
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 7340–7353
December 7-11, 2022 ©2022 Association for Computational Linguistics

One size does not fit all: Investigating strategies for differentially-private
learning across NLP tasks

Manuel Senge∗ and Timour Igamberdiev∗ and Ivan Habernal
Trustworthy Human Language Technologies

Department of Computer Science
Technical University of Darmstadt

manuel.senge@web.de
{timour.igamberdiev, ivan.habernal}@tu-darmstadt.de

www.trusthlt.org

Abstract
Preserving privacy in contemporary NLP mod-
els allows us to work with sensitive data, but
unfortunately comes at a price. We know that
stricter privacy guarantees in differentially-
private stochastic gradient descent (DP-SGD)
generally degrade model performance. How-
ever, previous research on the efficiency of
DP-SGD in NLP is inconclusive or even
counter-intuitive. In this short paper, we pro-
vide an extensive analysis of different pri-
vacy preserving strategies on seven down-
stream datasets in five different ‘typical’ NLP
tasks with varying complexity using modern
neural models based on BERT and XtremeDis-
til architectures. We show that unlike stan-
dard non-private approaches to solving NLP
tasks, where bigger is usually better, privacy-
preserving strategies do not exhibit a winning
pattern, and each task and privacy regime re-
quires a special treatment to achieve adequate
performance.

1 Introduction

In a world where ‘data is the new oil’, preserv-
ing individual privacy is becoming increasingly
important. However, modern neural networks are
vulnerable to privacy attacks that could even re-
veal verbatim training data (Carlini et al., 2020).
An established method for protecting privacy us-
ing the differential privacy (DP) paradigm (Dwork
and Roth, 2013) is to train networks with differ-
entially private stochastic gradient descent (DP-
SGD) (Abadi et al., 2016). Although DP-SGD
has been used in language modeling (McMahan
et al., 2018; Hoory et al., 2021), the community
lacks a thorough understanding of its usability
across different NLP tasks. Some recent observa-
tions even seem counter-intuitive, such as the non-
decreasing performance at extremely strict privacy
values in named entity recognition (Jana and Bie-
mann, 2021). As such, existing research on the

∗Equal contribution

suitability of DP-SGD for various NLP tasks re-
mains largely inconclusive.

We thus ask the following research questions:
First, which models and training strategies pro-
vide the best trade-off between privacy and perfor-
mance on different NLP tasks? Second, how ex-
actly do increasing privacy requirements hurt the
performance? To answer these questions, we con-
duct extensive experiments on seven datasets over
five tasks, using several contemporary models and
varying privacy regimes. Our main contribution is
to help the NLP community better understand the
various challenges that each task poses to privacy-
preserving learning.1

2 Related work

Differential privacy formally guarantees that the
probability of leaking information about any in-
dividual present in the dataset is proportionally
bounded by a pre-defined constant ε, the privacy
budget. We briefly sketch the primary ideas of
differential privacy and DP-SGD. For a more de-
tailed introduction please refer to Abadi et al.
(2016); Igamberdiev and Habernal (2022); Haber-
nal (2021, 2022).

Two datasets are considered neighboring if they
are identical, apart from one data point (e.g., a
document), where each data point is associated
with one individual. A randomized algorithmM :
X → Y is (ε, δ)-differentially private if the fol-
lowing probability bound holds true for all neigh-
boring datasets x, x′ ∈ X and all y ∈ Y:

Pr

(
ln

[
Pr(M(x) = y)

Pr(M(x′) = y)

]
> ε

)
≤ δ, (1)

where δ is a negligibly small constant which
provides a relaxation of the stricter (ε, 0)-DP and
allows for better composition of multiple differen-
tially private mechanisms (e.g. training a neural

1Code and data at https://github.com/trusthlt/dp
-across-nlp-tasks

7340

www.trusthlt.org
https://github.com/trusthlt/dp-across-nlp-tasks
https://github.com/trusthlt/dp-across-nlp-tasks

model over several epochs). The above guaran-
tee is achieved by adding random noise to the out-
put of M, often drawn from a Laplace or Gaus-
sian distribution. Overall, this process effectively
bounds the amount of information that any one in-
dividual can contribute to the output of mechanism
M.

When using differentially private stochastic gra-
dient descent (DP-SGD) (Abadi et al., 2016), we
introduce two additional steps to the standard
stochastic gradient descent algorithm. For a given
input xi from the dataset, we obtain the gradient
of the loss function L(θ) at training time step t,
gt(xi) = ∇θtL(θt, xi). We then clip this gradient
by `2 norm with clipping threshold C in order to
constrain its range, limiting the amount of noise
required for providing a differential privacy guar-
antee.

ḡt(xi) =
gt(xi)

max
(

1, ||gt(xi)||2C

) (2)

Subsequently, we add Gaussian noise to the gra-
dient to make the algorithm differentially private.
This DP calculation is grouped into ‘lots’ of size
L.

g̃t =
1

L
(
∑

i∈L
ḡt(xi) +N (0, σ2C2I)) (3)

The descent step is then performed using this
noisy gradient, updating the network’s parameters
θ, with learning rate γ.

θt+1 = θt − γg̃t (4)

In NLP, several works utilize DP-SGD, primar-
ily for training language models. Kerrigan et al.
(2020) study the effect of using DP-SGD on a
GPT-2 model, as well as two simple feed-forward
networks, pre-training on a large public dataset
and fine-tuning with differential privacy. Model
perplexities are reported on the pre-trained mod-
els, but there are no additional experiments on
downstream tasks. McMahan et al. (2018) train
a differentially private LSTM language model that
achieves accuracy comparable to non-private mod-
els. Hoory et al. (2021) train a differentially pri-
vate BERT model and a privacy budget ε = 1.1,
achieving comparable accuracy to the non-DP set-
ting on a medical entity extraction task.

Only a few works investigate DP-SGD for
downstream tasks in NLP. Jana and Biemann

(2021) look into the behavior of differential pri-
vacy on the CoNLL 2003 English NER dataset
(Tjong Kim Sang and De Meulder, 2003). They
find that no significant drop occurs, even when us-
ing low ε values such as 1, and even as low as
0.022. This is a very unusual result and is as-
sessed in this work further below. Bagdasaryan
et al. (2019) apply DP-SGD to sentiment analy-
sis of Tweets, reporting a very small drop in ac-
curacy with epsilons of 8.99 and 3.87. With the
state of the art only evaluating on a limited set of
tasks and datasets, using disparate privacy budgets
and metrics, there is a need for a more general in-
vestigation of the DP-SGD framework in the NLP
domain, which this paper addresses.

3 Experimental setup

3.1 Tasks and dataset
We experiment with seven widely-used datasets
covering five different standard NLP tasks. These
include sentiment analysis (SA) of movie reviews
(Maas et al., 2011) and natural language infer-
ence (NLI) (Bowman et al., 2015) as text classi-
fication problems. For sequence tagging, we ex-
plore two tasks, in particular named entity recog-
nition (NER) on CoNLL’03 (Tjong Kim Sang and
De Meulder, 2003) and Wikiann (Pan et al., 2017;
Rahimi et al., 2019) and part-of-speech tagging
(POS) on GUM (Zeldes, 2017) and EWT (Silveira
et al., 2014). The third task type is question an-
swering (QA) on SQuAD 2.0 (Rajpurkar et al.,
2018). We chose two sequence tagging tasks, each
involving two datasets, to shed light on the surpris-
ingly good results on CoNLL in (Jana and Bie-
mann, 2021). Table 1 summarizes the data statis-
tics.

Task Dataset Size Classes
SA IMDb 50k documents 2
NLI SNLI 570k pairs 3

NER CoNLL’03 ≈ 300k tokens 9
NER Wikiann ≈ 320k tokens 7
POS GUM ≈ 150k tokens 17
POS EWT ≈ 254k tokens 17

QA SQuAD 2.0 150k questions ?

Table 1: Datasets and their specifics. ? SQuAD con-
tains 100k answerable and 50k unanswerable ques-
tions, where answerable questions are expressed as the
span positions of their answer.

7341

3.2 Models and training strategies

We experiment with five different training (fine-
tuning) strategies over two base models. As a sim-
ple baseline, we opt for (1) Bi-LSTM to achieve
compatibility on NER with previous work (Jana
and Biemann, 2021). Further, we employ BERT-
base with different fine-tuning approaches. We
add (2) LSTM on top of frozen BERT encoder
(Fang et al., 2020) (Tr/No/LSTM), a (3) simple
softmax layer on top of ‘frozen’ BERT (Tr/No),
and the same configuration with (4) fine-tuning
only the last two layers of BERT (Tr/Last2) and
finally (5) fine-tuning complete BERT without the
input embeddings layer (Tr/All).

In contrast to the non-private setup, the num-
ber of trainable parameters affects DP-SGD,
since the required noise grows with the gradi-
ent size. Therefore we also run the complete
experimental setup with a distilled transformer
model XtremeDistilTransformer Model (XDTM)
(Mukherjee and Hassan Awadallah, 2020). Details
of the privacy budget and its computation, as well
as hyperparameter tuning are in Appendix A and
B.

4 Analysis of results

As LSTM performed worst in all setups, we re-
view only the transformer-based models in de-
tail. Also, we discuss only ε of 1.0, 5.0, and ∞
(non-private) as three representative privacy bud-
gets. Here we focus on the BERT-based scenario;
a detailed analysis of the distilled model XDTM
is provided in Appendix E. Random and major-
ity baselines are reported only in the accompany-
ing materials, as they only play a minor role in
the drawn conclusions. All results are reported as
macro-F1 (averaged F1 of all classes). We addi-
tionally provide an analysis of efficiency and scal-
ability in Appendix C and an analysis on optimal
learning rates in Appendix D.

4.1 Sentiment analysis

Binary sentiment analysis (positive, negative) is a
less complex task. Unsurprisingly, all non-private
models achieve good results (Figure 1 left). More-
over, each model — except for the fully fine-tuned
BERT model Tr/All — shows only a small per-
formance drop with DP.

Why fine-tuning full BERT with DP-SGD fails?
While fully fine-tuned BERT is superior in non-

private setups, DP-SGD behaves unexpectedly. In-
stead of having more varied predictions with in-
creasing DP noise, it simply predicts everything
as negative with F1 = 0.46, even though the train-
ing data is well-balanced (see the confusion matrix
in Table 5 in the appendix). However, fine-tuning
only the last two layers (Tr/Last2) achieves F1 >
0.7. This seems to be consistent with the obser-
vation that semantics is spread across the entire
BERT model, whereas higher layers are task spe-
cific (Rogers et al., 2020, Sec. 4.3), and that sen-
timent might be well predicted by local features
(Madasu and Anvesh Rao, 2019) which are heav-
ily affected by the noise.

4.2 Natural Language Inference

As opposed to sentiment analysis, NLI results
show a different pattern. In the non-private setup,
two models including fine-tuning BERT, namely
Tr/Last2 and Tr/All, outperform other models.
This is not the case for DP training.

What happened to BERT with DP on the last
layers? Fine-tuning only the last two layers
(Tr/Last2) results in the worst performance in
private regimes, e.g., for ε = 1 (Fig. 1 right).
Analyzing the confusion matrix shows that this
model fails to predict neutral entailment, as shown
in Table 2 top. We hypothesize that the DP noise
destroys the higher, task-specific BERT layers,
and thus fails on the complexity of the NLI task,
that is to recognize cross-sentence linguistic and
common-sense understanding. Furthermore, it is
easier to recognize entailment or contradiction us-
ing some linguistic shortcuts, e.g., similar words
pairs, or dataset artifacts (Gururangan et al., 2018).

Full fine-tuning BERT (Tr/All) yields the best
private performance, as can be also seen in Table 2
bottom. This shows that noisy gradient training
spread across the full model increases robustness
for the down-stream task which, unlike sentiment
analysis, might not heavily depend on local fea-
tures, e.g., word n-grams.

4.3 NER and POS-Tagging

While the class distribution of SA and NLI is well-
balanced, the four datasets chosen for the two se-
quence tagging tasks are heavily skewed (see Ta-
bles 7 and 8 in the Appendix). Our results show
that this imbalance negatively affects all private
models. The degradation of the underrepresented
class is known in the DP community. Farrand et al.

7342

Figure 1: Macro F1 scores for non-private (ε = ∞) and two private configurations (ε ∈ {5; 1}) grouped by a
particular model (x-axis). Each column represents the score for a specific task performed by the corresponding
model. When analyzing one task (one column) in the non-private (ε=∞) setting for different models, macro F1

increases when adding fine-tuning. In DP models, no clear pattern can be observed and the best model is task
specific. A complementary task-specific chart with performance drops is shown in Fig. 3 in the Appendix.

↓ gold Entail. Contrad. Neutral

Tr
/L
as
t2 Entail. 1356 1699 313

Contrad. 1122 1780 335
Neutral 1217 1677 325

Tr
/A
ll Entail. 2832 129 407

Contrad. 272 2530 435
Neutral 375 604 2240

Table 2: Confusion matrices for ε = 1 on NLI.

(2020) explore different amounts of imbalances
and the effect on differentially private models.
Bagdasaryan et al. (2019) find that an imbalanced
dataset has only a small negative effect on accu-
racy for the underrepresented class when train-
ing in the non-private setting but it degrades when
adding differential privacy. Both NER and POS-
tagging behave similarly when being exposed to
DP, as only the most common tags are well pre-
dicted, namely the outside tag for NER and the
tags for noun, punctuation, verb, pronoun, adpo-
sition, and determiner for POS-tagging. Tables 9
and 10 in the Appendix show the large differences
in F1-scores with ε = 1.

Drawing conclusions using unsuitable metrics?
While the average of all class F1-scores (macro
F1-score) suffers from wrong predictions of un-
derrepresented classes, accuracy remains unaf-
fected. Therefore we suggest using macro F1

to evaluate differential private models which are
trained on imbalanced datasets. The difference
in accuracy-based metric and macro F1 score ex-

plains the unintuitive invariance of NER to DP in
(Jana and Biemann, 2021).

Non-private NER misclassifies prefix but DP
fails on tag type. Further inspection of the NER
results reveals that without DP, the model tends to
correctly classify the type of tag (e.g. LOC, PER,
ORG, MISC) but sometimes fails with the position
(I, B prefix). This can be seen in the confusion
matrix (Table 11 in the Appendix), examples be-
ing I-LOC very often falsely classified as B-LOC

or I-PER as B-PER. The same pattern is present
for I-ORG, and I-MISC. However, DP affects the
models’ predictions even further, as now, addi-
tionally to the position, the tag itself gets wrongly
predicted. To exemplify, I-MISC is falsely pre-
dicted as B-LOC 502 times and I-ORG as B-LOC

763 times, as can be seen in Table 12 in the Ap-
pendix.

NER is majority-voting with meaningful ε al-
ready, turns random only with very low ε. As
we sketched in the introduction, Jana and Biemann
(2021) showed that a differential private BiLSTM
trained on NER shows almost no difference in ac-
curacy compared to the non-private model. How-
ever, our experiments show that even with ε = 1,
the model almost always predicts the outside tag,
as can be seen in the confusion matrix in Table 13
in the Appendix. As mentioned before, the accu-
racy does not change much since the outside tag is
the majority label. Yet, the F1-score more accu-
rately evaluates the models, revealing the misclas-
sifications (CoNLL accuracy: 0.81 vs. F1: 0.20;

7343

Wikiann accuracy: 0.51 vs. F1: 0.1).2 Even when
choosing much smaller ε, this behavior stays the
same. We only were able to get worse results with
an extremely low privacy budget ε = 0.00837,
which renders the model just predicting randomly
(see Table 14 in the Appendix).

4.4 Question Answering
Whereas models with more fine-tuned layers im-
prove non-private predictions (Tr/No< Tr/Last2
< Tr/All), with DP, all models drop to 0.5 F1,
no matter how strict the privacy is (ε = 1, 2, 5).
We found that throughout all DP models almost
all questions are predicted as unanswerable. Since
50% of the test set is labeled as such, this solution
allows the model to reach a 0.5 F1 score.3 This
behavior mirrors the pattern observed in NER and
POS-tagging. Overall, QA is relatively challeng-
ing, with many possible output classes in the span
prediction process. For future analyses of DP for
QA, we suggest to use Squad v1, as there are no
unanswerable questions.

4.5 Performance drop with stricter privacy
While a performance drop is unsurprising with de-
creasing ε, there is no consistent pattern among
tasks and models (see Fig. 3 in the Appendix). For
instance, while the fully fine-tuned BERT model
experiences a relatively large drop for sentiment
analysis, its drop for NLI is almost negligible. The
actual choice of the model should be therefore
taken with a specific privacy requirement in mind.

5 Conclusion

We explored differentially-private training on
seven NLP datasets. Based on a thorough analy-
sis we formulate three take-home messages. (1)
Skewed class distributions, which are inherent to
many NLP tasks, hurt performance with DP-SGD,
as the majority classes are often overrepresented in
these models. (2) Fine-tuning and thus noisifying
different transformer layers affects task-specific
behavior so that no single approach generalizes
over various tasks, unlike in a typical non-private
setup. In other words, there is no one general setup
in terms of fine-tuning to achieve the greatest per-
formance for a differentially private model, con-
sidering multiple tasks. The best setting is task-

2In the non-private setup, this discrepancy remains but it
becomes obvious that a more complex model (e.g., BERT)
solves the task better.

3We used the official evaluation script for SQuAD 2.0

specific. (3) Previous works have misinterpreted
private NER due to an unsuitable evaluation met-
ric, ignoring class imbalances in the dataset.

Acknowledgements

The independent research group TrustHLT is sup-
ported by the Hessian Ministry of Higher Educa-
tion, Research, Science and the Arts. This project
was partly supported by the National Research
Center for Applied Cybersecurity ATHENE. We
thank all the reviewers who tore the paper apart but
ultimately helped us make it a much better contri-
bution.

References
Martin Abadi, Andy Chu, Ian Goodfellow, H. Bren-

dan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. 2016. Deep Learning with Differential
Privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Se-
curity, pages 308–318, Vienna, Austria. ACM.

Eugene Bagdasaryan, Omid Poursaeed, and Vitaly
Shmatikov. 2019. Differential Privacy Has Dis-
parate Impact on Model Accuracy. In Advances in
Neural Information Processing Systems 32, pages
15479–15488, Vancouver, Canada. Curran Asso-
ciates, Inc.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
632–642, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Nicholas Carlini, Florian Tramer, Eric Wallace,
Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song,
Ulfar Erlingsson, Alina Oprea, and Colin Raffel.
2020. Extracting Training Data from Large Lan-
guage Models. arXiv preprint.

Cynthia Dwork and Aaron Roth. 2013. The Algorith-
mic Foundations of Differential Privacy. Founda-
tions and Trends® in Theoretical Computer Science,
9(3-4):211–407.

Yuwei Fang, Siqi Sun, Zhe Gan, Rohit Pillai, Shuo-
hang Wang, and Jingjing Liu. 2020. Hierarchi-
cal Graph Network for Multi-hop Question Answer-
ing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Process-
ing (EMNLP), pages 8823–8838, Online. Associa-
tion for Computational Linguistics.

Tom Farrand, Fatemehsadat Mireshghallah, Sahib
Singh, and Andrew Trask. 2020. Neither Private
Nor Fair: Impact of Data Imbalance on Utility and

7344

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.18653/v1/D15-1075
https://doi.org/10.18653/v1/D15-1075
http://arxiv.org/abs/2012.07805
http://arxiv.org/abs/2012.07805
https://doi.org/10.1561/0400000042
https://doi.org/10.1561/0400000042
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.18653/v1/2020.emnlp-main.710
https://doi.org/10.1145/3411501.3419419
https://doi.org/10.1145/3411501.3419419

Fairness in Differential Privacy. In Proceedings of
the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, pages 15–19, Virtual confer-
ence. ACM.

Suchin Gururangan, Swabha Swayamdipta, Omer
Levy, Roy Schwartz, Samuel Bowman, and Noah A.
Smith. 2018. Annotation Artifacts in Natural Lan-
guage Inference Data. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers),
pages 107–112, New Orleans, LA. Association for
Computational Linguistics.

Ivan Habernal. 2021. When differential privacy meets
NLP: The devil is in the detail. In Proceedings of
the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1522–1528, Punta
Cana, Dominican Republic. Association for Compu-
tational Linguistics.

Ivan Habernal. 2022. How reparametrization trick
broke differentially-private text representation learn-
ing. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 2: Short Papers), pages 771–777, Dublin, Ire-
land. Association for Computational Linguistics.

Shlomo Hoory, Amir Feder, Avichai Tendler, Sofia
Erell, Alon Peled-Cohen, Itay Laish, Hootan
Nakhost, Uri Stemmer, Ayelet Benjamini, Avinatan
Hassidim, and Yossi Matias. 2021. Learning and
Evaluating a Differentially Private Pre-trained Lan-
guage Model. In Findings of the Association for
Computational Linguistics: EMNLP 2021, pages
1178–1189, Punta Cana, Dominican Republic. As-
sociation for Computational Linguistics.

Timour Igamberdiev and Ivan Habernal. 2022.
Privacy-Preserving Graph Convolutional Networks
for Text Classification. In Proceedings of the Lan-
guage Resources and Evaluation Conference, pages
338–350, Marseille, France. European Language
Resources Association.

Abhik Jana and Chris Biemann. 2021. An Investigation
towards Differentially Private Sequence Tagging in
a Federated Framework. In Proceedings of the Third
Workshop on Privacy in Natural Language Process-
ing, pages 30–35, Online. Association for Computa-
tional Linguistics.

Gavin Kerrigan, Dylan Slack, and Jens Tuyls. 2020.
Differentially Private Language Models Benefit
from Public Pre-training. In Proceedings of the Sec-
ond Workshop on Privacy in NLP, pages 39–45, On-
line. Association for Computational Linguistics.

Andrew L. Maas, Raymond E. Daly, Peter T. Pham,
Dan Huang, Andrew Y. Ng, and Christopher Potts.
2011. Learning Word Vectors for Sentiment Analy-
sis. In Proceedings of the 49th Annual Meeting of

the Association for Computational Linguistics: Hu-
man Language Technologies, pages 142–150, Port-
land, Oregon, USA. Association for Computational
Linguistics.

Avinash Madasu and Vijjini Anvesh Rao. 2019. Se-
quential Learning of Convolutional Features for Ef-
fective Text Classification. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5657–5666, Hong Kong,
China. Association for Computational Linguistics.

H. Brendan McMahan, Daniel Ramage, Kunal Talwar,
and Li Zhang. 2018. Learning Differentially Private
Recurrent Language Models. In Proceedings of the
6th International Conference on Learning Represen-
tations, pages 1–14, Vancouver, BC, Canada.

Subhabrata Mukherjee and Ahmed Hassan Awadallah.
2020. XtremeDistil: Multi-stage Distillation for
Massive Multilingual Models. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2221–2234, Online. As-
sociation for Computational Linguistics.

Xiaoman Pan, Boliang Zhang, Jonathan May, Joel
Nothman, Kevin Knight, and Heng Ji. 2017. Cross-
lingual Name Tagging and Linking for 282 Lan-
guages. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1946–1958, Van-
couver, Canada. Association for Computational Lin-
guistics.

Afshin Rahimi, Yuan Li, and Trevor Cohn. 2019. Mas-
sively Multilingual Transfer for NER. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 151–164, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know What You Don’t Know: Unanswerable Ques-
tions for SQuAD. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 784–
789, Melbourne, Australia. Association for Compu-
tational Linguistics.

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.
2020. A Primer in BERTology: What We Know
About How BERT Works. Transactions of the Asso-
ciation for Computational Linguistics, 8:842–866.

Natalia Silveira, Timothy Dozat, Marie Catherine De
Marneffe, Samuel R. Bowman, Miriam Connor,
John Bauer, and Christopher D. Manning. 2014. A
gold standard dependency corpus for English. In
Proceedings of the Ninth International Conference
on Language Resources and Evaluation (LREC’14),
pages 2897–2904, Reykjavik, Iceland. European
Language Resources Association (ELRA).

7345

https://doi.org/10.1145/3411501.3419419
https://doi.org/10.18653/v1/N18-2017
https://doi.org/10.18653/v1/N18-2017
https://aclanthology.org/2021.emnlp-main.114/
https://aclanthology.org/2021.emnlp-main.114/
https://doi.org/10.18653/v1/2022.acl-short.87
https://doi.org/10.18653/v1/2022.acl-short.87
https://doi.org/10.18653/v1/2022.acl-short.87
https://aclanthology.org/2021.findings-emnlp.102
https://aclanthology.org/2021.findings-emnlp.102
https://aclanthology.org/2021.findings-emnlp.102
https://aclanthology.org/2022.lrec-1.36
https://aclanthology.org/2022.lrec-1.36
https://doi.org/10.18653/v1/2021.privatenlp-1.4
https://doi.org/10.18653/v1/2021.privatenlp-1.4
https://doi.org/10.18653/v1/2021.privatenlp-1.4
https://doi.org/10.18653/v1/2020.privatenlp-1.5
https://doi.org/10.18653/v1/2020.privatenlp-1.5
https://aclanthology.org/P11-1015
https://aclanthology.org/P11-1015
https://doi.org/10.18653/v1/D19-1567
https://doi.org/10.18653/v1/D19-1567
https://doi.org/10.18653/v1/D19-1567
https://doi.org/10.18653/v1/2020.acl-main.202
https://doi.org/10.18653/v1/2020.acl-main.202
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P17-1178
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P19-1015
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.1162/tacl_a_00349
https://doi.org/10.1162/tacl_a_00349

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recog-
nition. In Proceedings of the Seventh Conference on
Natural Language Learning at HLT-NAACL 2003,
pages 142–147.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablay-
rolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharad-
waj, Jessica Zhao, Graham Cormode, and Ilya
Mironov. 2021. Opacus: User-Friendly Differential
Privacy Library in PyTorch. arXiv preprint.

Amir Zeldes. 2017. The GUM corpus: creating mul-
tilayer resources in the classroom. Language Re-
sources and Evaluation, 51(3):581–612.

A Hyperparameter tuning

For each model, hyperparametertuning is con-
ducted, and learning rates in the range of 0.1 and
10−5 are tested. The batch size is set to 32 unless
differential privacy and finetuning prohibit such a
large size due to memory consumption. If this is
the case, the batch size is reduced by a power of 2.
For the differentially private models, we obtain the
best learning rate for ε = 1 and use it for the same
model type with ε = 2 and ε = 5.

B Privacy Settings

B.1 Chosen privacy settings

As the randomized response (section 3.2 in
(Dwork and Roth, 2013)) is considered good pri-
vacy with ε = ln(3) ≈ 1.1, we conduct our exper-
iments with ε = 1. Moreover, as this work aims to
understand the behavior of differential privacy, we
additionally consider experiments with ε = 2 and
ε = 5 to vary the degree of privacy applied to the
model. Throughout all our experiments, we set δ
to 10−5.

B.2 Obtaining the privacy parameters

To achieve a specific (ε,δ)-differential privacy
guarantee, one has to carefully add the right
amount of noise to the gradient during every up-
date step. Unfortunately, it is not possible to cal-
culate the amount of noise needed to achieve a
certain (ε,δ)-differentially private model in closed-
form for DP-SGD. However, the amount of noise
only depends on the training dataset size, the num-
ber of maximum update steps, as well as δ and the
noise multiplier. Knowing these parameters, one
can estimate the resulting ε value. Exploiting this

ability, we iteratively test different sets of parame-
ters and choose the ones that most closely resem-
ble the desired ε.

To calculate the resulting ε given the parame-
ter set, we use Tensorflow Privacy. In order to
incorporate the actual privacy component to the
model, we use the Opacus library (Yousefpour
et al., 2021), specifying the amount of noise we
calculated for a given ε value with Tensorflow Pri-
vacy.

C Efficiency and scalability of
differentially private models

While the performance of a model is a crucial fac-
tor in its evaluation, one other aspect, especially
when aiming to reduce energy consumption and
development time, is gaining significance. Specif-
ically, this is the time it takes for the model to op-
timize once across all batches and then evaluate
itself against the evaluation dataset (epoch time).

A significant increase in epoch time is observed
in all experiments when training in the differen-
tially private setting. This increase is possibly re-
lated to the number of entries in the dataset. As
shown in Table 3, larger datasets such as SNLI
(570k entries) for NLI or SQuAD 2.0 (150k en-
tries) for QA present a significantly larger in-
crease in epoch time, compared to tasks trained on
smaller datasets (such as IMDb for SA (50k en-
tries), CoNLL’03 for NER (15k entries) or EWT
for POS-tagging (13k entries)).

Another possible influence on the epoch time
is number of fine-tuned parameters of the model.
When adding further fine-tuning, the increase
in epoch time tends to get larger. Through-
out all tasks shown in Table 3, a larger differ-
ence is shown for the fully fine-tuned transformer
(Tr/All), as when only fine-tuning the last two
layers (Tr/Last2). However, future work further
examining these possible correlations is necessary
for providing a clearer picture.

D Analysis of the learning rate

For non-private models, using smaller learning
rates usually leads to slower convergence towards
a local minimum. This effect can be compensated
when training for enough epochs. When consid-
ering a training process using differential privacy,
this assumption no longer holds. One reason is
that with every update step, random noise is added
to the model, or in other words, no step is exactly

7346

https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://aclanthology.org/W03-0419
https://doi.org/10.48550/arXiv.2109.12298
https://doi.org/10.48550/arXiv.2109.12298
https://doi.org/10.1007/s10579-016-9343-x
https://doi.org/10.1007/s10579-016-9343-x

Epoch time differences with and without differential privacy (DP)

Task fine-tuned Layers
of BERT base

epoch time without DP epoch time with DP difference

SA Tr/Last2 4 min 22 sec 0 h 10 min 32 sec 0 h 06 min 10 sec
SA Tr/All 9 min 07 sec 0 h 47 min 08 sec 0 h 38 min 01 sec

NER (CoNLL’03) Tr/Last2 0 min 26 sec 0 h 02 min 24 sec 0 h 01 min 58 sec
NER (CoNLL’03) Tr/All 0 min 57 sec 0 h 27 min 55 sec 0 h 26 min 58 sec

NLI Tr/Last2 13 min 15 sec 3 h 37 min 15 sec 3 h 24 min 00 sec
NLI Tr/All 22 min 32 sec 9 h 57 min 57 sec 9 h 35 min 25 sec

POS-tagging (EWT) Tr/Last2 0 min 53 sec 0 h 06 min 12 sec 0 h 05 min 19 sec
POS-tagging (EWT) Tr/All 1 min 12 sec 0 h 49 min 25 sec 0 h 48 min 13 sec

QA Tr/Last2 12 min 21 sec 1 h 57 min 43 sec 1 h 45 min 22 sec
QA Tr/All 44 min 07 sec 11 h 05 min 15 sec 10 h 21 min 08 sec

Table 3: Average epoch time during the training process for each task and two transformer fine-tuning settings
(Tr/All and Tr/Last2). Right-most column shows the difference between the differentially private and non-
private models.

towards the optimal direction. Thus, a smaller
learning rate, or more necessary steps to reach a
local optimum, increases the probability in mov-
ing in the wrong direction.

This behavior can be observed in our experi-
ments as well. When looking at Figure 2, the
macro F1 for the non-private experiments (black)
usually increases or converges when decreasing
the learning rate. However, when analyzing the
experiments with DP (red) it is notable that with
a smaller learning rate, the macro F1 score de-
creases earlier than in the setting without DP.

E Analysing XtremeDistilTransformer
Model

To compare our results and achieve a more robust
analysis, we repeated our experiments using the
same setup as before, and trained the XtremeDis-
tilTransformer Model (XDTM) (Mukherjee and
Hassan Awadallah, 2020).

E.1 Comparing both non-private models
When comparing the XDTM with BERT and
no differential privacy, we achieve similar be-
havior. It is however notable, that for SA the
XDTM/Last2 setup is much better than Tr/Last2.
Similar results can be seen for NLI where only
(Tr/No) presents better results compared to the
BERT model. Furthermore, the XDTM trained on
CoNLL fails to learn the task as it not only mis-
takes the I and B prefix, but also the tag itself.
However, when training the XDTM on Wikiann,

we can see much better performance. One reason
could be the reduced tag size (9 for CoNLL and 7
for Wikiann). When looking at POS-tagging, we
can see similar behavior for both GUM and EWT.
Here the best choice is either the XDTM/No/LSTM
or XDTM/All. Both XDTM/Last2 or XDTM/No show
significantly lower performance. This behavior
comes as a surprise, as the BERT model performs
similarly in every setting. For QA, the non-private
models are all less accurate except for XDTM with
an additional LSTM.

E.2 Differentially Private
XtremeDistilTransformer Model

When analyzing the different tasks and how the
models behave when introduced to differential pri-
vacy, we can group them into two categories.
While SA, NLI barely show a drop in macro F1,
NER on Wikiann as well as POS-tagging on GUM
and EWT display a larger drop (Wikiann: be-
tween 14% and 4%, GUM: between 73% and
19%, EWT: between 66% and 19%). Addition-
ally, as the non private model trained on CoNLL
already had very low performance, it can be ig-
nored in this analysis. We could not run QA ex-
periments because of a limited access to further
GPU compute capacity. For QA, the fully fine-
tuned XDTM almost always predicts ‘unanswer-
able’. In contrast, the XDTM with an additional
LSTM does predict spans. These predictions how-
ever, result in a worse performance of the model
(about 0.33 F1), compared to a model only pre-

7347

dicting unanswerable (about 0.5 F1).

E.3 Compare the differentially private
setting to BERT

The main difference in differentially private SA
between BERT and XDTM is that XDTM has
no significant drop for all settings. Contrarily,
BERT shows a large performance decline when
fine-tuning all layers.

When training XDTM on NLI, it shows a better
performance than the BERT model. This comes to
a surprise, as one would expect XDTM to have
a lower accuracy, since it was trained to mimic
BERT’s behavior and has less parameters.

For NER with CoNLL, on the one hand both
models show a bad macro F1, where XDTM is
about 15% worse than BERT. On the other hand,
when training the two models on Wikiann, we can
see that they are about the same if we include an
LSTM after the (XtremeDistil) BERT layer. When
omitting this extra network we can see a signifi-
cant drop (about 40%) for XDTM.

For both POS-tagging tasks, XDTM is signifi-
cantly worse than BERT, between 29% and 14%
for GUM and 40% to 14% for EWT. For QA, the
performance of the differentially-private XDTM is
about the same as for BERT. However, the addi-
tional LSTM seems to be worse for the XDTM
as for BERT. The reason is that XDTM predicts
a lot of false spans. This is not the case for
Tr/No/LSTM, as it only predicts ‘unanswerable’.

E.4 Conclusion for differential private
XtremeDistilTransformer Model

To conclude, our experiments show that using
XDTM for the tasks with differential privacy can
be useful for simple classification tasks with small
numbers of classes (such as SA or NLI). However,
if the number of classes increase (such as NER or
POS-tagging), differentially private XDTMs tend
to perform worse than BERT. It is worth mention-
ing, however, that training differentially private
XDTMs is much faster than using the full BERT
model. See table 4 for the exact difference. Ad-
ditionally, this speedup is also a direct result of
larger possible batch sizes. This is made possible
as the memory needed for these models is less than
for the full BERT model.

F Detailed tables and figures

Figure 2: Both plots display the different macro F1

scores for each model and the corresponding learning
rate. It is notable, that for the differentially private
models a smaller learning rate tends to (more quickly)
result in worse performance.

7348

1 10
0.4

0.6

0.8

1.0

SA

1 10
0.2

0.4

0.6

0.8

1.0

NLI

1 10
0.1

0.2

0.3

0.4

CoNLL

1 10
0.4

0.6

0.8

1.0

Wiki

1 10

0.2

0.4

0.6

0.8

1.0

GUM

1 10

0.4

0.6

0.8

1.0

EWT

1 10
0.4

0.6

0.8

Tr/No/LSTM
Tr/No
Tr/Last2
Tr/All

QA

Figure 3: Comparison of BERT performances (macro F1 score) per dataset with varying privacy budget ε ∈
{1, 2, 5,∞} on the x-axis (note the log scale).

1 10
0.6

0.8

1.0

SA

1 10
0.8

0.9

1.0

NLI

1 10
0.1

0.2

CoNLL

1 10
0.4

0.6

Wiki

1 10

0.2

0.4

0.6

0.8

1.0

GUM

1 10

0.4

0.6

0.8

1.0

Tr/No/LSTM
Tr/No
Tr/Last2
Tr/ALL

EWT

Figure 4: Comparison of XDTM performances (macro F1 score) per dataset with varying privacy budget ε ∈
{1, 2, 5,∞} on the x-axis (note the log scale).

Figure 5: Macro F1 scores for non-private (ε = ∞) and two private configurations (ε ∈ {5; 1}) grouped by a
particular model (x-axis) with XDTM as a base model.

7349

Runtime differences between the BERT model and the XtremeDistilTransformer Model

Task Finetuned Layers
of BERT Model

BERT
runtime without DP

XDTM
runtime without DP

difference no DP BERT
runtime with DP

XDTM
runtime with DP

difference DP

SA last 2 4 min 22 sec 0 min 21 sec 4 min 01 sec 0 h 10 min 32 sec 0 min 21 sec 0 h 10 min 11 sec
SA all 9 min 07 sec 0 min 52 sec 8 min 15 sec 0 h 47 min 08 sec 14 min 29 sec 0 h 32 min 39 sec

NER last 2 0 min 26 sec 0 min 16 sec 0 min 10 sec 0 h 02 min 24 sec 0 min 17 sec 0 h 2 min 07 sec
NER all 0 min 57 sec 0 min 25 sec 0 min 32 sec 0 h 27 min 55 sec 1 min 34 sec 0 h 26 min 21 sec

NLI last 2 13 min 15 sec 2 min 34 sec 10 min 41 sec 3 h 37 min 15 sec 3 min 36 sec 3 h 33min 39 sec
NLI all 22 min 32 sec 18 min 32 sec 4 min 00 sec 9 h 57 min 57 sec 62 min 32 sec 8 h 55 min 25 sec

EWT last 2 0 min 53 sec 0 min 16 sec 0 min 37 sec 0 h 06 min 12 sec 0 min 15 sec 0 h 06 min 03 sec
EWT all 1 min 12 sec 0 min 19 sec 0 min 53 sec 0 h 49 min 25 sec 1 min 32 sec 0 h 47 min 53 sec

QA last 2 12 min 21 sec 6 min 45 sec 5 min 36 sec 1 h 57 min 43 sec 6 min 32 sec 1 h 51 min 11 sec
QA all 44 min 07 sec 7 min 24 sec 36 min 43 sec 11 h 05 min 15 sec 53 min 35 sec 10 h 11 min 40 sec

Table 4: The difference in epoch time for the BERT and XDTM model; The time is the average epoch time during
the training process. It can be seen, that the XDTM needs a lot less time to train. There are two main reasons for
this expected behavior. (1) The XDTM is smaller, therefore, fewer parameters need to be trained. (2) The smaller
model uses less memory, therefore, a larger batch size can be used.

↓ gold Neg Pos

Neg 12497 3
Pos 12497 2

Table 5: Confusion matrix for the fully fine-tuned
BERT model Tr/All with ε = 1 on sentiment analysis.

↓ gold Neg Pos

Neg 21137 3863
Pos 3162 21838

Table 6: Confusion matrix for Tr/None/LSTM with ε =
1 on sentiment analysis.

GUM EWT
Train Test Train Test

NOUN 17,873 2,942 34,781 4,132
PUNCT 13,650 1,985 23,679 3,106
VERB 10,957 1,647 23,081 2,655
PRON 7,597 1,128 18,577 2,158
ADP 10,237 1,698 17,638 2,018
DET 8,334 1,347 16,285 1,896
PROPN 7,066 1,230 12,946 2,076
ADJ 6,974 1,116 12,477 1,693
AUX 4,791 719 12,343 1,495
ADV 4,180 602 10,548 1,225
CCONJ 3,247 587 6,707 739
PART 2,369 335 5,567 630
NUM 2,096 333 3,999 536
SCONJ 2,095 251 3,843 387
X 244 24 847 139
INTJ 392 87 688 120
SYM 156 35 599 92

Table 7: Distribution of all possible tags for POS-
Tagging

7350

CoNLL’03 Wikiann
Test Train Test Train

O 38,554 170,524 42,879 85,665
I-LOC 1,919 1,157 6,661 13,664
B-PER 0 6,600 4,649 9,345
I-PER 2,773 4,528 7,721 15,085
I-ORG 2,491 3,704 11,825 23,668
I-MISC 909 1,155 – –
B-MISC 9 3,438 – –
B-LOC 6 7,140 5,023 10,081
B-ORG 5 6,321 4,974 9,910

Table 8: Distribution of all possible tags for NER

CoNLL’03 Wikiann

O 0.98 0.86
I-LOC 0.00 0.46
B-PER 0.00 0.69
I-PER 0.67 0.57
I-ORG 0.01 0.54
I-MISC 0.00 –
B-MISC 0.00 –
B-LOC 0.00 0.44
B-ORG 0.00 0.14

Table 9: F1-scores per class for NER using the fully
fine-tuned BERT Tr/All and ε = 1. Except for the O
tag (highlighted) and I-PER, no other class is predicted
with sufficient performance on CoNLL.

GUM EWT

NOUN 0.66 0.62
PUNCT 0.85 0.87
VERB 0.64 0.72
PRON 0.65 0.72
ADP 0.73 0.80
DET 0.81 0.83
PROPN 0.17 0.16
ADJ 0.13 0.03
AUX 0.41 0.69
ADV 0.00 0.10
CCONJ 0.06 0.02
PART 0.00 0.00
NUM 0.00 0.00
SCONJ 0.00 0.00
X 0.00 0.00
INTJ 0.00 0.00
SYM 0.00 0.00

Table 10: F1-scores per class for POS-tagging using
the fully fine-tuned BERT Tr/All and ε = 1. High-
lighted rows achieve usable performance.

7351

↓ gold O B-PER I-PER B-ORG I-ORG B-LOC I-LOC B-MISC I-MISC

O 38207 26 3 47 41 19 9 66 80
B-PER 0 0 0 0 0 0 0 0 0
I-PER 17 1556 1150 23 10 15 1 1 0
B-ORG 0 0 0 0 5 0 0 0 0
I-ORG 42 27 3 1514 767 53 29 42 14
B-LOC 0 0 1 0 2 0 1 0 2
I-LOC 22 7 3 49 12 1558 232 30 5
B-MISC 0 0 0 0 0 0 0 4 5
I-MISC 51 9 3 32 9 23 4 594 183

Table 11: Confusion matrix for NER on CoNLL’03 for the fully fine-tuned BERT model. It can be seen (high-
lighted) that the model sometimes falsely predicts the position of the tag. Yet, the tag itself is mostly correctly
classified.

↓ gold O B-PER I-PER B-ORG I-ORG B-LOC I-LOC B-MISC I-MISC

O 37540 61 38 149 0 304 0 0 0
B-PER 0 0 0 0 0 0 0 0 0
I-PER 33 1057 1521 77 0 48 0 0 0
B-ORG 0 0 0 4 0 1 0 0 0
I-ORG 192 90 142 1157 9 763 0 0 0
B-LOC 0 1 2 2 0 1 0 0 0
I-LOC 58 14 38 169 0 1577 0 0 0
B-MISC 1 2 0 1 0 5 0 0 0
I-MISC 178 21 14 110 0 502 0 0 0

Table 12: Confusion matrix for NER on CoNLL’03 for the fully fine-tuned BERT model with DP (ε = 1). It can
be seen (highlighted) that the model sometimes falsely predicts the type of tag. The positional error is still present.

↓ gold O I-LOC B-PER I-PER I-ORG I-MISC B-MISC B-LOC B-ORG

O 41021 52 9 6 9 32 4 4 5
I-LOC 1935 0 1 0 0 1 0 0 1
B-PER 0 0 0 0 0 0 0 0 0
I-PER 2821 2 1 0 0 3 0 0 0
I-ORG 2524 3 1 1 0 2 1 0 0
I-MISC 1013 1 0 0 0 1 0 0 0
B-MISC 9 0 0 0 0 0 0 0 0
B-LOC 6 0 0 0 0 0 0 0 0
B-ORG 5 0 0 0 0 0 0 0 0

Table 13: Confusion matrix for NER on CoNLL’03 for the BILSTM with DP (ε = 1). It can be seen that this
model only predicts the outside tag (highlighted).

7352

↓ gold O I-LOC B-PER I-PER I-ORG I-MISC B-MISC B-LOC B-ORG

O 3464 3190 4161 21208 170 6035 722 1993 144
I-LOC 130 153 252 1032 11 243 29 84 2
B-PER 0 0 0 0 0 0 0 0 0
I-PER 234 226 348 1440 20 377 34 140 3
I-ORG 271 184 310 1161 9 430 39 115 8
I-MISC 76 73 100 561 4 132 17 49 3
B-MISC 1 0 1 4 0 0 0 3 0
B-LOC 0 1 1 4 0 0 0 0 0
B-ORG 2 0 0 2 0 0 0 1 0

Table 14: Confusion matrix for NER on CoNLL’03 for the BILSTM with DP (ε = 0.00837). It can be seen that
with this much privacy the model only randomly chooses tags (highlighted).

7353

