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Abstract

In a citation graph, adjacent paper nodes share
related scientific terms and topics. The graph
thus conveys unique structure information of
document-level relatedness that can be utilized
in the paper summarization task, for exploring
beyond the intra-document information. In this
work, we focus on leveraging citation graphs to
improve scientific paper extractive summariza-
tion under different settings. We first propose
a Multi-granularity Unsupervised Summariza-
tion model (MUS) as a simple and low-cost so-
lution to the task. MUS finetunes a pre-trained
encoder model on the citation graph by link
prediction tasks. Then, the abstract sentences
are extracted from the corresponding paper con-
sidering multi-granularity information. Prelim-
inary results demonstrate that citation graph is
helpful even in a simple unsupervised frame-
work. Motivated by this, we next propose a
Graph-based Supervised Summarization model
(GSS) to achieve more accurate results on the
task when large-scale labeled data are available.
Apart from employing the link prediction as an
auxiliary task, GSS introduces a gated sentence
encoder and a graph information fusion mod-
ule to take advantage of the graph information
to polish the sentence representation. Experi-
ments on a public benchmark dataset show that
MUS and GSS bring substantial improvements
over the prior state-of-the-art model.

1 Introduction

Text summarization is to automatically glean the
most important concepts from an article, removing
secondary or redundant concepts. Among various
summarization tasks such as news summarization
(Wang et al., 2020), dialog summarization (Zhang
et al., 2021), and timeline summarization (Chen
et al., 2019), scientific paper summarization re-
mains a challenging task, since scientific papers
are usually longer, and full of complex concepts
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Target paper abstract:
...we propose a multi-granularity interaction network for extractive 
and abstractive multi-document summarization... 
We employ attention mechanisms to interact between different 
granularity of semantic representations...
Our proposed model outperforms all strong baseline methods...

Paper 1 abstract: 
...We propose a unified model combining the strength of extractive 
and abstractive summarization...
Paper 2 abstract:
...we propose HIBERT (HIerachical Bidirectional Encoder 
Representations from Transformers)...
Paper 3 abstract:
... Our empirical analysis shows state-of-the-art performance on 
several multi document datasets.
Paper 4 abstract:
...The Hidden Markov Model (HMM) for part-of-speech (POS) tagging 
is typically based on tag trigrams...
Paper 5 abstract:
...Paraphrase recognition is used in a number of applications such as 
tutoring systems...
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Figure 1: A small research community on the subject
of text summarization. Arrows denote citation relation-
ships. Sentences with shared domain-specific terms are
highlighted by the same color (best viewed in color).

and domain-specific items in specific fields (Cohan
et al., 2020; An et al., 2021).

Existing works on extractive scientific paper
summarization mainly focus on utilizing intra-
document relationships. For example, Xiao and
Carenini (2019) divided papers into sections and
incorporated the global and local context for extrac-
tive summarization. Dong et al. (2021b) proposed
an unsupervised graph-based ranking model, which
assumes a hierarchical graph representation of the
scientific papers. However, the effectiveness of the
citation graph in extractive summarization tasks is
left to be explored.

In the citation graph domain, nodes are inher-
ently linked and dependent on each other. Corre-
spondingly, we assume that a good scientific paper
abstract should be able to capture this structural in-
formation. Figure 1 demonstrates this intuition. A
good paper abstract of the query paper is more rel-
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evant to the directly cited paper 1, 2, and indirectly
cited paper 3 by sharing domain-specific terms, and
not relevant to paper 4 and 5 that are far from it in
the citation graph.

Based on this observation, we first propose
a Multi-granularity Unsupervised Summarization
(MUS) as a light solution to the task without the
requirement of rich supervision information. MUS
first finetunes a pre-trained encoder model on the
citation graph to obtain better sentence and docu-
ment representations by solving a link prediction
task. Then, MUS transforms the citation graph into
a multi-granularity graph. Sentences are then ex-
tracted considering the multi-granularity position-
aware centrality. Experimental results demonstrate
that citation graph information can enhance the
summarization even by this simple unsupervised
framework.

Motivated by this, we further propose a Graph-
based Supervised Summarization model (GSS)
to achieve more accurate results for the scenario
where large-scale labeled data is feasible. Firstly,
a graph neural network encoder based on a pre-
trained language model is employed to obtain sen-
tence representations for the target document and
document representations for related papers in the
citation graph. Secondly, we propose a gated sen-
tence encoder that polishes the sentence represen-
tations based on their relatedness to the document
gist. Then, a graph information fusion module is
utilized to incorporate the information from refer-
ence papers to the polished sentence representa-
tions. Finally, a multi-task framework is applied to
the model, which jointly assigns selection weights
to extract abstracts and predicts whether there ex-
ists an edge between two nodes. Under the super-
vision setting, the graph information gives stronger
guidance in two ways. In one way, we employ the
link prediction task on the graph to obtain better
document representation, and in the other way, the
document representation is used to polish sentence
representations. Results show that our model sig-
nificantly surpasses the prior state-of-the-art model
by on public benchmark dataset.

Our contributions can be summarized as follows:
• Our work demonstrates the effectiveness of ci-

tation graph modeling in scientific paper extractive
summarization.
• We propose an unsupervised summarization

model MUS and a supervised model GSS, both
of which learn from the citation graph structure to

achieve better summarization.
• We bring new state-of-the-art unsupervised

and supervised performance on a public scientific
summarization dataset. We release our code for
further research.

2 Related Work

Extractive summarization aims to generate a sum-
mary by integrating the salient sentences in the
document. Traditional extractive summarization
methods are mostly unsupervised, which directly
select sentences based on explicit features or graph-
based methods. Unsupervised methods can save
a lot of manual work and expenses since it does
not demand labeled data. More recently, benefiting
from the success of neural sequence models and
large-scale datasets, neural network-based super-
vised summarization models have been proposed
(Gao et al., 2019, 2020). More recetly, Liu and
Lapata (2019) and Xu et al. (2020) showcased how
pre-trained models can be applied in extractive text
summarization tasks. These models often achieve
better performance since labeled data is provided.

Research on summarizing scientific articles has
been studied for decades (Nenkova and McKe-
own, 2011). In the unsupervised domain, Cohan
and Goharian (2015) proposed to extract citation-
contexts from citing articles, which does not help
draft an abstract when the paper has not been cited
yet. Dong et al. (2021b) came up with an unsu-
pervised graph-based ranking model for extractive
summarization. As for supervised methods, Subra-
manian et al. (2019) performed an extractive step
before generating a summary, which is then used
as guidance for abstractive summarization. Xiao
and Carenini (2019) incorporated both the global
context and local context to summarize papers.

Early approaches for extractive summarization,
such as LexRank and TextRank (Mihalcea and Ta-
rau, 2004), have taken advantage of graph struc-
tures with inter-sentence cosine similarity. As for
the neural-based approaches, Koncel-Kedziorski
et al. (2019) designed a graph attention-based trans-
former encoder to generate a summary with the
help of knowledge graphs extracted from scien-
tific texts. Graph modeling is also explored in ab-
stractive summarization. For example, An et al.
(2021) proposed a citation graph-based summa-
rization model which incorporates inter-document
information of the source paper and its references.
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Example of a multi-granularity graph for unsupervised summarization on a
toy scholar dataset that contains four papers (Paper 1,2, and 4 is cited by
paper 4).
We select sentence 2 in paper 3 as the centered node to denote the
multiple granularities (sentence-to-sentence, sentence-to-section, and
sentence-to-paper). 

Figure 2: Example of a multi-granularity graph for un-
supervised summarization (paper 1,2, and 4 are cited by
3). We select sentence 2 in paper 3 as the centered node
to denote the multiple granularities (sentence-sentence,
sentence-section, and sentence-document).

3 Problem Formulation

We define a citation graph on the whole dataset,
which contains scientific papers and citation rela-
tionships. Each node represents a scientific pa-
per in the dataset, and each edge indicates the
citation relationship between two papers. Each
paper in the graph consists of a list of sentences
s = {s1, ..., sTs}, where Ts is the number of sen-
tences in the document. Our model aims to gen-
erate a score vector y = {y1, ..., yTs} for each
sentence, where each score yi ∈ [0, 1] denotes the
sentence’s extracting probability. For the unsuper-
vised model, the model outputs the y score without
supervision. For the supervised model, we anno-
tate the given sentences by a gold label vector y′.
During the training process, the cross-entropy loss
is measured and minimized between y and y′.

4 Multi-granularity Unsupervised
Summarization Model

In this section, we propose our Multi-granularity
Unsupervised Summarization model (MUS). MUS
combines a finetuned pre-trained encoder with a
multi-granularity model on the citation graph.

4.1 Finetuned SciBERT Encoder
SciBERT (Beltagy et al., 2019) is a pre-trained
language model which leverages unsupervised pre-
training on scientific publications. However, differ-
ent from plain text, in the citation graph domain,
papers are inherently linked and dependent on each
other, which provides rich information that enables
us to design pretext tasks such as graph structure
prediction (Jin et al., 2020b). Hence, we exploit
a type of graph-level distributional hypothesis to
finetune SciBERT, which is to predict whether or

not there exists a link between a given node pair.
In particular, each training instance is a triplet of
papers: the query paper d, a positive paper d+ and
a negative paper d−. The positive paper is a paper
that the query paper cites, and the negative paper
is a paper that is not cited. The query paper rep-
resentation d is taken as the average of sentence
representations in the document, and other paper
representations d+ and d− are the averages of sen-
tences in the abstract. We train the model using
contrastive learning:

L = − log sim(d,d+)− log[1− sim(d,d−)], (1)

where sim is the cosine distance function. The ob-
jective is to distinguish adjacent papers from other
papers in the corpus, and the encoder is pushed to
capture the meaning of the intended paper in order
to achieve that. If the document representations
can be used to correctly predict a link, then these
representations are of good quality, and so are the
sentence representations that form the document
representations.

4.2 Multi-granularity Graph

MUS is a graph-based summarization framework
(Mihalcea and Tarau, 2004), where sentence nodes
with higher centrality are more likely selected in
the abstract. We not only consider intra-document
sentence centrality in the graph, but also consider
inter-document sentence centrality (see Figure 2).

First, to model the local importance of a sentence
within its section, we create a fully-connected sub-
graph for each section, where we allow sentence-
sentence edges for all sentences. The importance
of a sentence si is determined by the sum of
edge weights connecting si to other sentences:
asen
i =

∑nsen
j=1 e

sen
ij . Each edge weight esen

ij is de-
fined by:

esen
ij =

{
λ1 ∗ sim(si, sj), if bi < bj
λ2 ∗ sim(si, sj), if bi ≥ bj

(2)

where bi measures the boundary position of si
among nsen sentences in the section: bi =
min(loci, nsen − loci). loci is the location index
of si in this section. The closer the sentence is to
the section boundary, the lower boundary score it
will have. The definition of esen

ij , with hyperparam-
eters λ1 < λ2, reflects two principles on measuring
sentence local importance. Firstly, a sentence that
is similar to a greater number of other sentences in
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the same section should be more important (Mihal-
cea and Tarau, 2004), incorporated by measuring
sim(si, sj) on two sentence embeddings. Secondly,
sentences with crucial information are more likely
to appear in the start and end sentences of a text
span (Lin and Hovy, 1997; Teufel, 1997), operated
by applying a larger λ2 when bj is small (bi ≥ bj).

Next, we measure the global importance of a
sentence si with respect to nsec sections in the doc-
ument based on the weights of section-sentence
edges:

asec
i =

∑nsec
r=1 e

sec
ir , (3)

esec
ir =

{
λ1 ∗ sim (si,or) , if b̂k < b̂r
λ2 ∗ sim (si,or) , if b̂k ≥ b̂r

(4)

where or is the representation of r-th section node,
which is initialized by the average pooling of sen-
tence representations. We use k to denote the index
of the section sentence si belongs to. b̂ is calcu-
lated similarly to b, but on section level. A section
with a lower b̂ score is closer to the boundary of the
document and will have a higher edge weight. Note
that we only allow section-sentence edges instead
of sentence-sentence across different sections for
efficiency sake.

Last, we model the interaction between docu-
ments by the distance between the sentences in the
target document d and the reference document d+:

adoc
i =

∑
d+ edoc

i+ =
∑

d+ sim(si,d
+). (5)

4.3 Importance Calculation
The overall importance of a sentence si is com-
puted as the weighted sum of its multi-granularity
centrality scores: ci = µ1a

sen
i + µ2a

sec
i + µ3a

doc
i ,

where µ1, µ2, µ3 are weighting factors set for cen-
tralities of different granularity.

5 Graph-based Supervised
Summarization Model

We then introduce a Graph-based Supervised Sum-
marization model (GSS), which uses the graph
structure to extract abstracts under supervision, as
shown in Figure 3.

5.1 Graph Encoder
We propose a graph encoder that is built on the pre-
trained SciBERT encoder. We first use SciBERT
to obtain sentence representation si and document
representation d0 similar to MUS. Then, we em-
ploy GraphSAGE (Hamilton et al., 2017) to update
the contextual representation of each paper:

Graph 
Encoder

Summary ExtractionLink prediction Augment

Citation graph

MLP

Sent1 Sent2 Sent3

?

?

?

?

x K

Gated Sentence Encoder

Graph 
Information Fusion

Figure 3: Graph-based supervised summarization
model.

dl+1 = aggregate
({

dl
j ,∀dj ∈ N (d)

})
, (6)

d̃l+1 = σ
(
Wv · [dl,dl+1]

)
, d̂l+1 = d̃l+1/||d̃l+1||2, (7)

where N (d) is the reference documents of the tar-
get paper, [, ] denotes the concatenation operation,
l is the layer index, and aggregate is the differen-
tiable aggregator function. For brevity, we denote
the final output for the document as d̂.

5.2 Gated Sentence Encoder

Previous works show that document-level infor-
mation can be useful for extractive summarization
(Wang et al., 2020; Jin et al., 2020a). Hence, we
propose a gated sentence encoder, which polishes
the sentence representation si in the target paper
under the guidance of the target document d̂.

Our gated encoder is based on a modified ver-
sion of GRU that takes sentences as inputs. The
update gate vector zi in GRU only takes the sen-
tence representation as input, without considering
document level information. To this end, we pro-
pose a new reading gate gi. The calculation of gi
takes in two inputs, the sentence representation and
the document representation, to highlight the input
texts which heavily correlate with the document
gist:

fi =
[
si ◦ hi; si; d̂

]
, (8)

Fi = Wb tanh (Wafi + ba) + bb, (9)

gi =
exp(Fi)∑Ts

k=1 exp(Fk)
, (10)

hi+1 = gi ⊙ ĥi + (1− gi)⊙ hi, (11)
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where Ts is number of sentences in the document.
This gated reading process is a multi-hop pro-

cess and we use superscript k to denote the hop
index. After each sentence passes through the se-
lective reading module, we wish to update the docu-
ment representation d̂k with the newly constructed
sentence representations. We use a GRUupd cell
to generate the polished document representation,
whose input is the final state of the gated network
from the previous hop: d̂k+1 = GRUupd(h

k
Ts
, d̂k).

The final output of sentences is obtained with an
additional residual layer sfinal

i = hK
i + si.

5.3 Graph Information Fusion

In this subsection, we update the sentence represen-
tations by paying attention to its cited documents.
The intuition is that, in practice, researchers usu-
ally write an abstract of a paper by referring to the
related papers. We thus apply a graph informa-
tion fusion module, which performs Multi-Head
Attention (MHA) (Vaswani et al., 2017) across the
polished sentence representations sfinal

i and m ran-
domly sampled cited paper representations d̂k to
obtain the global sentence representation âi, where
the query is sfinal

i , and key and value are d̂k.

5.4 Link Prediction

In a supervised learning setting, the intuition that
good sentence representation can help link predic-
tion still holds. What is more, good document
representations can help polish the sentence rep-
resentations as introduced in the gated sentence
encoder. Hence, we employ link prediction as an
auxiliary task, which predicts whether there is an
edge between the i-th and the j-th document based
on representations from the graph encoder module.
Details are similar to the setting in MUS, with loss
function defined in Equation 1.

Finally, we build a classifier to select sentences
based on the sentence representations âi: yi =
σ (âiWo + bo).

6 Experimental Setup

6.1 Dataset

We evaluate our model on a Semantic Scholar
Network dataset (SSN), proposed by An et al.
(2021). SSN has two versions, i.e., SSN (inductive)
and SSN (transductive). For SNN (transductive),
6,250/6,250 papers are randomly chosen from the
whole dataset as test/validation sets, and the remain-
ing 128,299 papers are employed as the training set.

On the contrary, SNN (inductive) splits the whole
citation graph into three independent subgraphs,
considering that in real cases, the test papers may
form a new graph that has no overlap with the train-
ing dataset. The training/validation/test graphs in
the inductive setting contain 128,400/6,123/6,276
nodes and 603,737/17,221/14,515 edges, respec-
tively.

6.2 Comparison Methods
To evaluate the performance of our proposed mod-
els, we compare them with the following unsuper-
vised summarization and supervised summariza-
tion baselines.
Unsupervised summarization baselines:
(1) LEAD: extracts the first L (depending on
the number of sentences in the reference ab-
stract) sentences from the source document. (2)
PACSUM (Zheng and Lapata, 2019): revisits the pop-
ular graph-based ranking algorithm and modifies
how node (sentence) centrality is computed. (3)
HipoRank (Dong et al., 2021a): leverages posi-
tional and hierarchical information grounded in
the discourse structure to augment a document’s
graph representation.
Supervised summarization baselines:
(1) BertSumEXT (Liu and Lapata, 2019): the ex-
tractive summarization model with BERT as the
encoder. (2) MGSum-ext (Jin et al., 2020a): the ex-
tractive multi-document summarization baseline,
which extracts sentences from both the document
and the abstracts of the reference papers. We in-
corporate this baseline to see if sentences from the
reference papers are useful. (3) EMSum (Zhou et al.,
2021): the abstractive multi-document summariza-
tion model, which takes the paper with references
as multiple input documents. (4) CGSum (An et al.,
2021): the abstractive summarization baseline with
citation graph as input, which is also the paper that
proposes the SSN dataest. (5) HSG (Wang et al.,
2020): the heterogeneous graph-based neural net-
work for extractive summarization.

6.3 Implementation Details
For both supervised and unsupervised settings,
we implement our experiments in Pytorch on an
NVIDIA V100 GPU. Following An et al. (2021),
for all models and baselines, we truncate the input
document to 500 tokens. For the link prediction
task, we sample 5 negative samples for each posi-
tive example to approximate the expectation. For
unsupervised models, the batch size is set to 2 (the
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Models
SSN (inductive) SSN (transductive)

RG-1 RG-2 RG-L BERTSCORE QuestEval RG-1 RG-2 RG-L BERTSCORE QuestEval

oracle ext 51.04 23.34 45.88 - - 50.12 23.31 45.29 - -

Unsupervised methods
LEAD 28.29 5.99 24.84 82.22 31.74 28.30 6.87 24.93 82.11 30.52
TextRank 36.36 9.67 32.72 83.53 31.94 40.81 12.81 36.47 83.75 32.07
PACSUM 37.74 9.52 34.74 83.70 32.01 40.83 12.16 36.81 83.93 32.13
HipoRank 40.37 11.98 36.58 84.27 32.23 40.56 12.36 36.83 84.07 32.58
MUS 43.89 13.07 39.04 86.26 34.19 42.93 12.85 38.76 85.13 33.90

Supervised methods
BertSumEXT 44.28 14.67 39.77 86.58 34.24 43.23 14.59 38.91 85.33 34.05
MGSum-ext 45.49 14.87 40.22 86.91 34.66 43.30 14.57 39.24 85.55 34.23
EMSum 44.06 14.54 39.49 86.49 34.21 43.03 14.43 38.74 85.39 34.09
CGSum 44.28 14.75 39.76 86.50 34.59 43.45 14.71 38.89 85.86 34.51
HSG 45.46 15.08 40.62 86.71 34.90 44.84 15.35 39.72 86.04 34.62
GSS 47.71 16.78 42.04 88.90 35.68 46.52 16.57 41.85 87.60 35.64

MUS ablation models
w/o finetune 43.51 12.89 38.59 85.82 33.78 42.43 12.35 38.58 84.59 33.50
w/o position 43.61 13.04 38.83 85.89 33.82 42.62 12.64 38.74 84.66 33.78
w/o sentence level 43.08 12.74 38.36 85.53 33.44 42.29 12.58 38.32 84.42 33.46
w/o section level 43.31 12.82 38.87 85.62 33.68 42.58 12.66 38.56 84.62 33.71
w/o document level 42.53 12.11 37.55 85.17 33.05 41.76 11.80 37.06 84.34 33.08

GSS ablation models
w/o encoder 46.75 16.21 41.17 87.20 35.08 45.57 15.97 40.73 86.86 35.09
w/o gated 46.92 16.13 41.66 87.85 35.23 45.86 15.61 40.75 86.92 35.36
w/o fusion 47.23 16.24 41.78 88.49 35.53 46.17 16.27 41.57 87.44 35.33
w/o multi 47.06 16.17 41.44 88.22 35.47 46.08 16.33 41.49 87.26 35.28

Table 1: ROUGE scores comparison between our models, ablation models, and baselines. All our ROUGE scores
have a 95% confidence interval of at most ±0.23.

maximum that fits in our GPU memory). λ1 is set
to 0.9, λ2 is 1.0, µ1, µ2, µ3 are set to 0.4, 0.1, 0.5,
respectively, based on the performance on valida-
tion dataset. For the supervised models, we use
batch size 16 and limit the input ground truth ab-
stract length to 150 tokens. The sample number in
the graph information fusion module is also set to 5.
The iteration number in the gated sentence encoder
is 3, and the aggregate function is set to the mean
operator. We use Adam optimizer (Kingma and Ba,
2014). We select the best checkpoint based on the
RG-L score on the validation set.

7 Experimental Results

7.1 Overall Performance
Automatic evaluation. we evaluate summariza-
tion quality by standard ROUGE-1, ROUGE-2, and
ROUGE-L (Lin, 2004) on full-length F1. We then
use BERTSCORE (Zhang et al., 2020) to calculate
a similarity score between the summaries based on
their BERT embeddings. We also evaluate with
the latest factual consistency metrics, QuestEval
(Scialom et al., 2021), which considers not only fac-
tual information in the generated summary, but also
the most important information from the reference.

Table 1 shows the results on SSN (inductive)
and SSN (transductive). As can be seen, in the first
block, among unsupervised baselines, hierarchi-
cal and directional graph-based baselines PACSUM
and HipoRank achieve better performance than the

classic undirectional baseline TextRank, indicating
that more comprehensive structure information is
stored in the plain text. Our model MUS achieves
significantly better performance compared with the
two latest baselines by large margins, which ver-
ifies our basic assumption that citation graph is
helpful in scientific paper summarization.

The second block in Table 1 reports results of
the latest supervised baselines and our GSS. Gener-
ally, extractive methods obtain better performance
than abstractive baselines. This demonstrates that
scientific corpus tends to use existing words and
phrases to form the abstracts instead of using new
phrases. Secondly, it can be seen that pretrained
models (BertSumEXT) and graph structure inside
the document (HSG) can bring improvements to
the vanilla extraction framework. We also find
that incorporating sentences from reference papers
cannot increase the oracle score and model perfor-
mance (MGSum). This is also intuitively understand-
able, since sentences from other papers may not be
matchable to the current paper. Finally, our GSS
model can make new state-of-the-art performance
with the help of citation graph information.

Human evaluation. We also assessed the gen-
erated results by eliciting human judgments on 40
randomly selected test instances. Our first evalua-
tion quantified the degree to which summarization
models can retain the key information following a
question-answering paradigm (Chen et al., 2021).
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Model QA(%) Info Coh Succ

Unsupervised models methods
PACSUM 30.8 2.12 2.14 2.18
HipoRank 36.2 2.20 2.25 2.24
MUS 41.4▲ 2.54▲ 2.47▲ 2.32▲

Supervised models methods
MGSum-ext 32.9 2.18 2.15 2.20
HSG 38.3 2.37 2.40 2.33
GSS 46.8▲ 2.62▲ 2.51▲ 2.42▲

Table 2: Comparison of human evaluation in terms of
QA task, informativeness (Info), coherence (Coh) and
succinctness (Succ). ▲denotes the improvement to the
best baseline is statistically significant (t-test with p-
value < 0.01).

We created 94 questions based on the gold abstract
and examined whether participants were able to
answer these questions by reading generated ab-
stracts. The questions are written and chosen by
two PhD students together. Our second evalua-
tion assessed the overall quality of the abstracts by
asking participants to score them by taking into ac-
count the following criteria: Informativeness (Info),
Coherence (Coh), and Succinctness (Succ). Both
evaluations were conducted by another three PhD
students independently. The rating score ranges
from 1 to 3, with 3 being the best, and a model’s
score is the average of all scores. Participants eval-
uated abstracts produced by baselines that achieved
better performance in automatic evaluations.

As shown in Table 2, participants overwhelm-
ingly prefer our model against comparison systems
across datasets. The kappa statistics are 0.42, 0.51,
and 0.43 for Info, Coh, and Succ, respectively, indi-
cating the moderate agreement between annotators.
We give a selected case in Table 3, where our gen-
erated abstract captures most key concepts in the
gold abstract and summarizes the contribution of
the paper in logic under the guidance from refer-
ences.

Ablation study. We also perform ablation stud-
ies to investigate the influence of different modules
in our proposed models. For unsupervised MUS,
we remove the finetuning process on SciBERT,
the position-aware weight, and, the sentence-level
weight, the section-level weight, and the document-
level in the multi-granularity graph during the im-
portance calculation stage. The third block in Ta-
ble 1 presents the results. Specifically, RG-L score
drops on both datasets after the sentence level, the
section level, and the document level granularity
are removed, indicating that multi-granularity in-

[0] [1 2] [3 4] [5 6] [7 8] [9 + ]
Number of Cited Papers

28
29
30
31
32
33
34
35
36

R

GSS
HSG
MUS
HipoRank

Figure 4: Relationships between the number of the cited
papers in each ease (X-axis) and R (the average of RG-1,
RG-2 and RG-L) of four models. Best viewed in color.

formation helps the model identify important sen-
tences during the unsupervised phrase.

For supervised GSS, modules are tested in three
ways: (1) we first remove the graph encoder and
directly use the average of sentence representations
as the document representation; (2) we remove the
gated sentence encoder; (3) we remove the graph
information fusion module; and (4) we remove the
link prediction task so that the multi-task frame-
work becomes a single task. The results are shown
in the final block of Table 1. The performances
of these models are worse than that of GSS in all
metrics, demonstrating the effectiveness of GSS.
Specifically, graph encoder improves GSS by 1.12
RG-L and 0.74 BERTSCORE on SSN (transduc-
tive), demonstrating that adjacent information in
the citation graph helps summarization in the target
paper.

7.2 Further Discussion
Impact of the Number of Cited Papers. We fur-
ther explore the impact of the number of cited pa-
pers in a target paper on the model performance.
We divide SSN (inductive) test set into six groups
according to the number of cited papers per tar-
get paper. As shown in Figure 4, the performance
of HipoRank and HSG generally remains the same,
demonstrating the stable performance regardless
to the number of referred papers in summarization.
Another interpretation is that they cannot benefit
from the richer citation information available in
groups with more cited papers. On the contrary,
as more papers are involved, MUS and GSS can
generally make better summarizations. This indi-
cates the capability of MUS and GSS in handling
papers with rich citation graph information. They
can extract the related information for making a
more accurate summarization.

Performance of Link Prediction Task. We re-
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Ref 1: we highlight the capabilities of our method with a series of complex liquid simulations , and with a set of single - phase buoyancy simulations
. with a set of trained networks , our method is more than two orders of magnitudes faster than a traditional pressure solver .
Ref 2: we introduce the exponential linear unit ( elu ) which speeds up learning in deep neural networks and leads to higher classification accuracies
. like rectified linear units ( relus ) , leaky relus ( lrelus ) and parametrized relus ( prelus ) , elus alleviate the vanishing gradient problem via the
identity for positive values ...
Ref 3: ...a convolutional neural network is trained on a collection of discrete , parameterizable fluid simulation velocity fields ... reconstructed
velocity fields are generated up to 700x faster than re - simulating the data with the underlying cpu solver , while achieving compression rates of up
to 1300x ."
Ref 4:... an efficient method for the calculation of ferromagnetic resonant modes of magnetic structures is presented . finite - element discretization
allows flexible geometries and location dependent material parameters .
Gold: deep neural networks are used to model the magnetization dynamics in magnetic thin film elements . the magnetic states of a thin film
element can be represented in a low dimensional space . with convolutional autoencoders a compression ratio of 1024:1 was achieved . time
integration can be performed in the latent space with a second network which was trained by solutions of the landau - lifshitz - gilbert equation .
thus the magnetic response to an external field can be computed quickly ."
HSG: machine learning has been successfully used in fluid dynamics in order to speed up simulations . in this letter we propose a convolutional
neural network to reduce the dimensionality of thin film magnetization and show how latent space dynamics can be applied to predict the magnetic
response of magnetic thin film elements . finally , we decode the compressed states along the trajectory to obtain an approximate solution of the
landau - lifshitz - gilbert equation .
GSS: the finite difference or finite element computation of the demagnetizing fields and the time integration of the landau - lifshitz - gilbert
equation requires a considerable computational effort . in this letter we propose a convolutional neural network to reduce the dimensionality of
thin film magnetization and show how latent space dynamics can be applied to predict the magnetic response of magnetic thin film elements . in
addition , we demonstrate that we can handle complex parameterizations in reduced spaces , and advance simulations in time by integrating in the
latent space with a second network .
QA: (1) What techniques are used to model the magnetization dynamics? [deep neural networks/ convolutional neural networks]; (2) The simulation
speed become more quickly or slowly by using such technique? [quickly]

Table 3: Selected case study which shows how the citations help summarization. The same color denotes the same
key concepts shared across documents.

Model SSN (inductive) SSN (transductive)

GSS 81.67±0.42 79.05±0.34
GSS w/o MT 79.94±0.51 77.88±0.33
GSS w/o GSE 80.66±0.45 78.22±0.53
GSS w/o GIF 81.31±0.39 78.99±0.36

Table 4: Link prediction performance accuracy (%) of
our model and ablation models. MT, GSE, GIF denotes
Multi-task, Gated Sentence Encoder, Graph Information
Fusion, respectively.

port the performance of the link prediction task
as an auxiliary result for GSS, shown in Table 4.
GSS w/o multi-task is the baseline where we fine-
tune the pre-trained SciBERT model on the training
dataset and directly use it for link prediction. The
settings of GSS w/o gated sentence encoder and
GSS w/o global transformer are the same as in the
ablation study section. All the experiments are re-
peated 10 times and we report the average accuracy
with standard deviation. It can be seen that GSS
performs worst without the multi-task framework,
demonstrating the effectiveness of the summariza-
tion task on the link prediction task. Removing
gated sentence encoder and global transformer also
brings harm to GSS, proving it is necessary to use
the document representation to polish the sentence
representation.

Performance of Different Sentence Embed-
dings. Table 5 shows the results of our model
with different embedding methods. MUS and GSS
perform consistently across different embedding
methods, demonstrating that the good performance

Models
SSN (inductive)

RG-1 RG-2 RG-L

MUS (SciBERT) 43.89 13.07 39.04
MUS (BERT) 43.10 12.48 38.59
MUS (ROBERTa) 43.85 13.31 38.89
MUS (BART) 43.66 12.88 38.65

GSS (SciBERT) 47.71 16.78 42.04
GSS (BERT) 47.43 16.03 41.01
GSS (ROBERTa) 47.68 16.41 41.86
GSS (BART) 47.45 16.32 41.87

Table 5: Performance of our models with different pre-
trained embeddings.

of our model does not rely on specific embedding
methods. Moreover, if we compare across differ-
ent methods, sentence embeddings that are suitable
for similarity computations such as SciBERT and
RoBERTa do perform better than other choices.

8 Conclusion

Researchers usually write an abstract of a paper by
referring to some examples, especially from a large
number of papers on the same topic. Hence, in this
paper, we propose to leverage citation graphs to
enhance scientific paper extractive summarization.
Concretely, we propose a multi-granularity unsu-
pervised summarization model and a graph-based
supervised summarization model, both of which
outperform the state-of-the-art baselines by a large
margin. In the future, we will explore the effect of
other graph structure information on the summa-
rization task such as pairwise distance information.
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