- Anthology ID:
- 2021.findings-acl.75
- Original:
- 2021.findings-acl.75v1
- Version 2:
- 2021.findings-acl.75v2
- Volume:
- Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021
- Month:
- August
- Year:
- 2021
- Address:
- Online
- Venue:
- Findings
- SIG:
- Publisher:
- Association for Computational Linguistics
- Note:
- Pages:
- 847–861
- Language:
- URL:
- https://aclanthology.org/2021.findings-acl.75
- DOI:
- 10.18653/v1/2021.findings-acl.75
- Cite (ACL):
- Clémentine Fourrier, Rachel Bawden, and Benoît Sagot. 2021. Can Cognate Prediction Be Modelled as a Low-Resource Machine Translation Task?. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 847–861, Online. Association for Computational Linguistics.
- Cite (Informal):
- Can Cognate Prediction Be Modelled as a Low-Resource Machine Translation Task? (Fourrier et al., Findings 2021)
- PDF:
- https://preview.aclanthology.org/paclic-22-ingestion/2021.findings-acl.75.pdf
- Code
- clefourrier/coppermt