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Abstract

Commonsense generation aims to generate a
realistic sentence describing a daily scene un-
der the given concepts, which is very challeng-
ing, since it requires models to have relational
reasoning and compositional generalization ca-
pabilities. Previous work focuses on retrieving
prototype sentences for the provided concepts
to assist generation. They first use a sparse
retriever to retrieve candidate sentences, then
re-rank the candidates with a ranker. However,
the candidates returned by their ranker may not
be the most relevant sentences, since the ranker
treats all candidates equally without consider-
ing their relevance to the reference sentences
of the given concepts. Another problem is that
re-ranking is very expensive, but only using re-
trievers will seriously degrade the performance
of their generation models. To solve these prob-
lems, we propose the metric distillation rule to
distill knowledge from the metric (e.g., BLEU)
to the ranker. We further transfer the critical
knowledge summarized by the distilled ranker
to the retriever. In this way, the relevance scores
of candidate sentences predicted by the ranker
and retriever will be more consistent with their
quality measured by the metric. Experimental
results on the CommonGen benchmark verify
the effectiveness of our proposed method: (1)
Our generation model with the distilled ranker
achieves a new state-of-the-art result. (2) Our
generation model with the distilled retriever
even surpasses the previous SOTA.

1 Introduction

Commonsense reasoning is the ability to make rea-
sonable and logical assumptions about daily scenes,
which is a long-standing challenge in natural lan-
guage processing. Recently, many discriminative
tasks, such as CommonsenseQA (Talmor et al.,
2019) and SWAG (Sap et al., 2019), have been pro-
posed to evaluate the commonsense reasoning abil-
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Concepts: eye, hang, head, shut, squeeze
Reference: A man squeezes his eyes shut and hangs his head.

BART: He squeezes her head shut, then grasps her eyes shut.
Our: A baby with a blue shirt hangs his head and squeezes his eyes shut.

Table 1: Sentences generated by BART and our pro-
posed model, DKMR2.

ity by testing whether models can select the correct
answer from the choices according to the given con-
text. To test whether models acquire the generative
commonsense reasoning ability, Lin et al. (2020)
proposed the commonsense generation (Common-
Gen) task, which requires models to produce a
plausible sentence describing a specific daily life
scenario based on the given concepts.

CommonGen proposes two main challenges to
models, and it expects models to (1) reason over
the commonsense relations among concepts to gen-
erate sentences in line with our commonsense; (2)
possess the compositional generalization ability
to generate realistic sentences with unseen con-
cept compositions. Experiment results (Lin et al.,
2020) show that large-scale pre-trained models
(e.g., BART) alone is not competent for this task
(see Table 1). The main reason is that the source
information is very limited; therefore, the models
can only rely on the internal implicit knowledge
acquired during pre-training to solve this problem,
resulting in generating some sentences that violate
commonsense.

To enrich the source information, EKI-BART
(Fan et al., 2020) first retrieves prototype sentences
for the input concepts, and then feeds the concepts
and retrieved sentences into the generation model.
Recent work, such as RE-T5 (Wang et al., 2021),
KFCNet (Li et al., 2021), and KGR4 (Liu et al.,
2022), extends this retrieve-and-generate frame-
work by introducing a binary classifier to re-rank
the retrieved candidate sentences and filter out can-
didates irrelevant to the input concepts. One prob-
lem with these works is the discrepancy between
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training and re-ranking for their ranker. Concretely,
when training the ranker, they treat all retrieved can-
didate sentences as negatives, regardless of their rel-
evance to the reference sentences of input concepts.
However, during re-ranking, the ranker is asked
to point out how these candidates differ in their
relevance to references. Another problem is that
the re-ranking process of the cross-encoder ranker
is very time-consuming, which is non-negligible,
especially for online systems.

In this paper, we also resort to the retrieve-and-
generate pipeline to solve CommonGen, yet fur-
ther improve the retrieval module by alleviating
the above problems. Our motivation is to expect
that the relevance scores of candidates computed
by the ranker and retriever are in line with the gold
quality scores between candidates and reference
sentences measured with the evaluation metric. To
achieve this, we first distill the gold rank knowl-
edge of candidates measured by the metric to the
ranker. Next, we improve the retriever by transfer-
ring the metric knowledge from the distilled ranker
to the retriever rather than directly distilling it from
the metric (please refer to Section 3.3 for more ex-
planation). By doing so, the distilled ranker and
retriever can select more relevant sentences than
their counterparts without metric distillation.

The contributions of this work are summarized
as follows: (1) We propose to Distill Knowledge
from the Metric to Ranker and Retriever, termed
DKMR2, for generative commonsense reasoning,
which uses the metric-guided distillation to im-
prove the ranker and a progressive distillation strat-
egy to improve the retriever1. (2) We conduct exten-
sive experiments on the CommonGen benchmark.
Our proposed model achieves a new state-of-the-art
(SOTA) on both the v1.0 test set (43.37 vs. 39.15
on SPICE) and the official test set (v1.1) (34.589 vs.
33.911 on SPICE) of the leaderboard. (3) The per-
formance of DKMR2 with the distilled retriever is
on par with DKMR2 using the distilled ranker. As
a result, the expensive retrieve-then-rank pipeline
can be replaced with the distilled retriever at the
expense of negligible performance.

2 Problem Statement

CommonGen is a constrained text generation task,
with the goal of generating a coherent and plausi-
ble sentence s describing an everyday scenario us-

1Our code and models are available at
https://github.com/microsoft/advNLG.

ing an unordered concept set c = {c1, c2 . . . , cm}.
Therefore, this task is typically formulated to max-
imize the conditional probability of s:

p(s|c; θ) =
n∏

t=1

p(st|si<t, c; θ), (1)

where n denotes the length of the generated se-
quence s and si<t refers to the sub-sequence gen-
erated before the time step t.

3 Methodology

Following the previous work (Fan et al., 2020),
we resort to the retrieve-then-generate framework
to solve CommonGen, which mainly consists of
two modules, the retrieval module and the genera-
tion module. The retrieval module aims to retrieve
relevant sentences to assist the generation mod-
ule in generating desirable outputs. Recent work
(Wang et al., 2021; Li et al., 2021; Liu et al., 2022)
extends this idea by introducing a ranker to the
retrieval module. In this work, our retrieval mod-
ule also resorts to the retrieve-then-rank pipeline,
as illustrated in Figure 1. To be specific, the re-
trieval module mainly contains two models, the
retriever and ranker, where the retriever is used to
retrieve candidate sentences for the given concept
set and the ranker further re-ranks the retrieved sen-
tences. Different from previous work, we improve
the ranker by distilling knowledge from the gold
quality scores between the candidate sentences and
gold reference sentences computed by the evalua-
tion metric. Then, the distilled ranker will pass the
distilled knowledge to the retriever, aiming to cor-
rect the retriever’s inaccurate retrieval operations.

In Section 3.1, we first introduce the warm-up
of the retriever. Then, we will show how to distill
knowledge from the metric, in turn, to the ranker
and retriever in Sections 3.2 and 3.3, respectively.
Finally, we will show how to generate sentences
based on the retrieved sentences in Section 3.4.

3.1 Warm-up of the Retriever

We use a typical dense retrieval model (Karpukhin
et al., 2020) as the retriever. As shown in Fig-
ure 3(a) in Appendix A, the retriever is based on
the dual-encoder architecture. In this work, we
implement the retriever with two independent en-
coders, initialized with BERT. We use the hidden
state of the first token (i.e., [CLS]) at the last layer
as the representation of the input sentence. We first
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Figure 1: The pipeline of the retrieval module. Dotted, red, black and blue lines denote the ‘sample’, ‘retrieve’,
‘train’ and ‘re-rank’ processes, respectively. x and s are one paired source and target from CommonGen. S denotes
the reference sentences (s ∈ S). M is the automatic evaluation metric, used to measure the quality of the retrieved
sentence in terms of S.

use the sentence encoder Es(.) to compute the d-
dimensional dense representations for all sentences
in the external corpus D. Then, we use the concept
encoder Ec(.) to compute the dense representation
of the concept set. The similarity sim(c, s) be-
tween them is measured by the dot product of their
dense representation vectors:

sim(c, s) = Ec(c)
TEs(s). (2)

Train. During training, we warm up the dual-
encoder retriever, Retriever0, with the contrastive
loss (Chen et al., 2020):

L(c; s, s1, . . . , s
−
N )

= −log
e(sim(c,s))

exp(sim(c,s)) +
∑N

i=1 exp
(sim(c,s−i ))

,

where sim(c; s) denotes the relevance score be-
tween the concept set c and the positive sentence
s. Similarly, sim(c; s−i ) is the relevance score be-
tween c and i−th negative sentence. N refers to
the number of negative sentences.

Following DPR (Karpukhin et al., 2020), the
negative sentences consist of one hard negative and
N − 1 in-batch negatives2. We consider two sparse
retrievers to build the hard negative pool: (1) TF-
IDF: compute the similarity scores between the
sparse vectors of c and sentences in D; (2) Con-
cept matching: sort sentences in D according to
the number of concepts appearing in each sentence
in descending order. Each sparse retriever will re-
turn the top K sentences as hard negative pool P

2Note that in-batch negatives come from other positive
target sentences in a mini-batch. Therefore, N equals the
batch size in one GPU card.

for one concept set. When training Retriever0, we
randomly sample one from P as the hard negative.
Retrieve. During the retrieval stage, we first com-
pute the sentence representations for all sentences
in D with the sentence encoder Es(.). To accel-
erate the retrieval process, we build IndexFlatIP
indexes for representation vectors with the FAISS
(Johnson et al., 2019) library, which is efficient
for approximate nearest neighbor similarity search
for billions of dense vectors. We return the top K
sentences for each concept set with Retriever0 as
the candidate sentence pool P0. We find that when
training the retriever with hard negatives from con-
cept matching, P0 is more helpful to the generation
model (refer to Appendix C for more details).

3.2 Distilling Knowledge from the Metric to
the Ranker

Our ranker is based on the cross-encoder architec-
ture, as shown in Figure 3(b) in Appendix A. We
implement the ranker with BERT by putting a for-
ward layer over the hidden state of [CLS] at the
last layer. The one-dimensional output is regarded
as the similarity score between the concept set and
the candidate sentence, sim(c, s).

Previous work uses the binary cross-entropy loss
or contrastive loss to train rankers. During train-
ing, these works treat all negatives equally, without
distinguishing the differences between them, but
during the re-ranking period, they expect rankers
to tell the differences between candidate sentences.
Metric Distillation Rule. To bridge the gap be-
tween training and re-ranking, we propose the met-
ric distillation rule to distill knowledge from the
metric to the ranker. Suppose s is one positive
sentence, S is the reference sentences, s−1 and
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s−2 are two negatives for the given concept set
c. Based on an automatic evaluation metric M
(e.g., BLEU or ROUGE), the gold quality scores
of sentences are ranked like this: M(s,S) >
M(s−1 ,S) > M(s−2 ,S). We expect the order of
relevance scores measured by the ranker to be con-
sistent with the quality order measured by the met-
ric M : sim(x, s) > sim(x, s−1 ) > sim(x, s−2 ),
which is defined as the metric distillation rule3.
Train. During training, the ranker is guided by
the metric distillation rule. Therefore, the quality
scores of sentences measured by M serve as the
teacher, while the ranker is a student. To fulfill the
metric distillation rule, we resort to the ListMLE
loss (Xia et al., 2008) to optimize the ranker:

z = [sim(c, s1), . . . , sim(c, sN1)]

LListMLE = −log

N1∏

k=1

e(zok )
∑N1

i=k e
(zoi )

,
(3)

where oi is the quality order of the i-th sentence
measured by M . N1 is the number of sentences.
Re-rank. At the t-th (t ≥ 0) re-ranking stage, we
sort sentences in the candidate sentence pool Pt

with the ranker Rankert and output them into the
re-ranked candidate sentence pool P ′

t .

3.3 Distilling Knowledge from the Ranker to
the Retriever

Based on the above discussion, we can readily
find that the warm-up retriever Retriever0 also suf-
fers from the discrepancy between training and
retrieving. Intuitively, we can mitigate this prob-
lem by directly distilling knowledge from the met-
ric to the retriever in a similar way to the ranker,
yet we find that it is much better to distill knowl-
edge from the distilled ranker. In other words, the
progressive distillation path (i.e., ‘metric->ranker-
>retriever’) is superior to the direct distilling path
(i.e., ‘metric->retriever’). One possible explana-
tion for this counter-intuitive phenomenon is that
the quality distribution of candidate sentences mea-
sured by the metric is complex, but the retriever’s
learning ability is limited. In contrast, the ranker
has a stronger data fitting ability. Compared with
the gold quality distribution, the output of the dis-
tilled ranker is much smoother, making it easier for
the retriever to acquire. For ease of understanding,
we make the following analogy: a knowledgeable

3We empirically find that instructing the ranker to learn the
order knowledge is better than learning exact quality scores.

<S>     </S>  s1

Encoder Decoder

<S>      </S>  sk<S>     </S>  x  … <S>    s

Figure 2: The overview of the generator. <S> and
</S> are special tokens denoting the start and end of
a sentence, respectively. x denotes the concept set.
s1, . . . , sk are the retrieved sentences. s is the target
sentence from CommonGen.

person (e.g., a university professor or an expert
in some field) may not be a suitable teacher for
a novice (e.g., a primary school student or a be-
ginner in the field). In this case, it may be much
better to find an intermediary with strong learn-
ing ability. The intermediary first learns from the
knowledgeable person and then teaches the novice
the simplified knowledge points.
Train. During training, we distill knowledge from
the ranker to the retriever by minimizing the Kull-
back–Leibler (KL) divergence:

z = [sim(c, s1), . . . , sim(c, sN2)]

l = [sim′(c, s1), . . . , sim′(c, sN2)]

LKL = KL(z||l),
(4)

where sim and sim′ denote the similarity scores
between the concept set and candidate sentence
computed by the ranker and retriever , respectively.
N2 is the number of sentences.
Retrieve. The retrieval stage is the same with that
in Section 3.1.

3.4 Retrieval-Augment Text Generation
During generation, we select the top k sentences
from a candidate sentence pool to help the genera-
tor generate target sentences. We concatenate the
concept set and the retrieved sentences, and directly
feed them into the encoder of the generator (see
Figure 2 for the input format). During training, we
optimize the generator by minimizing the cross-
entropy loss between the predicted sentence of the
decoder and the golden sentence.

4 Experiments

4.1 Experimental Setups
Dataset. Following previous work, we conduct ex-
periments on the CommonGen dataset released by
Lin et al. (2020). Table 2 shows the basic statistics
of this dataset. As shown in Table 2, most con-
cept compositions of the validation and test sets
are unseen in training data, posing a compositional
generalization challenge to models.
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Partition Train Validation Test

#Concept Sets 32,651 993 1,497
#Sentences 67,389 4,018 6,042
Avg. Sentence Length 10.54 11.55 13.34

Unseen Concepts - 6.53% 8.97%
Unseen Concept-Pairs - 96.31% 100.00%
Unseen Concept-Triples - 99.60% 100.00%

Table 2: The basic statistics of the CommonGen dataset4.
#Concept Sets and #Sentences denote the number of
unique concept sets and sentences, respectively. The
unseen compositions refer to the ratios of unique con-
cept, concept-pair, and concept-triple without appearing
in the training set. High percentages of unseen concept
compositions enable this task to validate the generaliza-
tion ability of different models effectively.

As mentioned above, our model also needs an
external corpus. To make a fair comparison with
the previous work (Li et al., 2021), we construct
the external corpus from the same sources: Activi-
tyNet (Krishna et al., 2017), VaTeX (Wang et al.),
Conceptual Captions (Sharma et al., 2018), SNLI
(Bowman et al., 2015), and MNLI (Williams et al.,
2018). We filter out the sentences containing more
than 20 or less than four words. We also remove the
sentences that appear in the CommonGen dataset.
After filtering, about 3.8M sentences are left, which
are used as the external corpus.
Evaluation Metrics. Following Lin et al. (2020),
we resort to BLUE (Papineni et al., 2002), ROUGE
(Lin, 2004), and METEOR (Banerjee and Lavie,
2005) to measure the surface similarities between
the generated sentences and human references. In
addition, we use CIDEr (Vedantam et al., 2015) and
SPICE (Anderson et al., 2016) to evaluate the gen-
erated sentences. By comparison, these two metrics
aim to assess the correlations among mentioned
concepts rather than n-gram overlaps. Following
Li et al. (2021), we also compute the average score
across all metrics as the overall score5.
Baselines. We compare our proposed model with
two kinds of strong baselines. The first kind of
baselines is based on large pre-trained models, in-
cluding GPT-2, BERT-Gen, UniLM, BART, and T5,

4Note that # Sentences denotes the number of sentences of
the v1.0 test set. Shortly after, Lin et al. (2020) released the
second version of the test set (v1.1). Compared with the v1.0
test set, the v1.1 test set has one more human reference for
each concept set (previously 4, now 5), yet the concept sets
for all data sets are unchanged. Since the v1.1 test set is not
publicly available, we mainly show the experimental results
on the v1.0 test set.

5The official evaluation code for CommonGen is available
at https://github.com/INK-USC/CommonGen.

implemented by Lin et al. (2020). They directly fed
the concatenated concepts (e.g. “c1 c2 . . . ck”)
as input to the first four pre-trained models. As for
T5, they prepended the concatenated concepts with
a prompt and fine-tuned T5-based models on the
format “generate a sentence with c1 c2 . . . ck.”

Another kind of baseline uses external knowl-
edge to boost the performance further. KG-BART
(Liu et al., 2021) incorporates a knowledge graph
into both the encoder and decoder, which pro-
vides rich relational information among the con-
cepts. Different from KG-BART, EKI-BART, RE-
T5, KFCNet, and KGR4 apply the retrieve-and-
generate framework for CommonGen.
Implementation Details. Our implementation de-
tails are shown in Appendix B.

4.2 Experimental Results

We show our experimental results on the Common-
Gen test set in Table 3, from which we can draw
the following conclusions:
(1) Only using large-scale pre-trained models is
not sufficient to solve this task. From the top of
Table 3, we observe that simply feeding the con-
cepts into pre-trained models does not produce sat-
isfactory results. This shows that pre-trained mod-
els cannot infer the relationship among concepts
well only by relying on their internal knowledge.
(2) Using external knowledge to enrich the
source information is an effective strategy for
commonsense generation. As shown in the mid-
dle of Table 3, either using knowledge graphs or
retrieved sentences can bring clear performance
improvements, since they can provide valuable in-
formation to help the generation model to reason
the relations among concepts.
(3) Metric-guided distillation helps instruct the
ranker to retrieve more relevant candidate sen-
tences to profit generation. KFCNet is the pre-
vious SOTA, which first extracts sentences con-
taining concepts as candidate sentences and then
re-ranks them with a binary ranker. For fair compar-
isons, our proposed model, DKMR2, uses the same
external corpus and generation model as KFCNet
(we use BART-base, KFCNet uses BART-large).
The main difference comes from the retrieval mod-
ule. Concretely, DKMR2 considers the quality
scores of candidates in terms of the gold reference
sentences, which are measured by the automatic
evaluation metric, M(s,S). We train the ranker
by distilling the rank knowledge from the quality
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Models/Metrics ROUGE-2/L BLEU-3/4 METEOR CIDEr SPICE Overall

GPT-2 (Radford et al., 2019) 17.18 39.28 30.70 21.10 26.20 12.15 25.90 24.64
BERT-Gen (Bao et al., 2020) 18.05 40.49 30.40 21.10 27.30 12.49 27.30 25.30
UniLM (Dong et al., 2019) 21.48 43.87 38.30 27.70 29.70 14.85 30.20 29.44
UniLM-v2 (Bao et al., 2020) 18.24 40.62 31.30 22.10 28.10 13.10 28.10 25.93
T5-Base (Raffel et al., 2020) 14.57 34.55 26.00 16.40 23.00 9.16 22.00 20.81
T5-Large (Raffel et al., 2020) 22.01 42.97 39.00 28.60 30.10 14.96 31.60 29.89
BART-Large (Lewis et al., 2020) 22.23 41.98 36.30 26.30 30.90 13.92 30.60 28.89

KG-BART (Liu et al., 2021) 23.38 44.54 42.10 30.90 32.40 16.83 32.70 31.83
EKI-BART (Fan et al., 2020) 25.43 46.53 46.00 36.10 33.80 17.80 33.40 34.15
KFCNet (Li et al., 2021) 26.81 47.52 57.33 51.46 38.92 20.98 39.15 40.31

DKMR2 + Retriever1 28.64 48.61 68.00 62.50 44.59 24.25 42.42 45.57
DKMR2 + Ranker0 29.33 49.22 69.48 64.19 46.01 24.85 43.37 46.64

Table 3: Results of different models on the CommonGen test set (v1.0). The top of the table shows the results
of different pre-trained models (the result numbers are extracted from Lin et al. (2020)). The middle of the table
shows the results of knowledge-enhanced models (results in each row are from the corresponding cited paper).
DKMR2+Ranker0 means using the sentences returned by the distilled Ranker0 to assist generation.

Variants Distill BLEU-4 CIDEr SPICE

Retriever 55.50 21.96 39.93
Retriever

√
62.50 24.25 42.42

Ranker 60.27 23.30 42.26
Ranker

√
64.19 24.85 43.37

Table 4: Results of our generation model with candi-
dates returned by retriever or ranker with/without distil-
lation on the CommonGen test set (v1.0).

scores measured by the metric. As shown in Table
3, our proposed model, DKMR2+Ranker0, outper-
forms KFCNet on all metrics by a large margin and
achieves a new state-of-the-art result, which proves
the effectiveness of the metric distillation strategy.

4.3 Ablation Study and Analysis

In this section, we mainly test the effect of differ-
ent retrieval methods. We use different strategies
to train retrievers or rankers and then use the sen-
tences returned by them to help the BART-based
generation model produce target sentences.
Effect of the Metric Distillation. To clearly
demonstrate the impact of the metric distillation
on the retriever and ranker, we show two groups of
comparative experiments in Table 4, from which
we can see that the metric-guided distillation brings
improvements to both the ranker and retriever, espe-
cially to the retriever. For example, the distilled re-
triever (i.e., Retriever1) increases SPICE by around
2.5 points in contrast to its counterpart without
distillation (i.e., Retriever0).

More importantly, the metric distillation narrows
the performance gap between the ranker and re-

Ranker0 Variants BLEU-4 CIDEr SPICE

w/o Distillation 60.27 23.30 42.26

w/ KL 62.40 24.06 42.39
w/ ListMLE 64.19 24.85 43.37

Table 5: Results of training Ranker0 with different distil-
lation strategies on the CommonGen test set (v1.0). KL
denotes distilling all knowledge with the KL-divergence
loss. ListMLE denotes distilling the order knowledge
with the ListMLE loss.

triever. The distilled retriever is even on a par
with the distilled ranker (e.g., 42.42 vs. 43.37
on SPICE). This brings us a significant advan-
tage: when we deploy the online system, we
can replace the time-consuming retrieve-then-rank
pipeline with the distilled retriever with only neg-
ligible performance loss. In addition, we find that
one distillation step is enough for the ranker and
retriever, and we do not observe any significant
improvements in the continuous distillation steps.
Effect of Distilling the Order Knowledge. We
conduct experiments to compare the effect of differ-
ent distillation strategies used to distill knowledge
from the metric to the ranker. As shown in Table 5,
both distilling strategies outperform their counter-
part without distilling knowledge from the metric.
In addition, the ranker trained by distilling only the
order knowledge from the metric even performs
better than its counterpart distilling all knowledge.
We speculate that this may be because the quality
distribution of candidates evaluated by the metric
is too complex for the ranker to learn accurately.
In fact, learning only the order relation does not
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Retriever1 Variants BLEU-4 CIDEr SPICE

w/o Distillation 55.50 21.96 39.93

Distilling from Metric 58.54 22.76 41.04
Distilling from Ranker0 62.50 24.25 42.42

Table 6: Results of training Retriever1 with different
distillation sources on the CommonGen test set (v1.0).

DM BLEU-4 METEOR CIDEr SPICE

- 60.27 44.42 23.30 42.26
BLEU 64.19 46.01 24.85 43.37
METERO 63.00 45.15 24.36 42.64
ROUGE-2 65.15 46.29 24.88 43.18
ROUGE-L 65.03 45.97 24.85 43.24

Table 7: Results of training Ranker0 with different dis-
tillation metrics (DM) on the test set (v1.0). ‘-’ denotes
without using distillation metrics.

affect the model to pick out the best sentence from
candidates in theory, yet dramatically reduces the
learning difficulty.
Effect of the Progressive Distillation. To demon-
strate the effect of the progressive distillation
strategy for the retriever, we train the retriever
Retriever1 by (1) directly distilling knowledge from
the metric or (2) distilling from the distilled ranker.
As shown in Table 6, both distilled retrievers far
exceed the retriever without using distillation. In
addition, we also find that the progressive distilla-
tion strategy performs much better than the direct
distillation strategy.

As stated in Section 3.3, the dual-encoder
retriever has a limited learning ability since it
cannot capture fine-grained interactions between
the concepts and sentences. On the other hand,
the quality distribution of candidate sentences
measured by the metric may be too complex. In
light of these facts, directly learning from the
complex distribution may overwhelm the retriever.
Compared with the retriever, the cross-encoder
ranker has a much stronger learning ability.
Therefore, the ranker is more qualified to learn
from the metric and then transfer the learned
knowledge to the retriever. In this way, the retriever
does not need to learn all tedious details from the
metric, and only needs to acquire the critical points
summarized by the ranker, which undoubtedly
relieves the retriever’s learning burden pressure.
Effect of Distillation Metrics. In other experi-
ments, we use BLEU as the distillation metric. To
test the effect of different distillation metrics, we

Models/Metrics BLEU-4 CIDEr SPICE

Human (Upper Bound) 46.49 37.64 52.43

DKMR2 + Ranker0 44.334 19.538 34.589
DKMR2 + Retriever1 44.054 19.353 34.133
KFCNet 43.619 18.845 33.911
KGR4 42.818 18.423 33.564
RE-T5 40.863 17.663 31.079
KG-BART 33.867 16.927 29.634
EKI-BART 35.945 16.999 29.583
T5-Large 31.962 15.128 28.855
BART-Large 31.827 13.976 27.995
UniLM 30.616 14.889 27.429

Table 8: Results of different models on the CommonGen
test set (v1.1).

train the ranker with other metrics. As shown in
Table 7, all distilled rankers outperform the ranker
without distillation (row 1). In addition, rankers
distilled with ROUGE-2 and ROUGE-L have a
similar performance to the ranker distilled with
BLEU. These prove that our metric distillation
method is not limited to BLEU, and it can be easily
extended to other metrics.

4.4 Official Leaderboard Results

We also evaluate our proposed model on the offi-
cial test set (v1.1). Since the latest test set is not
publicly available, the results are obtained through
official evaluation. We select some representative
baselines from the official leaderboard6 and show
their results in Table 8. Consistent with the results
on the v1.0 test set, we again observe the follow-
ings: (1) DKMR2 with a distilled ranker achieves
a new state-of-the-art result. (2) DKMR2 with a
distilled retriever even outperforms KFCNet with
a ranker. (3) Metric-guided distillation narrows
the gap between the ranker and retriever. These
observations once again prove the effectiveness of
metric distillation.

4.5 Samples and Analysis

As shown in Table 9, we can see that the sen-
tence directly generated by BART violates our
commonsense (e.g., ‘squeezes her head shut’), in-
dicating the difficulty of this task. By comparison,
DKMR2+Ranker can generate a reasonable phrase
(e.g., ‘squeezes his eyes shut’), mainly benefiting
from the relevant information in the retrieval sen-
tences (e.g., ‘keep his eyes closed’ and ‘eyes shut’).
We also observe that the sentences retrieved by the

6https://inklab.usc.edu/CommonGen/leaderboard.html
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Concepts: eye, hang, head, shut, squeeze
Reference: A man squeezes his eyes shut and hangs his head.

BART: He squeezes her head shut, then grasps her eyes shut.

Sentences retrieved by Ranker w/o distillation: (1) He kept his eyes closed tight. (2) My eyes shut momentarily.
DKMR2 + Ranker w/o distillation: He squeezes his eyes shut and stares at the camera.

Sentences retrieved by Distilled Ranker0: (1) A baby with a blue shirt stretches while closing their eyes. (2) a little baby
closes his eyes as he has his head rubbed.
DKMR2 + Distilled Ranker0: A baby with a blue shirt hangs his head and squeezes his eyes shut.

Sentences retrieved by Retriever0: (1) Ca’daan shut his eyes tight. (2) A young girl winks by closing her right eye lid.
DKMR2 + Retriever0: Someone squeezes her head shut and stares at him with a sad expression.

Sentences retrieved by Distilled Retriever1: (1) happy laughing young casual woman with closed eyes holding the head.
(2) A baby in swaddling cloth is seen squeezing his eyes shut as he sneezes.
DKMR2 + Distilled Retriever1: A young woman with closed eyes holding the head.

Table 9: The top two sentences retrieved by different retrieval models and sentences generated by our proposed
model based on the retrieval sentences for the concepts extracted from the test set.

Models/Metrics BLEU-4 METEOR ROUGE-L

BART 19.52 24.95 46.24
BART+TF-IDF 23.41 27.48 51.02
BART+DPR 23.74 27.49 51.48
BART+Ranker 25.17 28.21 52.67
BART+Ranker0 27.29 29.58 54.51

Table 10: Results of different models on the keyword
generation test set.

distilled ranker contain richer information (e.g., ‘A
baby with a blue shirt’ and ‘has his head rubbed’),
making the generated sentence more realistic and
informative. Similarly, we also see that sentences
retrieved by the distilled retriever contain more
information than those retrieved by the retriever
without distillation. As a result, the sentence gener-
ated based on the retrieval sentences of the distilled
retriever contains the missing concept ‘head’, al-
though it conveys ‘squeezes his eyes shut’ with a
synonymous expression ‘with closed eyes’.

To summarize, both the distilled ranker and re-
triever can retrieve more relevant sentences com-
pared with their counterparts without distillation,
thus helping generate more reasonable sentences.

4.6 Experiment on Keyword Generation

Following Li et al. (2021), we further verify the pro-
posed model on the keyword generation task. This
task is meant to generate ads-relevant keywords
matching the user intent. We collect some user in-
puts and the corresponding targeted keywords from
an advertising platform. The training/dev/test set
contains 5000/1000/1000 data instances. Below is
a data instance selected from the training set:
source (user input): ‘good stock to invest now’

target: ‘what are the best stocks to invest in right
now’.

We show the experiment results on the keyword
generation test set in Table 10. BART is the ba-
sic seq2seq baseline, where we directly fine-tune
BART on the paired data. Similar to CommonGen,
the retrieval-augmented methods first retrieve some
relevant sentences from an external corpus (con-
tains about 2M sentences), and then generate the
target keywords based on the user input and the
retrieved advertisements. The following four mod-
els are retrieval-augmented: BART+TF-IDF and
BART+DPR denote BART using the data retrieved
by TF-IDF and dense passage retriever to generate
keywords. BART+Ranker means BART using the
data retrieved by DPR and then re-ranked by the
traditional ranker (i.e., KFCNet). BART+Ranker0
is our proposed method (i.e., DKMR2 + Ranker0),
where the ranker is enhanced by the metric knowl-
edge. From the above results, we can see our
proposed method clearly outperforms previous
retrieval-augmented baselines.

5 Related Work

5.1 Text Retrieval.
Text retrieval aims to retrieve relevant texts for a
given query. Traditional retrievers are implemented
using sparse vector space models, such as TF-IDF
and BM25, which have been used to retrieve the rel-
evant passages for Open-domain question answer-
ing (Chen et al., 2017). Recently, with the success
of large pre-trained models, such as BERT (Devlin
et al., 2019) and RoBERTa (Liu et al., 2019), dense
retrieval models (Karpukhin et al., 2020; Xiong
et al., 2021; Qu et al., 2021) have surpassed the
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sparse vector space models, becoming the new de
facto method. Dense passage retrievers are typi-
cally based on the dual-encoder architecture, which
allows practitioners to compute the representation
of each passage in the corpus and built indexes
for them in advance. In this way, we only need to
calculate the representation for the newly entered
query and find the closest passage to the query, thus
reducing the retrieval time.

However, dual-encoder retrievers model the
query and passage independently, thus failing to
fully capture the fine-grained interactions between
them. To solve this, BERT-based cross-encoder
rankers (Wang et al., 2019; Nogueira and Cho,
2019) are used to re-rank the retrieval passages of
retrievers. Recently, the retrieve-then-rank pipeline
has also been applied to solve CommonGen (Wang
et al., 2021; Li et al., 2021; Liu et al., 2022).
Although rankers can effectively capture the
relationships between the query and passage, the
cross-encoder architecture makes it impractical
to retrieve directly from the corpus. To alleviate
this, recent work, such as AR2 (Zhang et al.,
2022), has focused on improving the retriever
by distilling knowledge from the ranker. In this
paper, we further extend this idea by distilling the
order knowledge between the candidates and gold
references to the ranker and retriever.

5.2 Constrained Text Generation.

Constrained text generation is meant to generate
text in a controlled way, such as generating text
with the expected sentiment (Hu et al., 2017), style
(Shen et al., 2017; Fu et al., 2018), length (Kikuchi
et al., 2016; Fan et al., 2018), word definition (He
and Yiu, 2022), or topic (Ficler and Goldberg,
2017; Keskar et al., 2019). Lexically constrained
text generation is another kind of controllable text
generation, aiming to incorporate some specific
keywords into outputs. Researchers solve this
task by controlling the decoding process (Hokamp
and Liu, 2017; Post and Vilar, 2018) or refining
candidate outputs iteratively (Sha, 2020; He and
Li, 2021; He, 2021). CommonGen is related to
lexically text generation. The main differences
between them are twofold: (1) CommonGen does
not force the given keywords/concepts to appear in
outputs; (2) CommonGen proposes challenges to
the compositional generalization ability of models.

6 Conclusions

This work presents DKMR2, a novel retrieval-
augmented model for generative commonsense rea-
soning. Unlike previous work, DKMR2 enhances
the retrieval module with the guidance of the eval-
uation metric. To be concrete, DKMR2 first dis-
tills the order knowledge from the metric to the
ranker and then teaches the key points summarized
by the distilled ranker to the retriever. As a re-
sult, DKMR2 achieves the state-of-the-art results
on CommonGen. More importantly, DKMR2 nar-
rows the performance gap between the ranker and
retriever, resulting in DKMR2 with a distilled re-
triever being better than the previous baselines.

Limitations

This work mainly focuses on improving the re-
trieval module with metric-guided distillation.
There may be two possible limitations in our study.
The first concerns the model size. Given the cost of
retrieving, our retrieval module is based on the base
model of BERT. Applying our proposed method to
larger models, such as BERT-large and RoBERTa-
large, may lead to further improvement. The sec-
ond limitation is that we verify the effectiveness of
this method only on the generative commonsense
reasoning task. However, our proposed method
can also be extended to other knowledge-intensive
generation tasks, such as open-domain question an-
swering and fact verification. In the future, we plan
to use the metric-guided distillation to improve the
retrieval modules of these tasks.
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Figure 3: Illustration of the retriever and ranker used
in our model. (a) For the dual-encoder retriever, the
query and sentence are encoded independently by two
BERT-based models. (b) For the cross-encoder ranker,
the concatenated query and sentence are jointly encoded
by a BERT-based model.

A Retriever and Ranker

We show the architecture of the retriever and ranker
in Figure 3.

B Implementation Details

B.1 Retriever0
The dual-encoder retriever is initialized from the
bert-base-cased model. During the warm-up stage,
we optimize the retriever using the Adam optimizer
(Kingma and Ba, 2015) with an initial learning rate
of 2e − 5 and batch size of 1000. At this stage,
each concept set input in the batch is paired with
one positive sentence, in-batch negatives, and one
hard negative sentence (For each concept set, we
use concept matching to prepare 100 sentences
containing the most concepts as the hard negative
pool in advance. During training, we randomly
sample one sentence from the pool as the hard
negative). We evaluate the model on the validation
every epoch and select the checkpoint with the
highest Recall of top-1, i.e., R@1 (We expect to
evaluate whether the model can select the positive
sentence from the candidate sentences). As for the
retrieval period, we use the top K = 100 sentences

returned by the retriever as candidates.

B.2 Ranker0
Similar to the retriever, the ranker is also initialized
from the bert-base-cased model. During training,
we set the batch size to 80, and the learning rate to
2e− 5. When training, each concept set is paired
with one positive sentence, 10 hard negatives from
the top K = 100 candidate sentences returned by
the warm-up retriever (i.e., N1 = 11 in Equation 3).
We evaluate the ranker every 100 steps and choose
the checkpoint with the highest R@1 on the valida-
tion set. Unlike the warm-up stage of the retriever,
we only use the positive sentence during training
but discard it during evaluation. In other words,
during evaluation, the candidate pool does not con-
tain the positive one and the model is expected to
choose the negative sentence (i.e., N1 = 10) that
most resembles the reference sentences of the given
concepts.

B.3 Retriever1
During the distillation stage, we continue to fine-
tune the retriever with the guidance of the ranker.
At this stage, each concept set is paired with one
positive sentence, 10 hard negatives from the same
candidate pool with the warm-up stage (i.e., N2=11
in Equation 4), but without in-batch negatives. Dur-
ing training, the learning rate is set to 2e− 5, with
a batch size of 200. As for evaluation, we resort to
the same settings with the ranker. We use BLEU
as the distillation metric M for the ranker and re-
triever.

B.4 Generation Model
We initialize the generation model with BART-base.
We feed the top k = 2 retrieved sentences for each
concept set to BART to help generate target sen-
tences. k is searched from {1, 2, 3, 4, 5}. During
training, we fine-tune the generation model with
an initial learning rate of 3e-5 for up to 20 epochs,
and set the batch size to 400. We evaluate the
model every epoch and choose the checkpoint with
the lowest negative log-likelihood (NLL) loss on
the validation set. During inference, we run beam
search decoding with beam width = 5 and max
decoding length = 60 on the generation model.

We use the Adam optimizer with slightly differ-
ent learning rates for all models, where the learning
rate is searched from {5e− 6, 1e− 5, 2e− 5, 3e−
5, 4e− 5, 5e− 5}. We also use early stopping with
the patience of two and choose the checkpoints
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Hard Negatives BLEU-4 CIDEr SPICE

Concept Matching 55.50 21.96 39.93
TF-IDF 54.38 21.51 39.89

Table 11: Results of training Retriever0 with different
methods to create hard negative sentence on the Com-
monGen test set (v1.0).

based on their performance on the validation set
during training. We implement all models with
the HuggingFace Transformers library (Wolf et al.,
2019) and conduct all experiments on 4 NVIDIA
Tesla V100 GPUs with 32 GB memory.

C Effect of Hard Negatives on Retriever0
As stated in Section 3.1, when warming up
Retriever0, we consider two methods to create hard
negative sentences. To test their effect on the gener-
ation model, we train Retriever0 with each method
and then create candidate sentence pool P0 with the
warm-up retriever. Finally, the generation model
generates target sentences based on P0. As shown
in Table 11, the generation model performs slightly
better when using concept matching to create hard
negatives. Therefore, we resort to concept match-
ing to create hard negatives for Retriever0.
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