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Abstract

Discontinuous constituency parsing is still kept
developing for its efficiency and accuracy are
far behind its continuous counterparts. Moti-
vated by the observation that a discontinuous
constituent tree can be simply transformed into
a pseudo-continuous one by artificially reorder-
ing words in the sentence, we propose a novel
reordering method, thereby construct fast and
accurate discontinuous constituency parsing
systems working in continuous way. Specif-
ically, we model the relative position changes
of words as a list of actions. By parsing and per-
forming this actions, the corresponding pseudo-
continuous sequence is derived. Discontinuous
parse tree can be further inferred via integrat-
ing a high-performance pseudo-continuous con-
stituency parser. Our systems are evaluated on
three classical discontinuous constituency tree-
banks, achieving new state-of-the-art on two
treebanks and showing a distinct advantage in
speed.

1 Introduction

Constituency parses represent the syntactic struc-
ture by hierarchical constituent trees, which de-
compose the sentence into constituents and estab-
lish hierarchical relations between constituents and
words (Corro, 2020). In continuous constituent
trees, the sequence of words that compose the con-
stituent must be contiguous. This type of structure
is enough for representing most of the syntactic
structure (Fernández-González et al., 2021a) and
has been extensively studied.

Nevertheless, some syntactic phenomena, such
as long-distance dependencies and extractions, re-
quire discontinuous words to form a constituent,
which have been argued to be unavoidable (Mc-
Cawley, 1982; Bunt et al., 1987; Müller, 2004).
Thus, discontinuous constituent trees with crossing
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Figure 1: An example of converting a discontinuous
tree into a pseudo-continuous one.

branches are introduced to describe all the syntactic
phenomena present in human language.

Compared to continuous constituency parsing,
discontinuous parsing is a more complicated prob-
lem, so that the high computational cost is par-
ticularly prominent. Many researches (Ruprecht
and Mörbitz, 2021; Coavoux and Crabbé, 2017;
Coavoux et al., 2019) have focused on how to re-
duce the time complexity of discontinuous parsing
algorithm to reduce or get rid of the constraint of
sentence length.

Based on the observation that a discontinuous
tree can be converted into a pseudo-continuous one
by simply reordering the words in the sentence,
as an example in Figure 1, and the advantage that
parsing a continuous tree is much simpler than
parsing a discontinuous one. Fernández-González
et al. (2021b) develops a pointer network to gen-
erate reordered word sequence by predicting the
position of each word in the pseudo-continuous
sequence, and then applies off-the-shelf continu-
ous constituency parser to get the constituent tree.
This method is intuitive to achieve improvement in
speed, and its F1 score is also greatly improved.

However, the accuracy of existing reordering
methods still lags behind. We find that the per-
formances of the pseudo-continuous constituency
parser outperforms all the existing discontinuous
works by a wide margin if the input pseudo-
continuous sequences are completely correct in
word positions. In order to preserve the high perfor-
mance of pseudo-continuous parser as completely
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as possible, it is an urgent problem to study how to
improve the accuracy of reordering and the influ-
ence of reordering accuracy on the overall discon-
tinuous constituency parsing result.

In this work, we construct fast and accurate dis-
continuous constituency parsing systems working
in continuous way by designing a novel method of
reordering the words in sentences. Specifically, we
model the relative position changes of words when
converting the original sentence to the pseudo-
continuous sequence as a list of actions that moving
words forward and backward in the sentence. We
employ an action graph which indicates these ac-
tions by directed edges with action labels. Since the
action graph and the semantic dependency graph
have similar structure, we adopt the semantic de-
pendency parsing model (Wang and Tu, 2020) as
our basic model for parsing the action graph. We
further establish a robust rearrangement algorithm
with time complexity of O(n2), which derives the
pseudo-continuous sequence by performing the ac-
tions in the predicted graph.

With our action schema and rearrangement al-
gorithm, we achieve a considerable improvement
in reordering accuracy than current state-of-the-art
method and remain comparable efficiency. Mean-
time, we innovatively revise the architecture of the
parser to better adapt to the structural characteris-
tics of action graph and achieve better results. After
deriving the pseudo-continuous sequence, any well-
performed continuous constituency parsing model
can be used as our pseudo-continuous parser to
parse this sequence into a pseudo-continuous tree.
Finally, we can restore the corresponding discon-
tinuous tree by reducing the pseudo-continuous
sequence to the original sentence.

We evaluate our systems on three classical dis-
continuous constituency treebanks: Discontinu-
ous English Penn Treebank (DPTB) (Evang and
Kallmeyer, 2011), Tiger (Brants et al., 2002) and
Negra (Skut et al., 1997). Two continuous con-
stituency parsing models: a span-based model (Ki-
taev et al., 2019) and a transition-based model
(Yang and Deng, 2020), are used as the pseudo-
continuous parser for experiments. Our method
is faster than most of the existing discontinuous
parsers. We achieve new state-of-the-art results on
Tiger and Negra, and comparable to state-of-the-art
results on DPTB.

2 Related Work
Syntax shows its effect in language understand-
ing (He et al., 2018; Li et al., 2021a,b; Sun et al.,
2021; Li et al., 2022; Zhang et al., 2022). Discontin-
uous constituency parsing, as a special constituency
parsing form has drawn much attention.

Grammar-based Method Inheriting and ex-
panding the grammar-based methods of continu-
ous constituency parsing, mildly context-sensitive
grammar such as linear context-free rewriting sys-
tems (LCFRS) (Vijay-Shanker et al., 1987) and
multiple context-free grammars (MCFGS) (Seki
et al., 1991) has been applied for discontinu-
ous parsing, which has higher parsing complex-
ity than its continuous counterpart. For example,
the complexity of accurate CKY-style LCFRS is
O(n3·fan-out), where grammar-specific fan-out is
greater than 1 (Kallmeyer, 2010). To reduce the
limit on the sentence length, Ruprecht and Mör-
bitz (2021) proposes a supertagging-based parser
for LCFRS. However, there is still a considerable
gap in speed and accuracy between discontinuous
parsing and continuous parsing.

Span-based Method In continuous constituency
parsing, span-based methods generally excel in
both speed and accuracy (Stern et al., 2017; Ki-
taev and Klein, 2018; Kitaev et al., 2019). Span-
based methods are also proposed for discontinu-
ous constituency parsing (Corro, 2020; Stanojević
and Steedman, 2020), but their discontinuous ac-
curacy is not good enough. Through error analy-
sis, Coavoux (2021) concludes that compared to
transition-based parser, span-based parser has less
fine-grained features which are particularly help-
ful for predicting discontinuous constituents. Thus,
first converting the discontinuous tree into a pseudo-
continuous one and then utilizing span-based parser
may be a better choice.

Transition-based Method In continuous con-
stituency parsing, transition-based methods based
on shift-reduce strategy (Zhu et al., 2013; Sagae
and Lavie, 2005) are widely used. Some works
propose to add specific transition actions to change
the order of words (Maier, 2015; Stanojević and
Alhama, 2017) for discontinuous parsing. How-
ever, this type of extension may make transition se-
quences so long that affecting efficiency and accu-
racy. To alleviate this problem, methods of dealing
directly with discontinuous sequences (Coavoux
and Crabbé, 2017) and designing new data struc-
tures and corresponding actions (Coavoux et al.,
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Figure 2: The flow of our system. wi (i = 1, 2, 3, 4) is the word with ID = i.

2019; Coavoux, 2021) are used to reduce the length
of the transition sequence. These methods are in-
deed effective, but there is still room for improve-
ment in terms of speed and accuracy.
Conversion-based Method Several works also
aim to convert discontinuous constituency parsing
to a simpler task. For example, some works re-
duce discontinuous constituency parsing to non-
projective dependency parsing by encoding the
constituents to arc labels (Fernández-González and
Martins, 2015; Fernández-González and Gómez-
Rodríguez, 2020) , while Vilares and Gómez-
Rodríguez (2020) converts the task to sequence
tagging by representing the discontinuous tree as
a sequence of tag. In this work, we convert the
discontinuous parsing task into continuous parsing
task by modeling, parsing and presenting the words
relocating actions, and thus reduce the complexity
of the problem.

3 Method

The flow of our system1 is shown in Figure 2. In
data pre-processing stage, we first build a pseudo-
continuous constituency treebank based on discon-
tinuous treebank by reordering the words in the
sentences. The reordering strategy is consistent
with Fernández-González et al. (2021b) and is de-
scribed in detail in Appendix A. Then, we construct
an action graph dataset based on our action schema
by modeling the relative position changes of words
as action edges. In training stage, we train an ac-
tion graph parser on the action graph dataset and
a pseudo-continuous constituency parser on the
pseudo-continuous treebank. In prediction stage,
we first parse the original sentence: X into action
graph: G. Then, we propose an algorithm which
derives the reordered sequence: X̂ and the ID list:
Orders from X by performing actions in G. X̂ is
then used as input to the pseudo-continuous con-
stituency parser for pseudo-continuous tree Ŷ pars-

1Our code is published in https://github.com/
KAI-SHU/Reorder-and-then-Parse.

ing. Finally, Orders which indicates the original
positions of the words in X , is used for discontinu-
ous tree Y restoration.

3.1 Action Graph

Denote the original sentence as X = w1, w2, ...
, wN , and the reordered sequence as X̂ . For each
word wi (i = 1, 2, ..., N ), its index in X is i and in
X̂ is ri. That means wi and wri represent the same
word in different positions in X and X̂ respectively.
In addition, we use the index of each word in X as
its ID, which remains the same in X and X̂ .

According to our observation, reordering words
in a sentence is identical to moving some of the
words forward or backward. Therefore, we design
an action schema that indicates the specific relative
positions to which some words need to be moved
forward or backward when converting X to X̂ .
The criteria for judging whether a word needs to
be moved are as follows:
• Move Forward: For wi (wri), if there exist a

word which is to the left of wi in X and to the
right of wri in X̂ , wi is considered to be moved
forward.

∃ wj : 1 ≤ j < i & N ≥ rj > ri

• Move Backward: For wi (wri), if there exist a
word which is to the right of wi in X and to the
left of wri in X̂ , wi is considered to be moved
backward.

∃ wj : N ≥ j > i & 1 ≤ rj < ri

On this basis, we indicate movements by anno-
tating edges pointing from head to child and thus
forming an action graph. The criteria for assigning
edges and labels are as follows:
• For wi (wri), if it needs to be moved forward and
wri−1 ̸= wi−1. We use wri−1 as the positioning
for wi and assign an edge with label MOVE-L:
(wri−1 → wi), which indicates the action that
moving wi after wri−1.

• For a continuous segment wi, wi+1, ..., wi+s

(s ≥ 1) in X , if it is also a continuous segment in
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X̂ and it needs to be moved forward. We assign
an edge with label SPAN: (wi → wi+s), which
indicates that words from wi to wi+s should be
moved forward as a whole.

• For wi (wri), if it needs to be moved backward
and wri+1 ̸= wi+1. We use wri+1 as the position-
ing for wi and assign an edge with label MOVE-R:
(wri+1 → wi), which indicates the action that
moving wi before wri+1.

• For a continuous segment wi−s, ..., wi−1, wi

(s ≥ 1) in X , if it is also a continuous segment in
X̂ and it needs to be moved backward. We assign
an edge with label SPAN: (wi → wi−s), which
indicates that words from wi−s to wi should be
moved backward as a whole.
We introduce an example from DPTB in the first

block of Figure 3 to show the gold bi-directional
action graph where the green edges indicate for-
ward movements, and the purple edges indicate
backward movements. An "END" virtual node is
appended because several words may be moved
backward to the end of the sequence in some in-
stances, which requiring a node to be the head of
such edges. It is worth noting that only using the
edges of a single direction is sufficient to derive
an accurate pseudo-continuous sequence. How-
ever, there is no guarantee that the action graph
parser can make decisions exactly, so it is neces-
sary to combine the forward and backward actions
together and let them complement each other to
achieve higher reordering accuracy.

3.2 Action Graph Parsing Model

Since there are action edges of two directions, we
introduce two parsing configurations. The first
one is to merge the forward and backward edges
into one graph and employ a single parser for bi-
directional action prediction directly. The other
one is to train two separate parsers to predict the
forward and backward edges respectively.

Bi-directional Parsing Model In semantic de-
pendency parsing, a dependency is represented by
an annotated edge pointing from head to depen-
dent. A word can be regarded as a dependent or
head multiple times in different dependencies, or
it may not belong to any dependency. Therefore,
our bi-directional action graph has a similar struc-
ture to semantic dependency graph. In this case,
we employ a second-order graph-based semantic
dependency model (Wang et al., 2019) for parsing
our bi-directional action graph. We make a simple

clarification for this model as follows.
First, the model uses four single-layer feedfor-

ward layers (FNNs) to differentiate the output of
the encoder: H = [h1, h2, ..., hN ] into four hid-
den states with different functions: H (o-m), where
o ∈ [edge, label] and m ∈ [head, dep]. Then, the
first-order scores of edge: S(edge) ∈ RN×N and
the first-order scores of label: S(label) ∈ RN×N×C

are calculated by biaffine attention, where C is the
number of labels:

Biaff(v1, v2) := vT1 Uv2 + b,

s(o)
ij =Biaff(o)(h

(o-dep)
i , h(o-head)

j ), o ∈ [edge, label].

Meantime, H is also differentiated into other
three hidden states for second-order scoring:
H (pair-q), where q ∈ [grand, head, dep]. Three
kinds of second-order scores of edge, siblings:
S(sib), co-parents: S(cop) and grandparents: S(gp)

are calculated by trilinear functions:

Trilin(v1, v2, v3) := vT3 v
T
1 Uv2 + b.

For label prediction, softmax function is per-
formed on S(label) to calculate the probability of
each label given the edge. For edge prediction, a
conditional random field (CRF) inference is defined
to determine the existence of edges. The unary po-
tential is defined by S(edge) and the binary potential
is defined by S(sib), S(cop) and S(gp). For efficiency,
mean field variational inference (MFVI) is used for
approximate inference on this CRF.

During training, cross entropy losses are mea-
sured for both edge and label, and the optimization
objective is the weighted average of the two losses.

L = λL(label) + (1− λ)L(edge).

Uni-directional Parsing Model Semantic depen-
dency parsing model suited well for parsing bi-
directional action graph. However, for the uni-
directional action graph parsing, because of its rel-
atively simple chain structure (compared to full
graph), it is not suitable to use such model with
graph constraints. Instead, we adopt and revise
the syntactic dependency parsing model with tree
constraints for better adaptation.

In uni-directional action parsing, due to the tree
constraint characteristic that there is at most one
head per word, we revise the basic biaffine model
with a single-layer MLP as a binary classifier that
receives the output of the encoder and predicts
whether each word has a head or not.

S(head) = MLP(H) ∈ RN×2.
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Figure 3: An example of the gold bi-directional action graph and the process of rearrangement algorithm.

The process of calculating S(edge) and S(label) is con-
sistent with the bi-directional action graph parser
using biaffine attention. Then, we perform soft-
max on S(head), S(edge) and S(label) to calculate the
probability of the presence and absence of the head
of each word, the probability of each edge given
the child, and the probability of each label given
the edge. While in the inference, we first decide
the nodes with heads according to S(head), and per-
forms greedy search on S(edge) and S(label) for ac-
tion prediction.

Denote G⋆ as the gold action graph for sentence
X , we define the following cross entropy losses:

L(head) = −
∑

i

log(Pθ(g
⋆(head)
i |X),

L(edge) = −
∑

i

1(g⋆(head)
i )log(Pθ(g

⋆(edge)
i |X),

L(label) = −
∑

i,j

1(g⋆(head)
i )1(g⋆(edge)

i = wj)log(Pθ(g
⋆(label)
ij |X),

where θ is the parameters of our model and 1(·)
denotes the indicator function. 1(g⋆(head)

i ) equals 1
when wi has head in G⋆ and 0 otherwise. The final
optimization objective is the weighted average of
the three losses.

L = λL(label) + (1− λ)(L(edge) + L(head)).

With the removal of complicate second-order scor-
ing of edges, the uni-directional action graph parser
has fewer parameters and less time complexity

compared with the bi-directional version, so it is
more efficient at parsing a single graph.

3.3 Rearrangement Algorithm

After predicting the action graph, we design an
algorithm performing the actions in the graph to
derive the reordered sequence. The algorithm is
shown in Algorithm 1 which consists of two phases:
forward placement and backward adjustment. For
convenience, we perform actions directly on the
IDs of the words and map the IDs to the words at
the end of the algorithm. Since the implementation
of backward adjustment are complicated, we de-
fine several functions to simplify the writing of the
pseudo code:
• MoveRAble(curID,chID): If chID is placed by
Nature and it is to the left of curID, return true.

• SpanRAble(curID,span): If the entire span is
placed by Nature and it is a contiguous segment
in Orders and it is to the left of curID, return
true.

• Adjust(curID,segment): Move the segment,
which can be a span or a single ID, before curID.
In the forward placement, we place the words

from left to right according to the forward edges.
Since the first word never moves, we first add ID =
1 to the ID list: Orders. In each loop, we take the
last ID in Orders as the currently observed object:
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Algorithm 1 Rearrangement (Perform Action Graph)

Input: X, G
1: /* Forward Placement */
2: Orders← [1] ;
3: while len(Orders) < len(X) do
4: curID← Orders[-1] ;
5: /* Place by MOVE-L */
6: for (curID, chID) in G[MOVE-L] do
7: if chID /∈ Orders then
8: Orders← Orders + [chID] ;
9: back to while

10: /* Place by SPAN */
11: if curID is placed by MOVE-L then
12: for (curID, chID) in G[SPAN] do
13: if curID < chID then
14: span← [curID+1 to chID] ;
15: if ∀ ID ∈ span: ID /∈ Orders then
16: Orders← Orders + span ;
17: back to while
18: /* Place by Nature */
19: Orders← Orders + [min(ID |ID /∈ Orders)] ;
20: /* Backward Adjustment */
21: curID← Orders[-1] ;
22: while curID ̸= 1 do
23: if curID is placed by Nature then
24: /* Adjust by MOVE-R */
25: for (curID, chID) in G[MOVE-R] do
26: if MoveRAble(curID, chID) then
27: Adjust(curID, chID);
28: curID← chID ;
29: back to while
30: /* Adjust by SPAN */
31: if curID is adjusted by MOVE-R then
32: for (curID, chID) in G[SPAN] do
33: if curID > chID then
34: span← [chID to curID−1] ;
35: if SpanRAble(curID, span) then
36: Adjust(curID, span) ;
37: curID← chID ;
38: back to while
39: curID← curID << 1 ;
40: X̂ ←X[Orders] ;
Output: X̂ , Orders

curID, and iterate through all edges with it as the
head until we find a feasible action. The MOVE-L
action works if its child has not been placed in
Orders. The SPAN action works if the entire span
has not been placed in Orders and curID is placed
in Orders by MOVE-L. If no feasible action, the one
which is the smallest ID that has not been placed in
Orders, is placed by Nature. The first phase ends
when all IDs have been placed in Orders.

In the backward adjustment, we scan Orders
from right to left, looking for possible missing ac-

tions based on the backward edges. We assume
that the forward actions we have used are cor-
rect. Therefore, we only focus on the IDs that
are placed by Nature and ignore those that have
already been moved forward. In each loop, we iter-
ate through all edges with curID as the head until
we find a feasible action. The MOVE-R action works
if MoveRAble(curID, chID) is true. The SPAN ac-
tion works if SpanRAble(curID, span) is true and
curID is adjusted by MOVE-R. If no feasible action,
move curID one to the left. The second phase ends
when we move to the first ID.

To make our algorithm robust to errors in the
action graph parse, we filter out some unreason-
able actions through the feasibility judgment, and
use the backward edges to supplement the result
derived by the forward edges. This is important for
high-accuracy reordering. As an example shown
in the second block of Figure 3, the predicted ac-
tion graph is not completely correct: two edges are
missing and two edges are redundant compared to
the gold action graph in the first block. However,
we can still derive the correct reordered sequence
with our algorithm.

3.4 Time Complexity

The bi-directional action graph parser has a time
complexity of O(d2b + d2t + n3) and the uni-
directional action graph parser has a time com-
plexity of O(d2b + n2), where db and dt are the
hidden sizes of the biaffine and trilinear and n
is the sentence length. The rearrangement algo-
rithm has a time complexity of O(n2). The con-
tinuous constituency parsing models (Kitaev et al.,
2019; Yang and Deng, 2020) used as our pseudo-
continuous constituency parser in our experiments
both have a time complexity of O(d2b +n3). There-
fore, the whole time complexity of our system
is O(d2b + d2t + n3) which is comparable to that
of the most efficient methods currently, includ-
ing Fernández-González et al. (2021b) and Corro
(2020) both with a time complexity of O(d2b + n3).

4 Experiments

Data Setup We conduct our experiments on En-
glish treebank DPTB with standard split and Ger-
man treebanks: Tiger and Negra with common split
(Seddah et al., 2013; Dubey and Keller, 2003). We
transform these three treebanks into correspond-
ing action graph datasets and pseudo-continuous
constituency treebanks for training and evaluating
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NEGRA TIGER DPTB
Parser(no tags or predict PoS tags) F1 DF1 sent/s F1 DF1 sent/s F1 DF1 sent/s

Fully supervised or Semi-supervised (Pre-trained embeddings)
Vilares and Gómez-Rodríguez (2020) 77.1 36.5 715 79.2 40.1 568 89.1 41.2 611
Corro (2020) 86.3 56.1 478 85.2 51.2 474 92.9 64.9 355
Ruprecht and Mörbitz (2021) 86.54 61.89 104 85.12 61.00 80 91.77 76.14 86

Semi-supervised (Pre-trained language models)
Vilares and Gómez-Rodríguez (2020) + BERTbase 84.2 46.9 81 84.7 51.6 80 91.7 49.1 80
Vilares and Gómez-Rodríguez (2020) + BERTlarge - - - - - - 92.8 53.9 34
Corro (2020) + BERTbase 91.6 66.1 - 90.0 62.1 - 94.8 68.9 -
Ruprecht and Mörbitz (2021) + BERTbase 90.94 72.58 68 88.34 69.02 60 93.32 80.53 57
Coavoux (2021) + BERTbase 91.7 73.3 - 90.2 72.9 - 95.0 82.5 -
Fernández-González et al. (2021a)+ GottBERTbase

† 89.08 67.06 - 88.53 67.76 - - - -
Fernández-González et al. (2021a) + RoBERTalarge

† - - - - - - 95.47 83.80 -
Fernández-González et al. (2022) + BERTbase

†⋄ 91.0 76.6 - 89.8 71.0 - - - -
Fernández-González et al. (2021b) + BERTbase

‡ 90.0 65.9 275 88.5 63.0 238 94.0 68.9 231
Fernández-González et al. (2021b) + BERTlarge

‡ 92.0 67.9 216 90.5 68.1 207 94.7 72.9 193
Fernández-González et al. (2021b) + XLNetlarge

‡ - - - - - - 95.1 74.1 179
Bi + Kitaev et al. (2019) + BERTbase

‡ F & B 91.03 70.40 306 89.30 68.37 267 94.60 74.82 243
Bi + Kitaev et al. (2019) + RoBERTalarge F & B 92.88 75.93 177 91.18 72.78 166 95.70 77.99 152
Bi + Kitaev et al. (2019) + BERTlarge F & B 93.61 76.97 185 91.89 73.93 177 94.97 75.78 161
Bi + Kitaev et al. (2019) + XLNetlarge F & B - - - - - - 95.73 78.46 137
Bi + Yang and Deng (2020) + BERTlarge F & B 92.93 76.02 149 91.52 73.44 142 94.59 75.31 136
Bi + Yang and Deng (2020) + XLNetlarge F & B - - - - - - 95.68 77.81 124

Uni + Kitaev et al. (2019) + BERTlarge

F 93.38 75.12 193 91.79 73.02 186 95.89 82.52 153
B 93.67 77.18 193 91.86 74.24 185 95.76 79.83 153

(+ XLNetlarge) F & B 93.69 77.83 131 91.92 74.65 127 95.82 81.71 101

Uni + Yang and Deng (2020) + BERTlarge

F 92.75 74.93 158 91.34 72.83 151 95.87 81.89 139
B 92.94 76.67 157 91.47 73.52 151 95.77 80.35 139

(+ XLNetlarge) F & B 93.01 77.24 102 91.54 73.89 98 95.81 81.58 82

Table 1: Comparison of our systems against discontinuous constituent methods on the test splits. †: not fine-tuning the
pre-trained model. ⋄: using extra dependency information. ‡: the network for reordering does not fine-tune the pre-trained model.
The results of Fernández-González et al. (2021b) we refer use Kitaev et al. (2019) as the continuous constituency parsing model.
Bi: bi-directional action graph parser. Uni: uni-directional action graph parser. For DPTB, the Uni systems use XLNetlarge. F:
forward placement, B: backward placement, F & B: forward placement and backward adjustment.

action graph parsers and pseudo-continuous con-
stituency parsers. The data statistics of action graph
datasets are shown in Appendix B.

Evaluation Metric For action graph parsing, we
calculate the labeled edge F1 score (LF1) as the
metric to select the best model on the development
set. For pseudo-continuous constituency parsing,
we use the continuous constituency F1 score as the
metric to select the best model on the development
set. For overall results, we use official discodop
to calculate continuous F1 score and discontinuous
F1 score (DF1). Parsing speed is measured by the
average number of sentences our systems process
per second (sent/s).

Implementation The hyper-parameters of our ac-
tion graph parsing models are shown in Appendix C
and the hyper-parameters of the pseudo-continuous
constituency parser are consistent with Kitaev et al.
(2019) and Yang and Deng (2020). For DPTB,
word embedding is initialized with Glove (Pen-
nington et al., 2014) while it is randomly initial-

ize for Tiger and Negra. We introduce BERTbase,
BERTlarge (Devlin et al., 2019), RoBERTalarge (Liu
et al., 2019) and XLNetlarge (Yang et al., 2019)
as the pre-trained models. We use BERTbase for
fixed pre-trained embedding and fine-tune other
pre-trained models as the encoder. Our models are
trained and tested on Intel(R) Core(TM) i9-7900X
CPU @ 3.30GHz and a single NVIDIA RTX TI-
TAN GPU. All the results we report are averages
of the results of five seeds.

Discontinuous Constituency Parsing Results
We report F1 scores, DF1 scores and speeds of our
systems on test splits in Table 1 compared with cur-
rent discontinuous constituency parsers. When us-
ing bi-directional action graph parser, we achieved
state-of-the-art F1 for all the three treebanks and
state-of-the-art DF1 for German treebanks. When
using uni-directional action graph parser, our re-
sults are even better. Merging the forward and back-
ward action edges parsed by two uni-directional
action parsers together achieves the best results

10581



Reordered Sequences LSD LCS R-Rec R-Prec RF1 EM %pred %gold

NEGRA

Bi + BERTbase
† F & B 3.18 93.81 74.41 83.31 78.61 86.60 22.41 22.52

Bi + RoBERTalarge F & B 2.96 94.91 80.27 84.84 82.49 88.70 23.58 22.52
Bi + BERTlarge F & B 2.70 95.60 80.38 88.21 84.11 90.40 22.82 22.52

Uni + BERTlarge

F 2.68 95.55 76.19 90.60 82.77 90.00 21.19 22.52
B 2.58 95.72 77.99 90.30 83.69 90.50 21.90 22.52
F & B 2.55 95.64 83.37 87.55 85.41 90.40 23.87 22.52

TIGER

Bi + BERTbase
† F & B 3.16 94.56 70.00 86.68 77.45 87.88 20.16 21.19

Bi + RoBERTalarge F & B 2.65 95.46 76.37 87.73 81.66 89.74 21.09 21.19
Bi + BERTlarge F & B 2.21 95.68 77.44 90.55 83.49 90.26 20.63 21.19

Uni + BERTlarge

F 2.21 95.69 75.59 91.93 82.96 90.34 19.77 21.19
B 2.66 95.56 73.82 90.41 81.28 90.04 19.94 21.19
F & B 2.27 95.52 77.96 89.57 83.36 89.98 21.23 21.19

DPTB

Bi + BERTbase
† F & B 1.11 97.53 77.06 86.64 81.57 94.21 8.47 8.63

Bi + BERTlarge F & B 1.07 97.56 80.04 86.40 83.10 94.37 8.61 8.63
Bi + RoBERTalarge F & B 0.88 98.04 81.11 91.55 86.01 95.41 8.17 8.63
Bi + XLNetlarge F & B 0.83 97.97 82.95 90.32 86.48 95.36 8.46 8.63

Uni + XLNetlarge

F 0.86 98.12 83.30 90.59 86.79 95.57 8.34 8.63
B 1.09 97.68 75.47 90.09 82.13 94.66 8.15 8.63
F & B 0.88 98.08 84.26 89.03 86.58 95.53 8.64 8.63

Table 2: The accuracy of the reordered pseudo-continuous sequences in the test splits. LSD (location square deviation), LCS (%
of the longest common string). R-Rec (relocated recall), R-Prec (relocated precision) and RF1 (relocated F1) are calculated by
taking the relocated words in the gold set as positive examples and the other words as negative examples. EM (% of reordered
sequences that are completely correct). %gold (% of gold relocated words), %pred (% of predicted relocated words).

on two German treebanks, and the forward uni-
directional action parser achieves the best results
on DPTB. Our results using span-based continuous
constituency parsing model (Kitaev et al., 2019)
are generally better than those of using transition-
based one (Yang and Deng, 2020). Therefore, we
infer that compared with the left-to-right parsing of
transition-based method, the bottom-up parsing of
span-based method is more suitable for sequences
with rearranged word order. It is worth noting that
in the case of using the same pseudo-continuous
constituency parser, our DF1 scores are greatly im-
proved compared with Fernández-González et al.
(2021b), which is due to our higher reordering ac-
curacy. This shows that our reordering method is
effective.

The speeds of our systems are slightly slower
than those of Fernández-González et al. (2021b)
in which the reordering is achieved by a pointer
network, and faster than other methods with pre-
trained models. Since the time complexity of our
rearrangement algorithm is O(n2) and it has no
network part, its execution time is almost negli-
gible compared to the total time. Therefore, the
reason why our systems are slower than Fernández-
González et al. (2021b) is that our action graph
parser is more complex than the pointer network.
However, the more complex reordering component
gives better performance and this tradeoff of sacri-
ficing speed for accuracy is valuable, because it is
the reordering performance that limits the accuracy

of discontinuous parsing in the ‘reorder and then
parse’ method.

Obviously, large pre-trained models usually im-
ply higher accuracy but lower speed. Thus, speed
limits some relatively complex methods to further
use large pre-trained models for performance im-
provement. However, the high efficiency of our sys-
tems allows us to maintain their practicality when
including large pre-trained models. In other word,
we can have cake and eat it too.

Reordering Accuracy Because the LF1 score
can not directly reflect the accuracy of the re-
ordered sequences derived by the rearrangement
algorithm, we only show the results of action graph
parsing on the dev splits in Appendix D. In order to
better demonstrate the performance of our whole
reordering method, we include a series of metrics
for evaluating the reordered sequences in Table
2. All of these metrics illustrate the reordering
accuracy, but they may also lose their comprehen-
siveness in some cases. For example, LCS only
counts the longest common substring and ignore
the rest part of the sequence. LSD pays too much
attention to the absolute location and ignores the
relative position between words that might form a
single constituent.

Referring to the final discontinuous constituency
results, we find that R-Rec and RF1 have a more
stable measurement for reordering accuracy than
other metrics. In addition, the R-Prec of a single
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uni-directional action graph parser is high, but the
R-Rec is relatively low. When merging the forward
and backward action graphs parsed by two uni-
directional action parsers together, although the R-
Prec is slightly reduced, the R-Rec is significantly
higher, thus improving the reordering accuracy.

NEGRA TIGER DPTB
F1 DF1 F1 DF1 F1 DF1

S + BERTbase 92.94 88.13 91.35 87.05 94.97 84.92
S + RoBERTalarge 94.65 90.21 93.03 89.96 96.16 91.49
S + BERTlarge 95.23 91.43 93.61 91.48 95.52 86.47
S + XLNetlarge - - - - 96.20 91.61
T + BERTlarge 94.87 90.66 93.24 90.82 95.51 85.76
T + XLNetlarge - - - - 96.20 89.81

Table 3: Results of pseudo-continuous parsers using gold
pseudo-continuous sequences on the test splits. S: Kitaev et al.
(2019), T: Yang and Deng (2020).

Pseudo-continuous Parsing Performance We
also include the performance of the pseudo-
continuous constituency parsers when using gold
reordered pseudo-continuous sequences in Table 3.
We restore the predicted pseudo-continuous trees
to discontinuous trees and score using discontin-
uous constituency metrics. The F1 scores of the
pseudo-continuous constituency parsers are much
higher than current state-of-the-art discontinuous
parsers, and the DF1 scores show a huge increase
of over 10% in all three treebanks. This shows
that the reordering is the bottleneck, the overall
discontinuous performance still has much room
of improving if better reordering is achieved. In
addition, span-based models perform better than
transition-based models, especially DF1. This fur-
ther verifies that the span-based continuous con-
stituency parsing method is more suitable than the
transition-based method for parsing the rearranged
word sequences.

Ablation Study In Table 4, we report results of
our bi-directional action graph parser under dif-
ferent configurations on test splits. Training the
bi-directional action parser with both the forward
and the backward edges is better than training with
only one direction. This verifies that information
from both directions can reinforce each other and
help the learning process of bi-directional parser.
By comparing F with B and F (& B) with (F &)
B, we find that the models learn backward actions
better than forward actions. Besides, the results
of B & F and F & B are better than those of F (&
B) and (F &) B, which suggests that our rearrange-

NEGRA TIGER DPTB
Bi + Kitaev et al. (2019) F1 DF1 F1 DF1 F1 DF1

+ BERTbase
‡

F 90.64 68.06 88.94 66.11 94.55 71.97
B 90.67 68.92 88.85 66.78 94.52 73.16
F (& B) 90.83 68.47 89.17 66.99 94.51 72.09
(F &) B 90.98 69.36 89.37 68.76 94.57 74.68
B & F 90.96 69.40 89.29 68.44 94.54 74.73
F & B 91.03 70.40 89.30 68.37 94.60 74.82

+ BERTlarge

F 92.98 70.00 91.59 71.05 95.38 73.81
B 92.92 70.46 91.60 70.98 95.61 76.64
F (& B) 93.14 71.65 91.82 73.05 95.68 76.73

(+ XLNetlarge) (F &) B 93.61 77.59 91.95 74.21 95.74 78.62
B & F 93.58 76.38 91.93 74.35 95.77 78.96
F & B 93.61 76.97 91.89 73.93 95.73 78.46

Table 4: Ablation results of bi-directional action parsers
on the test splits. F trains on forward graph and performs
forward placement, B trains on backward graph and performs
backward placement. F (& B), (F &) B, B & F and F & B
train on bi-directional graph where F (& B) performs forward
placement, (F &) B performs backward placement, B & F
performs backward placement and forward adjustment, and F
& B performs forward placement and backward adjustment.

ment algorithm using one direction for placement
and the other for adjustment is effective.

5 Conclusion

In this work, we build fast and accurate discon-
tinuous constituency parsing systems working in
continuous way by innovatively propose a novel
reordering method. Results show that our method
is able to preserve the high performance of the
pseudo-continuous constituency parser with high
efficiency. We not only achieve state-of-the-art re-
sults on two treebanks, but also demonstrate that
the bottleneck of discontinuous constituency pars-
ing is reordering.

Limitations
The method has only been validated in two lan-
guages: English and German. Therefore, the uni-
versality of the method needs to be further veri-
fied. The metrics for evaluating action graph parser,
which further determine the performance of re-
ordering, are not effective enough that limit the
selection of the best action graph parsing model.
We have tried using the RF1 score of reordered
pseudo-continuous sequences as the metric for ac-
tion graph parsing model selection, but have gotten
similar results to using the LF1 score. The perfor-
mance of our systems are still behind that of the
pseudo-continuous constituency parser using gold
reordered sequences. Therefore, the research on
improving the reordering still needs to be carried
on.
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A Reordering Strategy

Set the priority of each node in the discontinuous
tree to the smallest one among the priorities of
its children, and the priority of a leaf node is its
word index in the original sentence. Assuming that
all sibling nodes are sorted by priority from small
to large, the word order given by a pre-order or
post-order traversal of the discontinuous tree is the
target pseudo-continuous sequence. The pseudo-
continuous tree can be obtained by adjusting the
original sentence into the pseudo-continuous se-
quence.

During the experiment, we convert the discontin-
uous treebank into a pseudo-continuous treebank
by the following process: The training data for dis-
continuous constituency parsing can be represented
in parentheses notation, where the integer to the left
of ‘=’ indicates the index of the word, which is to
the right of ‘=’, in the original sentence. From left
to right, the parenthesis notation shows a pre-order
traversal of the discontinuous tree, so the words
from left to right are already in our target order.
We only need to remove ‘=’ and the index to its
left to get the training data for pseudo-continuous
constituency parsing.

B Action Graph Dataset Statistics

In Table 6, we list the statistical results of the ac-
tion graph datasets. The forward and backward
graphs based on the same treebank contain about
the same number of edges. The number of label
SPAN is 0.5 to 0.7 times that of MOVE-L (or MOVE-R),
indicating that more than half of the words are
moved by a form of continuous segments. Since
the bi-directional action graph parser we used con-
tains three second-order scores of edge, we count
the number of occurrences of these three kinds
of second-order pairs in the bi-directional action
graph datasets. Because of the chain structure of
uni-directional action graph, the number of grand-
parent is very large, followed by the number of
co-parent, and the number of sibling is small but
not negligible. Therefore, it is reasonable to use the
second-order parsing model as our bi-directional
action parser.

C Hyper-parameters Detail

D Action Graph Parsing Results

In Table 7, we show the results of the action graph
parsers on dev splits. For the same kind of action

Architecture hyper-parameters
BiLSTM encoder layers 3
LSTM layer dimension 600
LSTM layer dropout 0.33
Word embedding dimension 100
Char embedding dimension 50
Char LSTM hidden dimension 400
Char LSTM output dimension 100
BERTbase embedding dimension 100
Embedding dropout 0.2
BERT/RoBERTa/XLNetlarge encoder dimension 1024
Pre-trained encoder dropout 0.1
Using BERT layers 4
Edge FNN dimension 600
Label FNN dimension 600
Pair FNN dimension 150
Edge/Pair FNN dropout 0.25
Label FNN dropout 0.33
Head MLP dropout 0.2
Head MLP activation function LeakyRelu

Training hyper-parameters
λ 0.1
β1, β2 0.9
Decay rate 0.75
Gradient clipping 5
Batch size (tokens) 5000
Initial learning rate for BERTbase 5e-4
Initial learning rate for BERT/RoBERTa/XLNetlarge 2e-5
Warm up for BERT/RoBERTa/XLNetlarge 0.1
Epoch for BERT/RoBERTa/XLNetlarge 30

Table 5: The hyper-parameters of action graph parsing
models.

graph, the trend of LF1 score is positively corre-
lated with the reordering accuracy. However, the
scores of different kinds of action graph, includ-
ing the bi-directional graph, the forward graph and
the backward graph, cannot be directly compared.
Therefore, although it is reasonable to use LF1 as
the metric to select the best action graph parser, it
cannot be used as a stable measure of reordering
accuracy.
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NEGRA TIGER DPTB
Dataset Train Dev Test Train Dev Test Train Dev Test

n sent 18,602 1,000 1,000 40,472 5,000 5,000 39,832 1,700 2,416

F
n MOVE-L 7,534 406 450 17,391 1,695 2,245 12,583 462 834
n SPAN 5,511 298 320 12,882 1,225 1,663 5,517 191 362

B
n MOVE-R 6,752 359 392 15,244 1,543 1,968 12,770 461 854
n SPAN 4,318 234 260 9,380 1,016 1,222 6,767 248 474

F & B
n sibling 470 16 28 1,281 69 150 1,172 29 96
n co-parent 1,084 61 83 2,925 176 365 4,240 128 283
n grandparent 14,527 796 886 34,267 3,109 4,412 25,156 814 1,723

Table 6: Statistics of action graph datasets.

NEGRA TIGER DPTB
Action Graph Parser L-Rec L-Prec LF1 L-Rec L-Prec LF1 L-Rec L-Prec LF1

Bi + BERTbase
† F & B 78.18 83.53 80.76 77.73 81.26 79.46 81.57 78.46 79.99

Bi + BERTlarge F & B 82.73 87.45 85.02 83.21 85.86 84.51 83.26 77.78 80.43
Bi + RoBERTalarge F & B 81.46 83.35 82.39 81.40 83.30 82.34 84.64 79.25 81.85
Bi + XLNetlarge F & B - - - - - - 84.95 79.41 82.08

Uni + BERTlarge
F 84.94 85.06 85.00 82.81 85.87 84.31 - - -
B 84.49 84.77 84.63 82.26 86.31 84.23 - - -

Uni + XLNetlarge
F - - - - - - 84.92 79.17 81.94
B - - - - - - 89.84 79.82 84.54

Table 7: Action graph parsing results on the dev splits.
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