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Abstract
Can we teach natural language understanding
models to track their beliefs through intermedi-
ate points in text? We propose a representation
learning framework called breakpoint modeling
that allows for learning of this type. Given any
text encoder and data marked with intermediate
states (breakpoints) along with corresponding
textual queries viewed as true/false proposi-
tions (i.e., the candidate beliefs of a model, con-
sisting of information changing through time)
our approach trains models in an efficient and
end-to-end fashion to build intermediate rep-
resentations that facilitate teaching and direct
querying of beliefs at arbitrary points alongside
solving other end tasks. To show the benefit
of our approach, we experiment with a diverse
set of NLU tasks including relational reasoning
on CLUTRR and narrative understanding on
bAbI. Using novel belief prediction tasks for
both tasks, we show the benefit of our main
breakpoint transformer, based on T5, over con-
ventional representation learning approaches
in terms of processing efficiency, prediction
accuracy and prediction consistency, all with
minimal to no effect on corresponding QA end-
tasks. To show the feasibility of incorporating
our belief tracker into more complex reasoning
pipelines, we also obtain SOTA performance
on the three-tiered reasoning challenge for the
TRIP benchmark (around 23-32% absolute im-
provement on Tasks 2-3).1

1 Introduction

Despite considerable progress made recently in nat-
ural language understanding (NLU), driven largely
by advances in language model pre-training (De-
vlin et al., 2019; Raffel et al., 2020) and the de-
velopment of large-scale NLU benchmarks (Wang
et al., 2018), understanding the behavior of mod-
els remains a formidable and highly consequential

∗Work begun during an internship at the Allen Institute.
†
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1Project code available at https://github.com/
allenai/situation_modeling.
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Figure 1: Deep narrative understanding in natural lan-
guage (bottom) involves the ability to answer queries
about arbitrary intermediate points in a given story. We
liken this task to breakpoints in programming (top), or
reporting the state of a program at different stages of ex-
ecution, facilitating human inspection of model beliefs
and consistency with end-task behavior (bottom).

challenge for model safety. Such a challenge is par-
ticularly acute in tasks such as narrative understand-
ing, where one must piece together many individual
(possibly implicit) facts through time in order to
solve problems. For example, in the story in Fig-
ure 1, answering the question Where is the apple?
requires knowing how to track objects through time
(e.g., knowing the location of the John and Mary
and their interaction) and how to compartmentalize
other types of knowledge across the story. In such
a setting, where models are trained to narrowly an-
swer questions, a natural question arises: do models
acquire the kind of requisite background knowledge
and world tracking abilities, and ultimately learn
representations that give rise to correct beliefs2

about intermediate states?
A chief difficulty in answering such questions is
2 Similar in spirit to Kassner et al. (2021), we define a

belief as an attribution of a truth value to a proposition relative
to a context or partial information state (Landman, 2012).
E.g., a belief that John is in the kitchen is true in the context
immediately following the event John went to the kitchen.
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Figure 2: A high-level view of our modeling approach.
For a given story and a set of textual queries correspond-
ing to intermediate points in the story (breakpoints),
truth assignments are assigned to queries to form belief
states based on a projection over encodings of break-
points and individual proposition encodings using a
single task-specific encoder.

that directly inspecting the propositional attitudes
of our current models remains a formidable chal-
lenge due to the latent nature of their knowledge.
Such a complication also makes it unclear what the
right interface should be for eliciting beliefs in the
first place (e.g., how can we determine if a model
believes a proposition John is in the kitchen at an
arbitrary point in text?). In addition, for tasks such
as QA, story contexts and questions are usually en-
coded jointly (often with full attention over context
and query), which makes it difficult to tease apart
a model’s understanding of a story independent of
each question. Entangled story and question repre-
sentations can be inefficient when scaling to a large
space of questions, particularly for novel combina-
tions of questions and stories (Tamari et al., 2022).
Such entangled representations also allow models
to exploit spurious patterns in questions that in-
flate performance (Kaushik and Lipton, 2018) and
hinder interpretability.

We present a model-agnostic representation
learning framework called breakpoint modeling
that facilitates teaching models to have proposi-
tional beliefs at arbitrary points in stories (or break-
points) using ordinary textual queries as our inter-
face language. Our general modeling approach is
illustrated in Figure 2. Given any task-specific en-
coder and data marked with the intermediate state
of interest (or breakpoints, denoted throughout as
[B]) along with a set of textual queries (i.e., the
candidate beliefs provided in training as auxiliary

intermediate supervision), models are trained in
an end-to-end fashion to learn intermediate task-
specific representations (pooled from single encod-
ings of stories) that jointly facilitate making correct
and consistent belief predictions efficiently across
a large space of queries. Making an analogy with
breakpoints in programming (see top of Figure 1),
we aim to simulate stopping execution at interme-
diate points during a story to inspect the model’s
belief state (e.g., checking that a model’s answers
for QA are consistent with their beliefs and sat-
isfy certain high-level constraints), as well as teach
the model to have certain beliefs learned through
intermediate supervision at training time.

Using a state-of-the-art pretrained model, T5
(Raffel et al., 2020), we develop and investigate
a breakpoint transformer to do belief prediction
on three categories of tasks: narrative understand-
ing on bAbI (Weston et al., 2016; Tamari et al.,
2022), relational reasoning on CLUTRR (Sinha
et al., 2019) and physical commonsense reason-
ing over human authored stories on TRIP (Storks
et al., 2021). In the former two cases, we focus
on training and evaluating models on a novel be-
lief prediction task. We report improvements over
a conventional transformer-based representation
learning approach (Reimers and Gurevych, 2019)
both in terms of prediction accuracy (4% to 8%
absolute improvement on CLUTRR dev) and belief
consistency, all with significantly improved pro-
cessing efficiency (i.e., minimal forward calls to
the full transformer) and minimal effect on end-
task performance when jointly trained with QA. In
the latter case for TRIP, we show how to integrate
our modeling approach into a more complex trans-
former pipeline and report state-of-the-art results
on the three-tiered reasoning task (with 23-32% ab-
solute improvement on two component tasks) over
existing task-specific architectures.

Taken together, our results show the viability
of building an end-to-end trainable belief track-
ing mechanism and integrating it within exist-
ing transformer-based reasoning systems. To our
knowledge, our work is among the first to look at at
general-purpose sentence representation learning
for intermediate states in text as a way to facilitate
complex situation reasoning.

2 Related Work

Our work brings together two recent areas that aim
to understand model behavior (broadly model prob-
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Task Example Stories Breakpoint Propositions
Relational
Reasoning
(CLUTRR)

John is the brother of Susan [B]1 Susan’s mother
is Janice [B]2, ...

P1 : { ‘Susan is the sister of John’ true, ‘Susan is the sister-in-law of Janice‘
false,‘Janice is the mother of John‘ unk }
P2 : { ‘Janice is the mother of John‘ true, ‘John is the father of Janice‘ false, ...}

Story
Understanding
(bAbI)

John moved to the kitchen [B]1 He picked up
an apple [B]2 John then gave the apple to Mary
[B]3 ...

P1 :{ ‘John has the apple‘ false, ‘John is in the kitchen‘ true,...}
P2 : { ‘John has the apple‘ true,‘John is in the kitchen‘...}...
P3 : { ‘John has the apple‘ false, ‘Mary has the apple‘ true }

Commonsense
(TRIP)

Tom dropped his radio ...carpet. [B]1 The radio
broke .. [B]2 Tom turned on the radio ... [B]3 ...

P2 : { ‘radio is in pieces‘ true, ‘radio is powered‘ false}, ...
P3 : { ‘radio was powered‘ true }

Figure 3: Three tasks rendered as stories with special breakpoint tokens [B]j (for convenience, marked with an
index j). Each intermediate breakpoint is aligned to a set of propositions Pj marked with truth conditions (i.e.,
true, false, unknown) corresponding to the truth value of each proposition at that breakpoint.

ing): probing of the type that includes finding neu-
ral correlates of high-level behavioral phenomena,
modular structure in networks (Tenney et al., 2019;
Hewitt and Manning, 2019) on the one hand, as
well as diagnostic testing, which aims to understand
model competence through controlled input-output
testing (Lake and Baroni, 2018; Richardson et al.,
2020), or post-hoc consistency analysis (Kassner
et al., 2021). Our work is more closely related
to Li et al. (2021), who show that partial world
state information can be decoded from NLMs even
without explicit supervision. In that work, state
information is roughly localized to entity mentions,
but varies across different datasets. Differently
from such probing work, our breakpoint models are
trained in a supervised manner to localize particu-
lar propositional information at particular locations
(similar to Geiger et al. (2021)).

Our breakpoint model closely relates to late-
interaction encoder architectures that tease apart
the encoding of problems and solutions. This in-
cludes the sentence transformer from Reimers and
Gurevych (2019), which we compare against in
our experiments, as well as read once transformers
(Lin et al., 2021), colBERT (Khattab and Zaharia,
2020) and others. Given that the types of narrative
tasks we focus on require modeling many inter-
mediate points, we follow this work in putting an
emphasis on representation and encoding efficiency.
In contrast to this, and other related work on sen-
tence representation learning (Gao et al., 2021; Ni
et al., 2022), we uniquely focus on learning repre-
sentations of intermediate states in text for complex
situational reasoning.

We are also inspired by the situation modeling
literature in cognitive science (Golden and Rumel-
hart, 1993; Frank et al., 2003; Venhuizen et al.,
2019), and proposals for their integration with NLP
research (Tamari et al., 2020). These works also
studied neural models of narrative comprehension
in carefully controlled micro-worlds, but typically

focused on relatively short sentence-level inputs.
Our work also relates to efforts on building inter-

pretable models by making the underlying reason-
ing processes transparent, either through explicit
decomposition (Andreas et al., 2016; Khot et al.,
2021; Bostrom et al., 2022) or generation of ratio-
nales (Camburu et al., 2018; Wiegreffe and Maraso-
vic, 2021) and other reasoning structures (Tafjord
et al., 2021; Dalvi et al., 2021; Gontier et al., 2020).
In contrast, we focus on belief representations that
are ultimately faithful (Jacovi and Goldberg, 2020)
to end-tasks by training knowledge directly into a
model’s task-specific representations.

3 Breakpoint Modeling

The goal of breakpoint modeling is to capture the
intermediate states and beliefs of models at arbi-
trary positions in text. Our models take stories as
inputs, or pieces of text containing one or more in-
termediate positions (breakpoints), as well as sets
of text propositions that align to certain intermedi-
ate points (see Figure 3). Such propositions play
the role of auxiliary supervision if provided at train-
ing time or as queries to the model for performing
probing; when coupled with predictions they con-
stitute the beliefs of the model.

While breakpoint models can technically take
different forms, their basic function is to assign
encodings to intermediate states in text and their
corresponding propositions (§ 3.1) and to make pre-
dictions about the truth/falsity of each proposition
(§ 3.2). Learning (§ 3.3) reduces to the problem of
teaching a model to have a correct and consistent
set of beliefs for each target task given a set of rep-
resentative intermediate propositions and beliefs
provided at training time (§ 3.4).

3.1 Breakpoint and Proposition Encoding

As illustrated in Figure 3, stories are texts
consisting of n tokens within which there can
exist m ≥ 1 arbitrarily selected intermedi-
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Figure 4: What is the best way to model intermediate
states and beliefs with existing encoder models? An il-
lustration of two late-interaction architectures we inves-
tigate (Single Read model, our main model described
in § 3 and a Multi-pass Late Interaction model)

ate points or breakpoints. For convenience,
we will render a story s in the following way:
s:= w1,b1 . . . w·,b1[B] . . . w·,bj . . . [B] . . . wn,bm[B]
where [B] is a special token used to explicitly
mark position of each breakpoint bj . Intuitively, a
breakpoint token represents all of the information
in the story relevant to building an accurate belief
state at the corresponding (intermediate) point
in the text. Associated with each bj is a set of
text propositions Pj = {p1, p2, ..., pt}. Truth
assignments to these text propositions constitute
the candidate beliefs at breakpoint bj (in the sense
of Footnote 2).

At the core of any breakpoint model are two
encoders, encstory, encprop, that are used to gener-
ate a representation or embedding for each break-
point in the story and each proposition, respec-
tively. Representations of breakpoints b ∈ Rd are
pooled from a single encoding of an input story
s: cs ← encstory(s) ∈ R|s|×d and representations
for propositions cprop ∈ Rd are obtained in a sim-
ilar fashion using encprop. While the choice of
the encoder and the details of how pooling is done
can vary (see details in §5.1), in all of our models
breakpoint representations b are obtained by taking
projections of the hidden states of the [B] tokens
from cs. We also investigate models that assume a
siamese architecture (Reimers and Gurevych, 2019)
where encstory and encp are the same encoder.

An important property of breakpoint models
is that all breakpoints representations bj are ob-
tained from a single read encoding of each target
story. We later compare this against a much less
efficient approach that requires multiple forward
passes through the story to obtain intermediate en-
codings (i.e., the multi-pass approach shown in
Figure 4). Our model therefore stays within the
spirit of a late-interaction architecture (Khattab
and Zaharia, 2020) by using separate encodings of

breakpoints and propositions, which allows us to
scale to large sets of propositional queries.

3.2 Proposition Scoring and Semantics

Given a breakpoint encoding b and an aligned
proposition encoding cprop, a proposition scorer
makes a prediction about a proposition at that
breakpoint. As mentioned, our aim is to pre-
dict the truth value of a proposition at an inter-
mediate state, which we take to be the model’s
belief in that proposition. Our scorer takes
the form of a classifier that maps a breakpoint
encoding and proposition encoding to the dis-
crete space {true, false,unknown}, following
Li et al. (2021) and the annotation scheme from
NLI (Dagan et al., 2005; Bowman et al., 2015).

To make clear that the interpretation of each
proposition is tied to a specific breakpoint, we will
use the symbolic notation from Li et al. (2019) and
introduce three binary logical predicates E,C, and
U. For each bj and p ∈ Pj , these predicates cap-
ture whether p is entailed by, is contradicted by,
or has an unknown relation to the information in
the text at breakpoint bj , respectively. For instance,
E(bj , p) is true if the text proposition p is entailed
by the story at breakpoint bj .

3.3 Learning

Suppose we have a dataset D consisting of n
stories {s(i)}ni=1 along with the following addi-
tional information. For each story s(i), we have
m breakpoints B(i).3 For each such breakpoint
bj , we have t labeled text propositions4 P

(i)
j ,

where each proposition pk ∈ P
(i)
j is labeled with

y
(i)
j,k ∈ {true, false,unknown} indicating pk’s

truth value at breakpoint bj . Using the above pred-
icate logic notation, we can equivalently think of
having, for each pk ∈ P

(i)
j , exactly one predicate

Y
(i)
j,k ∈ {E,C,U} annotated in D, with the se-

mantics that Y (i)
j,k (bj , pk) is True (and the other two

predicates for bj and pk are False).
The goal here is to learn a model that assigns

truth values to all text propositions across all
breakpoints—equivalently, truth values for all three
logical predicates—in a way that maximally aligns
with D. Semantically, this can be expressed as

3In general, m depends on i. However, for simplicity of
exposition, we use m here instead of m(i).

4Again, t in general depends on both i and j, but we use t

instead of t(i)j here for simplicity.
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satisfying the logical formula (Li et al., 2019):
∧

s(i)∈D

∧

bj∈B(i)

∧

pk∈P(i)
j

Y
(i)
j,k (bj , pk) (1)

with the added constraint that for each story s(i)

and all j, k, exactly one of E(bj , pk),C(bj , pk),
and U(bj , pk) is True.

Using Pr[y
(i)
j,k] to denote the model’s probability

corresponding to the predicate Y
(i)
j,k(bj , pk), this

formula can be translated into the following loss
using the product translation from Li et al. (2019):

Lprop =
n∑

i=1

m∑

j=1

t∑

k=1

− log Pr[y
(i)
j,k] (2)

which yields the common cross-entropy loss that
we use in our experiments.

3.4 Proposition Sampling
Propositions in breakpoint models have a dual role:
when given at training time, they provide interme-
diate supervision for training models across dif-
ferent situation states. When given at inference
time they allow for post-hoc probing of a model’s
beliefs. As shown in the Figure 3, propositions,
in virtue of being ordinary text, can express many
different types of information and thus provide an
unbounded source of semantic supervision (Hanjie
et al., 2022), e.g., for expressing fluents, or condi-
tions that change through time in a story (e.g., John
is in the kitchen, or event pre/post-conditions (e.g.,
The radio was powered via English tense).

For training models to have beliefs, a necessary
first step is to devise a sampling policy for gener-
ating these intermediate annotations. While such
a strategy needs to be tailored to each target task,
we experiment with a combination of extracting
propositions from existing task annotations (Fig-
ure 5) and generating propositions based on a set
of domain constraints using the semantics of each
target domain (details in the next section).

4 Proposition Prediction Tasks

We focus on three categories of tasks: text-based
relational reasoning, story understanding and
commonsense reasoning, each considered in turn.
In the former two cases, we devise new proposi-
tion and belief prediction tasks that involve training
on intermediate belief state annotations. We also
include out-of-distribution (o.o.d) generalization

Qiana is Lisa’s mother

Qiana is Derick’s wifeDerrick is Lisa’s father

Story Lisa is Jerry’s granddaughter [B] Derrick is Lisa’s
father [B] Qiana is Derrick’s wife [B]

Atomic Belief
Annotations:
The basic facts
that should be
predicted

E(1,‘Jerry is the grandfather of Lisa‘)
E(1,‘Derick is the father of Lisa‘),
C(1,‘Lisa ..father of Derick‘),
E(3,‘Qiana..wife of Derick‘),
E(3,Qiana is the mother of Lisa)

Knowledge:
Constraints to
satisfy

(Implies(AnddsdE(2,‘Derick...father of Lisa‘)
dsdE(3,‘Qiana is the wife of Derick‘))
E(3,‘Qiana is the mother of Lisa‘))

Figure 5: How are intermediate propositions collected?
An illustration of constructing intermediate proposi-
tions from CLUTRR proof trees (above) in Gontier
et al. (2020). BOTTOM: An example ground constraint,
which we use for analyzing consistency.

tests beyond standard i.i.d (independent and iden-
tically distributed) evaluation. In the latter case,
we recast an existing task in terms of breakpoint
models to show the versatility of our approach in a
more complex multi-task setting.

4.1 Relational Reasoning
CLUTRR Sinha et al. (2019) focuses on QA over
synthetic stories about family relations as shown
in Figure 3, and has more recently been extended
to focus on proof generation (Gontier et al., 2020).
As illustrated in Figure 5, we use the proof anno-
tations in the latter work to generate intermediate
propositions that track the time-course of family
relations as they emerge at each new sentence.

Relying on the clean subset of CLUTRR stories
Sinha et al. (2019) and proof annotations, break-
points are added after each sentence. Propositional
renderings of the explicit story facts, as well as
intermediate propositions revealed in the proof an-
notations, were then added to each correspond-
ing breakpoint in the story and serve as the base
proposition set. From these base propositions, ad-
ditional propositions, including negative and un-
known propositions, were added using the follow-
ing general constraints: monotonicity, that beliefs,
once established to be true /false, cannot change;
the mutually exclusivity of certain relations (e.g.,
X is the grandfather of Y is mutually exclusive with
X is the grandmother of Y); inverse relations be-
tween certain relations (e.g., that Xfem is a sister
of Yfem means that Y is a sister of X), and that all
non-deductively valid propositions are unknown
(i.e., with label U).5 Such ground propositions con-

5We note that all such constraints remain faithful to the
semantics of the original tasks, such as CLUTRR.
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straints are included in the breakpoint annotations
as symbolic expressions (see again Figure 5) to al-
low for measuring model consistency at inference
time (later in Figure 6. See details in § A.3.
o.o.d evaluation. Stories in CLUTRR are charac-
terized by their length k (number of events) and
generalization testing is usually performed to mea-
sure generalization. Our main datasets (later seen
in Table 1) consists of 13k training stories drawn
from stories from k =2,..,5. We tune our mod-
els and evaluate on a mixture of in-domain and
generalization stories of lengths k=2,..8 each con-
taining around 1.5k stories (containing (avg) 10
propositions per breakpoint and 15 constraints per
story). While these splits deviate from standard
uses of CLUTRR, we also compare against stan-
dard splits (i.e., training on k = 2, 3 and testing on
k′ = 2, ..10) to look at the ability of training joint
belief prediction and QA models on the original
QA task.

4.2 Story Understanding
We experiment with the bAbI QA benchmark (We-
ston et al., 2016), which contains questions over
stories about agents in controlled micro-worlds (see
Figure 3). As with CLUTRR, the synthetic nature
of domain makes it possible to automatically ex-
tract proposition annotations that express object
location (e.g., PersonX/ObjectX’ is in Y), object
possession (PersonX has ObjectY), abstractions
of event post-conditions (e.g., PersonX took some-
thing for the event PersonX grabbed the ball) and
pronoun references (e.g., He refers to John). We
use the Dyna-bAbI task generator (Tamari et al.,
2022) to generate initial base propositions and, sim-
ilar with CLUTRR, heuristically add more proposi-
tions using domain constraints (see § A.2 for more
details).6 We use propositional versions of the 7-
task set introduced in Tamari et al. (2022). We
specifically use the long-form version of this set,
where stories all contain 20 events/breakpoints, and
train on 500 examples per task (totaling 3.5k+1.4k
training/evaluation stories, with an average of 10
propositions per breakpoint and 123 constraints per
story).
o.o.d evaluation. In addition to training and test-
ing on this set, we also look at joint training on
proposition prediction and the original QA task.
For evaluation we also consider a more challeng-

6In contrast to CLUTRR and TRIP, bAbI does not have
explicit unknown proposition annotations, hence propositions
either have label E or C.

ing hardQA generalization task from Tamari et al.
(2022), where the test set features compositions
of concepts seen at training time. Appendix A.2
contains example inputs and further task details.

4.3 Physical Commonsense Reasoning

We apply our approach to the recently introduced
Tiered Reasoning for Intuitive Physics (TRIP)
dataset (Storks et al., 2021). TRIP features a story
plausibility end task, similar in scope to our propo-
sition task, as well as a multi-tiered evaluation of
models’ reasoning process. Given a pair of highly
similar human-authored short stories about every-
day activities, models must jointly identify (1) the
implausible story (task1) (2) a pair of conflicting
sentences in the implausible story (task2) (3) the
underlying physical states in those sentences caus-
ing the conflict (task 3). While task3 takes the
form of a breakpoint modeling task, where physi-
cal states are rendered as textual propositions, we
model the first two tasks as text2text tasks using
multi-task breakpoint models (details in the ap-
pendix and in § 5.1). We use the original splits,
consisting of 675 plausible stories and 1472 implau-
sible stories. While we focus on the multi-tiered
evaluation, we devised a small filtered dev set (644
stories) for later model analysis (Table 5).

5 Modeling Details and Metrics

Here we detail our main breakpoint transformer
(§5.1) following the framework in § 3 and all met-
rics used in our experiments (§ 5.2).

5.1 Modeling

Encoder We experimented with the T5 model (Raf-
fel et al., 2020) using the implementation from
Wolf et al. (2020). T5’s bi-directional encoder
was used for both our story encoder encstory and
proposition encoder encprop. While any compa-
rable encoder would suffice, we chose T5 due its
common use in NLU and ability to perform gen-
eration, which we used to implement other com-
ponents in the multi-task models discussed below.
For efficiency reasons, we experimented with a
combination of the smaller T5-base model (with
220M parameters) for datasets with long stories
and many propositions (TRIP, bAbI) and T5-large
(with 770M parameters) for CLUTRR.
Breakpoint and Proposition Embeddings For
each story, individual breakpoint representations
are first pooled from the [B] token hidden states in
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the story encodings cs (see again Figure 4). Fol-
lowing Ni et al. (2022), a linear projection and L2
normalization is applied to each representation to
construct initial breakpoint embeddings. To allow
for information transfer between different break-
points, we then apply an additional self-attention
layer (sit-self) over these resulting representations
to obtain a self-attention breakpoint representation
(see Fan et al. (2020) for a similar idea), which gets
concatenated with the initial representation to cre-
ate the final breakpoint embedding. Operationally,
the self-attention layer takes the form of a standard
transformer block (Vaswani et al., 2017) with a
single attention head.

One subtlety in using a standard bi-directional
encoder such as T5 is that each breakpoint token
can look at future parts of the story. While the
content of a breakpoint is often determined by the
preceding sentence, in some cases it is important to
have information about the future to obtain an accu-
rate representation. For example, for the story John
has the apple.[B]1 He then moved to the kitchen
[B]2, knowing that John can’t be in the kitchen at
[B]1 (a pre-condition of move events) requires look-
ing into the future. To limit the amount of future
information in part of our breakpoint representa-
tions, however, future masking is applied in the
breakpoint self-attention layer described above.

To obtain a proposition embedding, we use the
same T5 encoder over each text proposition pre-
fixed with a special token, then take the hidden
state of the target proposition. A final proposition
representation is then similarly obtained using the
same linear projection and normalization layers.
Proposition Classifier As in Li et al. (2021),
we use a bilinear layer for proposition
classification (score(·)). Using the nota-
tion from § 3.3, probabilities ŷ(bj ,p) =
⟨Pr[E(bj , p)],Pr[C(bj , p)],Pr[U(bj , p)]⟩ for the
3 truth values of a proposition p are computed
in the following way using the final breakpoint
representation bj and proposition encoding cp:

score(bj , p) = bT
j ·M · cp + a

ŷ(bj , p) = softmax(score(bj , p)).

Learning In addition to optimizing for the objec-
tive described in § 3.3 (Lprop), we also experiment
with multi-task models trained to do generation
(Lgen) and QA (Lqa), both of which are formu-
lated as text2text tasks and optimized using stan-
dard cross-entropy-based training. In the former

case, we investigate two analogues to the unsu-
pervised denoising objectives from (Raffel et al.,
2020), which aim to increase the amount of local in-
formation contained in breakpoint representations.

The first is an event generation task that in-
volves generating randomly chosen events from
their right-most breakpoint encodings (e.g., gen-
erating the text Susan’s mother is Janice from the
encoding of [B]2 in Figure 3). The second, which is
inspired by Gontier et al. (2022), generates textual
abstractions either of random events from break-
points (in the case of TRIP, e.g., generating the
abstracted text PERSON dropped his OBJ... from
[B]1 in Figure 3) or random pairs of events in a
story (e.g., generating the text A person received
an apple from the an encoding averaged from the
two breakpoints [B]2 and [B]3 in Figure 3) (see
additional details in § B.2).

Taken together, our full multi-task model’s loss
is: L = λ1Lprop + λ2Lqa + λ3Lgen where λ{1,2,3}
are task weights manually tuned during training.
We used ADAM as our optimizer (Kingma and
Ba, 2014). Standardly, hyper-parameter tuning and
model selection was performed via a random search
search in the style of Devlin et al. (2019) on held-
out dev sets (see details in § B.1). Unless stated
otherwise, we report the average of three random
restarts for all models and their standard deviations.
Baselines We compare against two standard sen-
tence representation learning approaches based on
transformers and LSTMs. For the former we use
the sentence transformer approach (Reimers and
Gurevych, 2019) applied to our task, and for the lat-
ter we use a model close to Conneau et al. (2017).
The set up is standard: stories and propositions
are encoded separately using a single encoder and
collected via mean (transformer) and max (BIL-
STM) pooling then aggregated via concatenation
(in the style of InferSent Conneau et al. (2017))
and fed into a softmax classifier to make a belief
prediction. Importantly, these baselines models are
much less efficient compared with our single read
breakpoint model, in that they require making mul-
tiple (multi-pass late interaction) forward passes
through stories to create intermediate representa-
tions as illustrated in Figure 4. For the transformer
models, with use the same T5 encoder as in the
breakpoint models throughout all experiments.7

7As an additional check, we trained T5-based proposition-
only baseline, similar to the partial-input baselines in NLI
(Poliak et al., 2018), that make truth predictions from propo-
sitions alone to check for spurious patterns. These always
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Given that our breakpoint models take full story
texts as input, to make the baselines fully compa-
rable, we similarly feed in the full story on each
read with a similar special token (#) to mark the
target intermediate point (e.g., In the story John
went to the store. He bought an apple we feed the
text John went to the store. # He bought an apple
when modeling the first breakpoint).
Joint Modeling For CLUTRR and bAbI, we also
compare our multi-task breakpoint model trained
for QA against T5 and Bart (Lewis et al., 2020),
both fine-tuned solely for QA.

5.2 Metrics

For proposition prediction tasks we measure over-
all proposition accuracy (%). Similarly for QA
experiments, we follow other work in measuring
exact match EM accuracy (%) against a model’s
generated output. For some of our analysis on
CLUTRR (Figure 5), we measure the consistency
of belief prediction using the global consistency
metric ρ from Li et al. (2019), which measures the
fraction of stories containing one or more constraint
violation using the constraint annotations described
in § 4. For example, using the constraint on the
bottom Figure 5, we first have the model make
predictions about the constituent propositions (1.
Derick is the father of Lisa, 2. Qiana is the wife
of Derick. 3. etc..) and see if those predictions
symbolically satisfy the constraint.

For TRIP, we follow exactly the 3-tiered evalua-
tion of Storks et al. (2021). We calculate: Plausibil-
ity (task 1): % of instances where the implausible
story was correctly identified. Consistency (task
2): % of correctly identified implausible stories
where the conflicting sentences were correctly iden-
tified. Verifiability (task 3): % of instances with
correct plausibility/consistency predictions, where
all relevant physical states are also identified.

6 Results and Discussion

We focus on the following questions: 1. Can our
main model effectively and efficiently solve our
new belief proposition prediction tasks (introduced
in § 4) and model intermediate state? 2. Can we
effectively integrate our breakpoint model into joint
models for solving more complex tasks?
Proposition Prediction We found breakpoint mod-
els to be effective at our proposition prediction
tasks, most notably improving on the transformer

perform worse than our BILSTM baselines.

Proposition Prediction
Model Dev / Test Set + (std) (Acc %)
Majority Baseline 44.60 / 41.60
BILSTM (Multi-pass) 60.36 / 58.59 (±0.24)
T5-large (Multi-pass) 81.41 / 81.94 (±0.17)
BPT-large 85.16 / 85.24 (±0.34)

Question-answering, dev / test + (std), (EM Acc %)
Model i.i.d generalization
FT-T5-base 99.00 / 99.78 (±0.19) 84.19 / 75.13 (±0.94)
FT-Bart-base 98.65 / 98.94 (±0.78) 83.21 / 70.42 (±1.23)
BPT-base 99.24 / 99.75 (±0.19) 83.61 / 74.84 (±0.89)

Table 1: TOP: Proposition prediction results on
CLUTRR on the main mix dev and test sets comparing
our breakpoint model (BPT) with baselines. BOTTOM:
Evaluation on standard CLUTRR QA (k = 2, 3) com-
paring our breakpoint model trained joint with QA to
fined-tuned (FT) T5 and Bart models.

Figure 6: Effect of training data size on proposition
prediction (left) and global consistency ρ (right, lower
is better), on CLUTRR dev (best of 3 random runs).

Multi-pass baselines for CLUTRR prediction from
81.9 to 85.2 (top of Table 1, both an over 23% im-
provement over our BILSTM baseline, suggesting
task difficulty). Based on the plots in Figure 6, we
also found our models to be more efficient learners
(e.g., achieving comparable performance to base-
lines using only 60% training data) and to exhibit
less global constraint violations in the i.i.d setting
(with a 6% reduction in constraint violations ρ),
thus leading to more consistent belief states.

Model i.i.d hard QA
Prop.% QA% QA%

Majority 65.87 – –
FT-T5-base (QA) – 97.29 (±0.14) 69.09 (±0.79)
FT-Bart-base – 97.57 (±0.31) 67.21 (±0.80)
BILSTM (Multi) 80.2 (±0.16) – –
T5-base (Multi) 99.1 (±0.21) – –
BPT-base 98.5 (±0.10) – –
BPT-base + QA 98.5 (±0.10) 94.9 (±0.60) 70.51 (±0.29)

Table 2: bAbI proposition prediction (Prop. %) and
QA performance on the main i.i.d and hardQA test
sets.

For bAbI (Table 2) all transformer-based mod-
els achieve near perfect accuracy (and significantly
outperform our BILSTM model); as such, mod-
els have near perfect consistency on the underly-
ing constraints (not shown). Given that bAbI sto-
ries are considerably longer than CLUTRR stories
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(each containing 20 events/breakpoints), these re-
sults show the feasibility of modeling long contexts
with our model and representing complex state in-
formation with individual breakpoints. In contrast
to the baseline transformers, here we also see con-
siderable practical improvements in training time
efficiency due to our single read architecture, re-
sulting in a 54% reduction in training time (from
around 63 hours for multi-pass models to around
34 for ours on a single RTX A6000 GPU).

CLUTRR i.i.d vs. generalization (gener.) splits
i.i.d (k = 2, ..5) gener.

Baseline (best run) 94.54 (ρ = 32.1) 61.7 (ρ = 96.2)
BPT (best run) 95.69 (ρ = 25.9) 69.2 (ρ = 97.6)

Table 3: Comparison between i.i.d and compositional
settings for CLUTRR.

Our model’s proposition prediction consistency
is 7.5% higher than that of the baseline, in terms
of the ρ metric reported in Table 3. As an impor-
tant caveat, however, in absolute terms, even our
breakpoint model has much lower consistency on
generalizations tasks (69.2%) than in the i.i.d. set-
ting (95.7%). We discuss this further in § 8.
Joint Training When trained jointly for both propo-
sition prediction and QA, we found minimal to no
impact on end-task performance, as shown on the
bottom of Table 1 for CLUTRR and in Table 2 for
bAbI (with a small improvement on the generaliza-
tion QA task at the cost of a mere 2% degradation
in i.i.d. QA performance). This shows the viability
of integrating our belief tracking mechanism into
existing transformer pipelines without significant
performance drops. As first motivated in Figure 1,
it also permits the development of more debuggable
systems where the results of QA can be checked
against the model’s beliefs.

Split Model Task 1(Plaus.) Task 2(Consist.) Task 3 (Verif.)
Dev RoB 73.6 22.4 10.6

BPT-base 81.99(±0.91) 58.07(±0.76) 36.44(±0.53)
Test RoB 72.9 19.1 9.1

BPT-base 80.55(±1.20) 53.83(±1.65) 32.37(±0.27)

Table 4: Results on the TRIP 3-tiered physical com-
monsense reasoning benchmark, our main breakpoint
model (BPT) compared against the RoBERTa-based
approach (RoB) of Storks et al. (2021).

Through our results on TRIP (Table 4), we also
see the viability of adding our belief tracking mech-
anism into more complex modeling pipelines. We
were specifically able to obtain SOTA performance
on this task and outperform the larger and highly
tailored task-specific model architecture based on

RoBERTa-large used by Storks et al. (2021).

CLUTRR (mix dev)
Prop. Acc% Global Violations ρ

BPT-large (best run) 85.5 (∆) 36.7 (∆)
- brk self-attn 77.3 (-8.12) 54.3 (-17.61)
- event generation 82.1 (-3.36) 41.8 (-5.07)
- abstraction 82.1 (-3.35) 42.8 (-6.06)
BPT-base 81.8 (-3.62) 44.3 (-7.61)

TRIP (fitered dev)
BPT-base (best run) 92.8 (∆) –
- brk self-attn 89.43 (- 3.36) –
- event generation 89.43 (- 3.36) –
- abstraction 92.9 (+0.10) –

Table 5: Breakpoint model feature ablations.

Additional Analysis We see in Table 5 for
CLUTRR that having an additional self-attention
aggregation layer when constructing breakpoint
representations (-brk self-attn, § 5.1) is very im-
portant for accuracy and consistency (we find sim-
ilar results for TRIP, bottom). This suggests that
further improvements might be achieved through
improved pooling and masking strategies for con-
structing breakpoint representations. We also
see the advantages of having auxiliary generation
losses (event generation, abstraction) for improv-
ing accuracy and performance.

7 Conclusion

Being able to track the beliefs of models remains a
formidable challenge at the forefront of model in-
terpretability. In this paper, we presented a new rep-
resentation learning framework, breakpoint model-
ing, that facilitates end-to-end learning and track-
ing of beliefs at intermediate states in narrative
text. On a diverse set of NLU tasks, we show the
benefit of our approach (based on T5) over conven-
tional learning approaches in terms of improved
belief prediction performance on new belief track-
ing tasks and processing efficiency. We also show
the feasibility of recasting existing tasks into our
framework and integrating our approach into exist-
ing transformer-based NLU pipelines, which we
believe can help to improve the interpretability of
these models as part of this larger challenge.
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8 Limitations

Below we summarize the main limitations of our
current breakpoint models and the techniques pur-
sued in this study.

Compositional Generalization Despite richer
supervision over intermediate states, compositional
generalization performance remains a significant
challenge (on bAbI and CLUTRR generalization
splits, see §6) for future work, which shows that our
approach inherits many of the limitations in the gen-
eralization ability of large-scale LMs more broadly.
Following Kim et al. (2021) and others, we hypoth-
esize that the all-to-all attention employed by Trans-
formers in creating token encodings (including the
breakpoint tokens) is a factor in non-compositional
behavior; such attention is more vulnerable to over-
fitting spurious patterns. Accordingly, more ad-
vanced attention masking (Kim et al., 2021) and su-
pervision (Yin et al., 2021) approaches are promis-
ing directions to explore.

Our notion of “belief” While breakpoints pro-
vide an indication of intermediate model “beliefs”,
they are also different from beliefs in important
ways. In particular, the causal relation between
information represented in breakpoints and gen-
erated model outputs is unclear (see also Li et al.
(2021) for similar caveats in standard NLMs). For
example, models may generate outputs that are in-
consistent with their own breakpoint belief states.
Interestingly, breakpoint models may offer new
ways to address these limitations by more explicitly
representing intermediate reasoning steps; neural
logic losses (Li et al., 2019) can help enforce belief
consistency between sets of propositions (§3.3).

Task and domain limitations Finally, our exper-
iments are still limited to datasets involving rela-
tively short (TRIP) and synthetic (bAbI, CLUTRR)
inputs with limited semantics. Further work is
needed to address more natural and complex lan-
guage to ultimately develop more robust break-
point models. In contrast to standard end-to-end
QA methods, breakpoint modeling requires more
costly annotation, as training currently requires
some form of supervision on intermediate states,
beyond the final target output. Thus, developing
new methods for collecting such annotations with
minimal engineering effort remains a challenge.
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A Dataset Details

In this section, we provide additional details about
all datasets.

A.1 TRIP

As described in §4, the TRIP benchmark con-
sists of 3 tiered tasks: (1) plausibility (2) con-
sistency (3) verifiability. To apply our model to
TRIP, we convert the first two tasks to a text2text
format: the first task involves taking two stories
(A) storyA (B) storyB $plaus as input
text and producing a text label {A,B} to identify
the implausible story; task 2 involves taking a
labeled story sentence1 1 sentence2 2..
$conflict and generating the labels identify-
ing the problematic sentences.8 We convert the
third task to breakpoint format by converting state
change labels to textual propositions associated
with the corresponding timesteps. Figure 8 shows
an example instance from the TRIP development
set. Note that each task is effectively rendered as
two instances: the first instance addresses task 1
(as QA), and the second jointly addresses tasks 2
(QA) and 3 (proposition prediction).

State changes in TRIP are defined either as ef-
fects or preconditions (Storks et al., 2021) and this
information must be preserved in the conversion to
breakpoint format. Preconditions are propositions
that hold before a described event; for example,
the proposition “oven was open” should be true
before the sentence “John closed the oven.” Ef-
fect propositions are propositions that hold after
a described event; the proposition “oven is open”
should be false after “John closed the oven.” We
represent precondition and effect propositions sim-
ply by modifying the proposition tense. Given
breakpoint bt, for associated precondition proposi-
tions at time t, we use past tense (“oven was open”).
For effect propositions at time t, we use present
tense (“oven is open”).

While the TRIP data includes state information
for all time steps and entities, we follow the official
evaluation procedure9 and only score the subset
of state changes defined to be relevant in the pair
of conflict sentences. At training time, we use all
available state change information for training.

8$plaus and $conflict are special tokens that prompt
the model to output an answer for tasks 1 and 2, respectively.

9https://github.com/sled-group/
Verifiable-Coherent-NLU/blob/main/
Verifiable-Coherent-NLU.ipynb

Finally, while most state changes in TRIP are
attributes that can be true, false or unknown (and
thus can be directly converted to proposition form),
location attributes are formulated as k-way classifi-
cation problems. For example, an object location
attribute change is represented by 1 of 9 possible
classes (see Table 5 in Storks et al. (2021) and blue
propositions in Fig. 8). To facilitate equivalent
evaluation of k-class predictions with our break-
point model, we consider the predicted true score
for each of the possible k propositions and take the
maximum scoring proposition to be the predicted
value.10

A.2 bAbI

A.2.1 Proposition generation
As detailed in § 4, base propositions for bAbI are
generated using the Dyna-bAbI tool (Tamari et al.,
2022). From this, new propositions are derived
from the following general constraints: location/-
possession uniqueness that dictate that objects can
only be in one location at a time and possessed by
a single agent (e.g., John cannot simultaneously be
in the kitchen and living room), mutually exclusiv-
ity between event types (e.g., that dropping a ball
is the opposite of picking up a ball); explanation
frame rules (Haas, 1987) that dictate that objects,
when left unchanged, maintain their location and
their possession through time (e.g., John is in the
kitchen or John has the apple stays true until there
is an explicit event that changes this).

A.2.2 Task details
The training data includes 500 samples per task
type, where the tasks follow the same structure as
the concat(T7) dataset described in (Tamari et al.,
2022) (Table 6 in that work), with the only dif-
ference being the story length which was fixed to
20 sentences to match the test data. The hardQA
generalization task was generated using the same
settings as the mix(T7) evaluation set from (Tamari
et al., 2022), including the same 3 question types
with 1,000 samples for each type (also Table 6 in
Tamari et al. (2022)). Figure 7 shows example
stories from the training and hardQA test splits.

A.3 CLUTRR

We note that all of the underlying story data was
generated from scratch and relies on the publicly
available task generators from Sinha et al. (2019)

10Inspired by a similar method in Li et al. (2021).
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Figure 7: Examples from the bAbI story understanding task. The train set includes 7 sub-tasks, such as co-reference
and object tracking (left). The hardQA sample (right) incorporates novel compositions of concepts seen separately
at training time. Beyond the question answering task, each example also includes proposition prediction at each
time step (not shown here, see Figure 1) for example.

and Gontier et al. (2020)11. As detailed in Gontier
et al. (2020), leakage among the proofs and propo-
sitions in stories of the same k can be a problem.
Using some of their ideas, we avoided this by ex-
panding the inventory of names used in training
and abstracted names for parts of the training. We
verified the hardness of our data by training a no-
story proposition-only baseline an found it to have
low performance, and also manually verified all
inference rules used for generating propositions.

B Training details

B.1 Hyper-parameters

All hyper-parameter tuning for our main models
was performed via a random search in the style
of Devlin et al. (2019). Model selection was per-
formed by selecting models with the highest valida-
tion accuracy for each task (e.g., proposition accu-
racy for our proposition tasks, exact match for the
QA experiments). Unless noted otherwise, we re-
port the average of models with the optimal hyper-
parameters based on 3 random re-starts; early stop-
ping was applied throughout. All experiments were
performed on NVIDIA AX6000 GPU hardware on
a single GPU.
breakpoint models: learning rate (we experi-
mented in the range of 1e-3 to 5e-6, we gen-
erally found 5e-5 to be optimal for most experi-

11See full details at: https://github.com/
facebookresearch/clutrr and https:
//github.com/NicolasAG/SGinPG

ments), number of epoch (up to 35 for CLUTRR,
TRIP and 150 for bAbI), batch size (in the range
of 2 to 16, memory permitting, we found 2 to be
optimal for bAbI and TRIP experiments, and 4 for
CLUTRR) and weight decay (set to 0.001) and
warmup steps (from 500 to 1k steps). See the
project repository for further details
joint models For multi-task training, parameters
λ{1,2,3} were hand tuned, with λ1 set to 1.0 for
all proposition prediction tasks (with λ2=0.1 for
most tasks). For joint QA tasks, we found setting
λ1 = 1.0 and λ1 = 1.0 to be optimal, with
an initial warmup before turning on the proposi-
tion prediction loss (usually between 5-10 epochs).
Given the high cost of training the bAbI breakpoint
QA model in Table 2, the joint QA + prop models
described on the last row start training from the
BPT-base checkpoints described in the row above.

B.2 Auxiliary Generation Losses

As detailed in § 5.1, we jointly trained our break-
point models with additional generation losses that
aim to mimic some of the unsupervised denoising
objectives used in Raffel et al. (2020). Whereas
in standard denoising you might try to generate
from a text input A dog <mask> while running
the output text <mask> barked loudly <mask>,
from an original text A dog barked loudly while
running (with full attention over the input text),
in our case we try to generate from a story John
went to the store [B]1 He then picked up the
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# Task 1 (plausibility)
{

"example id": "414-C0-a",
"question": "(A) John turned on the oven [B] John put the cake in the oven [

B] John got the ice cream out [B] John put some ice cream in a red bowl
[B] John put the red bowl in the oven [B] (B) John turned on the oven [B
] John put the cake in the oven [B] John got the ice cream out [B] John
put some ice cream in a red bowl [B] John put the rest of the ice cream
in the fridge [B] $plaus",

"answer": "B"
}

# Tasks 2 + 3 (consistency + verifiability)
{

"example id": "414-C0-b",
"question": "John turned on the oven 0 [B] John put the cake in the oven 1 [

B] John got the ice cream out 2 [B] John put some ice cream in a red
bowl 3 [B] John put the red bowl in the oven 4 [B] $conflict",

"answer": "3,4"
"proposition_lists": [

[...], # sent. idx 0
[...], # sent. idx 1
[...], # sent. idx 2
[

"red bowl is occupied",
"ice cream is put into a container",
"ice cream does not move to a new location",
"ice cream disappears",
"ice cream is picked up",
"ice cream is put down",
"ice cream is put on", "ice cream is removed",
"ice cream is taken out of a container",
"ice cream moved somewhere new",...

], # sent. idx 3
[

"red bowl is put into a container", "oven was powered",
"oven was open", "oven was turned on",...

], # sent. idx 4
],

"labels": [
[...], # sent. idx 0
[...], # sent. idx 1
[...], # sent. idx 2
["true", "true", "false", "false", "false", "false", "false", "false","

false", "false",...], # sent. idx 3
["true", "true","true", "true",...], # sent. idx 4

]
}

Figure 8: Rendering of TRIP instance in breakpoint format. Breakpoint models can operate in standard text-to-text
mode, generating output answers in response to questions, and additionally they can provide joint predictions over
propositions associated with each sentence. Propositions in blue indicate location attributes which are evaluated as
k-class predictions. See Appendix A.1 for further details on instance construction.
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apple [B]2 the raw event text John went to the
store from the corresponding raw breakpoint hid-
den state for the special token [B]1 alone. In
addition to this event generation task, we also
experimented with a abstraction generation task:
given two stories in a batch and two random break-
points within those stories, e.g., John went to the
kitchen [B]1,1... and Mary went to the kitchen
[B]2,1.., we ask the model to generate an abstract
textual description of the two events only from
the mean of the two breakpoint hidden states, i.e.,
abstraction([B]1,1, [B]2,1) = A person went
to the kitchen. (This was inspired by the abstraction
generation ideas from Gontier et al. (2022)).

During training, both forms of generation were
done by randomly selecting a single breakpoint
example and abstraction pair for each story in the
batch and computing a standard loss over the gen-
erated texts and abstractions. Using symbolic an-
notations of both the CLUTRR and bAbI training
events, a deterministic algorithm was implemented
for creating abstracted texts on the fly for training.
For TRIP, where logical annotations are not avail-
able, the abstraction task was replaced by the task
of generating versions of text replaced with POS
tags (e.g., John turned off the stove would be turned
into PER turned off the NOUN).
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