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Abstract

Document images are a ubiquitous source of
data where the text is organized in a complex
hierarchical structure ranging from fine granu-
larity (e.g., words), medium granularity (e.g.,
regions such as paragraphs or figures), to coarse
granularity (e.g., the whole page). The spatial
hierarchical relationships between content at
different levels of granularity are crucial for
document image understanding tasks. Existing
methods learn features from either word-level
or region-level but fail to consider both simul-
taneously. Word-level models are restricted
by the fact that they originate from pure-text
language models, which only encode the word-
level context. In contrast, region-level mod-
els attempt to encode regions corresponding to
paragraphs or text blocks into a single embed-
ding, but they perform worse with additional
word-level features. To deal with these issues,
we propose MGDoc, a new multi-modal multi-
granular pre-training framework that encodes
page-level, region-level, and word-level infor-
mation at the same time. MGDoc uses a uni-
fied text-visual encoder to obtain multi-modal
features across different granularities, which
makes it possible to project the multi-granular
features into the same hyperspace. To model
the region-word correlation, we design a cross-
granular attention mechanism and specific pre-
training tasks for our model to reinforce the
model of learning the hierarchy between re-
gions and words. Experiments demonstrate
that our proposed model can learn better fea-
tures that perform well across granularities and
lead to improvements in downstream tasks.

1 Introduction

Document images are ubiquitous and are often used
as a representation for forms, receipts, printed pa-
pers, etc. Unlike plain text documents, document
images express rich information via both textual
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(a) Page-level (b) Region-level (c) Word-level

Figure 1: The multi-granular structure in document im-
ages. The image is from the RVL-CDIP dataset. Impor-
tant information is encoded at the page-level (e.g., the
document type), region-level (constructs such as para-
graphs, tables, etc), and word-level (specific semantics).
Our proposed model reasons about all of these jointly
to leverage information across granularities.

content and heterogeneous layout patterns, which
leads to barriers to the automatic processing of
these document images. Here, layout pattern refers
to how the text is spatially arranged on the docu-
ment page and involves information from multiple
levels of granularity. Specifically, a layout pattern
divides the entire page into individual regions and,
within each region, the fine-grained textual content
is distributed following a certain format, such as
paragraphs, columns, lists, as shown in Figure 1.

The layout of a document provides important
cues for interpreting the document through spatial
structures such as alignment, proximity, and hier-
archy between content at different levels of gran-
ularity. For example, a numeric text field is more
likely to be the total price of a grocery receipt if
it is located at the bottom right of a table region;
a region is more likely to correspond to the title
area of a form if there are a lot of bold types inside
of the region. In these two examples, it is impor-
tant to understand page-level information (e.g., that
the document is a receipt or a form), region-level
information (e.g., that a region is a table or title),
and word/token-level information (e.g., the font
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Figure 2: Comparison between MGDoc and existing
methods. While previous methods have explored multi-
modal inputs, and explored word+page and region+page
level features, MGDoc combines multi-modal reason-
ing, and joint word-, region-, and page-level reasoning.

style of a word, or that a token is a number), as
well as how these relate to each other. Therefore,
to facilitate the automatic processing of such doc-
uments, it is essential to consider the features of
multiple granularities and let the model learn the
hierarchy between different levels to encode the
multi-granular structure in the document images.

However, existing methods in document image
understanding formulate the document image un-
derstanding tasks either at the word-level or region-
level and thus do not use both cues. They mostly
follow language modeling methods designed for
plain text settings, formulating document image un-
derstanding tasks using word-level information and
augmenting semantic features with spatial and vi-
sual features to exploit the word-level context (Xu
et al., 2020b,a; Hong et al., 2021; Garncarek et al.,
2021). Recent works go beyond fine-grained word-
level inputs and focus on regions instead of words
to acquire useful signals (Li et al., 2021; Gu et al.,
2021). By encoding the regions corresponding to
paragraphs or text blocks, these region-level mod-
els manage to save training resources and achieve
good performance with rich locality features. How-
ever, these models fail to leverage the cross-region
word-level correlation, which is also necessary to
tackle fine-grained tasks.

Motivated by this observation, we propose
MGDoc, a new multi-modal multi-granular pre-
training framework that encodes document infor-
mation at different levels of granularity and rep-
resents them using multi-modal features as high-
lighted in Figure 2. Specifically, we use the
OCR engine to decompose a document page into
three granularities: page-level, region-level, and
word-level. Following previous works (Xu et al.,
2020b,a; Gu et al., 2021), our multi-modal features
represent text, layout (represented by bounding

boxes), and image modalities. The input consists
of information at different levels of granularity, and
can be organized into a hierarchy within the page,
which means words are included in the correspond-
ing regions and the page includes all of them. We
leverage attention to learn the correlation between
inputs from different levels of granularity and add
special attention weights to encode the hierarchical
structure and relative distances (Xu et al., 2020a;
Garncarek et al., 2021; Powalski et al., 2021). We
rely on pre-training to encourage the model to learn
the alignment between regions at different levels of
granularity. In addition, we use masked language
modeling for the word-level inputs and extend this
idea into the more coarse-grained inputs. We mask
a proportion of regions and ask the model to mini-
mize the difference between the masked contextual
features and the input features corresponding to the
selected region.

We validate MGDoc on three public bench-
marks, the FUNSD dataset (Jaume et al., 2019) for
form understanding, the CORD dataset (Park et al.,
2019) for receipt extraction, and the RVL-CDIP
dataset (Lewis et al., 2006) for document image
classification. Extensive experiments demonstrate
the effectiveness of our proposed approach with
great improvements on fine-grained tasks and good
results on coarse-grained tasks. We summarize our
contribution as follows:
• We propose MGDoc, a multi-modal multi-

granular pre-training framework, which encodes
the hierarchy in document images and integrates
features from text, layout patterns, and images.

• A cross-granularity attention mechanism and a
new pre-training task designed to enable the
model to learn the alignment between different
levels. This work extends the masked language
modeling to different granularity to encode the
contextual information.

• Extensive experiments demonstrate the effective-
ness of MGDoc on three representative bench-
marks.

2 Method

2.1 Overview

MGDoc is a multi-modal multi-granular pre-
training framework for document image under-
standing tasks. The framework encodes features
from different levels of granularity in a document
page and leverages the spatial hierarchy between
them. There are three stages in our architecture.
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Figure 3: The multi-modal multi-granular pre-training framework of MGDoc. Inputs consist of visual, textual,
and spatial representations of the page, regions on the page, and individual words. Multi-granular attention learns
relationships within and across granularities within single modalities, followed by multi-granular attention across
modalities. The final output consists of an embedding for each region at each granularity, on top of which three
self-supervision tasks are added to pre-train the model. Specifically, the multi-granularity task ensures that our
model makes use of multi-granular inputs and multi-granular attention to solve spatial tasks.

First, OCR engine, human annotations, or digital
parsing provide us with the text and the bounding
boxes of contents at different levels of granular-
ity. We focus on pages, regions, and words in this
paper and leave the more fine-grained pixel-level
and coarse-grained multi-page modeling for future
work. We input the document image, textual con-
tent, and bounding boxes at these three levels to
the multi-modal encoder to encode multi-granular
information into text and image embeddings. Fol-
lowing previous work (Xu et al., 2020b), we use
spatial embeddings to encode spatial layout infor-
mation. Next, we design a multi-granular attention
mechanism to extract the correlation between the
features from different levels. Distinct from the nor-
mal self-attention mechanism in BERT (Lu et al.,
2019), multi-granular attention computes the dot
product between the features and encodes the hier-
archical relationship between regions and words by
adding an attention bias. Then, the cross-attention
mechanism is used to combine the features from
different modalities. Finally, the sum of the final
text and visual features is used in the pre-training
or fine-tuning tasks.

2.2 Multi-modal Encoding

The multi-modal encoding is designed to encode
the text, visual, and spatial information of the multi-
granular inputs into the embedding space. We first

acquire the inputs at the word-level, encoding the
text and bounding box of each word. At the region-
level, words are grouped into regions where all
words within the region are combined and the en-
closing bounding box of all the words is used as
the region bounding box. At the page-level, the tex-
tual input is the sequence of all words in the page
and the width and height of the document image
is used as the page-level bounding box. Now, the
inputs at different levels of granularity consist of
the textual content and the bounding box. We de-
note the inputs as P , {R1, ..., Rm}, {w1, ..., wn},
where m,n are the number of regions and words.

The multi-modal encoding takes the textual con-
tent of each input unit, ranging from a single word,
to sentences, to the whole textual content of a
page, and encodes it with a pre-trained language
model, e.g., SBERT (Reimers and Gurevych, 2019).
We add the spatial embeddings to the text encoder
outputs where the fully-connected layer is used to
project the bounding boxes into a hyperspace. In
this way, the text embeddings of our model are
augmented with spatial information. Then, MG-
Doc encodes the entire image with a visual feature
extractor, e.g., ResNet (He et al., 2016), and ex-
tracts region feature maps using bounding boxes as
the Region of Interest (ROI) areas. The results of
the vision encoder have different resolutions due
to the sizes of bounding boxes, but they lie in the

3986



same feature space. Similarly, we add the spatial
embeddings from the bounding boxes to the visual
embeddings. The multi-modal embeddings are rep-
resented as follows,

eTλ = EncT (textλ) + FC(boxλ) + EmbT

eVλ = EncV (img)[boxλ] + FC(boxλ) + EmbV

where eTλ and eVλ are the text and visual embed-
dings; λ ∈ {P} ∪ {R1, ..., Rm} ∪ {w1, ..., wn}
denotes different levels of granularity; EncT and
EncV are the text and image encoders, respec-
tively; text and box refer to the textual contents
and bounding boxes; img is the entire document
image; FC(·) is the fully-connected layer; EmbT

and EmbV are the type embeddings for text and
vision.

2.3 Multi-granular Attention
Given the multi-modal embeddings described
above, we design a multi-granular attention to en-
code the hierarchical relation between regions and
words. Specifically, we add attention biases to the
original self-attention weights to strengthen the
region-word correlation. We apply multi-granular
attention to the text embeddings and visual em-
beddings individually because the purpose of this
module is to learn the interaction between different
levels of granularity rather than to fuse modalities.
Therefore, without loss of generality, we omit the
notation of modality in the expressions. The atten-
tion weight is computed as

Aα,β =
1√
d
(WQeα)

⊤(WKeβ)

+ HierBias(boxα ⊆ or ̸⊆ boxβ)

+ RelBias(boxα − boxβ),

where α, β ∈ {P}∪ {R1, ..., Rm}∪ {w1, ..., wn};
the first part is the same as the attention mecha-
nism in the original BERT; RelBias(·) is the at-
tention weight bias to encode the relative distance
between the bounding boxes; HierBias(·) is the
attention weight bias to encode the inside or out-
side relation which models the spatial hierarchy
within the page. Since the regions are created by
grouping the words, all the words correspond to
a specific region. We embed the binary relation
into a fixed-sized vector and each value in this
vector is added to an attention head of the multi-
granular attention module. After the multi-granular
attention module, self-attention is applied to the

input embeddings to learn contextual information
and hierarchical relationships between the multi-
granular inputs. We denote the resulting textual and
visual features by fT

λ and fV
λ , respectively, where

λ ∈ {P} ∪ {R1, ..., Rm} ∪ {w1, ..., wn}.

2.4 Cross-modal Attention
As mentioned in Section 2.3, multi-granular atten-
tion is only designed for the interaction between
different levels of granularity; however, it is also
essential to fuse information from multiple modal-
ities. Therefore, we design the cross-modal atten-
tion module to conduct the modality fusion. Fol-
lowing previous works in visual-language model-
ing, we use a cross-attention mechanism to fuse
the textual and visual features. Specifically, the
cross-attention function is formulated as,

CrossAttn(α|β) = σ

(
(WQα)⊤(WKβ)√

d

)
W V β

where α and β are matrices of the same size; σ
is the Softmax function to normalize the attention
matrix; WQ,WK ,W V are the trainable weights
in each of the attention heads for query, key and,
value. Then we list text and visual features from
different levels of granularity as F T = {fT

λ } and
F V = {fV

λ } and compute the multi-modal features
as follows,

fT→V
λ = CrossAttn(F T |F V )[λ]

fV→T
λ = CrossAttn(F V |F T )[λ]

From these expressions, we can see that the cross
attention uses the dot product between multi-modal
features as attention weights. In this way, the given
modality can learn from the other modality and the
module also bridges the gap between the modalities.
We call the output of this module text or visual
multi-modal features to distinguish from the text
and visual features in Section 2.2, and denote them
as fT→V

λ and fV→T
λ . The final representation is the

sum of the textual and visual multi-modal features,
fλ = fT→V

λ + fV→T
λ , λ ∈ {P} ∪ {R1, ..., Rm} ∪

{w1, ..., wn}, and is used in the pre-training and
downstream tasks.

2.5 Pre-training Tasks
Large-scale pre-training has shown strong results
in document image understanding tasks. With a
large amount of unlabeled data, pre-trained models
can learn the latent data distribution without man-
ually labelled supervision and can easily transfer
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the learned knowledge to downstream tasks. The
design of pre-training tasks is crucial for successful
pre-training. We go beyond the classic mask mod-
eling and apply the mask text modeling and the
mask vision modeling on all the inputs from differ-
ent levels of granularity. Due to the unified multi-
model encoder (see Section 2.2), it is possible for
us to treat all levels of granularity equally and in-
troduce a unified masking task for each modality.
Because we believe that spatial hierarchical rela-
tionships are essential for encoding documents, we
design a pre-training task that requires the model
to identify the spatial relationship between con-
tent at different levels of granularity. The final
training loss is the sum of the pre-training tasks,
L = LMTM + LMVM + LMGM . Below we pro-
vide details for each component.

Mask Text Modeling The mask text modeling
task requires the model to understand the textual in-
puts of the model. Specifically, we randomly select
a proportion of regions or words, and their textual
contents are replaced with a special token [MASK].
We run the model to obtain the contextual features
of these masked inputs and compare them with the
encoding result of original textual inputs. We use
the Mean Absolute Error as the loss function.

LMTM =
∑

λ∈Λ

∣∣∣eTλ − fV→T
[MASK]|λ̄

∣∣∣

where Λ = {P} ∪ {R1, ..., Rm} ∪ {w1, ..., wn};
eTλ denotes the encoding result of the original tex-
tual contents; λ̄ denotes the multi-granular context
without λ; fV→T

[MASK]|λ̄ is the contextual feature of the
masked textual inputs.

Mask Vision Modeling Similarly to the mask
text modeling task, we use mask vision model-
ing to learn visual contextual information. Instead
of replacing the [MASK] token as is done in mask
text modeling, we set the visual embeddings of the
selected areas to zero vectors. The loss function
computes the Mean Absolute Error between the
contextual feature of masked areas and the original
visual embeddings. The mask vision modeling loss
is formulated as,

LMVM =
∑

λ∈Λ

∣∣∣eVλ − fT→V
[0]|λ̄

∣∣∣

where fT→V
[0]|λ̄ is the contextual feature of the zero

vector given the unmasked inputs.

Multi-Granularity Modeling The multi-
granularity modeling task asks the model to
understand the spatial hierarchy between different
levels of granularity. Since the page-level input
includes all regions and words, it is trivial for the
model to learn it. We only focus on the hierarchical
relation between the regions and words. Although
the relation is also encoded in the multi-granular
attention, it is necessary to reinforce the model
to emphasize the region-word correspondence.
Otherwise, the spatial hierarchy biases are random
add-ons to the attention matrix.

The model takes the region-level and word-level
features and predicts which region the given the
word is located in. We first compute the dot prod-
uct of the region-level and word-level features as
the score and use the Cross-entropy as the loss
function.

LMGM =
∑

w∈W

ef
⊤
w fr∗

ef⊤
w fr∗ +

∑
r∈R−{r∗} e

f⊤
w fr

where W = {w1, ..., wn} and R = {R1, ..., Rm};
r∗ is the region that includes the word w.

3 Experiments

3.1 Pre-training Settings

We use the RVL-CDIP dataset (Harley et al.) as
our pre-training corpus. The RVL-CDIP dataset
is a scanned document image dataset containing
400,000 grey-scale images and covering a variety
of layout patterns. We use OCR engines to rec-
ognize the location of textual content in the docu-
ment images and also the location of the individ-
ual words. Following Gu et al. (2021), we use
EasyOCR 1 with two different output modes: non-
paragraph and paragraph. The difference is that the
non-paragraph mode extracts the individual words
in the pages, and the paragraph mode groups these
results into regions. The OCR engine allows us to
design the architecture and the pre-training tasks
focusing on the multi-granularity of document im-
ages. Therefore, the paragraph results serve as the
region-level inputs, and the non-paragraph results
serve as the word-level inputs.

3.2 Fine-tuning Tasks

We select three representative tasks to evaluate the
performance of our model and use the publicly-
available benchmarks for each tasks.

1https://github.com/JaidedAI/EasyOCR
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Scale Model
Pre-training FUNSD CORD RVL-CDIP

Corpus #Data #Param. (F1) (F1) (Accuracy)

Word

BERTBASE - - 110M 60.26 89.68 89.81
BERTLARGE - - 340M 65.63 90.25 89.92
LayoutLMBASE IIT-CDIP 11M 113M 78.66 94.72 94.42
LayoutLMLARGE IIT-CDIP 11M 343M 78.95 94.93 94.43
BROSBASE IIT-CDIP 11M 110M 83.05 96.50 -
BROSLARGE IIT-CDIP 11M 340M 84.52 97.28 -
LayoutLMv2BASE IIT-CDIP 11M 200M 82.76 94.95 95.25
LayoutLMv2LARGE IIT-CDIP 11M 426M 84.20 96.01 95.64
TILTBASE RVL-CDIP+ 1.1M 230M - 95.11 95.25
TILTLARGE RVL-CDIP+ 1.1M 780M - 96.33 95.52
DocFormerBASE IIT-CDIP- 5M 183M 83.34 96.33 96.17
DocFormerLARGE IIT-CDIP- 5M 536M 84.55 96.99 95.50

Region

SelfDoc RVL-CDIP 320K - 83.36 - 92.81
SelfDoc+VGG-16 RVL-CDIP 320K - - - 93.81
UDoc IIT-CDIP- 1M 272M 87.96 96.64 93.96
UDoc‡ IIT-CDIP- 1M 272M 87.93 96.86 95.05

Region+Word MGDoc (Ours) RVL-CDIP 320K 203M∗ 89.44 97.11 93.64

Table 1: The experiment results and comparison. * indicates that non-trainable parameters are not included. The
total #param. of MGDoc is 312M. ‡ implies unfreezing the sentence encoder during the finetuning. RVL-CDIP+:
TILT uses extra training pages in pre-training; IIT-CDIP-: DocFormer uses a subset of IIT-CDIP in pre-training.

Form Understanding The goal of the form un-
derstanding task is to predict the label of semantic
entities in document images. We use the FUNSD
dataset (Jaume et al., 2019) for this task. The
FUNSD dataset consists of 199 fully-annotated,
noisy-scanned forms with various appearances and
formats. There are 149 and 50 pages in the training
set and the testing set, respectively. Each entity is
labeled into 3 categories: Header, Question, and
Answer. We use the provided OCR results from the
dataset and input the textual contents and bound-
ing boxes of entities to the model. We report the
entity-level F1 score as metrics.

Receipt Understanding The goal of the receipt
understanding task is to recognize the role of a se-
ries of text lines in a document. We use the CORD
dataset (Park et al., 2019) for this task. The CORD
dataset is fully annotated with bounding boxes and
textual contents and contains 800 and 100 pages
in the training and testing sets, respectively. There
are 30 entity types marked in the dataset; we report
entity-level F1 score for our experiments.

Document Image Classification The document
image classification task aims to classify the pages
into different semantic categories. We use the RVL-
CDIP dataset (Harley et al.) for this task, which
is a subset of the IIT-CDIP dataset (Lewis et al.,
2006). The RVL-CDIP dataset contains 400,000
pages, each annotated with 16 semantic categories.
The input features for this dataset are extracted by
the EasyOCR engine in our experiments. The RVL-

CDIP dataset is also used in the pre-training, but no
labeling information is involved in the pre-training
tasks, so there is no concern about data leakage.
In the downstream task, the RVL-CDIP dataset is
divided into training, validation, and test subsets
with 8:1:1 ratio. We report classification accuracy
over the 16 categories for our experiments.

3.3 Implementation Details

In the multi-modal encoder, we use the BERT-NLI-
STSb-base model as the text encoder and ResNet-
50 as the vision encoder. In the modality fusion, we
use 12 layers of cross-modal attention in MGDoc.
We set the hidden state size as 768 and the atten-
tion head number as 12. We freeze the pre-trained
weights of the multi-modal encoder and randomly
initialize the remaining parameters, which are then
learned during our pre-training stage. We run the
pre-training for 5 epochs with 8 NVIDIA V100
32G GPUs and the AdamW optimizer. The batch
size is set to 64; the learning rate is set to 10−6;
the warmup is conducted in the first 20% training
steps.

3.4 Results

We compare MGDoc with the strong baselines in
the document understanding tasks in Table 1. We
list out the specific settings of each model in the
layout-rich pre-training, to clearly demonstrate the
effectiveness of our model. All these baseline mod-
els resort to different techniques to achieve com-
petitive results. BERT (Devlin et al., 2018), Lay-
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outLM (Xu et al., 2020b), LayoutLMv2 (Xu et al.,
2020a), BROS (Hong et al., 2021), TILT (Powalski
et al., 2021), and DocFormer (Appalaraju et al.,
2021) encode word-level features, and SelfDoc (Li
et al., 2021), and UDoc (Gu et al., 2021) encodes
region-level features. MGDoc surpasses all the
existing methods with the help of the informa-
tion from all different levels of granularity, and
achieves a new state-of-the-art performance in the
fine-grained tasks, i.e., the form understanding task
and receipt understanding task. It also achieves
promising performance on the coarse-grained task,
i.e., the document image classification task. Specif-
ically, MGDoc improves the entity-level F1 score
of the FUNSD dataset by 1.48% and improves
the entity-level F1 score of the CORD dataset by
0.25%, compared with the second-best model. We
partially attribute the performance difference on
the RVL-CDIP dataset to the OCR engine, since
LayoutLMv2 and TILT use the Microsoft OCR and
BROS uses the CLOVA OCR, and these commer-
cial OCR engines provide more accurate results.
As discussed in Gu et al. (2021), the quality of the
OCR engine influences the performance of the doc-
ument image classification. It is also worth men-
tioning that our model involves relatively smaller
number of trainable parameters and also requires
less pre-training data, which makes MGDoc more
applicable in realistic scenarios.

The performance of the form and receipt under-
standing tasks is improved by region-level infor-
mation. UDoc surpasses the word-scale models
by large margins, and our proposed, MGDoc, even
further improves the UDoc by modeling the align-
ment between regions and words. We conclude
that the region-level information strengthens the lo-
cality of the feature extraction, and the word-level
information further improves the classification re-
sults. Such connection is realized by region-word
alignment, which is visualized in Section 3.6.

3.5 Ablation Study

To study the importance of the pre-training tasks,
we design an ablation study that skips several pre-
training tasks. The results are shown in Table 2.
In the first setting, we skip the entire pre-training
stage so all the parameters can only be learned in
the downstream tasks. In the second setting, we in-
clude the commonly-used masking techniques. The
model is pre-trained with the two masking tasks
in our design, the mask sentence modeling, and

Model
FUNSD RVL-CDIP

(F1) (Acurracy)

MGDoc
w/o pre-training 83.01 91.23
w/ MTM+MVM 87.20 93.92
w/ MTM+MVM+MGM 89.44 93.64

Table 2: The results of the ablation study for pre-training.
Performance steadily increases as pre-training tasks are
added.

Model
FUNSD CORD

(F1) (F1)

MGDoc
w/ Region 80.82 94.24
w/ Region + Word 86.96 95.49
w/ Page + Region 81.65 94.69
w/ Page + Region + Word 89.44 97.11

Table 3: The results of the ablation study for multi-
granular features. We observe a steady increment with
more features involved, and the word-level features con-
tribute most to the improvement.

the mask vision modeling. Performance steadily
increases as pre-training tasks are added; overall,
pre-training improves the performance by 6.43%,
2.69% on FUNSD and RVL-CDIP, respectively.

We believe that the masking strategy enables
the model to learn from the multi-modal context
of the page. In the third experiment in the table,
we add the alignment techniques between words
and regions designed to strengthen the connection
between multiple granularities. The performance
on FUNSD is further improved by 2.24%, while
there is also a decrease of 0.28% in the performance
on RVL-CDIP. Local connections between words
and regions are helpful in fine-grained tasks but
may introduce some noise to coarse-grained tasks.

To study the role of features from each granular-
ity, we also conduct an ablation study using differ-
ent combinations of multi-granular features, where
we feed the model with features from region-level
inputs, region-level and word-level inputs, page-
level and region-level inputs, respectively. We re-
port the performance on FUNSD and CORD in
Table 3. We observe a steady increment with more
features involved, and the word-level features con-
tribute more to the improvement.

3.6 Region-word Correlation Visualization
We visualize the correlation between regions and
words using heat maps. We select four examples
from the FUNSD dataset and show the heat maps of
the final feature dot product in Figure 5. The x-axis
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Example 1: 
• Text: Brown & Williamson Tobacco Corp. 
• Label: Answer 
• UDoc: Question 
• MGDoc: Answer

Example 2: 
• Text: (502) 568-7297 
• Label: Answer 
• UDoc: Question 
• MGDoc: Answer

Example 3: 
• Text: GEOGRAPHY 
• Label: Header 
• UDoc: Question 
• MGDoc: Question

Example 4: 
• Text: File with: 
• Label: Question 
• UDoc: Header 
• MGDoc: Question

(, 52, #2,…, #9, #7

Visualization of  
Example 2

Reg.

Visualization of  
Example 4

File, with, :

Reg.

Figure 4: The error analysis and visualization
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Figure 5: The correlation weight visualization between
regions and words

and the y-axis correspond to the words and regions,
respectively, and the lighter the color is, the higher
correlation there is. Some cropping is applied for
clearer visualization. From the heat maps, we can
observe that there are highlighted areas along the
matrix diagonal, which means our model learns
the region-word hierarchy in the pre-training stage
and can leverage such correspondence in down-
stream tasks. We also see some lighter colored
blocks in the matrix. Since all the words and re-
gions are serialized in positional order, these lighter
colored blocks indicate the model is able to use the
localized features in the model with the help of
multi-granular inputs. This ability further confirms
that our intuition that combining information from
different levels of granularity will be beneficial is
correct.

3.7 Error Analysis

We select several representative cases in the com-
parison between UDoc and MGDoc and show them
in Figure 4. We also visualize the weight matrix

of the entities in the same way as in Section 3.6.
In these examples, our proposed model can lever-
age the more fine-grained signal from word-level
inputs and make the correct prediction. In exam-
ple 2, the entity is labeled as Answer where the
corresponding question, “Fax No.:”, is at the top
of this column. Due to the large distance of this
question-answer pair, UDoc predicts the entity as
Question, while MGDoc can give the right predic-
tion by directly learning from the digits inside of
the text fields, which is a strong signal for answers.
From the heat map, we can also see that a lighter
color appears in the corresponding area of the en-
tity. Meanwhile, the word-level information even
strengthens the multi-modal features since it pro-
vides more details of a given text field. As we can
observe in example 4, the entity “File with:” is
likely to be Header or Question given its textual
contents and location in the page, but MGDoc can
predict from the rich visual features that this field
is a part of normal text and less likely to be Header;
these rich inputs allow MGDoc to make the cor-
rect prediction where UDoc cannot. However, in
example 3, both UDoc and MGDoc cannot predict
correctly. The ground-truth label is Header but
both models predict the entity as Question. The
entity is not at the top of the page where the header
entities are more likely to be located, so we at-
tribute this error to the dependence of MGDoc to
the spatial information.

4 Related Work

Word-level Models Word-level models inherit
the architecture of pure-text pre-trained language
models. Word-level contextual information is en-
coded by a multi-layered transformer, and spatial
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and visual features are added to refine the represen-
tation. Inspired by the positional embeddings in
Vaswani et al. (2017); Raffel et al. (2019); Dai et al.
(2019), absolute or relative spatial features based
on the bounding boxes are proposed to encode the
words’ layout with respect to each other (Xu et al.,
2020b,a; Hong et al., 2021; Garncarek et al., 2021).
Computer vision deep models (He et al., 2016;
Xie et al., 2017) are used to extract features from
the document images, and self-supervised learning
methods are applied to learn the cross-modal corre-
lation between images and words (Xu et al., 2020a;
Powalski et al., 2021).

Region-level Models Region-level models en-
code the regions in the document page including
text blocks, headings, and paragraphs (Li et al.,
2021; Gu et al., 2021). Similar spatial and visual
features are used in these models as in the word-
level models. With the help of coarse-grained in-
puts, region-level models can emphasize the rich
locality features and catch high-level cues. Another
difference with the word-level models is that the
number of regions is much smaller than the word
number on the page, so the region-level models are
more efficient when processing long documents.

5 Conclusions and Future Work

We present MGDoc, a multi-modal multi-granular
pre-training framework, which goes beyond the ex-
isting region-level or word-level models and lever-
ages the contents at multiple levels of granularity
to understand the document pages better. Existing
models fail to use the informative multi-granular
features in the document due to the restriction
from the word-level model architecture, and lead
to unsatisfactory results. We solve these issues
with the new architecture design and tailored pre-
training tasks. With a unified multi-modal encoder,
we embed the features from pages, regions, and
words into the same hyperspace, and design a multi-
granular attention mechanism and multi-granularity
modeling task for MGDoc to learn the spatial hier-
archical relation between them. Experiments show
that our proposed model can understand the spatial
relation between the multi-granular features and
lead to improvements in downstream tasks.

As for future work, since we have not fully ex-
ploited the multi-granular information, we will go
beyond the page level and investigate the possibility
of encoding multiple pages. We are also interested
in inputs that are more fine-grained than word level,

such as pixels.
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Limitations

Although we inherit the idea of using region-level
inputs from (Gu et al., 2021; Li et al., 2021),
we cannot keep their merits of saving comput-
ing resources. Region-level models encode re-
gions instead of all the words in the page, so the
smaller number of features are included in the self-
attention layers. However, we want to leverage the
fine-grained word-level information as (Xu et al.,
2020b,a; Hong et al., 2021), so the words are also
considered in the multi-granular attention and the
multi-modal attention layers. Compared to existing
works, our work requires more memory storage
during training and testing.

Ethical Considerations

This paper presents a new framework for document
image understanding tasks. Our model is built on
open-source tools and datasets, and we aim at in-
creasing the efficiency of processing various doc-
uments and also bringing convenience to ordinary
people’s life. Thus, we do not anticipate any major
ethical concerns.
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