ParsiNLU: A Suite of Language Understanding Challenges for Persian

Daniel Khashabi, Arman Cohan, Siamak Shakeri, Pedram Hosseini, Pouya Pezeshkpour, Malihe Alikhani, Moin Aminnaseri, Marzieh Bitaab, Faeze Brahman, Sarik Ghazarian, Mozhdeh Gheini, Arman Kabiri, Rabeeh Karimi Mahabagdi, Omid Memarrast, Ahmadreza Mosallanezhad, Erfan Noury, Shahab Raji, Mohammad Sadegh Rasooli, Sepideh Sadeghi, Erfan Sadeqi Azer, Niloofar Safi Samghabadi, Mahsa Shafaei, Saber Sheybani, Ali Tazarv, Yadollah Yaghoobzadeh


Abstract
Despite the progress made in recent years in addressing natural language understanding (NLU) challenges, the majority of this progress remains to be concentrated on resource-rich languages like English. This work focuses on Persian language, one of the widely spoken languages in the world, and yet there are few NLU datasets available for this language. The availability of high-quality evaluation datasets is a necessity for reliable assessment of the progress on different NLU tasks and domains. We introduce ParsiNLU, the first benchmark in Persian language that includes a range of language understanding tasks—reading comprehension, textual entailment, and so on. These datasets are collected in a multitude of ways, often involving manual annotations by native speakers. This results in over 14.5k new instances across 6 distinct NLU tasks. Additionally, we present the first results on state-of-the-art monolingual and multilingual pre-trained language models on this benchmark and compare them with human performance, which provides valuable insights into our ability to tackle natural language understanding challenges in Persian. We hope ParsiNLU fosters further research and advances in Persian language understanding.1
Anthology ID:
2021.tacl-1.68
Volume:
Transactions of the Association for Computational Linguistics, Volume 9
Month:
Year:
2021
Address:
Cambridge, MA
Venue:
TACL
SIG:
Publisher:
MIT Press
Note:
Pages:
1147–1162
Language:
URL:
https://aclanthology.org/2021.tacl-1.68
DOI:
10.1162/tacl_a_00419
Bibkey:
Cite (ACL):
Daniel Khashabi, Arman Cohan, Siamak Shakeri, Pedram Hosseini, Pouya Pezeshkpour, Malihe Alikhani, Moin Aminnaseri, Marzieh Bitaab, Faeze Brahman, Sarik Ghazarian, Mozhdeh Gheini, Arman Kabiri, Rabeeh Karimi Mahabagdi, Omid Memarrast, Ahmadreza Mosallanezhad, Erfan Noury, Shahab Raji, Mohammad Sadegh Rasooli, Sepideh Sadeghi, et al.. 2021. ParsiNLU: A Suite of Language Understanding Challenges for Persian. Transactions of the Association for Computational Linguistics, 9:1147–1162.
Cite (Informal):
ParsiNLU: A Suite of Language Understanding Challenges for Persian (Khashabi et al., TACL 2021)
Copy Citation:
PDF:
https://preview.aclanthology.org/paclic-22-ingestion/2021.tacl-1.68.pdf