embeddings as θs. The meta-encoder can be
formulated as follows:

h = M(xprompt; θe, θs) (2)

3.2 Label word Initialization

Given an N -way K-shot episode, we denote
{C1, C2, ..., CN} the N categories. Though it is
intuitive to directly apply class names as label
words, the semantic meaning of class names is
sometimes too conceptional without sufficient se-
mantic information. Following the idea of Knowl-
edgeable Prompt (Hu et al., 2022), we introduce
Related Words 2, an external knowledge graph to
expand rich label words for each class Ci from their
class name. Specifically, we explore the knowl-
edge graph to obtain the top NKG = 20 relevant

2https://relatedwords.org
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words with the class name as candidate words. The
obtained candidate word set {wi

k}NKG
k=1 includes

synonyms and words highly related to the class
name. For example, the candidate words associ-
ated with “Politics” are “policy”, “government”,
“law”, “diplomatic”, etc.

Then we merge the candidate words into one
prototype for each class by averaging candidate
word embeddings{wi

k}NKG
k=1 . In the end, we obtain

N synthesized continuous label word embeddings,
and we note W(0) ∈ RN×D, the matrix containing
the initial N label word embeddings. W(0) repre-
sents roughly the semantic meaning of N classes
and will be further tuned in the next module.

3.3 Label word Fast-tuning
In this section, we introduce the fast-tuning mod-
ule for label word adaptation. A base-learner will
continuously tune the initialized label word em-
beddings W(0), using support instances. Our ob-
jective is to make these label word embeddings
more discriminative by incorporating contextual
information from the support set.

Specifically, we impose two goals we need to
achieve by fast-tuning. (a) For each support in-
stance sji from class Ci, we note hj

i its hidden state
at the [MASK] position. We expect that the similar-
ity between hj

i and wi (label word embedding of Ci)
is larger than the similarity between hj

i and other
label words; (b) For each class Ci, the similarity
between its label word wi and the support instances
belonging to Ci should be larger than the similarity
between wi and instances from other classes. To
realize these two goals, we define the following
two contrastive losses:

Latt
s2w = − 1

NK

∑

1≤i≤N
1≤j≤K

αj
i log

exp
(

hj
i ·w

(t)
i

)

∑
w∈W(t)

exp
(

hj
i ·w

) (3)

Latt
w2s = − 1

N

∑

1≤i≤N

log
exp

(
w(t)
i ·hi

)

∑
1≤i′≤N

exp
(

w(t)
i ·hi′

) (4)

hi =
∑

j

αj
ihj

i

where W(t) ∈ RN×D is the label word matrix at
iteration t. w(t)

i is the ith row of W(t), representing
the label word embedding of class Ci. To make the
adaptation more robust, we add an instance-level

attention mechanism via coefficient αj
i . Such at-

tention score is to measure the informative degree
of each support instance. According to previous
works (Gao et al., 2019a; Dong et al., 2020), in-
stances are not equally informative, and we should
make those informative (resp. noisy instances) con-
tribute more (resp. less) during fast-tuning to im-
prove the robustness. We calculate αj

i as shown
below:

αj
i =

exp(hj
i · w(0)

i /γ)
∑K

j′=1 exp(h
j′
i · w(0)

i /γ)
(5)

where γ is a temperature hyper-parameter set to
3. Equation 5 indicates that if hj

i is more similar
to the initial label word embedding, it is consid-
ered more informative and assigned with higher
attention αj

i . In contrast, we assign noisy instances
with little attention in Latt

s2w and Latt
w2s, producing

smaller gradient steps and more robust adaptation
trajectories.

At each iteration of fast-tuning, we apply gradi-
ent descendent as follows:

W(t+1) = W(t) − βtask∇W(t)Latt(S,W(t)) (6)

where βtask is base-learner’s task-adaptation learn-
ing rate and Latt = Latt

s2w + Latt
w2s. The fast-tuning

process will iterate T steps and output W(T ).
We clarify here that we only update label words

W(t) during fast-tuning, which corresponds to the
task-specific adaptation of the base-learner. The
meta-learner M(θe, θs) is unchanged during fast-
tuning as it contains task-agnostic parameters and
learns across tasks. Since we only update W(t),
the fast-tuning process saves lots of computational
costs, with O(N2 ×K ×D× T ) time complexity.
(More details in Appendix G)

3.4 Inference for query

We calculate the inner product between the query
embedding hq and task-adapted label word embed-
dings W(T ) to predict query instances’ labels. The
probability score for class Ci is

P (Ci|q) =
exp(hq · w(T )

i )∑
w∈W(T )

exp(hq · w)
(7)

Then we use the argmax function for the prediction.

C̃q = argmax
i

P (Ci|q) (8)
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3.5 Meta-Optimization

During meta-training, we randomly construct many
few-shot meta-tasks from the meta-training set.
The base-learner of each episode learns task-
specific label word embeddings W(T ) as shown
in subsection 3.3. Then, to meta-learn the template
and encoder from tasks, we update our meta-learner
M(θe, θs) considering the loss on the query set Q.
Hence, the optimization rule of the meta-learner
can be formulated as follows:

θ = θ − βmeta∇θL(Q,W(T ), θ) (9)

where βmeta is the meta-learning rate for meta-
parameters θ = (θe, θs) and L is the cross-entropy
loss on P (Ci|q). The overall algorithm of PBML
is summarized in Appendix D. In this way, we
combine prompt-tuning with meta-learning such
that both task-specific and task-agnostic knowledge
can be learned. Specifically, 1) the meta-learner
learns at a lower speed βmeta to reach appropriate
parameters for soft template embeddings and the
encoder layers 2) base-learners learn continuous
label words at a higher speed βtask for fast adapta-
tion.

4 Experiments

This section evaluates the performance of our pro-
posed PBML. We conduct extensive experiments
on four widely-used text classification datasets un-
der few-shot settings and make a full-scale com-
parison with existing state-of-the-art baselines. We
report our implementation details in Appendix E.

4.1 Dataset

Following Bao et al. (2020), we adopt the follow-
ing four text classification datasets for experiments:
FewRel (Han et al., 2018) (relation classification),
HuffPost headlines (Misra, 2018) (news headlines
classification), Reuters (Lewis, 1997) (articles clas-
sification) and Amazon product data (He and
McAuley, 2016) (reviews classification). These
datasets provide diverse benchmarks that vary in
domain and text length. We use the same setting as
previous work for splitting training, validation, and
testing sets. More details are in Appendix A.

4.2 Baseline Models

We compare our model with previous strong base-
lines for few-shot text classification. BERT-PAIR

(Gao et al., 2019b) pairs query and support in-
stance and apply BERT classification head to ob-
tain the similarity score. MTB (Soares et al., 2019)
proposes a pre-training task for Relation Extrac-
tion. The pre-trained relation extractor is further
fine-tuned on FewRel. Frog-GNN (Xu and Xi-
ang, 2021) is a graph neural network learning
query embeddings after the multi-aggregation of
neighbor nodes. We also compare various meta-
learning models. 1-NN and Prototypical Network
(Snell et al., 2017) are metric-based meta-learning.
The latter averages support instance embeddings
as prototypes and predict the query label based
on the distance with prototypes. (PROTO-IDF,
PROTO-BERT stands for two encoders). DS
(Bao et al., 2020), MAML (Finn et al., 2017) and
MIML (Dong et al., 2020) are optimization-based
meta-learning methods, showing excellent few-shot
learning performance. They apply different meta-
learners and train them across episodes.

We also implement the baseline Prompt-tuning
without meta-learning to assess the impact of meta-
learning in our PBML. Prompt-tuning no longer
constructs S and Q to meta-train through episodes
but directly uses label words (from knowledge
graph) to pre-train the encoder and soft template.
To test the model’s ability to solve new N -way K-
shot tasks (unseen classes), we further fine-tune it
on the small support set before query inference.

4.3 Results and Analysis

4.3.1 Main Results
Table 1 shows the results of different models on

four benchmark test sets under 5-way 1-shot and
5-way 5-shot settings. PBML significantly and
consistently outperforms previous models, espe-
cially under the more challenging one-shot con-
figuration. (Similar observations under 10-way
k-shot settings in Appendix H). Notably, on the
relation classification task, our method exceeds the
accuracy of human performance reported from the
FewRel leader-board3. It also outperforms the state-
of-the-art method MTB, which utilizes larger PLM
and requires external corpus for relation extraction
pre-training.

Meanwhile, we have the following observa-
tions: Our model outperforms previous meta-
learning baselines (PROTO-BERT, MAML, and
MIML) by a large margin. We also observed
that PBML converges faster and smoother (Ap-

3https://www.zhuhao.me/fewrel/
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Method FewRel HuffPost Reuters Amazon Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

1-NN 46.8 60.6 31.5 42.3 57.8 82.9 51.4 67.1 46.9 63.2
PROTO-IDF 43.0 61.9 34.8 50.2 61.0 72.1 41.9 59.2 45.2 60.9
DS 67.1 83.5 43.0 63.5 81.8 96.0 62.6 81.1 63.6 81.0
PROTO-BERT 86.5 95.0 52.9 69.3 86.7 93.9 68.1 82.5 73.6 85.2
BERT-PAIR 88.3 93.2 53.5 69.1 88.6 94.7 69.8 82.8 75.1 84.9
FROG-GNN 88.9 94.3 54.1 69.6 - - 71.5 83.6 - -
MAML 87.5 94.4 43.7 54.3 84.8 94.0 75.7 85.2 72.9 82.0
MIML 92.6 96.0 53.9 57.1 86.6 95.2 76.1 84.4 77.3 83.2
Prompt-Tuning 93.8 96.1 71.8 74.0 92.9 96.7 76.5 81.8 83.8 87.2
Human 92.2 - - - - - - - - -
MTB ⋆ 93.9 97.1 - - - - - - - -

PBML (OUR) 96.6 97.4 74.9 78.0 96.4 97.6 81.8 88.0 87.4 90.3
OUR w/o KG 95.1 97.2 71.3 73.7 95.9 97.2 78.6 86.1 85.2 88.3
OUR w/o Latt

w2s 95.9 97.1 74.0 76.5 94.7 96.9 80.6 88.1 86.3 89.7
OUR w/o Latt

s2w 95.2 96.2 73.8 76.0 93.1 94.9 79.4 84.0 85.4 87.8

Table 1: Results of 5-way 1-shot and 5-way 5-shot text classification accuracies (%) on four benchmark test sets.
We report the results of baseline models as published. Several baselines were not tested on all four datasets when
published, and we re-run their public code (if available) to supplement the results.

pendix F). We infer that the improvements are
mainly from prompting, which effectively bridges
the gap between pre-train and downstream tasks.
Then, compared to the Prompt-tuning baseline,
the improvements demonstrate that meta-learning
can help prompting adapt to new tasks more effi-
ciently. These two comparisons show the excellent
compatibility between prompt-tuning and meta-
learning. In subsubsection 4.3.4, we will further
explain and visualize why such a combination is
good.

4.3.2 Ablation Study
At the bottom of Table 1, we present the results of
ablations on the external knowledge graph and the
two contrastive losses. We observe that the perfor-
mance drops consistently if we directly use class
names to initialize W(0) without introducing exter-
nal KG. This suggests that our knowledgeable label
word initialization does provide rich and essential
information. The ablation study on loss functions
shows that both Latt

s2w and Latt
w2s contribute to fast-

tuning, though the former has a more significant
impact.

We also conducted the ablation study on the
instance-level attention αj

i designed for robustness
(i.e., allowing informative instances to contribute
more to the loss). To evaluate the robustness, we
follow the idea of Dong et al. (2020) by intention-
ally replacing a portion of support instances with
randomly sampled instances from different cate-
gories. Table 2 displays the accuracy and the per-
formance drop scale under various noised settings.

noise rate model Accuracy (%) |∆|

0% PBML w/o att 94.98 -
PBML 95.23 -

20% PBML w/o att 93.27 1.71
PBML 94.63 0.60

40% PBML w/o att 91.26 3.72
PBML 93.16 2.07

60% PBML w/o att 89.14 5.84
PBML 91.85 3.38

Table 2: 5-way 5-shot model robustness on FewRel
validation set under different noised setting.

The results show that our attentional loss does help
to improve the robustness. More obvious advan-
tages can be seen in a noisier setting.

4.3.3 Dependence on Training Data
In this section, we investigate our method’s perfor-
mance when lacking sufficient meta-training data.
As mentioned previously, existing meta-learning
methods often require a sufficiently large dataset
to build diverse episodes for meta-training. Other-
wise, the performance will drop seriously.

To investigate the effect of the amount of meta-
training data, we follow previous works (Soares
et al., 2019; Ding et al., 2021b) and limit the size of
the meta-training set in two ways: 1) by decreasing
the number of instances per class; 2) by decreasing
the number of available classes. We evaluate the
5-way 1-shot accuracy under various low-resource
configurations on FewRel. Figure 3 and Figure 4
show respectively the results under the two size con-

1347



72

76

80

84

88

92

96

5 20 80 320 700

A
cc

ur
ac

y
(%

)

Instances per class

PBML MAML Prompt-Tuning Proto-BERT MIML

Figure 3: Impact of number of instances per type

72

76

80

84

88

92

96

5 16 32 64

A
cc

ur
ac

y
(%

)

Number of classes

PBML MAML Prompt-Tuning Proto-BERT MIML

Figure 4: Impact of number of classes

straints. Prompt-tuning and our proposed PBML
suffered little from low resource data under both
constraints. For example, when we limit the meta-
training data per class to 5, PBML could still main-
tain reasonable accuracy while the performance of
other meta-learning methods (i.e., MAML, MIML,
PROTO-BERT) drops significantly. We infer that
such improvement is also because prompting can
narrow the gap between pre-train and downstream
tasks, thus making meta-learning less dependent
on meta-training data. The results demonstrate that
our PBML framework can not only learn from a
few supporting instances during meta-testing (bene-
fits of meta-learning) but also demand less training
data during meta-training (benefits of prompting),
showing a comprehensive few-shot learning ability.

4.3.4 Visualization

Previous sections show that prompting makes meta-
learning better few-shot learners. In this section,
we emphasize the benefits of the meta-learning
side. We will visualize and analyze how "learning
to learn" contributes to prompting.

We made a PCA visualization of different en-
coders’ output representation at the [MASK] posi-
tion to demonstrate that meta-learning can help
the encoder converge. We have selected five cate-

gories from FewRel that are difficult to distinguish
(according to Brody et al. (2021)). As shown in
Figure 5, the encoder with open-source pre-trained
parameters (a) presents poor separation. Classical
prompt-tuning (b, c) directly uses label words to
tune the encoder and can improve the performance.
In comparison, the encoder meta-trained by the
PBML algorithm (d) produces the best separation.
The results suggest that meta-learning can help the
prompting method learn a better encoder and soft
template, showing a stronger ability to distinguish
different concepts.

Classical prompt-tuning tunes the encoder using
cross-entropy loss on distribution shown in Equa-
tion 1. Since label word embeddings (real word
embeddings or learnable embeddings) contribute
directly to the loss, the convergence of the encoder
and soft template highly depends on the quality of
the label word embeddings. By comparison, our
PBML does not directly use label words to tune
the encoder. Instead, our method has two loops:
In the outer loop, we randomly sample meta-tasks,
and during the inner loop of each meta-task, the
initialized label words W(0) are fast-tuned on the
support set within T iterations. At each iteration,
the contrastive loss enhances the discrimination of
different classes. By considering support instances,
the base-learner can incorporate contextual infor-
mation into label word embeddings and produces
W(T ) of richer semantic information. When the in-
ner loop is finished, our encoder and soft template
will be optimized using Equation 9 where the more
ideal label word embeddings W(T ) act. Once the
meta-learner is optimized, it can produce better sup-
port instance embeddings and reinforce the qual-
ity of W(T ). In this learning-to-learn framework
with two loops, the meta-learner (soft template and
encoder) and the base-learner (label words) can
promote each other and enhance their coordina-
tion, resulting in better performance and a smooth
convergence.

5 Related Work

5.1 Meta-Learning

Current promising meta-learning methods are
mainly metric-based or optimization-based.

Metric-based meta-learning learns a metric
space where representations of instances from the
same class can get closer. Han et al. (2018) applied
popular metric-based few-shot-learning methods
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(a) Encoder with pretrained
parameters

(b) Prompt-tuned encoder us-
ing learnable label words

(c) Prompt-tuned encoder us-
ing real label words from KG

(d) Encoder meta-trained by
the PBML algorithm using
fast-tuned label words

Figure 5: PCA visualization of encoders’ output representation at [MASK] for 1000 instances in FewRel (200
instances per class). The correspondence between colors and categories is as follows: child, spouse, mother, member
of, part of. The five categories we chose are more difficult to distinguish apart.

(Koch et al., 2015; Vinyals et al., 2016; Snell et al.,
2017) to few-shot relation classification but the re-
sults suggest that there is still an ample space to
improve. Gao et al. (2019a) introduced a hybrid
attention mechanism into Prototypical Network,
which can enhance the model’s robustness. Ye
and Ling (2019) proposed a Multi-Level Matching
and Aggregation Network to learn representations
through multiple rounds of interaction. Geng et al.
(2019) proposed Induction Network, applying the
dynamic routing algorithm to build class-aware
representation. Xiao et al. (2021) integrated label
information into features, providing vital guidance
for the prototypical network. Soares et al. (2019)
and Ding et al. (2021b) proposed novel ways to
pre-train a metric space for relation extraction.

Optimization-based meta-learning aims to im-
prove the optimization procedure so that the base-
learner can learn from a few examples without
dramatic over-fitting. Strong frameworks such
as MAML (Finn et al., 2017) meta-learns task-
sensitive parameters, which serve as a good initial-
ization. Inspired by their work, Dong et al. (2020)
proposed meta-information guided meta-learning
(MIML), where they introduce information from
class names to realize a class-aware initialization.
Ravi and Larochelle (2017) studied optimization
rules and proposed an LSTM-based meta-optimizer.
Li et al. (2017) proposed Meta-SGD, making the
learning rate a meta-parameter to be learned. Bao
et al. (2020) proposed to meta-learn an attention
generator across all episodes while training an in-
dividual ridge regressor for each episode.

5.2 Prompt-tuning

The gap between pre-train and downstream tasks
often causes difficulty in fine-tuning of PLMs like
GPT (Brown et al., 2020), BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), etc. Inspired by
GPT-3, which presents the strong potential of FSL
by prompting, numerous work has applied prompt-
tuning for Relation Classification (Han et al., 2021;
Chen et al., 2021), Named Entity Recognition (Ma
et al., 2021; Ding et al., 2021a), Topic Classifi-
cation (Cui et al., 2022; Zhao et al., 2021), etc.
As for the choice of template, some works ap-
plied continuous template (Li and Liang, 2021;
Zhang et al., 2021; Liu et al., 2021) and some other
works employed generative model like T5 (Raffel
et al., 2020) to generate templates (Gao et al., 2021).
Concerning the choice of label words, Chen et al.
(2021) used learnable soft label words. Cui et al.
(2022) applied contrastive loss to learn prototypi-
cal label words. Hu et al. (2022) explored external
knowledge graphs to enrich semantic information.

6 Conclusion

In conclusion, we propose prompt-based meta-
learning for few-shot text classification. Our
method combines prompt-tuning with meta-
learning closely, where the base learners tune
task-specific label words (learn) and the meta-
learner tunes the task-agnostic template and en-
coder (learning-to-learn). Experimental results
demonstrate the excellent compatibility of meta-
learning and prompt-tuning, with state-of-the-art
performance in various few-shot text classification
tasks and good robustness under noisy settings.
Additionally, We show that the prompting mech-

1349



anism helps PBML maintain good performance
with significantly reduced meta-training data. The
visualization results further demonstrate that meta-
learning enables prompt-tuning to distinguish se-
mantics better.

Limitations

We summarize the limitations of our method as
follows: 1) We employ a simple average pooling to
process the candidate label words for label word ini-
tialization. However, candidate words sometimes
contain noise, and average pooling is vulnerable
to extreme outliers, which may reduce essential in-
formation. In our experiment, we consider a fixed
selection of 20 candidate words, but this choice is
not always optimal because, for some categories,
the obtained candidate words are less relevant to the
class, thus presenting more noise. Even though the
simple average pooling achieves good results, we
think an attention generator is needed to calculate
the contribution of different words dynamically;
2) Although our model outperforms previous base-
lines in various few-shot settings. The improve-
ment of our method from 1-shot to 5-shot setting is
not particularly large (about 3 percent while proto-
typical network can improve more than 10 percent).
Therefore, we believe the model still has enough
room for improvement in multi-shot scenarios.
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A Dataset Description

FewRel is a dataset for few-shot relation classifi-
cation, containing 100 relations (Han et al., 2018).
Each statement has an entity pair and is annotated
with the corresponding relation. The position of
the entity pair is given, and the goal is to predict
the correct relation based on the context. The 100
relations are split into 64, 16, and 20 for training,
validation, and test, respectively. We apply the
same pre-process method as Soares et al. (2019) by
adding special entity markers to highlight the po-
sition of the entity pair. Besides, FewRel provides
each relationship with additional rich information
(i.e., alias, descriptions, etc.), which we used for
our label word initialization.

HuffPost headlines is a dataset for topic classi-
fication. It contains news headlines published on
HuffPost between 2012 and 2018 (Misra, 2018).
The 41 topics are split into 20, 5, 16 for training,
validation and test respectively. These headlines
are shorter and more colloquial texts.

Reuters-2157 is a dataset of Reuters articles over
31 classes (Lewis, 1997), which are split into 15,
5, 11 for training, validation and test respectively.
These articles are longer and more grammatical
texts.

Amazon product data contains customer re-
views from 24 product categories (He and
McAuley, 2016). Our goal is to predict the product
category based on the content of the review. The 24
classes are split into 10, 5, 9 for training, validation
and test respectively.

We summarize the details of the four datasets in
Table 4. In this work, we focus on few-shot text
classification under N -way K-shot setting. Table 3
is an example of a 5-way 3-shot topic classification.

B Baseline details

1-NN is a 1-nearest neighbor classifier under Eu-
clidean distance. The encoder is implemented with
IDF, which represents each statement as a weighted
average of word embeddings from pre-trained fast-
Text (Joulin et al., 2016). The weights are calcu-
lated based on inverse document frequency on the
training set.

DS (Bao et al., 2020) is a meta-learning algo-
rithm aiming to meta-train an attention generator
based on distribution signatures (DS). DS considers

Support set
Class 1 SPORTS:

Instance 1 Everything you need to know about the
2022 NBA Finals.

Instance 2 Chelsea legend Didier Drogba speaks to
CNN about club’s plights.

Instance 3 International Skating Union proposes
raising minimum age to 17 for competitions.

Class 2 POLITICS: ...
Class 3 TRAVEL: ...
Class 4 TECH: ...
Class 5 FOOD&DRINK: ...
Query instance
Why Olympic figure skaters don’t get dizzy.

Table 3: An example of 5-way 3-shot text classification.
We omit instances for class 2-5 for simplicity. The given
query instance belongs to class 1: SPORTS

two signatures: general word importance and class-
specific word importance. The attention genera-
tor then uses these signatures to generate attention
scores, serving as each word’s weight for sentence
representation.

MAML (Finn et al., 2017) is a classic meta-
learning framework aiming to learn initialization
for few-shot tasks. Dong et al. (2020) implement
MAML for few-shot text classification, which
meta-learns initialization parameters of a general
multilayer perceptron and a BERT-based meta-
encoder.

MIML (Dong et al., 2020) proposed a novel
meta-learning framework, which uses class-aware
semantic information from GloVe (Pennington
et al., 2014) to provide strong guidance for meta-
learning. MIML incorporates class names as meta-
information to realize a class-aware initialization.
The meta-initializer module is implemented via a
fully connected layer.

Prototypical network (Snell et al., 2017) aver-
ages the embedding of support instances as class
prototypes and makes a metric-based prediction
for query instances. (Bao et al., 2020) use IDF
to implement the instance encoder PROTO-IDF.
We add the performance of PROTO-BERT which
uses BERT as the encoder backbone.
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C Template design

FewRel

xprompt = x [SEP] h is [MASK] of t

HuffPost

xprompt = x [SEP] Topic is about [MASK]

Reuters

xprompt = Article is about [MASK] [SEP] x

Amazon

xprompt = Review is about [MASK] [SEP] x

Segment
Embeddings

Position
Embeddings

Token
Embeddings

x Topic is about [MASK][SEP]

discrete template

BERT Encoder layers + MLM head 

Word Embedding Layer

+

+

Figure 6: Discrete template tokens.

Segment
Embeddings

Position
Embeddings

Token
Embeddings

x [MASK][SEP]

learnable vectors

BERT Encoder layers + MLM head 

+

+

soft template

Word Embedding 
Layer

Word Embedding 
Layer

Figure 7: Soft template with learnable vectors.

As mentioned in subsection 3.1, we adopt a soft
template strategy. Specifically, we use learnable
vectors to replace discrete template tokens and use
their word embeddings for vector initialization. We
show the comparison comparison between the dis-
crete template and the soft template in Figure 6 and
Figure 7.

Our soft approach first maps discrete token-ids
from the original text into word embeddings, then
we concatenate the learnable vectors directly to
these word embeddings. We note that we freeze the
word embedding layer of M and only update soft
template embeddings and parameters from encoder
layers.

During our experiments, we found that if we up-
date the word embedding layer of the meta-learner,
the latter is very likely to overfit the label words
of training episodes, showing lower meta-train loss
and worse meta-test accuracy. We infer that this
is because the number of categories in the dataset
is far less than the number of samples. Since the
label word embedding appears close to the meta-
loss, the word embedding layer could easily overfit
meta-training labels. The phenomenon suggests
that our meta-learner will tend to memorize the
matching relation between label words and training
samples from the meta-training set and fails to un-
derstand the real meaning of the sentence, ending
up with a poor performance on novel tasks. To
avoid this, we decided to freeze the word embed-
ding layer. The initialization of label word embed-
dings is always copied from the exact BERT-pre-
trained embeddings (In subsection 3.2 , we call this
a rough estimation of the class), then we let base-
learners learn better label representations, allowing
the meta-learner to only focus on the learning of
encoder&soft-template for NLU ability.

D Algorithm of PBML

We present here the overall process of PBML in
Algorithm 1.

E Implementation Details

We select BERTbase (110M) (Devlin et al., 2019) as
our meta-encoder and choose AdamW (Loshchilov
and Hutter, 2019) for optimizing. Meanwhile, the
warmup mechanism is used during meta-training.
We implement PBML with PyTorch (Paszke et al.,
2019). All the experiments run on one NVIDIA
RTX 3090 .We report the hyper-parameters in Ta-
ble 5. The model was meta-trained with 500-2000
iterations, depending on the dataset and the approx-
imate per-iteration cost is 6-8 seconds. During
meta-testing, the per-episode cost for 1-shot and
5-shot scenarios is approximately 180 and 540 mil-
liseconds.

The choice of fast-tuning iteration steps T and
task learning rate βtask greatly impacts the perfor-
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Dataset text length (avg.) examples/cls train cls val cls test cls

FewRel 24 700 64 16 20
HuffPost 11 900 20 5 16
Reuters 168 20 15 5 11
Amazon 140 1000 10 5 9

Table 4: Dataset statistics

Algorithm 1 Prompt-based Meta-learning

Require: p(T ) : distribution over mete-training
tasks

Ttest: meta-testing tasks
βtask, βmeta: learning rates

T : fast-tuning steps
1: Initialize meta-encoder θe, soft template em-

beddings θs
2: while not done do
3: Sample batch of tasks Tb ∼ p(T )
4: for all Tb do
5: Initialize label word embeddings W(0)

b

6: for t = 0, ..., T−1 do
7: Evaluate Latt(W(t)

b ,Sb, θe, θs)

8: Update W(t)
b using Equation 6

9: end for
10: Evaluate L(W(T )

b ,Qb, θe, θs)
11: end for
12: Update (θe,θs) using Equation 9
13: end while

mance. We choose these two hyper-parameters as
follows: First we set (T, βtask) to (10, 5e-2). Af-
ter meta-training, we modify the hyper-parameters
pair (T, βtask) to search for more suitable values
during meta-testing. Once we find better hyper-
parameters (T ∗, β∗

task), we perform meta-training
again with (T ∗, β∗

task).
We also report in Table 6, the corresponding

validation performance for our model’s test results.
The FewRel testing set is not publicly available, so
we visit their benchmark website4 to get our test
performance.

F Convergence speed

We plot the loss on FewRel training set and the
5-way 1-shot accuracy on FewRel validation set as
functions of the number of iterations. As we can
see from Figure 8, PBML training loss descends
very fast while the validation accuracy grows to

4https://thunlp.github.io/fewrel.html

Datasets FewRel HuffPost Reuters Amazon

Train iters 1000 1000 500 2000
Batch size 32 32 4 16
Encoder lr 5e-5 1e-5 2e-5 3e-6
Task lr 1e-2 1e-3 5e-3 1e-2
FT-steps 30 50 20 20

Table 5: Hyper-parameters of PBML architecture

93% within only hundreds of steps. In contrast,
the convergence of MIML (state-of-the-art meta-
learning baseline) is much slower, and the perfor-
mance upper bound is also limited.
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Figure 8: Convergence speed of PBML and MIML

G Fast-tuning deployment

During meta-testing, PBML uses support instances
to iteratively fast-tune label word embeddings,
which corresponds to the task-adaptation process
of the meta-learning algorithm. This means that
our method still requires some "training" during the
testing phase. However, executing any loops during
inference is not recommended in real-world neural
network deployment. Fortunately, our fast-tuning
process only updates N label word embeddings
while leaving the encoder unchanged. Therefore,
we suggest manually computing the gradients of
the proposed contrastive loss (Equation 3 and Equa-
tion 4) and using T identical layers to replace the
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Evaluation set FewRel HuffPost Reuters Amazon

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

Validation 94.1 95.2 67.4 76.3 90.1 93.6 75.2 81.7
Test 96.6 97.4 74.9 78.0 96.4 97.6 81.8 88.0

Table 6: 5-way 1-shot and 5-way 5-shot text classification accuracies (%) on four benchmark test sets and the
corresponding validation performance.

For Loop of T gradient steps.

∇w(t)
i

Latt
s2w(S,W(t)) (10)

=
1

|S|
∑

1≤i
′≤N

1≤j≤K

αj

i′




exp
(

hj

i′
· w(t)

i

)

∑
w∈W(t)

exp
(

hj

i′
· w

)− δ(i, i
′
)


hj

i′

∇w(t)
i

Latt
w2s(S,W(t)) (11)

=
1

N

N∑

i′=1




exp
(

w(t)
i · hi′

)

N∑
i′′=1

exp
(

w(t)
i · hi

′′
) − δ(i, i′)


hi′

hi =

K∑

j=1

αj
ihj

i

The similarity computation of all (h,w) pairs is of
O(N2 ×K ×D) time complexity. Then we use
the similarity table to compute gradients ∇w(t)

i

for
each class i and the overall computation cost is also
of O(N2 ×K ×D).

We can define the gradient descent layer Lgd as
follows:

W(t) 7→ W(t) − βtask∇W(t)Latt(W(t),h) (12)

The initialized label word embeddings W(0) will
pass through T identical Lgd layers consecutively
to obtain W(T )

H Discussion on the N-way effect

We also discuss the effects on the number of cate-
gories. Table 7 compares different models under
10-way 1-shot and 10-way 5-shot settings. We
draw similar conclusions from this table as in Ta-
ble 1 that our method still outperforms previous
state-of-the-art baselines.
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Method FewRel HuffPost Reuters Amazon Average

1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot 1 shot 5 shot

PROTO-BERT 81.9 90.1 39.9 59.1 84.2 92.0 58.9 75.8 66.2 79.3
BERT-PAIR 80.6 87.0 41.2 63.6 85.5 93.3 61.7 77.4 67.3 80.3
MAML 78.9 89.1 40.3 57.1 83.5 93.7 61.3 75.4 66.0 78.8
MIML 87.5 93.2 46.5 57.3 83.2 96.4 60.1 77.6 69.3 81.1
Prompt-Tuning 91.4 93.5 60.7 67.0 90.3 94.3 68.1 75.2 77.6 82.5
Human 85.9 - - - - - - - - -
MTB ⋆ 89.2 94.3 - - - - - - - -

PBML (OUR) 93.2 94.5 64.6 68.6 93.7 96.1 70.8 79.9 80.6 84.8

Table 7: Results of 10-way 1-shot and 10-way 5-shot text classification accuracies (%) on four benchmark test sets.
The test set of Amazon product data only contains nine categories. Thus we test the 9-way 1-shot and 9-way 5-shot
performance instead.
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