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Abstract

Multilingual models are often particularly de-
pendent on scaling to generalize to a grow-
ing number of languages. Compression tech-
niques are widely relied upon to reconcile the
growth in model size with real world resource
constraints, but compression can have a dis-
parate effect on model performance for low-
resource languages. It is thus crucial to un-
derstand the trade-offs between scale, multilin-
gualism, and compression. In this work, we
propose an experimental framework to char-
acterize the impact of sparsifying multilin-
gual pre-trained language models during fine-
tuning. Applying this framework to mBERT
named entity recognition models across 40 lan-
guages, we find that compression confers sev-
eral intriguing and previously unknown gener-
alization properties. In contrast to prior find-
ings, we find that compression may improve
model robustness over dense models. We ad-
ditionally observe that under certain sparsifica-
tion regimes compression may aid, rather than
disproportionately impact the performance of
low-resource languages.

1 Introduction

Scaling language models benefits multilingual set-
tings, since it is difficult to maintain performance
across a growing number of languages at a constant
model size, a property also called the “curse of mul-
tilinguality” (Conneau and Lample, 2019; Conneau
et al., 2020; Artetxe and Schwenk, 2019). However,
the extent of growth in language model (LM) size
(Radford et al., 2019; Brown et al., 2020; Zhang
et al., 2022; Chowdhery et al., 2022) has made
deployment to resource-constrained environments
much more challenging (Warden and Situnayake,
2019; Samala et al., 2018; Treviso et al., 2022). To
benefit from the performance gains conferred by
scale, efficiency techniques that reduce model size

∗Work was done while at Google Research.

while maintaining comparable aggregate perfor-
mance are widely used, such as quantization (Shen
et al., 2020), compression (Michel et al., 2019; La-
gunas et al., 2021) and distillation (Tsai et al., 2019;
Sanh et al., 2019; Pu et al., 2021).

While most compression techniques have min-
imal impact on aggregate performance numbers
(Gale et al., 2019; Li et al., 2020; Hou et al., 2020;
Chen et al., 2021; Bai et al., 2020; ab Tessera et al.,
2021), the impact on individual sub-populations
in the data, such as low-resource languages, can
be far more severe (Hooker et al., 2019; Hooker
et al., 2020; Ahia et al., 2021). Disparities in re-
source availability become more apparent at larger
scale, both in terms of data and deployment re-
source availability. This makes compression all the
more necessary, but also motivates a thorough con-
sideration of the subsequent impact of compression
on generalization.

In this work, we develop an experimental frame-
work to investigate the impact of compression dur-
ing fine-tuning of pre-trained multilingual mod-
els which we apply to Named Entity Recognition
(NER) across 40 languages of the WikiAnn bench-
mark (Pan et al., 2017). We study the impact of
compression on groups of languages across mul-
tiple dimensions—resourcedness, script, and lan-
guage family—and evaluate the sensitivity of mod-
els to input perturbations along these groupings.

This leads us to discover the following intrigu-
ing properties: (1) Lower-performing languages
disproportionately suffer under extreme levels of
sparsity, as pruning amplifies disparities. However,
low-resource languages present an intriguing flip-
flop moment, where their performance may benefit
from medium regimes of sparsity. (2) We find that
dense models overfit to typical test cases, achieving
a close-to-0 F1 score on slightly perturbed inputs,
while compression can recover close to the original
test performance. Our results stand in contrast to
previous work that find that sparsity erodes robust-

9092



ness, suggesting more work is needed to understand
the dynamics between compression and robustness.
(3) The choice to prune model embeddings can
completely negate the two benefits described in the
previous observations, showing the importance of
comparing the two cases in future analyses.

2 Related Work

The “curse-of-multilinguality” creates a trade-
off between number of languages and size of a
model (Conneau et al., 2020). However, train-
ing smaller models supporting fewer languages
may not always be feasible (Abdaoui et al., 2020).
Compressing large models has been shown to
combat the curse, either by compressing the pre-
trained model (Tsai et al., 2019; Sanh et al., 2019),
or by compressing during finetuning, as in our
case. While many studies investigate the impact of
pruning on aggregate metrics in monolingual pre-
trained LMs (Sanh et al., 2020; Goyal et al., 2020;
Gordon et al., 2020; Budhraja et al., 2020; Sajjad
et al., 2020; Lagunas et al., 2021; Xu et al., 2021;
Du et al., 2021a; Ganesh et al., 2021), fewer works
focus on multilingual settings (Mukherjee and Has-
san Awadallah, 2020; Ansell et al., 2022). Yet,
prior analyses find a disparate effect of removing
attention heads or model layers on languages and
language families distant from the training data
in NER (Ma et al., 2021; Budhraja et al., 2021),
demonstrating the importance of looking into sub-
populations as we do in this study.

Studies that compare the robustness of com-
pressed and dense models further find that compres-
sion may lead to erosion of performance on “chal-
lenging” samples and poor generalization (Ahia
et al., 2021; Du et al., 2021a; Xu et al., 2021),
a finding that we expand on and connect to lan-
guage resourcedness. The technique we use to
study robustness expands on studies that perturb
training (Yaseen and Langer, 2021; Dai and Adel,
2020) or evaluation data (Dhole et al., 2021) in
NER by introducing perturbations specific to lan-
guages, language families, and scripts.

3 Methodology

Data We conduct our experiments on WikiAnn
(Pan et al., 2017), a multilingual NER dataset.
WikiAnn was sourced from Wikipedia articles and
automatically annotated with LOC (location), PER
(person), and ORG (organisation) labels in the
IOB2 format (Ramshaw and Marcus, 1995). It is

# Sent. Languages Pretr. Token %

100 jv,my,yo 0.05
1000 kk,sw,te 0.19
5000 af,hi,mr 0.21
10000 bn,eu,ka,ml,tl 0.23
15000 et,ta 0.31
20000 ar,bg,de,el,en,es,fa,fi 2.93

fr,he,hu,id,it,ja,ko,ms
nl,pt,ru,th,tr,ur,vi,zh

Table 1: Data sizes and languages for WikiAnn and
average representation for mBERT pre-training. The
underlined languages are used for a comparison with
monolingual fine-tuning.

considered a “silver standard” due to its automatic
entity labels and noise (Lignos et al., 2022), but
with its 176 languages it covers the most languages
of any NER dataset. We focus our experiments
on the 40 languages from the XTREME bench-
mark (Hu et al., 2020), with train-test splits defined
by Rahimi et al. (2019). These training sets were
built with stratified sampling to create a balance
across entity types (Lignos et al., 2022), and are
thus a subset of the total available data from the
original WikiAnn. Table 1 lists language codes
in ISO 639-1 and their available training data for
fine-tuning.

Perturbations We test the robustness of com-
pressed models by perturbing named entities in
the test set. Previous work (Du et al., 2021a) show
that sparse pretrained language models are less ro-
bust than their dense equivalents when evaluated on
adversarial test sets, even when they perform sim-
ilarly on in-distribution test sets. We adopt a data
perturbation technique from Dai and Adel (2020)
called entity mention replacement; an entity is ran-
domly swapped with another entity of the same
type (example sentences shown in App. D). We
first perturb entities within same language for all
the languages in our dataset (in-language). Sec-
ondly, we propose a new benchmark appropriate
for testing the cross-lingual robustness of multi-
lingual models on our downstream task. We per-
turb entities across different languages that share
common linguistic properties. In particular, we
group languages by family and script and perturb
entities across languages within the same group
(in-script, in-family).

Model We use the cased multilingual BERT
(mBERT) (Devlin et al., 2019) for all our experi-
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Figure 1: Monolingual vs Multilingual: F1 for
monolingual and multilingual fine-tuning under regular
and perturbed test conditions (in-language), averaged
across languages (shaded areas: standard deviation).

ments because it is one of the most widely used
and studied multilingual LMs (e.g., Pires et al.,
2019; Rönnqvist et al., 2019; Wu and Dredze, 2019;
Wang et al., 2020; Chi et al., 2020).1 mBERT is
trained on Wikipedia data from 104 languages, has
approximately 177 million parameters, and a vocab-
ulary size of around 120,000. We finetune mBERT
by appending a linear classification layer to the
model and updating all its parameters. Full hyper-
parameters are listed in App. A.1.

We evaluate the impact of sparsity in two set-
tings: 1) In the monolingual setting we fine-tune
on individual languages. For this setting, we select
10 languages with different available data size, lan-
guage family and scripts (see Table 1). 2) In the
multilingual setting we jointly fine-tune on all
languages. We train all models with three random
seeds, and evaluate F1 using seqeval (Nakayama,
2018) on the individual languages’ evaluation data.
We report mean results across runs after computing
the micro-average F1 scores across entity classes.

Pruning We induce sparsity by applying Itera-
tive Magnitude Pruning (IMP) (Han et al., 2015,
2016) during fine-tuning. IMP iteratively removes
weights that are below a certain threshold until a
desired target sparsity is reached. IMP is widely
used and competitive with far more compute inten-
sive approaches (Gale et al., 2019; Gordon et al.,
2020; Du et al., 2021b; Ganesh et al., 2021), while
allowing us to sparsify to an exact level. We com-
pare two pruning strategies: 1) partial where we
prune all dense layers except for embedding layers,
2) incl. embeddings where we prune all dense
weights including embedding layers. Embeddings

1While XLM-R (Conneau et al., 2020) and others may
perform better, the availability of fine-grained mBERT results
through XTREME (Hu et al., 2020) allowed us to start from
parameters that replicate the prior results.
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Figure 2: Dense vs Sparse: Mean relative differ-
ence in F1 for sparse multilingual models compared to
the dense model. Results are averaged for languages
grouped according to fine-tuning size.

make up more than half (91M) of the 177M pa-
rameters in mBERT, while dense weights make
up the rest. Hence, pruning embeddings allows
us to significantly reduce the number of mBERT
parameters. We consider five sparsity levels: 50%,
70%, 80%, 90%, 95% and 98%, corresponding to
the percentage of weights pruned (hyperparame-
ters in App. A.2. Preliminary experiments were
conducted with lower sparsity levels (10%-40%)
and yielded similar findings to those at moderate
sparsity levels (50%-70%), motivating the sparsity
intervals chosen. The chosen sparsity levels also
align with general best practice in sparsity evalu-
ation as presented in previous works. Moderate
to high sparsity levels (50%+) are necessary for
efficiency gains in the real-world and are usually
studied in literature (Gale et al., 2019; Ahia et al.,
2021; Ganesh et al., 2021).

4 Results and Discussion

4.1 Multilingual vs. Monolingual
Corroborating prior work on multilingual NER (Hu
et al., 2020; Adelani et al., 2021), we find that
the multilingual setting generally outperforms the
monolingual one. Lower-resource languages tend
to benefit more from crosslingual transfer.2 We
find that this finding holds under sparsity – multi-
lingual models achieve higher F1 than monolingual
models not only in the dense setting, but across
all sparsity levels, as shown in Figure 1.3 At high

2Kappa’s τ = 0.39 between multilingual gain and fine-
tuning size for dense models.

3The three exceptions are Afrikaans (af) at 0% sparsity
(−0.003), Hindi (hi) at 50% sparsity (−0.01) for partial prun-
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Figure 3: Regular vs Perturbed: We show the aggregated results across all languages after perturbation at dif-
ferent sparsity levels. Without pruning, the model performs poorly, which is overcome by partial pruning, but not
pruning with embeddings. The relative performance drop is consistent across all pruning levels above 0.

sparsity levels, the loss in quality that is gener-
ally incurred is considerably lower for multilingual
models. This suggests that when high levels of com-
pression are necessary (e.g. for inference efficiency
needs), multilingual training should be preferred to
monolingual training, as it could help offset some
of the erosion in the performance caused by the
compression. Thus, we conclude that the bene-
fits of cross-lingual transfer are not inhibited by
pruning, and perhaps are even more pronounced
at a lower capacity (Dufter and Schütze, 2020) for
certain languages.

4.2 Impact of pruning across languages
Figure 2 displays the relative differences in F1
score between dense and sparse models across lan-
guages, grouped according to fine-tuning size.4

At moderate sparsity levels (50%–70%), partial
pruning surprisingly improves over the dense mod-
els, in particular those with less fine-tuning data.
The majority of languages (26 out of 40) benefit
from moderate pruning and yield slightly higher F1
with pruning than without. All three datasets with
only 100 fine-tuning examples (yo, my, jv) benefit.
This suggests that moderate pruning may benefit
low-resource datasets when introduced during a
finetuning regime. However, at high sparsity levels
(70%–98%), the findings reverse. Those languages
that have a lower frequency of representation in
the finetuning dataset incur the highest absolute
and relative loss in quality. We can observe the
same trend when grouping languages according to
their family or script, respectively (see Fig. 4 and 5

ing, and Yoruba (yo) at 98% sparsity (−0.07) for pruning
including the embeddings.

4A value of −0.1 means that this sparse model reaches
90% quality of the dense model, averaged across the languages
within the same size bucket.

in App. B). The groups that start with the lowest
average performance under the dense model, also
suffer the most under extreme sparsity.

In conclusion, moderate pruning levels should
be explored for low-resource languages since they
may benefit such languages. This is especially im-
portant since models for low-resourced languages
are often deployed in resource-constrained envi-
ronments§ (Ahia and Ogueji, 2020; Nekoto et al.,
2020; Ahia et al., 2021). Also, since high sparsity
levels reinforce existing disparities (as measured by
model performance and data availability) between
languages and language groups, it is imperative that
practitioners pay attention to possible disparities
when sparsifying models.

4.3 How does pruning impact robustness?
Figure 3 shows the relative performance on the
perturbed sets as a fraction of the corresponding
unperturbed performance. Across all perturbation
types, the dense model performs poorly, indicating
that the model may have overfit to typical entities
and the semantic context that appear in the training
corpora.5 Surprisingly, partial pruning at any level
(shown left) improves upon the performance of the
dense model. This finding disagrees with some
prior works (Du et al., 2021a; Hooker et al., 2019;
Sehwag et al., 2019) which find sparsity erodes dif-
ferent measures of robustness. However, the find-
ing agrees with some other works. For example, Xu
et al. (2021) found that pruning and post-training
quantization improve BERT models’ robustness
to adversarial examples. Furthermore, Ahia et al.

5Fig 9 shows that entity overlap between train and test set
and model performance are correlated. This is particularly
obvious for the highest (e.g., (bn, ur, ms)) and lowest perform-
ing languages (e.g., (my, yo, jv)). This may explain the poor
performance of dense models on the perturbed test sets.
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(2021) find that magnitude pruning improves model
robustness to out-of-distribution shifts in machine
translation. Despite the contradictions, our work
represents an important step in understanding the
impact of pruning on robustness, especially since
we are one of the firsts to explore it multilingually.
Interestingly, our findings are consistent across all
perturbation types as their scope increases from lan-
guages (in-language) to scripts (in-script) and
families (in-family). This suggests that sparsity
can be explored as an avenue to improve robustness
as has been explored in previous works (Xu et al.,
2021; Ahia et al., 2021).

However, pruning the embeddings makes a cru-
cial difference for the perturbed test cases. While
pruning the embeddings does not matter for regular
test set (see Figure 2), we observe the same severe
drop in performance on the perturbed test-set as
for the dense model. This suggests that including
model embeddings when pruning sharply erodes
performance on out-of-distribution rare artefacts,
prompting a closer look into what is pruned in the
embedding space and the potential impact of spar-
sifying different parts of a model.

5 Conclusion

This work investigates the effects of compression
on multilingual pre-trained language models dur-
ing fine-tuning. Our analysis revealed several in-
triguing properties of pruning that should inform
future work in this direction: (1) Pruning dense
layers up to ∼ 70% may improve quality for low-
frequency examples in the data and enhance model
robustness. (2) The decision to prune embeddings
may have critical impact on model robustness to
out-of-distribution performance. (3) While low-
performing languages benefit from moderate prun-
ing, they are disproportionately harmed when prun-
ing more aggressively. Based on these intriguing
properties, we also make several recommendations
to machine learning practitioners.

Limitations

We detail the following potential limitations of our
work:

Noisy dataset: Lignos et al. (2022) shed light
on several quality issues of the WikiAnn dataset
that we are treating as a gold standard. Our results
might thus not adequately reflect NER performance
that can be achieved with cleaner and human-

annotated datasets, such as the MasakhaNER (Ade-
lani et al., 2021) or SADiLaR (Eiselen, 2016).
Since the perturbations are based on the WikiAnn
labels, we might be amplifying the existing label
noise for the perturbed test sets and as a result
underestimate model quality on clean perturbed
examples. We try to combat the randomness by
averaging results across three separate runs, but
any issues intrinsic to WikiAnn will likely impact
all three.

Other Multilingual Models and Downstream
tasks: Multilingual pre-trained models such as
XLM-R (Conneau et al., 2020) might yield a bet-
ter performance or show slightly different trends
across languages (Adelani et al., 2021). Other
downstream tasks, especially generation tasks,
might tolerate different levels of sparsity, and
also show different crosslingual transfer capabili-
ties (Wu and Dredze, 2019; Hu et al., 2020). How-
ever, since fine-grained prior results on the same
WikiAnn splits were not available to us, we re-
stricted the analysis to mBERT where we could
verify that we can replicate the results reported by
XTREME.

Evaluation metrics: We use F1 as the sole evalu-
ation metric and trust it to reflect quality adequately
across languages. Human evaluation and the use
of qualitative evaluation metrics might reflect the
quality for individual languages better.

Unknown factors influencing performance:
The absolute performance for a given language can
be influenced by many factors including size, fam-
ily and script, relatedness to other languages, and
the inherent difficulty of the NER task and the eval-
uation examples, as studied in related works (e.g.,
Pires et al., 2019; Wu and Dredze, 2020; Shaffer,
2021; Adelani et al., 2021; Muller et al., 2021;
Deshpande et al., 2021). As a result, it is impossi-
ble to identify the exact cause for all our observa-
tions and we have to partially rely on correlational
analyses.
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A Hyperparameters

A.1 Fine-tuning Hyperparameters
Train epochs: 60
Optimizer: AdamW (Loshchilov and Hutter,
2019)
Learning rate: 7e-5
Max sequence length: 512
Dropout: 0.1
Batch size:

Data size ∈ {100, 1000}: 8
Data size ∈ {5000}: 16
Data size ∈ {10000, 15000, 20000}: 16

A.2 Pruning Hyperparameters
Data size = 100:

pruning start step: 10
pruning end step: 60
pruning frequency: 10

Data size = 1000:
pruning start step: 100
pruning end step: 300
pruning frequency: 50

Data size ∈ {5000, 10000}:
pruning start step: 500
pruning end step: 1200
pruning frequency: 100

Data size = 15000:
pruning start step: 700
pruning end step: 1800
pruning frequency: 150

Data size = 20000:
pruning start step: 1000
pruning end step: 2400
pruning frequency: 200

B Additional Diagrams

Relative change for different groups of lan-
guages Figures 4 and 5 show the relative change
in F1 compared to the dense model averaged across
languages within the same family or with the same
script, respectively, on the regular test set. Fig-
ures 6, 7 and 8 depict the corresponding results on
the in-language perturbed test sets. Figure 9 shows
the correlation between percentage entity overlap
and F1 on dense multilingual models.

C Full Results

We present the results for individual languages on
both the regular and perturbed test sets obtained
via multilingual finetuning in tables 2, 3, 4 and 5

We present the results for individual languages
on both the regular and perturbed test sets obtained
via monolingual finetuning in tables 6, 7, 8 and 9

D Examples of Perturbed Test Sentences

We present examples of perturbed test sentences in
the in-language setting for English (table 10) and
Yoruba language table (11).
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Figure 4: Regular test: Absolute F1 scores on top, relative differences in comparison to the dense model on
the bottom. Results are averaged for languages grouped according to their language families. The shaded areas
represent the standard deviation.
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Figure 5: Regular test: Absolute F1 scores on top, relative differences in comparison to the dense model on the
bottom. Results are averaged for languages grouped according to their script. The shaded areas represent the
standard deviation.
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Figure 6: In-language perturbation test: Absolute F1 scores on top, relative differences in comparison to the
dense model on the bottom. Results are averaged for languages grouped according to their fine-tuning size. The
shaded areas represent the standard deviation.
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Figure 7: In-language perturbation test: Absolute F1 scores on top, relative differences in comparison to the
dense model on the bottom. Results are averaged for languages grouped according to their language families. The
shaded areas represent the standard deviation.
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Figure 8: In-language perturbation test: Absolute F1 scores on top, relative differences in comparison to the
dense model on the bottom. Results are averaged for languages grouped according to their script. The shaded
areas represent the standard deviation.
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Figure 9: Entity overlap: Absolute F1 scores of dense multilingual model vs percentage overlap of entities
between train and test set. The colors indicate the size of finetuning data per language.
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languages 0 50 70 80 90 95 98

af 0.9014 0.9164 0.9002 0.8944 0.8874 0.8571 0.8204
ar 0.9020 0.9033 0.8983 0.8891 0.8719 0.8447 0.7943
bg 0.9332 0.9317 0.9287 0.9253 0.9090 0.8881 0.8524
bn 0.9321 0.9360 0.9326 0.9313 0.9191 0.9032 0.8760
de 0.9007 0.9021 0.8968 0.8886 0.8683 0.8375 0.7823
el 0.9170 0.9184 0.9133 0.9039 0.8856 0.8625 0.8164
en 0.8470 0.8481 0.8404 0.8305 0.8036 0.7654 0.6951
es 0.9338 0.9346 0.9295 0.9241 0.9139 0.8952 0.8612
et 0.9305 0.9311 0.9283 0.9212 0.9057 0.8844 0.8433
eu 0.9285 0.9271 0.9232 0.9165 0.9016 0.8788 0.8451
fa 0.9348 0.9356 0.9305 0.9270 0.9107 0.8938 0.8634
fi 0.9217 0.9210 0.9178 0.9103 0.8918 0.8666 0.8220
fr 0.9153 0.9154 0.9109 0.9069 0.8892 0.8618 0.8168
he 0.8681 0.8696 0.8578 0.8466 0.8078 0.7596 0.6866
hi 0.8857 0.8955 0.8823 0.8748 0.8692 0.8348 0.7880
hu 0.9308 0.9331 0.9290 0.9214 0.9057 0.8803 0.8396
id 0.9411 0.9401 0.9385 0.9335 0.9247 0.9094 0.8809
it 0.9265 0.9261 0.9224 0.9146 0.8992 0.8721 0.8280
ja 0.7683 0.7655 0.7537 0.7404 0.6918 0.6346 0.5303
jv 0.7607 0.8505 0.7509 0.7345 0.7375 0.7138 0.5987
ka 0.8827 0.8823 0.8727 0.8612 0.8270 0.7833 0.7216
kk 0.8527 0.8510 0.8544 0.8404 0.8343 0.7834 0.7522
ko 0.8843 0.8848 0.8771 0.8672 0.8428 0.8053 0.7499
ml 0.8446 0.8462 0.8365 0.8281 0.7972 0.7505 0.6805
mr 0.8582 0.8676 0.8572 0.8530 0.8284 0.8043 0.7650
ms 0.9269 0.9219 0.9361 0.9336 0.9099 0.8965 0.8679
my 0.5746 0.6003 0.6532 0.5594 0.5274 0.4516 0.3622
nl 0.9269 0.9264 0.9233 0.9188 0.9013 0.8709 0.8257
pt 0.9306 0.9335 0.9292 0.9252 0.9118 0.8918 0.8516
ru 0.8922 0.8930 0.8890 0.8770 0.8598 0.8317 0.7823
sw 0.8860 0.8924 0.8837 0.8751 0.8671 0.8530 0.8231
ta 0.8541 0.8486 0.8484 0.8319 0.7984 0.7607 0.7019
te 0.7853 0.7958 0.7678 0.7621 0.7192 0.6483 0.5907
th 0.8074 0.7993 0.7845 0.7724 0.7171 0.6424 0.4293
tl 0.9352 0.9389 0.9292 0.9289 0.9287 0.9300 0.8946
tr 0.9351 0.9338 0.9301 0.9256 0.9105 0.8887 0.8478
ur 0.9333 0.9269 0.9310 0.9266 0.9208 0.9018 0.8994
vi 0.9328 0.9326 0.9302 0.9247 0.9123 0.8966 0.8549
yo 0.7284 0.7015 0.7225 0.7172 0.7956 0.6635 0.6264
zh 0.8303 0.8293 0.8162 0.8048 0.7661 0.7080 0.6209

means 0.8795 0.8827 0.8764 0.8667 0.8492 0.8151 0.7622
medians 0.9017 0.9093 0.8993 0.8918 0.8788 0.8551 0.8166

Table 2: F1 scores for multilingual fine-tuning on the regular data for various levels of sparsity without pruning
embedding layers.
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languages 0 50 70 80 90 95 98

af 0.9014 0.9134 0.8960 0.8870 0.8810 0.8412 0.7878
ar 0.9020 0.9034 0.8955 0.8849 0.8624 0.8279 0.7593
bg 0.9332 0.9320 0.9270 0.9196 0.9018 0.8777 0.8222
bn 0.9321 0.9543 0.9359 0.9197 0.9029 0.8951 0.8078
de 0.9007 0.9006 0.8959 0.8854 0.8547 0.8227 0.7377
el 0.9170 0.9158 0.9089 0.9006 0.8752 0.8483 0.7714
en 0.8470 0.8491 0.8415 0.8283 0.7988 0.7604 0.6677
es 0.9338 0.9316 0.9275 0.9236 0.9078 0.8896 0.8377
et 0.9305 0.9305 0.9244 0.9172 0.8926 0.8642 0.7946
eu 0.9285 0.9260 0.9193 0.9128 0.8903 0.8640 0.8059
fa 0.9348 0.9379 0.9307 0.9244 0.9064 0.8843 0.8301
fi 0.9217 0.9202 0.9139 0.9067 0.8814 0.8505 0.7814
fr 0.9153 0.9147 0.9090 0.8983 0.8805 0.8525 0.7869
he 0.8681 0.8656 0.8537 0.8346 0.7880 0.7226 0.6012
hi 0.8857 0.8858 0.8709 0.8718 0.8578 0.8028 0.7212
hu 0.9308 0.9302 0.9257 0.9189 0.8943 0.8628 0.7952
id 0.9411 0.9400 0.9385 0.9342 0.9204 0.9014 0.8521
it 0.9265 0.9253 0.9214 0.9136 0.8941 0.8602 0.7886
ja 0.7683 0.7691 0.7552 0.7357 0.6761 0.6129 0.4716
jv 0.7607 0.7576 0.8329 0.7503 0.7273 0.6433 0.5623
ka 0.8827 0.8821 0.8718 0.8511 0.8096 0.7502 0.6412
kk 0.8527 0.8585 0.8567 0.8258 0.8053 0.7821 0.7140
ko 0.8843 0.8844 0.8727 0.8602 0.8238 0.7720 0.6660
ml 0.8446 0.8425 0.8261 0.8172 0.7695 0.7139 0.6184
mr 0.8582 0.8597 0.8504 0.8406 0.8178 0.7745 0.6905
ms 0.9269 0.9402 0.9198 0.9200 0.9091 0.8757 0.8229
my 0.5746 0.5948 0.5741 0.5627 0.4686 0.4160 0.3978
nl 0.9269 0.9266 0.9226 0.9151 0.8949 0.8648 0.7951
pt 0.9306 0.9318 0.9273 0.9216 0.9069 0.8831 0.8182
ru 0.8922 0.8923 0.8854 0.8750 0.8489 0.8220 0.7504
sw 0.8860 0.8880 0.8753 0.8659 0.8571 0.8332 0.7648
ta 0.8541 0.8512 0.8365 0.8161 0.7662 0.7078 0.6072
te 0.7853 0.7923 0.7725 0.7326 0.6867 0.6071 0.4890
th 0.8074 0.8039 0.7896 0.7646 0.7059 0.6036 0.3651
tl 0.9352 0.9360 0.9324 0.9310 0.9217 0.9041 0.8123
tr 0.9351 0.9330 0.9301 0.9208 0.9017 0.8677 0.7862
ur 0.9333 0.9313 0.9256 0.9200 0.9137 0.8934 0.8398
vi 0.9328 0.9334 0.9270 0.9222 0.9042 0.8745 0.7975
yo 0.7284 0.7426 0.7261 0.7279 0.7109 0.6368 0.5016
zh 0.8303 0.8296 0.8194 0.7964 0.7469 0.6782 0.5581

means 0.8795 0.8814 0.8741 0.8614 0.8341 0.7936 0.7105
medians 0.9017 0.9084 0.8960 0.8862 0.8688 0.8372 0.7681

Table 3: F1 scores for multilingual fine-tuning on the regular data for various levels of sparsity with pruning
embedding layers.
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languages 0 50 70 80 90 95 98

af 0.0314 0.8349 0.8193 0.8142 0.7988 0.7648 0.7240
ar 0.0060 0.7543 0.7046 0.7091 0.7426 0.7133 0.6623
bg 0.0237 0.7829 0.7712 0.7711 0.7702 0.7400 0.6911
bn 0.0055 0.7619 0.7489 0.7568 0.7620 0.7641 0.7289
de 0.0257 0.8019 0.7946 0.7849 0.7562 0.7187 0.6690
el 0.0230 0.7792 0.7737 0.7659 0.7429 0.7139 0.6481
en 0.0143 0.6843 0.6781 0.6645 0.6407 0.6128 0.5552
es 0.0119 0.7803 0.7666 0.7767 0.7790 0.7630 0.7207
et 0.0350 0.8283 0.8216 0.8125 0.7939 0.7635 0.7161
eu 0.0207 0.8065 0.7996 0.7945 0.7773 0.7403 0.6806
fa 0.0037 0.7696 0.7405 0.7744 0.8042 0.7827 0.7385
fi 0.0390 0.8398 0.8337 0.8264 0.8070 0.7722 0.7246
fr 0.0221 0.7632 0.7551 0.7528 0.7405 0.7157 0.6780
he 0.0201 0.6957 0.6788 0.6638 0.6310 0.5774 0.5076
hi 0.0196 0.7199 0.7073 0.7102 0.6765 0.6526 0.6200
hu 0.0316 0.8044 0.7952 0.7933 0.7793 0.7471 0.6948
id 0.0118 0.8038 0.7921 0.7979 0.7916 0.7801 0.7375
it 0.0226 0.7867 0.7756 0.7723 0.7511 0.7259 0.6807
ja 0.0013 0.6068 0.5967 0.5824 0.5513 0.5067 0.4518
jv 0.0161 0.5384 0.5771 0.5588 0.5972 0.5862 0.5102
ka 0.0216 0.7465 0.7356 0.7174 0.6901 0.6415 0.5734
kk 0.0242 0.7693 0.7667 0.7620 0.7208 0.6703 0.5889
ko 0.0324 0.7384 0.7259 0.7227 0.6946 0.6520 0.5940
ml 0.0215 0.6995 0.6962 0.6806 0.6653 0.6103 0.5482
mr 0.0192 0.7342 0.7113 0.6959 0.6931 0.6709 0.6129
ms 0.0094 0.7493 0.7642 0.7757 0.7597 0.7902 0.7403
my 0.0276 0.3975 0.3742 0.3414 0.3658 0.2884 0.3389
nl 0.0233 0.7759 0.7663 0.7628 0.7503 0.7149 0.6662
pt 0.0170 0.7586 0.7453 0.7452 0.7394 0.7138 0.6908
ru 0.0188 0.7349 0.7264 0.7116 0.6993 0.6621 0.6095
sw 0.0118 0.7434 0.7217 0.7415 0.7210 0.7015 0.6716
ta 0.0142 0.7174 0.7021 0.6987 0.6740 0.6276 0.5759
te 0.0304 0.6803 0.6564 0.6581 0.6143 0.5424 0.4819
th 0.0004 0.3727 0.3600 0.3537 0.3266 0.3028 0.2716
tl 0.0024 0.7526 0.7777 0.7707 0.7826 0.7873 0.7679
tr 0.0254 0.7667 0.7596 0.7530 0.7354 0.7095 0.6588
ur 0.0039 0.8362 0.8343 0.8449 0.8486 0.8417 0.8412
vi 0.0090 0.7831 0.7768 0.7779 0.7734 0.7612 0.7208
yo 0.0172 0.5882 0.5532 0.5675 0.5609 0.5259 0.4841
zh 0.0017 0.6567 0.6440 0.6336 0.6146 0.5758 0.5165

means 0.0179 0.7286 0.7182 0.7149 0.7031 0.6733 0.6273
medians 0.0194 0.7564 0.7471 0.7529 0.7399 0.7135 0.6642

Table 4: F1 scores for multilingual fine-tuning on the perturbed data for various levels of sparsity without pruning
embedding layers.
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languages 0 50 70 80 90 95 98

af 0.0314 0.0058 0.0076 0.0049 0.0243 0.0239 0.0228
ar 0.0060 0.0058 0.0076 0.0104 0.0134 0.0168 0.0202
bg 0.0237 0.0048 0.0070 0.0081 0.0129 0.0219 0.0239
bn 0.0055 0.0008 0.0028 0.0013 0.0113 0.0494 0.1111
de 0.0257 0.0055 0.0145 0.0113 0.0251 0.0305 0.0234
el 0.0230 0.0035 0.0082 0.0094 0.0120 0.0152 0.0192
en 0.0143 0.0082 0.0214 0.0128 0.0398 0.0490 0.0439
es 0.0119 0.0069 0.0149 0.0146 0.0274 0.0395 0.0410
et 0.0350 0.0072 0.0110 0.0123 0.0202 0.0251 0.0233
eu 0.0207 0.0061 0.0106 0.0097 0.0224 0.0266 0.0303
fa 0.0037 0.0038 0.0037 0.0075 0.0094 0.0280 0.0357
fi 0.0390 0.0051 0.0112 0.0116 0.0190 0.0219 0.0213
fr 0.0221 0.0102 0.0190 0.0131 0.0366 0.0457 0.0436
he 0.0201 0.0029 0.0073 0.0067 0.0141 0.0212 0.0242
hi 0.0196 0.0026 0.0024 0.0096 0.0155 0.0326 0.0815
hu 0.0316 0.0058 0.0087 0.0118 0.0166 0.0182 0.0177
id 0.0118 0.0112 0.0137 0.0082 0.0149 0.0247 0.0227
it 0.0226 0.0098 0.0164 0.0147 0.0317 0.0352 0.0332
ja 0.0013 0.0021 0.0059 0.0054 0.0130 0.0144 0.0115
jv 0.0161 0.0000 0.0156 0.0000 0.0098 0.0162 0.0042
ka 0.0216 0.0037 0.0073 0.0069 0.0119 0.0172 0.0190
kk 0.0242 0.0061 0.0048 0.0148 0.0137 0.0184 0.0219
ko 0.0324 0.0058 0.0075 0.0128 0.0178 0.0261 0.0210
ml 0.0215 0.0014 0.0028 0.0034 0.0063 0.0176 0.0255
mr 0.0192 0.0022 0.0033 0.0159 0.0066 0.0141 0.0332
ms 0.0094 0.0178 0.0286 0.0295 0.0489 0.0738 0.0586
my 0.0276 0.0000 0.0130 0.0078 0.0222 0.0104 0.1038
nl 0.0233 0.0074 0.0157 0.0131 0.0284 0.0313 0.0291
pt 0.0170 0.0106 0.0181 0.0158 0.0379 0.0515 0.0532
ru 0.0188 0.0072 0.0122 0.0103 0.0249 0.0374 0.0440
sw 0.0118 0.0112 0.0137 0.0141 0.0405 0.0555 0.0798
ta 0.0142 0.0048 0.0060 0.0065 0.0171 0.0224 0.0308
te 0.0304 0.0038 0.0083 0.0117 0.0154 0.0208 0.0437
th 0.0004 0.0003 0.0010 0.0009 0.0025 0.0026 0.0034
tl 0.0024 0.0075 0.0179 0.0118 0.0437 0.0892 0.1235
tr 0.0254 0.0043 0.0063 0.0090 0.0143 0.0174 0.0167
ur 0.0039 0.0018 0.0047 0.0028 0.0137 0.0269 0.0246
vi 0.0090 0.0095 0.0234 0.0175 0.0424 0.0504 0.0491
yo 0.0172 0.0000 0.0000 0.0000 0.0083 0.0187 0.0401
zh 0.0017 0.0031 0.0098 0.0083 0.0179 0.0309 0.0304

means 0.0179 0.0054 0.0103 0.0099 0.0206 0.0297 0.0377
medians 0.0194 0.0053 0.0085 0.0100 0.0168 0.0249 0.0297

Table 5: F1 scores for multilingual fine-tuning on the perturbed data for various levels of sparsity with pruning
embedding layers.
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languages 0 50 70 80 90 95 98

en 0.8468 0.8421 0.8283 0.7987 0.7049 0.5618 0.5592
zh 0.8299 0.8262 0.8057 0.7726 0.6490 0.4759 0.4159
bn 0.9284 0.9319 0.9205 0.9130 0.8619 0.7773 0.6028
eu 0.9236 0.9179 0.9084 0.8904 0.8264 0.7209 0.6641
af 0.9044 0.8970 0.8927 0.8878 0.7944 0.6800 0.6740
hi 0.8827 0.9083 0.8643 0.8357 0.7579 0.6267 0.5863
sw 0.8617 0.8541 0.8553 0.8496 0.7554 0.7017 0.6900
te 0.7687 0.7481 0.7383 0.6859 0.4619 0.4864 0.4667
jv 0.5478 0.5044 0.4976 0.3387 0.3210 0.3883 0.4025
yo 0.7207 0.6266 0.6246 0.6387 0.5439 0.6567 0.5374

means 0.8215 0.8057 0.7936 0.7611 0.6677 0.6076 0.5599
medians 0.8543 0.8481 0.8418 0.8172 0.7302 0.6417 0.5728

Table 6: F1 scores for monolingual fine-tuning on the regular data for various levels of sparsity without pruning
embedding layers.

languages 0 50 70 80 90 95 98

en 0.8468 0.8382 0.8157 0.7828 0.6560 0.5730 0.5593
zh 0.8299 0.8255 0.7974 0.7488 0.6073 0.4329 0.4075
bn 0.9284 0.9421 0.9179 0.9033 0.8288 0.6957 0.5463
eu 0.9236 0.9189 0.9051 0.8822 0.7885 0.6631 0.6583
af 0.9044 0.8981 0.8807 0.8512 0.7464 0.6460 0.6632
hi 0.8827 0.8670 0.8612 0.8224 0.7198 0.5636 0.5977
sw 0.8617 0.8751 0.8508 0.8148 0.7158 0.6870 0.6980
te 0.7687 0.7592 0.7188 0.6253 0.4601 0.4951 0.4857
jv 0.5478 0.5123 0.5055 0.3758 0.3494 0.4369 0.2939
yo 0.7207 0.6292 0.6271 0.6480 0.5786 0.5428 0.5779

means 0.8215 0.8066 0.7880 0.7454 0.6451 0.5736 0.5488
medians 0.8543 0.8526 0.8332 0.7988 0.6859 0.5683 0.5686

Table 7: F1 scores for monolingual fine-tuning on the regular data for various levels of sparsity with pruning
embedding layers.

languages 0 50 70 80 90 95 98

en 0.0230 0.7032 0.6841 0.6570 0.5543 0.4206 0.3337
zh 0.0055 0.6551 0.6492 0.6245 0.5477 0.4262 0.2884
bn 0.0138 0.8090 0.8000 0.7783 0.7106 0.6376 0.4981
eu 0.0180 0.7938 0.7782 0.7470 0.6502 0.5274 0.3788
af 0.0271 0.8260 0.8185 0.7960 0.6921 0.5562 0.4475
hi 0.0166 0.7289 0.7094 0.6852 0.5889 0.4672 0.2965
sw 0.0214 0.7326 0.7490 0.6785 0.5173 0.4733 0.3058
te 0.0229 0.6581 0.6095 0.5602 0.3482 0.2932 0.1049
jv 0.0223 0.4165 0.3449 0.2146 0.1439 0.0000 0.0000
yo 0.0187 0.5396 0.5371 0.4288 0.3087 0.0168 0.0000

means 0.0189 0.6863 0.6680 0.6170 0.5062 0.3818 0.2654
medians 0.0201 0.7160 0.6967 0.6678 0.5510 0.4467 0.3011

Table 8: F1 scores for monolingual fine-tuning on the perturbed data for various levels of sparsity without pruning
embedding layers.
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languages 0 50 70 80 90 95 98

en 0.0230 0.0634 0.0465 0.0418 0.0401 0.0351 0.0231
zh 0.0055 0.0115 0.0160 0.0209 0.0316 0.0213 0.0101
bn 0.0138 0.0000 0.0124 0.0124 0.0009 0.0055 0.0020
eu 0.0180 0.0060 0.0116 0.0146 0.0202 0.0185 0.0249
af 0.0271 0.0013 0.0084 0.0190 0.0132 0.0197 0.0262
hi 0.0166 0.0337 0.0382 0.0104 0.0007 0.0041 0.0184
sw 0.0214 0.0092 0.0541 0.0526 0.0469 0.0576 0.0210
te 0.0229 0.0007 0.0029 0.0070 0.0016 0.0000 0.0000
jv 0.0223 0.0212 0.0074 0.0114 0.0034 0.0000 0.0000
yo 0.0187 0.0000 0.0000 0.0782 0.0526 0.0000 0.0000

means 0.0189 0.0147 0.0198 0.0268 0.0211 0.0162 0.0126
medians 0.0201 0.0076 0.0120 0.0168 0.0167 0.0120 0.0143

Table 9: F1 scores for monolingual fine-tuning on the perturbed data for various levels of sparsity with pruning
embedding layers.

Example english test sentences

Original Much construction was undertaken during this period , such as the building of Palermo Cathedral .
Perturbed Much construction was undertaken during this period , such as the building of Knott ’s Soak City .

Original It is found in Peru .
Perturbed It is found in Carbon Cliff , Illinois .

Original Alberto Mancini won in the final 7–5 , 2–6 , 7–6 , 7–5 against Boris Becker.
Perturbed John Jones ( footballer , born 1895 ) won in the final 7–5 , 2–6 , 7–6 , 7–5 against Sultan Ahmad Shah .

Original It flows from Ägerisee through Lake Zug into the Reuss .
Perturbed It flows from New Orleans through Humboldt County , Nevada into the Crow Agency , Montana .

Original The album ’s lead single “ Better Believe It ” featuring Young Jeezy and Webbie , was released on July 14 , 2009 .
Perturbed The album ’s lead single “ Better Believe It ” featuring W. S. Merwin and Empress Maria Theresa , was released on July 14 , 2009 .

Table 10: Example of test sentences for English language using the entity mention replacement (Dai and Adel,
2020) technique where an entity is randomly swapped with another entity of the same type.

Example yoruba test sentences

Original Egbé Olóèlúaráìlú àwn Aráàlù ( Nàìjíríà )
Perturbed Ilé-ìgbìm Aòfin Oníbínibí il Nàìjíríà )

Original Agbègbè Ìjba Ìbíl Wudil
Perturbed Agbègbè Ìjba Ìbíl Gúúsù-Ìwòrùn Èkìtì Wudil

Original Àgbáj àwn Oríl-èdè Aòkan
Perturbed Àkój àwn olórí ìjba il Bùrkínà Fasò Aòka .

Original Àsìá il Tufalu.
Perturbed Abdulsalami Abubakar Tufalu

Original ’ ” ’ ” j Fáráò ni gíptì Ayéijun
Perturbed ’ ” ’ ” j Yousaf Raza Gillani ni Nàìjíríà .

Table 11: Example of test sentences for Yoruba language using the entity mention replacement (Dai and Adel,
2020) technique where an entity is randomly swapped with another entity of the same type.
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