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Abstract

World models have improved the ability of rein-
forcement learning agents to operate in a sam-
ple efficient manner, by being trained to predict
plausible changes in the underlying environ-
ment. As the core tasks of world models are fu-
ture prediction and commonsense understand-
ing, our claim is that pre-trained language mod-
els (PLMs) already provide a strong base upon
which to build world models. Worldformer is a
recently proposed world model for text-based
game environments, based only partially on
PLM and transformers. Our distinction is to
fully leverage PLMs as actionable world mod-
els in text-based game environments, by refor-
mulating generation as constrained decoding
which decomposes actions into verb templates
and objects. We show that our model improves
future valid action prediction and graph change
prediction.1 Additionally, we show that our
model better reflects commonsense than stan-
dard PLM.

1 Introduction

In model-based reinforcement learning, world mod-
els (Ha and Schmidhuber, 2018), being trained to
predict plausible changes in the underlying environ-
ment, has helped agents to quickly identify sensible
or high-value actions. As a result, agents equipped
with world models have outperformed state-of-the
art model-free algorithms in Atari games, while
drastically improving sample efficiency (Kaiser
et al., 2019; Hafner et al., 2020).

In this work, we focus on world modeling in text-
based game (TBG) environments, in which play-
ers and agents must perceive and interact with the
world entirely through textual natural language. As
such, they present several unique challenges (Côté
et al., 2018; Hausknecht et al., 2019; Ammanabrolu

∗Corresponding author.
1Code and data are available at: https://github.com/

mnskim/awm-bart

Figure 1: Model architecture of AWM-BART, illus-
trating the dual world modeling tasks of JerichoWorld.
BART encoder-decoder denoted in blue learns the future
valid actions prediction task, while the one denoted in
orange simultaneously learns the graph difference pre-
diction task. The light yellow blocks denote generation
constrained by a template, bringing generation closer
to the target controlled sublanguage of the text-based
game’s parser.

and Riedl, 2021b): Aside from language under-
standing itself, TBGs require dealing with an expo-
nential action space: For instance, the action space
size for Zork1, combining five words from a vocab-
ulary of 697 words, is O(1014). TBGs also require
rich and accurate knowledge representations of lo-
cations and objects, in order to facilitate navigation
and interaction. Finally, solving TBGs requires
commonsense reasoning, including understanding
object affordance, and the causal ramifications of
actions. The first dataset and model for learn-
ing world models in TBGs were proposed by Jeri-
choWorld (Ammanabrolu and Riedl, 2021b), and
Worldformer (Ammanabrolu and Riedl, 2021a), re-
spectively. Intuitively, large pre-trained language
models (PLMs), make promising candidates for
instantiating world models (Yao et al., 2020), as
they are already trained to generate language in a
much larger action space, e.g. O(40, 000512), as-
suming a standard vocabulary of 40, 000 tokens,
and context length of 512 tokens. While promis-
ing, adapting PLMs to TBGs is non-trivial, as in
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TBGs, generated actions must be executable in the
game environment. While we are not generating
in a formal syntax as in semantic parsing, we are
still constrained by a controlled sublanguage (Shin
et al., 2021) , which is closer to natural language but
follows a grammar defined by the engine’s parser.

Furthermore, a world modeling task such as the
valid action decoding task of JerichoWorld, re-
quires predicting, from a particular world state, all
future valid actions. In contrast, semantic parsing
focuses on learning a one-to-one mapping between
natural language and the controlled sublanguage.
To encapsulate these challenges, we define a con-
cept of actionability as the main objective of the
valid action generation task of JerichoWorld, in
that the model’s generation should be actionable
in the TBG environment, by 1) conforming to the
parseable controlled sublanguage, and 2) ensuring
the generation of valid actions consistent with the
commonsense governing the dynamics of the TBG
environment. In this work, we focus on improving
the actionability of the world model’s generations,
focusing in particular on bringing the PLM’s com-
monsense and reasoning capabilities to bear on
world modeling tasks.

We begin by building Worldformer-BART, an
implementation of Worldformer based on BART.
While successful, commonsense in PLM-based
world models are not easily transferred to more
formal forms, such as that of the controlled sub-
language of TBGs. Motivated by these findings,
we build a retrieval-augmented model which aims
to enhance actionability by formalizing common-
sense through templates, hence named Actionable
World Model (AWM). We show through experi-
mental results that AWM-BART significantly im-
proves actionability over Worldformer-BART. We
also compare with augmenting trained models with
a COMET-based commonsense filter, showing that
our model outperforms such approaches.

2 Background

2.1 Text World Environments

Text world environments are typically modeled as
Partially-Observable Markov Decision Processes
(POMDPs) (Côté et al., 2018; Hausknecht et al.,
2019), defined by the tuple ⟨S,A, T,Ω, O,R, , γ⟩.
Respectively, each item in the tuple corresponds to
the set of environment states, the text-based action
that changes the game state according to a transi-
tion function, the mostly-deterministic latent transi-

tion function, observation conditional probabilities,
the observations, i.e. the game’s text responses, the
reward function, and the discount factor.

While state-of-the-art agents can be trained on
these environments using model-free RL algo-
rithms, they often rely on large amounts of inter-
action with the environment (Kaiser et al., 2019;
Yarats et al., 2021). In contrast, model-based learn-
ing proposes to learn a predictive model of the
environment, also known as a world model, to aid
an agent to learn the underlying dynamics of the
game, and better predict which actions will lead to
desirable outcomes. These approaches are closely
inspired by research on human cognitive processes,
which hypothesize that human decision-making is
directly influenced by an internal predictive model
of the future (Ha and Schmidhuber, 2018). For
world models, recurrent neural networks are a suit-
able solution to overcome the partial observability
of the environment in POMDPs, and in text-based
games environments, pre-trained language models
are promising candidates.

Popular text-based game environments include
TextWorld (Côté et al., 2018), which provides
procedurally generated environments, allowing
for the complexity and content of the generated
game to be variable, LIGHT (Urbanek et al.,
2019), a large-scale crowdsourced text adventure
game, whose dataset provides agent-to-agent di-
alogs to study grounded social interactions, and
Jericho (Hausknecht et al., 2019), a collection of
32 diverse human-made interactive fiction games,
covering a wide range of genres.

2.2 JerichoWorld

Different from the aforementioned environments,
JerichoWorld (Ammanabrolu and Riedl, 2021b)
is the first dataset specifically targeting the learn-
ing of world models in text-based game environ-
ments. JerichoWorld is generated by simulating
playthroughs of Jericho games, based on human-
generated gold walkthroughs, combined with ran-
dom exploration to increase the coverage of the
state spaces of games. Each example in the dataset
is a tuple of the form, ⟨St, At, St+1, R⟩ consisting
of a previous state St, a transition action At, the
next state St+1, and the observed reward R. A key
feature of the dataset is that it maps text observa-
tions to both knowledge graphs, which consist of a
set of ⟨s, r, o⟩ tuples that reflecting the world state,
and a set of valid actions. Valid actions in Jericho
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Prev. Action: drop torch
Observation Graph Valid actions
Dropped.
Location: Great Door.
This is the south end
of a monumental hall,
full of dust and debris
from a recent earth-
quake. To the east is a
great iron door, rusted
shut. To its right, how-
ever, is a gaping cleft
in the rock and behind,
a cleared area. There
is a torch here.
You are carrying:

• A cloak (being
worn)

• A hood (being
worn)
• A vial
• A wooden staff
• A strange key
• A Frobozz Magic

Grue Repellent
• A golden amulet

(being worn)

’you in Great Door’,
’you have key’, ’you
have vial’, ’you have
hood’, ’torch in Great
Door’, ’you have
golden amulet’, ’you
have Frobozz Magic
Grue Repellent’, ’you
have cloak’, ’heavy
invisible liquid in
vial’, ’you have staff’

• blow out torch
• take torch • put
down magic • put
down key • put down
staff • put down
amulet • put down
vial • put down hood

• put down cloak • put
down all • open
vial • light magic with
torch • light staff with
torch • east • north

Action: put down amulet
True positives False positives False negatives

• light magic with
torch • blow out torch

• take amulet • east
• take all • open vial

• push amulet to
ground

• take torch • north
• put down key • put
down magic • put
down staff • put down
all • put down hood

• put down cloak • put
down vial • light staff
with torch

Table 1: Illustration of the inputs and generated outputs
of the valid action prediction task, on Zork3. The results
are from a Worldformer-BART model.

are actions recognized by the game’s parser that
cause changes in the world state.

Overall, there are 24,198 training instances from
27 text games in multiple genres, and 7,836 heldout
test instances from 9 additional games. Notably,
the test set consists of a diverse set of never-before-
seen text games, requiring zero-shot prediction of
world modeling tasks. As the test games differ
widely in terms of genre and structure, and are
never seen during training, we follow the conven-
tion in the literature to refer to these games as out-
of-distribution games (Adhikari et al., 2020; Atzeni
et al., 2021).

2.2.1 JerichoWorld Tasks
A state St in each example of JerichoWorld consists
of Ot, Vt, Gt ∈ St, indicating the textual observa-
tion, the valid actions, and the knowledge graph,
respectively.2 JerichoWorld proposes two predic-
tive world modeling tasks:

The first task is to predict the future graph at time
step t+1, Gt+1 ∈ St+1, from Ot, Vt, Gt ∈ St and

2The textual observation consists of the engine response to
the previous action, and the engine response to the commands,
"look", and "inventory".

the transition action At. For the graph prediction
task, we follow the simplification in Ammanabrolu
and Riedl (2021a), to limit the task to predicting
node additions, i.e. predicting the graph difference
caused by additions, as these are sufficient to infer
node deletions as well.

The second task is to predict the set of future
valid actions at time step t+ 1, Vt+1 ∈ St+1, from
Ot, Vt, Gt ∈ St and the transition action At. In this
work, we focus on the valid action prediction task,
which we illustrate in detail in Table 1.

2.2.2 JerichoWorld 2.0

Since JerichoWorld is generated by simulating Jeri-
cho games, to ensure there are no data artifact is-
sues, we also provide an updated version of Jeri-
choWorld. We follow the methodology in Am-
manabrolu and Riedl (2021b) to generate the data,
making sure to generate roughly the same num-
ber of instances for each game, from the same
human walkthroughs. Overall, there are 24,198
training instances and 7505 test instances in our
dataset. A comparison of the test sets can be
found in Appendix A.4. Our dataset additionally
provides templates and objects for all actions, as
well as de-abbreviating commands from the human
playthrough for consistency of commands.

3 Preliminaries

We now describe our base models in detail. We
begin with a description of Worldformer, which
forms the basis of our model architectures.

3.1 Background: Worldformer

Worldformer is a multi-task architecture designed
to perform the dual world modeling tasks of Jeri-
choWorld. The model consists of two BERT-based
encoders and two randomly initialized transformer
decoders. The first pair of encoder and decoder
solves the future valid action prediction task, and
the second solves the future graph prediction task.
Both tasks are learned simultaneously via multi-
task learning. Additionally, a domain-adaptive
MLM task is used to further pre-train the encoders,
and a domain-specific vocabulary and tokenizer
built for Jericho is used for both encoders and de-
coders. Ammanabrolu and Riedl (2021a) show that
Worldformer achieves state-of-the art performance
on both tasks.
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3.2 Baseline: Worldformer-BART

As a starting point for adapting PLMs as world
models, we build a world model based on adapting
BART with minimal changes. The model consists
of two pre-trained BART models, arranged in a
similar multi-task architecture to Worldformer. We
finetune both BARTs directly, without any further
pre-training or any changes to vocabulary or tok-
enization, such as building a domain-specific vo-
cabulary as in Ammanabrolu and Riedl (2021a),
or limiting the softmax operation. We give a full
description of the model below. For ease of no-
tation, we divide BART into its encoder and de-
coder components, where BARTenctext and BARTdecaction

together compose the first BART encoder-decoder,
and BARTencgraph and BARTdecgraph compose the second.

Formally, the JerichoWorld example
⟨St, At, St+1, R⟩ yields two sets of input and
target token sequences, X = {x1, ..., xn} and Y =
{y1, ..., yn}. That is, for the valid action prediction
task, ⟨X,Y ⟩ = ⟨Ot ++Vt ++At, Vt+1⟩, and for the
graph prediction task, ⟨X,Y ⟩ = ⟨Gt ++At, Gt+1⟩
where ++ indicates string concatenation. During
model operation, each BART encoder produces
contextual encodings given their respective
inputs, Ot = BARTenctext(Ot ++Vt ++At) and
Gt = BARTencgraph(Gt ++At). As in Worldformer,
the aggregation module produces the state vector,
st = Agg(Ot,Gt)

Without loss of generality, both tasks are mod-
eled by the conditional distribution,

P (Y |X) =
n∏

i=1

P (yi|y<i−1, st; BART
enc(X))

(1)
and each BART encoder-decoder is trained to gen-
erate the target sequence through maximum log
likelihood loss, as follows:

Lgen = log P (Y |X)

=
n∑

i=1

log p(yi|y<i−1, st; BART
enc(X))

(2)

where p is modeled by corresponding BARTdec.

3.3 Motivation: Qualitative Study

To motivate actionability objectives, we qualita-
tively analyze Worldformer-BART, which is an ef-
fective starting point for building actionable world
models, but with three major types of actionability
errors:

• Object Localization and Inference (OLI) er-
rors: We define these as reasoning errors
wherein the model fails to track the current
location of object(s), i.e. whether an object
is found in the inventory, the surrounding en-
vironment, or is not found at all. Examples
include attempting to put a first aid kit down,
before ever having picked it up, or trying to
open a case of cigarettes after it is no longer
in the player’s possession. These constitute
false positive generated actions.

• Object Affordance errors: These errors occur
when an incorrect understanding of the affor-
dance of objects leads the model to generate
actions which are nonsensical or impossible.
Examples include asking a library about a li-
brary, attempting to drink out of an empty
bucket, or looking with a net, etc. These also
constitute false positive generated actions.

• Insufficient Interaction Coverage: We define
these errors as those in which, despite the
presence of objects, the model’s generation
is insufficient to enumerate all possible inter-
actions with the objects. These errors can be
caused by errors of reasoning, or by the inabil-
ity of decoding schemes to generate with high
coverage. Most false negatives fall into this
category.

We perform human analysis of 50 randomly sam-
pled examples from the validation set. A subset of
samples from the human analysis can be found in
Appendix A.7. Of the analyzed samples, we find
that ~33%, ~48%, and ~88% of samples exhibit
each type of error, respectively. These results in-
dicate that actionability for world models is not
sufficiently satisfied by naive adaptation of PLMs.

4 AWM-BART for Actionable World
Model

We now propose our model, which aims to im-
prove the actionability of the BART-based world
model. We decompose action generation as tem-
plate selection and filling, aiming to capture two
benefits: Through input-constrained decoding us-
ing templates, we enhance the parseability of the
world model’s generations. Furthermore, we posit
that the inductive bias from templates will aid the
world model to learn more accurate object affor-
dance and object localization, improving common-
sense.
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More specifically, BARTdecaction now performs the
task of generating the sequence of possible fillings
Y tj = {ytj1 , ..., y

tj
n }, Y = {Y t1 , ..., Y tm} of a

template tj ∈ Tenv, of a Jericho game environment.
Then, the template-conditional action generation
task is reformulated as follows:

P (Y tj |X, tj)

=
n∏

i=1

P (y
tj
i |ytj<i−1, st;

BARTenctext(Ot ++Vt ++At ++ tj)

(3)

The mask filling task is illustrated in Fig.1. The
above formulation is advantageous in that the task
of filling the masks of an action template brings
the generation objective close to BART’s original
objective. However, it does not address the issue
of choosing an appropriate template to fill. We
next describe how we employ multitask learning to
utilize a single BART encoder-decoder as both a
template retrieval and generation model.

4.1 Template Retrieval

In contrast to previous works utilizing template
selection and filling (Hausknecht et al., 2019; Am-
manabrolu and Hausknecht, 2020) for in-domain
learning of agents, our aim is to build a model to
generalize to any arbitrary set of natural language
templates, as the world modeling tasks of Jeri-
choWorld require zero-shot prediction on unseen
games. Taking inspiration from recent advances in
retrieval using neural models, we propose to extend
BARTenctext as a retriever. The goal of the retriever is
to identify the subset of templates T valid

t+1 ⊆ Tenv,
i.e. the templates defining the valid actions Vt+1,
given the current world state St and the transition
action At. Therefore, we use the set of future valid
actions, Vt+1, to extract the valid templates T valid

t+1 .
In the retrieval nomenclature, first and second-

stage retrieval refer respectively to a fast and ef-
ficient retrieval model to quickly identify a set of
promising candidates, and a computationally ex-
pensive but effective re-ranking model, which pro-
duces fine-grained rankings over the smaller set of
first-stage candidates. In our case, it is possible to
adopt BARTenctext as a dense first-stage retriever (Lee
et al., 2019; Karpukhin et al., 2020), as well as a
re-ranker (Nogueira et al., 2019). Note that in our
setting, since we have access to the set of all pos-
sible templates, and their number does not exceed
300 for any environment, we forego the usage of a

first-stage retriever, and simply enumerate over all
templates (on average around ~200).

To learn the relevance score rj between
⟨Ot, Vt, At⟩ and each template tj ∈ Tenv, for
each template tj we concatenate tj to the en-
coder input. The BART encoder operates as be-
fore, but we now extract a summary vector as
well as the contextual encodings, i.e. (Ot, ot) =
BARTenctext(Ot ++Vt ++At ++ tj). Here, ot can be
any pooled vector, and we choose the vector encod-
ing of the EOS token. Similarly, we extract gt as
(Gt, gt) = BARTencgraph(Ot ++Vt ++At). These vec-
tors are concatenated with state vector st, and fed
to a re-ranking head, which computes the template
relevance score rj :

rj = P (lj = 1; ot ⊕ gt ⊕ st) (4)

where lj indicates the ground truth label of template
tj . The re-ranking cross-entropy loss is defined as
follows:

Lrerank = −
∑

i∈Ipos

log(ri)−
∑

i∈Ineg

log(1−ri) (5)

where Ipos are the indices of templates in T valid
t+1 ,

and Ineg are the indices of templates belonging
to the complement set. The re-ranking objective
enables the full utilization of the BART encoder to
model fine-grained relationships between the input
context and each template.

4.2 Template Filling
In addition to the template retrieval task, given
template tj , we use BARTdecaction to generate the filled
version of the template, with P defined in Eq. 3.

Laction
fill = log P (Y tj |X, tj) (6)

As per the definition in Eq 3, the same BARTenctext

is shared between both retrieval and filling tasks,
allowing efficient adaptation of BART to the target
controlled sublanguage through multitask learning.
We observe that conditioning the encoder alone
with templates can effectively force the decoder
to produce faithful fillings of the provided masked
template. While template constraints intuitively
improve the actionabillity of model generations in
terms of parseability, we additionally expect that
templates can provide a useful inductive bias for
reducing OLI and Object Affordance errors. Our
hypothesis is that, since the decoder is trained to
fill only a single masked template at a time, this
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has the implicit effect of marginalizing out the ef-
fect of other templates. To see why, consider the
default decoding objective which treats all valid
actions (generated from all tj ∈ T valid

t+1 ) as a sin-
gle sequence to be generated. This causes every
action to be conditioned on other valid templates
tj ∈ T valid

t+1 which appear at a previous position in
the target sequence. In contrast, our template con-
ditioned objective removes this effect, replacing it
with a strong conditioning on the masked template,
allowing the affordance relationship between tem-
plate verbs and their corresponding objects to be
learned efficiently. Finally, during inference time,
the template retrieval module works as an effective
filter which refines the action space to a promising
subset, further reducing the room for error.

4.3 Training

In our experiments, we found it most effective to
train the model in phases. In the first phase, we
multi-task train the template filling task for action
generation, together with the graph prediction task:

Lphase1 = Laction
fill + Lgraph

gen (7)

Then, using the trained weights, we train on all
losses simultaneously in the second stage:

Lphase2 = Laction
fill + Lgraph

gen + Lrerank (8)

Note that, when training in the second phase, batch
items vary depending on whether the template tj in
the input Ot ++Vt ++At ++ ti has label lj = 1, or
lj = 0. We activate the full loss only in the former
case, and only activate Lrerank in the latter via a
loss mask.

4.4 Hard Negatives Mining

Our retrieval formulation motivates our application
of the technique of hard negative example mining
to the template retrieval task. We supply hard nega-
tives from a model trained with Eq. 8, as additional
negative examples for Eq. 5. As we later show, hard
negatives further improve the accuracy of rerank-
ing, and the overall performance of valid action
generation.

5 Experiments

We evaluate our models on the JerichoWorld mod-
eling tasks.

5.1 Metrics

We report the F1 and EM metrics from Am-
manabrolu and Riedl (2021b), where F1 is a har-
monic mean of predicted precision and recall, while
EM (exact match) checks for accuracy or direct
overlap between the predictions and ground truth.
The original dataset defines F1 and EM at two dif-
ferent levels: token-level, and graph tuple-level.

We focus on the tuple-level metrics, as they
are the main metrics for the action task in Am-
manabrolu and Riedl (2021a) . For the graph task, a
tuple-level true positive occurs when all three items
within an ⟨s, r, o⟩ tuple3 matches a tuple within the
ground truth graph. The same holds for the ac-
tion task, where predicted and ground truth valid
actions are likewise defined as ordered tuples of to-
kens. The tuple-level metrics are stricter and more
relevant for actionability, as EM match means the
model generated an action correctly in its entirety,
making the action executable by the game engine.

5.2 Baselines

We compare AWM-BART with the following mod-
els:

1. Worldformer-BART Action decoder from
scratch is our reimplementation of World-
former (Ammanabrolu and Riedl, 2021a). To re-
produce Worldformer, which is a multi-task world
model composed of pre-trained BERT encoders
and transformer decoders, We initialized the action
decoder weights from scratch, while keeping the
rest of the BART pre-trained weights. Under such
minor modification, we achieved similar results
reported in original Worldformer.4

2. CALM (Yao et al., 2020) is a GPT-2
based model finetuned to generate Vt+1 from
Ot, At, Ot+1. While it does not directly train on the
Jericho suite of games, it trains on on a dataset of
426 human gameplay transcripts for 590 different
text-based games, ClubFloyd5.

3. Worldformer-BART is our implementation of
Worldformer based on BART, a simple adaptation
of PLMs as world models.

4. Worldformer-BART + COMET6 is a COMET-
augmented version of Worldformer-BART. We use
logits of a pre-trained COMET model to filter out

3We do not use separator tokens within each ⟨s, r, o⟩ tuple
in the graph generation task.

4Original Worldformer results can be found in Ap-
pendix A.3

5http://www.allthingsjacq.com/interactive_fiction.html
6Implementation details in Appendix A.5
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Models Task Game zork1 lib. det. bal. pent. ztuu ludi. deep. temp. overall

CALM (k=10) Action EM 14.15 11.84 26.98 5.19 17.23 6.46 10.73 7.64 10.62 11.07
F1 24.04 20.51 41.53 9.55 27.90 11.56 18.78 13.55 18.55 18.98

Worldformer-BART Graph EM 34.76 24.38 37.92 41.96 36.51 40.92 48.54 20.52 45.09 39.95
F1 35.35 25.18 39.00 43.02 37.54 41.62 48.77 20.67 46.07 40.59

Action decoder from scratch Action EM 11.59 21.45 32.25 5.61 24.07 6.35 12.81 9.42 13.68 13.44
F1 19.47 32.77 46.72 10.06 35.53 11.04 21.25 16.40 22.36 21.69

Worldformer-BART
Graph EM 35.42 24.15 39.99 36.55 34.62 41.75 52.48 21.35 43.75 40.38

F1 36.05 24.69 41.01 37.44 35.70 42.51 52.97 21.51 45.09 41.12

Action EM 27.04 43.79 44.22 15.69 40.02 16.00 22.27 19.30 26.03 25.56
F1 40.46 56.31 57.53 26.08 52.91 25.79 34.13 30.80 38.52 37.51

Worldformer-BART Graph EM 35.42 24.15 39.99 36.55 34.62 41.75 52.48 21.35 43.75 40.38
F1 36.05 24.69 41.01 37.44 35.70 42.51 52.97 21.51 45.09 41.12

+ COMET filter Action EM 27.46 43.72 44.64 15.89 41.28 16.14 22.71 19.42 25.71 25.78
F1 40.99 56.16 57.89 26.44 54.03 26.05 34.69 31.06 38.04 37.78

AWM-BART
Graph EM 35.46 27.41 38.78 43.64 37.17 43.60 50.96 22.42 46.87 *41.87

F1 36.03 28.08 39.63 44.68 38.10 44.35 51.29 22.54 47.99 *42.53

Action EM 43.21 58.46 51.20 38.16 50.48 39.12 34.63 35.40 40.15 *40.67
F1 58.29 70.09 64.10 53.97 63.39 53.63 49.35 51.02 54.55 *55.16

Table 2: Results on JerichoWorld world modeling tasks. We report experimental results on JerichoWorld 2.0.
Best overall results are denoted in bold. Asterisk (*) denotes statistically significant (P<.001) improvement over
Worldformer-BART using a paired t-test. All results are averaged over three random seeds, with standard deviation
under ±1.60 in the overall categories for either task.

actions, based on the commonsenseness of actions
given the current observation and inventory.

6 Results

We report the results of our experiments in Ta-
ble 2. Our Worldformer-BART performs on par
with Worldformer on graph prediction, but shows
improvement on action generation, due to the lever-
aging of BART. Augmenting Worldformer-BART
with a COMET-based filter fails to improve the
action generation performance meaningfully, in-
dicating that zero-shot adaptation of conventional
commonsense PLMs to TBGs is challenging. Com-
pared to CALM, our model is significantly better in
action generation, indicating the importance of con-
sidering actionability in adapting PLMs to TBGs.
Our model was able to outperform all compared
models in both tasks, achieving a significant im-
provement in action generation.

6.1 Ablation Study

In order to validate the usefulness of each of our
model components, we report the results of the
ablation study in Table 3. We begin by compar-
ing Worldformer-BART and AWM-BART trained
with Eq. 8 without hard negatives (AWM-BART
- hard negatives), where we observe that our pro-
posed template-constrained architecture improves
the learning of both tasks over Worldformer-BART.
We next compare the two AWM-BART variants
with and without hard negatives, which shows that
while maintaining graph prediction performance,
hard negatives significantly boost valid action gen-

eration, by making the reranking head more robust
and reducing false positives. Finally, we report the
results from using an oracle template retriever with
AWM-BART (AWM-BART + Oracle). We can see
that our trained template retriever approaches the
performance of the oracle retriever, which indicates
that there are potentially more improvements to be
gained by improving the decoder.

6.2 Commonsense Study

In order to scale the analysis from Sec. 3.3 to
the entire test set, we build an automated, rule-
based system for detecting the OLI and affordance
errors. We validate the system on the human-
annotated samples, where the system recovered
91% of the human-annotated OLI and affordance
errors. Implementation details are provided in Ap-
pendix A.6. In Table 4, we report the results of the
commonsense error analysis using the automated
system. The purpose of this study is to determine
whether the improved performance of AWM-BART
is attributable to the model’s improved common-
sense understanding. We compare our model with
Worldformer-BART, and Worldformer-BART with
a COMET filter.

We find that the number of errors successfully
filtered out by COMET was negligible, and was
outpaced by the increase in the number of false
negatives. In contrast, relative to Worldformer-
BART, AWM-BART reduces OLI errors by ~47%,
affordance errors by ~33%, and insufficient gen-
eration coverage errors by ~24%. Taken in con-
junction with the results on world modeling tasks,
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Models Task Game zork1 lib. det. bal. pent. ztuu ludi. deep. temp. overall

AWM-BART Graph EM 35.46 27.41 38.78 43.64 37.17 43.60 50.96 22.42 46.87 41.87
F1 36.03 28.08 39.63 44.68 38.10 44.35 51.29 22.54 47.99 42.53

+ Oracle retriever Action EM 53.69 71.27 73.10 42.71 64.13 45.11 40.57 40.82 48.17 48.94
F1 67.74 80.12 82.40 58.53 74.46 59.44 55.01 56.52 62.09 62.63

AWM-BART
Graph EM 35.46 27.41 38.78 43.64 37.17 43.60 50.96 22.42 46.87 41.87

F1 36.03 28.08 39.63 44.68 38.10 44.35 51.29 22.54 47.99 42.53

Action EM 43.21 58.46 51.20 38.16 50.48 39.12 34.63 35.40 40.15 40.67
F1 58.29 70.09 64.10 53.97 63.39 53.63 49.35 51.02 54.55 55.16

AWM-BART Graph EM 35.62 25.92 38.91 44.06 38.05 42.85 50.80 22.08 47.48 41.83
F1 36.20 26.69 39.89 45.10 39.03 43.53 51.11 22.19 48.60 42.50

- hard negatives Action EM 31.99 31.92 25.87 33.47 29.38 34.02 24.92 30.33 28.07 29.04
F1 46.66 44.26 37.90 48.85 41.99 48.54 37.91 45.24 41.61 42.73

Worldformer-BART
Graph EM 35.42 24.15 39.99 36.55 34.62 41.75 52.48 21.35 43.75 40.38

F1 36.05 24.69 41.01 37.44 35.70 42.51 52.97 21.51 45.09 41.12

Action EM 27.04 43.79 44.22 15.69 40.02 16.00 22.27 19.30 26.03 25.56
F1 40.46 56.31 57.53 26.08 52.91 25.79 34.13 30.80 38.52 37.51

Table 3: Results of ablation experiments. All results are averaged over three random seeds, with standard deviation
under ±1.60 in the overall categories for either task.

Models Error Types
False Positive False Negative

Worldformer-BART 20803 88317
Ours 17299 67545

OLI Affordance Insufficient
Worldformer-BART 8066 3624 88317
Worldformer-BART

+ COMET
7857

(-2.60%)
3609

(-0.41%)
88802

(+0.55%)

AWM-BART
4260

(-47.18%)
2433

(-32.86%)
67536

(-23.79%)

Table 4: Number of errors per type for compared models
as measured by automated system. Parentheses indicate
the percentage reduction of each type of error, with
respect to Worldformer-BART. All results are averaged
over three random seeds.

these findings lend support to our hypothesis that
the template-constrained generation of our model
enhances not only the parseability in a target con-
trolled sublanguage, but improves the common-
sense understanding of the PLM as a world model.
While the results of AWM-BART are encouraging,
our findings raise new questions about precisely
what kind of commonsense is being captured by
PLMs, and whether the conventional definition of
commonsense in the literature is general enough
to capture the varied ways in which humans can
employ commonsense, as they do in TBGs.

7 Related Works

7.1 Template-based Action Space

For in-domain generalization to a single-
game setting, previous works such as
LSTM-DQN (Narasimhan et al., 2015),
TDQN (Hausknecht et al., 2019), and KG-
A2C (Ammanabrolu and Hausknecht, 2020)
have proposed using template-based action
spaces in text-based games. Our distinction of

employing templates, is to improve actionability of
PLM-based world models. In particular, we design
a template retrieval task which allows our model
to generalize to any arbitrary set of templates,
unlike previous works. Template retrieval plays
a key role in ours, for generalizing to unseen,
out-of-distribution games.

7.2 PLMs for TBG
While research adapting PLMs for TBGs is still
in its early stages, there are notable works which
have leveraged the linguistic, semantic and com-
monsense priors of PLMs to TBG agents. DBERT-
DRRN (Singh et al., 2022) proposes a single-game
agent based on DistilBERT (Sanh et al., 2019)
to improve the semantic understanding of agents,
achieving state of the art on performance on sev-
eral games in Jericho. CALM (Yao et al., 2020)
trains a GPT-2 model to train a single model which
can be deployed to generate actions across many
different downstream games, and CALM is shown
to improve the existing agents on unseen games by
reranking action candidates to maximize rewards.
Like CALM, we tackle generalizing PLMs to un-
seen games, but our distinction is to consider ac-
tionability as the key criterion in doing so. Our
results show that actionability is indeed crucial in
building PLM-based world models for TBGs.

7.3 Commonsense in Text-based Games
Prior works have proposed incorporating exter-
nal commonsense knowledge to TBG agents.
Dambekodi et al. (2020); Ryu et al. (2022) pro-
pose to incorporate commonsense knowledge into
a KG-A2C agent by augmenting its graph with
commonsense inferences using COMET (Bosselut
et al., 2019). Murugesan et al. (2021) propose to
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jointly leverage a commonsense knowledge graph
directly retrieved from ConceptNet along with a
textual graph. Ammanabrolu and Riedl (2019) pro-
pose to use knowledge graphs to transfer common-
sense across agents. Our distinction is to envision
and enhance commonsense as an innate component
of TBG world models.

8 Conclusion

In this work, we build world models based on
PLMs. Towards leveraging semantic and linguis-
tic priors learned by PLMs, we identified major
areas in which PLMs need to be systematically im-
proved, namely generation to a controlled sublan-
guage, and commonsense understanding. We pro-
pose an actionable world model based on template-
augmented generation, showing that both parseabil-
ity and commonsense understanding can be sig-
nificantly improved. As future work, we consider
combining PLM-based world models with reward-
based agents to learn goal-directed policies as a
promising direction. Finally, our hope is that our
work will contribute to the active exploration of
text-based games as an alternative testbed for fur-
ther research on commonsense reasoning.

Limitations

A limitation of our work is that while we aim to
adapt pre-trained language models as world models
for text-based game environments, due to limited
computational resources, we are not able to test
our models on larger scales, and take greater ad-
vantage of language model scaling laws (Kaplan
et al., 2020). As such, our results should be un-
derstood in terms of the intermediate-scale regime
of PLMs. Nevertheless, we believe that actionable
world models should keep efficiency as one of their
core criteria.

A second limitation is that in this work, our ex-
periments have focused solely on data which origi-
nates from the Jericho suite of games. While this
is outside the immediate scope of this work, there
are several other TBG environments which may be
suitable candidates for learning PLM-based world
models. While scaling to a greater number of TBG
environments is a challenging task, we hold the
view that the promise of world models in TBGs will
be fulfilled by models which generalize to many
environments across varying domains, structures
and rules.
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A Appendix

A.1 Model Architecture details
We use BART-base (Lewis et al., 2020) to build
Worldformer-BART and AWM-BART. The overall
parameters counts of the models are 320 million
and 322 million, respectively, indicating a roughly
~15% reduction relative to Worldformer, which has
380 million parameters. We use BART’s default to-
kenizer with the exception of adding several special
tokens for usage as delimiters. All models generate
with beam search decoding, using a beam size of
15.

A.2 Training details
We use Adam optimizer (Kingma and Ba, 2015),
with learning rate 3 × 10−5 and batch size 16 to
train our models. For AWM-BART, we first train
with Eq. 7 for a single epoch, then continue training
with Eq. 8, reducing learning rate by 1/10. For the

latter phase, to train the retrieval head, we randomly
sample negative templates with 1:1 ratio between
positive and negative templates. When applying
additional hard negative mining, the mined tem-
plates are added to the pool of randomly sampled
negatives, increasing the total number of negative
templates. We perform model selection based on
the combined loss of all tasks on the validation
set. Our models are trained using a single NVIDIA
GeForce RTX 3090 Ti GPU, taking between 3 and
5 hours per epoch.

A.3 Original Worldformer Results

As a reference, report the results reported in the
original Worldformer, on the original JerichoWorld
dataset in Table 5.

A.4 JerichoWorld 2.0 Test set details

In Table 6, we compare the the test sets of Jeri-
choWorld 2.0 with that of the original, to confirm
that the distribution of instances across of games
remains consistent.

A.5 Implementation COMET-based Score
Filter

We adopt an off-the-shelf COMET-BART
model (Hwang et al., 2021) as a commonsenseness
scorer. We follow the method in Bosselut et al.
(2021); Ryu et al. (2022) to compute the score of
a target sequence of tokens, based on COMET’s
logits. We feed the current observation context and
inventory, concatenated with the transition action
and an ATOMIC2020 relation as the input to
COMET, as done in Ryu et al. (2022). Each token
in the target sequence, which is an action being
evaluated, is then fed sequentially to COMET, to
obtain model logits. We use the relations xNeed
and xWant, averaging the two scores for each
token, and the overall score of the action is given as
the average over the tokens in the action. To filter
out actions, we compute the mean and standard
deviation of scores of all generated actions per data
example, and drop outliers whose scores are more
than 1 standard deviation lower than the mean.

A.6 Implementation of Automated
Commonsense Error Detector

Based on our preliminary analysis, we develop a
heuristic method for detecting commonsense errors
defined in Sec. 3.3. We leverage the ⟨St, At, St+1⟩
tuples in the dataset, to directly measure these er-
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Expt. Task Game zork1 lib. det. bal. pent. ztuu ludi. deep. temp. overall
Size 886 654 434 990 276 462 2210 630 1294 7836

Worldformer
Graph EM 21.62 34.39 41.05 50.41 30.00 41.56 40.10 41.87 42.43 39.15

F1 24.44 34.39 44.53 52.43 34.30 42.20 41.65 42.74 45.17 41.06

Action EM 23.08 22.55 20.97 29.08 27.05 20.71 21.36 24.04 22.80 23.22
F1 23.50 26.52 25.28 32.89 31.32 23.66 22.27 26.12 25.66 25.54

Table 5: Original Worldformer Results on JerichoWorld.

JerichoWorld
Game zork1 lib. det. bal. pent. ztuu ludi. deep. temp. overall
Size 886 654 434 990 276 462 2210 630 1294 7836

JerichoWorld 2.0
Game zork lib. det. bal. pent. ztuu ludi. deep. temp. overall
Size 779 624 417 971 266 441 2170 608 1229 7505

Table 6: Comparison of the test sets of JerichoWorld and JerichoWorld 2.0

rors automatically. Specifically, we detect the fol-
lowing types of errors:

• Object Localization and Inference errors:
For false positive actions, 1. Predicted valid
action attempts to interact with an object not
present in the current environment or inven-
tory. 2. Predicted valid action attempts to
take object from the environment when it is
expected to in inventory already, after the tran-
sition action. 3. Predicted valid action at-
tempts to put object down when object is not
expected to be in inventory after the transition
action. Furthermore, we build special heuris-
tics for when the object in question is ’all’, as
the game’s parser understands this as referring
to all objects in either the environment or the
player inventory, depending on the action.

• Object Affordance Errors: After first filter-
ing for OLI errors, we check an action for
the following: First, we check that a false
positive action has at least two noun phrases,
such that an affordance between two objects
can be established. Next, to account for id-
iosyncrasies of the engine in terms of action
validity (e.g. push lens to glasses is a valid
action), we check that the action was not a
valid action in the previous state. If the action
passes both checks, we judge the action to
be an affordance error (e.g. throw lantern at
garlic)

• Insufficient Iteraction Coverage: We con-
sider all false negatives as these.

To extract objects in predicted actions, we extract
noun phrases using the Flair framework (Akbik
et al., 2018). To check the existence of objects

in the environment, inventory and graph, we use
simple string matching of the object name.

A.7 Qualitative study samples
In Tables 7 through 9, we show a subset of the
dev set error analysis results, comparing the hu-
man annotated errors with the annotation by our
automated system.

A.8 Examples of model predictions
In Tables 10 through 14, we show several exam-
ples of models’ valid action predictions on the
test set. Worldformer-BART and AWM-BART are
compared.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Connection
This area of matted-down crab-
grass lies between the vaulted
big top entrance to the north and
the enticements of the midway to
the east, where a sagging banner
hangs crookedly above a turnstile.
There is a drinking fountain near
the side wall of the tent. You can
enter the night to the west and
south. [OBS] You emerge into
the warm night air of summer.
Connection
[TRANSITION ACT] search bal-
loon

[TRIPLE] you in Connection
[TRIPLE] you have balloon
[TRIPLE] you have fiberglass
pole [TRIPLE] button in Connec-
tion [TRIPLE] you have clown
mask [TRIPLE] drinking foun-
tain in Connection [TRIPLE] he-
lium in balloon
[TRANSITION ACT] search bal-
loon

[OBS] Inventory: You have a
clown mask, a fiberglass pole, a
balloon and $12.81 to your name.

[ACT] enter [ACT] hit bal-
loon [ACT] close balloon [ACT]
breath helium [ACT] look east
[ACT] wear mask [ACT] open
balloon [ACT] drop pole [ACT]
drop mask [ACT] drop balloon
[ACT] drop all [ACT] empty bal-
loon [ACT] search balloon

Human Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age Errors
take passage, drink bucket, open balloon, empty balloon,

search balloon, hit balloon, drop
mask, drop all, drop pole, look
east, drop balloon

Automatic Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age
take passage, drink bucket, open balloon, empty balloon,

search balloon, hit balloon, drop
mask, drop all, drop pole, look
east, drop balloon,

Table 7: Errors analysis of a validation set example from Ballyhoo: OLI errors occur because there is no passage or
bucket in the environment.

Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: The passage
bends from northwest to east and
there is a flight of steps down
at this point.There is a string of
shiny glass beads here. There is
a dull toadstone here
[OBS] You are holding: A lamp
(which is on)
[TRANSITION ACT] take all

[TRIPLE] (STONE) in (BEND1)
[TRIPLE] (BEADS) in (BEND1)
[TRIPLE] you in (BEND1)
[TRIPLE] you have (LAMP)
[TRANSITION ACT] take all

[OBS] Inventory:
You are holding:
A lamp (which is on)

[ACT] take inventory [ACT]
take toadstone [ACT] take beads
[ACT] take all [ACT] examine
lamp [ACT] drop lamp [ACT]
east [ACT] down [ACT] north-
west

Human Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age Errors
take all ’eat toadstone’, ’drop beads’, ’ex-

amine toadstone’, ’drop toad-
stone’, ’east’, ’northwest’, ’ex-
amine beads’, ’down’, ’drop all’

Automatic Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age
take all ’eat toadstone’, ’drop beads’, ’ex-

amine toadstone’, ’drop toad-
stone’, ’east’, ’northwest’, ’ex-
amine beads’, ’down’, ’drop all’

Table 8: Errors analysis of a validation set example from Loose. The action ’take all’ will not cause a change in the
environment after taking transition action ’take all’.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Blue Room In
the far corner of this tented enclo-
sure a thick, undulating cloud of
smoke hovers over a poker game.
Straight across from you a tight-
jawed dealer stands over a black-
jack table covered with a green
floor-length tablecloth.
The spring-loaded secret panel
slides shut. [OBS] Blue Room
In the far corner of this tented en-
closure a thick, undulating cloud
of smoke hovers over a poker
game. Straight across from you
a tight-jawed dealer stands over
a blackjack table covered with a
green floor-length tablecloth.
The spring-loaded secret panel
slides shut.
[TRANSITION ACT] wear rib-
bon

[TRIPLE] you have fiberglass
pole [TRIPLE] blackjack ta-
ble in Blue Room [TRIPLE]
blue dot in ticket [TRIPLE]
you have ticket [TRIPLE] pink
dot in ticket [TRIPLE] you
have spreadsheet [TRIPLE] you
have bucket [TRIPLE] Com-
rade Thumb in Blue Room
[TRIPLE] uniform in Comrade
Thumb [TRIPLE] you have scrap
newsprint [TRIPLE] deck cards
in Blue Room [TRIPLE] you
in Blue Room [TRIPLE] you
have skeletkey [TRIPLE] you
have ribbon [TRIPLE] you have
transistor radio [TRIPLE] dealer
in Blue Room [TRIPLE] you
have rawhide bullwhip [TRIPLE]
radio dial in transistor radio
[TRIPLE] cloud smoke in Blue
Room
[TRANSITION ACT] wear rib-
bon

[OBS] Inventory: You have your
ticket, a bucket, a ribbon, a
rawhide bullwhip, a skeleton key,
a scrap of newsprint, a fiberglass
pole, a transistor radio, a spread-
sheet and $13.81 to your name.

[ACT] look dial [ACT] look
down comrade thumb [ACT]
look at comrade thumb [ACT]
close off comrade thumb [ACT]
look around dial [ACT] wear
ribbon [ACT] drop newsprint
[ACT] drop pole [ACT] drop
bullwhip [ACT] drop blue [ACT]
drop ribbon [ACT] drop spread-
sheet [ACT] drop key [ACT]
drop bucket [ACT] drop all

Human Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age Errors
’drink bucket’ ’cut dial with blue’, ’cut

newsprint with blue’, ’put down
bullwhip’, ’put down spread-
sheet’, ’put blue in bucket’, ’put
down newsprint’, ’cut bucket
with blue’, ’cut uniform with
blue’, ’cut pole with blue’, ’put
all in bucket’, ’put down all’,
’break pole with comrade thumb’,
’cut spreadsheet with blue’, ’cut
room with blue’, ’put down
key’, ’put bullwhip in bucket’,
’put newsprint in bucket’, ’put
down pole’, ’put down blue’,
’put down bucket’, ’close off
comrade thumb’, ’cut comrade
thumb with blue’, ’cut floor
with blue’, ’cut bullwhip with
blue’, ’cut ribbon with blue’, ’cut
smoke with blue’, ’put all around
floor’, ’put key in bucket’, ’cut
cards with blue’, ’cut key with
blue’, ’cut dealer with blue’,
’look at comrade thumb’, ’put
spreadsheet in bucket’, ’cut
poker with blue’, ’look around
pole’

Automatic Error Annotation
OLI Errors Affordance Errors Insufficient Interaction Cover-

age
’look dial’, ’open cage’, ’ex-
amin room’, ’take ribbon’, ’drink
bucket’

’cut dial with blue’, ’cut
newsprint with blue’, ’put down
bullwhip’, ’put down spread-
sheet’, ’put blue in bucket’, ’put
down newsprint’, ’cut bucket
with blue’, ’cut uniform with
blue’, ’cut pole with blue’, ’put
all in bucket’, ’put down all’,
’break pole with comrade thumb’,
’cut spreadsheet with blue’, ’cut
room with blue’, ’put down
key’, ’put bullwhip in bucket’,
’put newsprint in bucket’, ’put
down pole’, ’put down blue’,
’put down bucket’, ’close off
comrade thumb’, ’cut comrade
thumb with blue’, ’cut floor
with blue’, ’cut bullwhip with
blue’, ’cut ribbon with blue’, ’cut
smoke with blue’, ’put all around
floor’, ’put key in bucket’, ’cut
cards with blue’, ’cut key with
blue’, ’cut dealer with blue’,
’look at comrade thumb’, ’put
spreadsheet in bucket’, ’cut
poker with blue’, ’look around
pole’

Table 9: Errors analysis of a validation set example from Loose.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Copier Room
The copier room doesn’t con-
tain any windows, and vibrates
slightly with fluorescent light. A
big copier sits quietly in the cor-
ner. Doors lead east and west.
You can see a Dragon Statue
here.
[OBS] Copier Room You can see
a Dragon Statue here.
[TRANSITION ACT] put wire
down

[TRIPLE] Copy Machine in
Copier Room [TRIPLE] you
have Long Key [TRIPLE] Sheet
of Paper in Paper Tray [TRIPLE]
you have Coil of wire [TRIPLE]
you have Gun [TRIPLE] Paper
Tray in Copier Room [TRIPLE]
Copy Machine Lights in Copier
Room [TRIPLE] you have Long
Ladder [TRIPLE] Copy Machine
Lid in Copier Room [TRIPLE]
you in Copier Room [TRIPLE]
Dragon Statue in Copier Room
[TRIPLE] Copier Room west Sta-
tionary Cupboard
[TRANSITION ACT] put wire
down

[OBS] Inventory: You are carry-
ing:
a Long Key
a Coil of wire
a Long Ladder
a Gun

[ACT] take statue [ACT] close
paper tray [ACT] west [ACT]
put wire down [ACT] put lad-
der down [ACT] put key down
[ACT] put gun down [ACT] put
all down [ACT] empty paper tray
[ACT] take all off paper tray
[ACT] east

Worldformer-BART Predictions
True Positives False Positives False Negatives
’take all’, ’close paper tray’,
’west’, ’east’

’take key’ ’take wire’, ’take statue’, ’put
ladder down’, ’put key down’,
’put gun down’, ’put all down’,
’empty paper tray’, ’take all off
paper tray’

AWM-BART Predictions
True Positives False Positives False Negatives
’east’, ’take all’, ’take statue’,
’take wire’, ’put key down’, ’put
all down’, ’empty paper tray’,
’close paper tray’, ’west’, ’take
all off paper tray’

’put ladder down’, ’put gun
down’

Table 10: Comparison of model predictions on a test set example from Ludicorp.

Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Cave Mouth
This is a cave mouth, at one end
of a road which winds southeast
over rising ground. The entrance
west to the caves is a dark tunnel,
and only a footpath runs further
north, into gorse.
The iron door stands open.
You can also see a silver coin and
a spell book here. [OBS] You
close the cedarwood box.
[TRANSITION ACT] close door

[TRIPLE] Helistar’s grimoire in
cedarwood box [TRIPLE] you
have cedarwood box [TRIPLE]
you have magic burin [TRIPLE]
you have cube [TRIPLE] spell
book in Cave Mouth [TRIPLE]
you in Cave Mouth [TRIPLE]
players coin in Cave Mouth
[TRIPLE] you have beautiful red
carpet [TRIPLE] iron door in
Cave Mouth
[TRANSITION ACT] close door

[OBS] Inventory: You are carry-
ing:
a beautiful red carpet
the "chasm" cube
the "cave" cube
a cedarwood box (which is
closed)
a magic burin

[ACT] west [ACT] take book
[ACT] take coin [ACT] take
all [ACT] close door [ACT]
put box down [ACT] put car-
pet down [ACT] put burin down
[ACT] put cave down [ACT] put
all down [ACT] examine book
[ACT] open box [ACT] north
[ACT] up

Worldformer-BART Predictions
True Positives False Positives False Negatives
’take book’, ’open box’, ’up’,
’north’, ’take coin’

’take sword’, ’push sword to mar-
ble’, ’throw lantern at sword’

’take all’, ’put box down’, ’put
carpet down’, ’put burin down’,
’put cave down’, ’put all down’,
’examine book’, ’open door’

AWM-BART Predictions
True Positives False Positives False Negatives
’take book’, ’put all down’,
’open box’, ’up’, ’examine book’,
’open door’, ’north’, ’take all’,
’take coin’, ’put box down’

’examine door’ ’put carpet down’, ’put burin
down’, ’put cave down’

Table 11: Comparison of model predictions on a test set example from Balances.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Torch Room
This is a large room with a promi-
nent doorway leading to a down
staircase. Above you is a large
dome. Up around the edge of the
dome (20 feet up) is a wooden
railing. In the center of the room
sits a white marble pedestal.
A piece of rope descends from
the railing above, ending some
five feet above your head.
Sitting on the pedestal is a flam-
ing torch, made of ivory. [OBS]
Torch Room
This is a large room with a promi-
nent doorway leading to a down
staircase. Above you is a large
dome. Up around the edge of the
dome (20 feet up) is a wooden
railing. In the center of the room
sits a white marble pedestal.
A piece of rope descends from
the railing above, ending some
five feet above your head.
Sitting on the pedestal is a flam-
ing torch, made of ivory.
[TRANSITION ACT] put down
knife

[TRIPLE] you have brass lantern
[TRIPLE] pedestal in Torch
[TRIPLE] you have clove gar-
lic [TRIPLE] you have nasty
knife [TRIPLE] you have sword
[TRIPLE] torch in pedestal
[TRIPLE] you in Torch
[TRANSITION ACT] put down
knife

[OBS] Inventory: You are carry-
ing:
A sword
A nasty knife
A brass lantern (providing light)
A clove of garlic

[ACT] south [ACT] put out
lantern [ACT] take torch [ACT]
put down lantern [ACT] put
down knife [ACT] put down gar-
lic [ACT] put down sword [ACT]
put down all [ACT] put knife on
marble [ACT] put garlic on mar-
ble [ACT] throw lantern at knife
[ACT] put all on marble

Worldformer-BART Predictions
True Positives False Positives False Negatives
’put out lantern’, ’take torch’,
’south’

’take sword’, ’push sword to mar-
ble’, ’throw lantern at sword’

’take knife’, ’take all’, ’put down
lantern’, ’put down garlic’, ’put
down sword’, ’put down all’, ’put
garlic on marble’, ’throw lantern
at knife’

AWM-BART Predictions
True Positives False Positives False Negatives
’put out lantern’, ’throw lantern
at knife’, ’take knife’, ’south’,
’take torch’, ’put garlic on mar-
ble’, ’put down all’, ’put down
lantern’, ’take all’

’put knife on marble’ ’put down garlic’, ’put down
sword’

Table 12: Comparison of model predictions on a test set example from Zork1.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: West Royal
Road
This road is quite beautiful, dec-
orated on its sides with fluores-
cent mosses that feed on the min-
erals in the stones that line the
sides of the roads. Somehow, the
mosses do not leave their desig-
nated stones. High walls on both
sides make the street feel more
like a hall than an open passage-
way, and gates leading to palaces
break up the monotony of the
stone. A single gate is open to the
north. The road continues east
and to the west is the outer court
of the Lord’s Palace. [OBS] West
Royal Road
This road is quite beautiful, dec-
orated on its sides with fluores-
cent mosses that feed on the min-
erals in the stones that line the
sides of the roads. Somehow, the
mosses do not leave their desig-
nated stones. High walls on both
sides make the street feel more
like a hall than an open passage-
way, and gates leading to palaces
break up the monotony of the
stone. A single gate is open to the
north. The road continues east
and to the west is the outer court
of the Lord’s Palace.
[TRANSITION ACT] put on
shield

[TRIPLE] you have pickaxe
[TRIPLE] moss in West Royal
Road [TRIPLE] you have King’s
Order [TRIPLE] you have gear
[TRIPLE] you have green moss
[TRIPLE] Kraxis in West Royal
Road [TRIPLE] you have Sword
[TRIPLE] ground in West Royal
Road [TRIPLE] you have shield
[TRIPLE] you in West Royal
Road [TRIPLE] you have lantern
[TRIPLE] you have magical
torch
[TRANSITION ACT] put on
shield

[OBS] Inventory: You are carry-
ing:
a green moss (providing light)
a gear
a pickaxe
a magical torch (providing light)
a Sword
a shield
King’s Order
a lantern (providing light)

[ACT] say manaz [ACT] north
[ACT] west [ACT] put order
down [ACT] put moss down
[ACT] put lantern down [ACT]
put pickaxe down [ACT] put
shield down [ACT] put torch
down [ACT] put sword down
[ACT] put gear down [ACT] put
all down [ACT] put on shield
[ACT] wield sword [ACT] east

Worldformer-BART Predictions
True Positives False Positives False Negatives
’west’, ’east’, ’put all down’,
’north’, ’say manaz’

’take shield’ ’take off shield’, ’put order
down’, ’put moss down’, ’put
lantern down’, ’put pickaxe
down’, ’put shield down’, ’put
torch down’, ’put sword down’,
’put gear down’, ’wield sword’

AWM-BART Predictions
True Positives False Positives False Negatives
’north’, ’west’, ’east’, ’put torch
down’, ’put pickaxe down’, ’take
off shield’, ’wield sword’, ’say
manaz’

’examine door’ ’put order down’, ’put moss
down’, ’put lantern down’, ’put
shield down’, ’put sword down’,
’put gear down’,’put all down’

Table 13: Comparison of model predictions on a test set example from Deephome.
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Inputs to the Model
Observation Graph Inventory Valid actions
[OBS] Location: Storage
This is a minor storage chamber,
connected to the study through
a doorway in the northern wall.
There are some shelves, mostly
vacant, here.
On one of the shelves are four
small vials, each neatly labelled
and containing some green pow-
der. [OBS] Storage
This is a minor storage chamber,
connected to the study through
a doorway in the northern wall.
There are some shelves, mostly
vacant, here.
On one of the shelves are four
small vials, each neatly labelled
and containing some green pow-
der.
[TRANSITION ACT] take all off
shelves

[TRIPLE] mysterious vial in
shelves [TRIPLE] you in Stor-
age [TRIPLE] shelves in Storage
[TRIPLE] dark tower in Storage
[TRIPLE] Storage south Study
[TRANSITION ACT] take all off
shelves

[OBS] Inventory: You are carry-
ing nothing.

[ACT] take vial [ACT] take all
off shelves [ACT] north

Worldformer-BART Predictions
True Positives False Positives False Negatives
’north’ ’take vial’ ’put vial down’, ’put all down’,

’put vial on shelves’, ’put all on
shelves’

AWM-BART Predictions
True Positives False Positives False Negatives
’put vial down’, ’put vial on
shelves’, ’put all on shelves’,
’north’

’put all down’

Table 14: Comparison of model predictions on a test set example from Temple.
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