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Introduction

Welcome to the ICON 2020 Workshop on Joint NLP Modelling for Conversational AI.

Virtual Assistants/Dialog Systems are spanning from cloud-based systems to embedded devices
formulating a hybrid architecture for several reasons such as privacy of the data, faster processing, offline
interaction, personalization etc. There are several NLP tasks running as part of the Virtual Assistant
example Domain Classification, Intent Determination, Slot Extraction, Dialog Management, Natural
Language Generation, Text to Speech and Automatic Speech Recognition. Thus, in both cloud and
embedded devices, it is necessary to combine various NLP tasks to improve latency and memory usage.
Additionally, a joint NLP model is suitable for both cloud and embedded devices processing.

Virtual Assistants/Dialog Systems are also capable of learning by themselves from various information
accessible to it. For example, contextual data, personal data, queries, unhandled or failed queries etc. It
is a very interesting area to explore how a joint model can incrementally learn from the data available to
the Virtual Assistant.

The goal of this workshop is to bring together NLP researchers and practitioners in different fields,
alongside experts in speech and machine learning, to discuss the current state-of-the-art and new
approaches, to share insights and challenges, to bridge the gap between academic research and real-world
product deployment, and to shed the light on future directions. “Joint NLP modelling for Conversational
AI” will be a one-day workshop including keynotes, spotlight talks, posters, and panel sessions. In
keynote talks, senior technical leaders from industry and academia will share insights on the latest
developments of the field. An open call for papers will be announced to encourage researchers and
students to share their prospects and latest discoveries. The panel discussion will focus on the challenges,
future directions of conversational AI research, bridging the gap in research and industrial practice, as
well as audience suggested topics.

We received 16 submissions, and after a rigorous review process, we only accepted 6 papers. The overall
acceptance rate for the workshop was 37.5%.

Joint NLP modelling for Conversational AI ICON 2020 Organizers
Ranjan Kumar Samal, Bixby AI, Samsung Electronics
Praveen Kumar GS, Bixby AI, Samsung Electronics
Siddhartha Mukherjee, Bixby AI, Samsung Electronics
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Abstract
Intent Identification and Slot Identification are
two important task for Natural Language Un-
derstanding (NLU). Exploration in this area
have gained significance using networks like
RNN, LSTM and GRU. However, models
containing the above modules are sequential
in nature, which consumes lot of resources
like memory to train the model in cloud it-
self. With the advent of many voice as-
sistants delivering offline solutions for many
applications, there is a need for finding re-
placement for such sequential networks. Ex-
ploration in self-attention, CNN modules has
gained pace in the recent times. Here we ex-
plore CNN based models like Trellis and mod-
ified the architecture to make it bi-directional
with fusion techniques. In addition, we pro-
pose CNN with Self Attention network called
Neighbor Contextual Information Projector us-
ing Multi Head Attention (NCIPMA) architec-
ture. These architectures beat state of the art in
open source datasets like ATIS, SNIPS.

1 Introduction

Intelligent Voice Assistant like Samsung Bixby,
Google Assistant, Amazon Alexa and Microsoft
Cortana are increasingly becoming popular. These
assistants cater to the user request by extract-
ing the user intention from the spoken utterance.
NLU express the user intention in terms of in-
tent label and slot tags. There is one intent la-
bel for entire utterance, which signifies unique
action to execute. Whereas slots are tags given
to tokens in utterance, which signifies extra in-
formation required to execute the unique action.
Slot tags are denoted in IBO format. For exam-
ple, consider the utterance “what flights are avail-
able from Denver to San Francisco”. We denote
Intent label as “atis flight”. We denote Slot in-
formation as “O O O O O B-fromloc.city name

∗Authors contributed equally

O B-toloc.city name I-toloc.city name”. There
is one slot tag for every token in the utterance,
where “O” represents that token is not a slot
and B-fromloc.city name represents that token is
“Beginning of slot fromloc.city name” and “B-
toloc.city name I-toloc.city name” represents that
corresponding tokens are Beginning and Contin-
uation of slot toloc.city name respectively. We
consider Intent Identification as Classification task
and Slot tagging as sequence labelling task where
we predict slot for each word.

Lots of work has happened in this area. Initially,
research community explored both intent and slot
tasks as independent task. Different techniques
were explored for intent classification. Firdaus
et al. (2018) created ensemble model by combining
learnings of CNN, LSTM and GRU using multi-
layer perceptron to enhance intent classification.
Kim et al. (2016) proposed enriched word embed-
ding for making similar words together and dis-
similar words farther, which aided intent detection
better. Yolchuyeva et al. (2020) proposed use of
self-attention for enhancing intent classification by
capturing long-range and multi-scale dependency
in data.

Similarly for slot tagging, Kurata et al. (2016)
proposed use of label dependencies along with in-
put sentence for enhancing slot learnings using
LSTM. Mesnil et al. (2014) suggested use of Re-
current Neural Network for slot tagging task. Ngoc
Thang Vu (2016) proposed novel CNN architec-
ture for slot tagging task, which also used past and
future words information.

These individual models approach resulted in
pipelined design of NLU. Where intent model will
predict intent and they use intent output in slot
model to predict slot. This resulted in error prop-
agation i.e. error in intent output resulted in slot
tagging errors. In addition, the intent and slot learn-
ings are not available for each other to enhance
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each task learning.

To circumvent the above limitation, research
community started exploring unified model where
they identify both intent classification and slot tag-
ging. Liu and Lane (2016) proposed attention as
RNN encoder as input to Decoder for predicting
slot and intent by the decoder. Tingting et al. (2019)
proposed exploration of attention with Bi-LSTM
for joint intent and slot prediction. Firdaus et al.
(2019) suggested usage of CNN and RNN for con-
textual understanding of the utterance along with
CRF for label dependency to predict intent and
slot. Hardalov et al. (2020) proposed intent pool-
ing attention along with word features on top of
BERT for predicting intent and slot. The above
approaches addresses both the task using single
unified network where both the learnings are prop-
agated to single network.

Further, exploration of parallel learning net-
works, using common base module, with fusing
of intent and slot learnings have gained momentum.
Goo et al. (2018) suggested slot gate mechanism
to fuse the intent attention learning with slot atten-
tion learning to predict slot along with intent. E
et al. (2019) proposed a novel iteration mechanism
to fuse the meanings of intent and slot subnet for
predicting intent and slot.

Inspired by the work on parallel learning net-
works, where we address the intent and slot tasks
learnings by each parallel network, we are propos-
ing a novel architecture, Neighbor Contextual Im-
portance Projector (NCIP) for learning the word
importance in its immediate vicinity to boost its
importance learning in the overall utterance. We
use parallel Multi head attention on top of NCIP to
project importance phrases for each task, to predict
intent and slot. We are also exploring Trellis net-
work, which learns immediate neighbors in a layer
and entire utterance in multiple such layers. In ad-
dition, the weights of the network is shared in both
temporal direction as well as across layers. Hence,
we are proposing a bi-directional Trellis network
with different fusion techniques, like Linear Fusion,
Concatenation, to predict intent and slot to mimic
bi-directional LSTM or GRU.

We organize rest of the section as follows. Sec-
tion 2 describes the Proposed Approaches. Sec-
tion 3 describes the experimental setup including
dataset, metrics used followed by results. Finally,
we conclude and suggest future work and exten-
sions.

2 Proposed Approaches

2.1 Trellis Network Based Architectures
Bai et al. (2018) proposed a novel architecture con-
taining special Temporal Convolutional Neural Net-
works (T-CNN) for language modeling (LM) task.
In this model, they share weights across all layers
and they inject the input to deep layers.

As Trellis network has structural and algorith-
mic elements from both LSTM & CNN, it achieved
state of art in various LM tasks. Therefore, we are
exploring extension of the same in intent determi-
nation and slot tagging.

Original Trellis Network process the input se-
quence in forward direction only. We propose bi-
directional network with two parallel Trellis net-
work encoders, one for forward pass and one for
backward pass, for intent determination and slot
tagging.

2.1.1 Utterance Pre-Processing
We tokenize the input utterance into words. If the
number of words is less than seq len (seq len is
obtained by taking maximum of the count of words
for each utterance in the dataset), we pad that ut-
terance with “PAD” word. We convert words to
index using dictionary of unique training words
to incremental index. If we do not find any word
in the dictionary, than assign the index of “unk”
(specially added token into dictionary to handle un-
seen words). We convert every utterance of training
batch into list of indices to generate training data
of shape [bs, seq len]. Where ‘bs’ is batch size.

For bidirectional Trellis network, we first reverse
the training utterances than apply same preprocess-
ing as on original utterances.

2.1.2 Unidirectional Trellis Network Based
Architecture

Figure 1: Unidirectional Trellis flow for joint intent and
slot prediction
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Figure 1 shows unidirectional Trellis encoder based
architecture. We pass input data of shape [bs,
seq len] through embedding layer to represent ev-
ery word with embedding size (emb size) vector.
Trellis Network is used as an encoder to represent
input data in [bs, seq len, nout] dimension. Where
nout is a hyper parameter of Trellis network. For
slot prediction, output of Trellis network is passed
by a linear layer to produce output of shape [bs,
seq len, ntag], where ntag is number of tags.

For intent determination, we first flatten the Trel-
lis output than pass to output linear layer. It pro-
duces output of shape [bs, nIntent], where nIntent
is number of intent labels.

2.1.3 Bidirectional Trellis Network Based
Architecture

Figure 2: Bidirectional Trellis Flow for joint intent and
slot prediction

Figure 2 shows Bi-directional Trellis network. In
this, we used two Trellis network encoders, first to
process the input sequence as-is and the second to
process a reversed copy of the input sequence. Both
Trellis encoders generates outputs of dimension [bs
, seq len , nout] . Then we pass both the Trellis
network outputs through fusion layer. Fusion layer
determines the importance of each Trellis output by
selectively propagating the learnings from both the
outputs. Then we predict intent by flattening the
fused output and passing through dense layer with
nintent [distinct intents] as final labels. We also
predict slot by passing through dense layer with
ntag [distinct tags] as output label. We explore two
fusion techniques in Section 2.1.4 and 2.1.5 and
Trellis network in 2.1.6.

2.1.4 Masked Flip and Concatenation

Figure 3: Masked flip and concatenation

Masked flip is implemented by Gardner et al.
(2017) in AllenNLP platform. As shown in Figure
3, we first flip the output of backward Trellis (it
brings representation of “pad” at beginning) than
slice every example of batch on original unpadded
length of that example. It gives representation of
pad and actual words separately, than again con-
catenate pad representation at end of word represen-
tation. After masked flipping of backward Trellis
output, concatenate it with forward Trellis output.

2.1.5 Linear Fusion

Figure 4: Linear Fusion

As shown in Figure 4, we are using a linear layer
to learn joint representation of forward and back-
ward Trellis outputs. For it we first concatenate
both outputs at axis 1, then transpose it to bring
word representation as final axis and pass by linear
layer to bring the final axis to seq len. We then
transpose the same to get seq len in first axis.

2.1.6 Trellis Network Decoded
As we are using Trellis Network to learn a token
representation from its neighbor, let us discuss
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Figure 5: Inter layer transformation of Trellis

about its working. Trellis network is a special form
of temporal convolutional neural network (T-CNN)
with special structure. It share weights across depth
and provide input matrix to all the layers. Figure 5
explains the working of Trellis in intermediate lay-
ers. We denote xtεRp as input embedding vectors
at time step t. We denote ZTi

1 εRq as hidden output
vector for all-time steps 1 to T and layer i. Hyper
parameters of Trellis networks are nhid is hidden
size , nout is output size and hsize = nhid + nout

Hidden output Zi+1
1:T at for layer i+1 is computed

by three steps
First, precompute linear transformation on input

x, result will be directly passed to all layers as
shown in Equation 1.

x̃1:T = Conv1D(x1:T ,W1) (1)

Shape of input x is (bs x emb size x seq len) which
is transpose of embedding layer output. Shape of
W1 is [4* hsize, emb size, kernel size). Kernel size
is fixed to 2. nhid is hidden layer size. Padding is
done to keep output as same seq len as input, x̃1:T
will be of shape [bs, (4* hsize), seq len]

After computing Pre-activation output ẑi+1
1:T , it

will be divided into four equal parts to apply LSTM
style activation function.ẑi+1

1:T is kind of considered
as concatenation of input gate, output gate, cell

state and forget gates. This is the reason number of
filters are kept 4*hsize in convolution operations.
Conv1D computes Pre-activation output ẑi+1

1:T as
shown in Equation 2.

ẑi+1
1:T = Conv1D(zi1:T ,W2) + (̈x)1:T (2)

Shape of previous layer hidden output zi1:T is [bs
, hsize , seq len], which can be initialized all zero
for first layer. Shape of W2 is [4* hsize, hsize ,
kernel size]. Kernel size is fixed to 2. Padding is
done to keep output as same seq len as input. Pre-
activation output ẑi+1

1:T will be of shape [bs, 4*hsize
, seq len].

Lastly, we produce Output zi+1
1:T by non-linear

activation function as shown in Equation 3.

zi+1
1:T = f(ẑi+1

1:T , z
i
1:T−1) (3)

As we discussed, the nonlinear activation is based
on LSTM cell equations. The pre-activation output
is equally divided in four parts of shape [bs , hsize
, seq len] as shown in Equation 4

ẑi+1
1:T = [ẑi+1

1:T,1, ẑ
i+1
1:T,2, ẑ

i+1
1:T,3, ẑ

i+1
1:T,4] (4)

Output zi+1
1:T has two parts, computed as shown in

Equation 5

zi+1
1:T,1 =σ(ẑ

i+1
1:T,1)� zi0:T−1,1 + σ(ẑi+1

1:T,2)

� tanh(ẑi+1
1:T,3)

zi+1
1:T,1 =σ(ẑ

i+1
1:T,4)� tanh(zi+1

1:T,1)

(5)

Therefore, in multiple such layers, Trellis network
is learning short and long distance relation in input
sequence. From last layer’zi1:T , last “nout” repre-
sentations for every time stamp are passed as final
output.

2.2 NCIPMA Network
Figure 6 shows Neighbor Contextual Information
Projector with Multi Head Attention. (NCIPMA)
architecture. First, we pass the utterance through
Utterance Pre-Processing stage explained in 2.2.1.

2.2.1 Utterance Pre-Processing
The input utterance is broken down into chunk of
words. If the number of words is less than required
maximum number (obtained by taking maximum
of the count of words for each utterance in the
training data, denoted as max words), we pad the
rest of the words with “PAD” word. We convert
words to index using sorted dictionary of unique
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Figure 6: NCIPMA Architecture. Neighbor Contextual
Importance Projector enhances the word importance
learning by adding the unigram, bi-gram and tri-gram
word importance learnings using Multi- Head Atten-
tion. Here f=1 means filter size as 1 representing un-
igram, f=2 means filter size as 2 representing bi-gram
and f=3 means filter size as 3 representing tri-gram.
MHA means Multi-Head Attention

training words to incremental index. If we do not
find the word in the dictionary, then we assign the
index of “unkword” (specially added into sorted
dictionary to handle unseen words).We map sorted
words in dictionary to index from 1 to n (number of
words in the dictionary). We use index 0 for “PAD”
word. This is the way we convert utterance to list
of indices.

We pass the converted list of indices to Embed-
ding layer. During training time, we have trained
Embedding layer by masking zero index, passing
weight-embedding matrix and making the matrix
as trainable. We used unique training words, from
sorted dictionary, to construct weight-embedding
matrix. We did this by taking word index from sort-
ing dictionary and 300-dimension word embedding
from Glove Embedding for each word in unique
training words. Hence, Embedding layer provides
trained word embedding vector for each word in-
dex in the utterance during test time. This creates
3-d matrix of size (1, max words, 300).

2.2.2 Neighbor Contextual Information
Projector(NCIP) Module

In this module, we pass the 3-d matrix (output
of utterance pre-processing module) through three
parallel CNN layers. Each CNN layer uses filter
size as one, two and three respectively capturing
unigram, bi-gram and tri-gram word information.
To learn each word information importance over
other, we keep the word length same by making
padding “same”.

We capture the importance of uni-gram, bi-gram

Figure 7: (Left) Scaled Dot-Product Attention. (Right)
Multi-Head Attention consist of many scaled dot prod-
uct attention in parallel.

and tri-gram word information on the uni-gram
word information using Multi-Head Attention, as
shown in Figure 7. Multi-Head Attention aid in
capturing multiple phrases importance in the pro-
vided input by passing the same input as query, key
and value and calculating the importance as shown
in Figure 6. Here, we pass n-gram (uni-gram, bi-
gram or tri-gram) word information as query and
key. We pass value as unigram word information.

Finally, we add the outputs of all the three Multi-
Head Attention Module with unigram output.

This module aids in capturing

• Multi-phrase importance for each word.

• Multi-phrase importance for each phrase
made from two to three words as well.

Addition of the above information projects that a
word is important even as a part of the phrase and
not only as a single word. We pass this information
to two parallel Multi-Head Attention Modules.

These parallel Multi-Head Attention (MHA)
modules try to learn the importance of phrases for
each task in the provided input by passing the input
as Query, Key and Value as shown in Figure 7. We
predict intent through one MHA module by first
flattening the 3 dimensional output, then by pass-
ing through dense layer with distinct intent as final
hidden dimension. We predict slot through another
MHA module, by passing through dense layer with
distinct slot as final hidden dimension.

2.3 NCIPMA With CRF

Figure 8 shows the architecture of NCIPMA with
CRF. First, we pass the utterance through Utterance
Pre-Processing module. We pass the output of the
module to NCIP module. We use the output of
NCIP module to predict intent and slot.
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Figure 8: NCIPMA with CRF

For intent, we pass through MHA module to
enhance the learning important for intent. Then
we pass through Conditional Random Field (CRF)
module.

We use linear chain CRF. Linear Chain CRF
implements sequential dependencies during predic-
tion. It is a generalization of Hidden Markov Model
(HMM) where it solves the chain graph problem.
CRF predicts for each word, the most probable in-
tent possible. We then check if we predict the same
intent for all the words and consider the intent as
pass if we do so otherwise fail.

Similarly, for slot, we pass through MHA mod-
ule to enhance the learning important for slot. Then
we pass through Conditional Random Field (CRF)
module. We use same linear chain CRF module.
This module now predicts the most probable slot,
for each word.

2.4 RASA DIET
RASA has developed a separate neural network
framework and ?? proposed DIET architecture for
intent classification and slot tagging. Impressed
by the framework, we conducted experiments on
RASA’s DIET architecture. We use a typical Rasa
pipeline for our experiments on the DIET classifier,
which consists of: 1) Tokenization, 2) Featuriza-
tion, and 3) Entity Recognition/Intent Classifica-
tion. The Rasa framework allows for a modular
approach in creating a model pipeline. We use a
Whitespace tokenizer, followed by a set of super-
vised embedding featurizers, followed by the DIET
components. The DIET architecture has two com-
ponents: intent classification and slot tagging. For
intent classification, it captures a representation of
the entire utterance by combining individual token
representations and passing the result through a
transformer layer. For slot tagging, individual to-

ken representations obtained from the transformer
layer are further fed into a conditional random field
(CRF) layer. Finally, the model optimizes on the
total loss obtained by combining intent loss and
slot loss.

3 Experiments

We evaluate proposed models on two open source
dataset ATIS1 and SNIPS 1

3.1 Data

Dataset Train
Data

Valid
Data

Test
Data

Intent Slot

ATIS 4478 500 893 21 120
SNIPS 13084 700 700 7 72

Table 1: Dataset Information.

Table 1 shows ATIS and SNIPS dataset informa-
tion.

Airline Travel Information System (ATIS)
dataset contains audio recording of people mak-
ing flight reservations. It contains 4478 training
data, 500 validation data and 893 test data. ATIS
dataset is highly skewed in nature. In addition,
there are 120 slot labels and 21 intent types present.
SNIPS dataset is collected from SNIPS personal
voice assistant. It contains 13084 training data,
700 validation data and 700 test data. In addition,
there are 7 intents and 72 slots. The complexity
of SNIPS dataset is high due to large number of
cross-domain intents.

3.2 Training Details
3.2.1 Trellis Network Based Experiments
Trellis network has many hyper-parameters, we ma-
jorly experimented with different values of number
of layers, embedding size and hidden size. We first
identified optimal value of number of layers. Bai
et al. (2018) used 55 layers for Word-PTB and 70
layers for Word-WT103 datasets for LM task. For
joint intent and slot experimentation, we varied the
number of layers from 5 to 20. We found that the
experimentation provided best accuracy for 11 lay-
ers and started decreasing after 11 layers. Hence,
all our experimentation consisted of 11 layers.

We kept embedding size small as compare to
original LM task, LM experiments were done with
embedding size between 280 and 512, whereas we

1https://github.com/MiuLab/SlotGated-
SLU/tree/master/data
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are keeping embedding size 50 & 100 for different
experiments. Hidden size of LM was 1000 to 2000,
whereas we are keeping 100 or 120 for different
experiments. For all experiments, we are keeping
nout (output dimension of Trellis network) same as
embedding size.

3.2.2 NCIPMA Network
We use glove embedding of 300 dimensional vec-
tor for each seen word and “unk” word embedding
(randomly initialized 300 dimensional vector) for
unseen words to construct weight matrix for Em-
bedding Module. There are three parallel CNN
networks. We use Conv1D module with filter size
as 1, 2 and 3 respectively and hidden dimension as
256 with padding “same” feature. The inputs for
Multi-Head Attention are having same hidden di-
mension namely 256. Hence, the output dimension
is also 256. Addition module adds the output of
the three Multi-Head Attention Module. Hence the
dimension size is same as 256. We pass through
parallel Multi-Head Attention Module, which does
not change the hidden dimensional. Hence, the
output dimension for each Multi-Head Attention
module is 256. For intent, we flatten the matrix
to 2D and pass through “Dense” layer, with intent
size as hidden units and activation as “Softmax”.
For slot, we pass through “Dense” layer, with slot
size as hidden units and activation as “Softmax”.

We use “Keras” platform with optimizer as
“Adam”, loss as “categorical crossentropy”, batch
size as 64 and learning rate as 0.001.

3.2.3 NCIPMA with CRF
All the dimensions used for this experiment is same
as NCIPMA network except for intent and slot
prediction.

For intent prediction, we use CRF layer with
output dimensions as intent size, with mode set to
join mode. For slot prediction, we use CRF layer
with output dimensions as slot size, with mode set
to join mode.

We use “Keras” platform with optimizer
as “Adam”, loss as “crf loss”, accuracy as
“crf viterbi accuracy”, batch size as 64 and learn-
ing rate as 0.001.

3.2.4 RASA DIET
For the DIET model, we use the default architecture
suggested by RASA for intent classification and
slot tagging without pre-trained embeddings. It
consists of two transformer layers of size 256, with

4 attention heads. The learning rate is set to 0.001,
batch size to 4, and the dropout to 0.2.

4 Results and Analysis

4.1 Impact of embedding and hidden size on
Trellis Network

This section explores the impact of embedding and
hidden size on Uni-directional and Bi-directional
Trellis network.

4.1.1 Unidirectional Trellis Network

Dataset Emb
Size

Hidden
Size

Intent
Acc

Slot
F1
Score

ATIS 50 100 95.0 94.3
ATIS 100 120 95.33 94.44
SNIPS 50 100 96.89 81.45
SNIPS 100 120 98.16 83.59

Table 3: Trellis Network results with different model
parameters for ATIS and SNIPS.

Table 3 shows results with ATIS and SNIPS data.
On both datasets, Accuracy increases little with
increase in embedding and hidden sizes.

4.2 Bidirectional Trellis network

Fusion Emb
Size

Hidden
Size

Intent
Acc

Slot
F1
Score

Linear 50 100 97.88 90.01
Linear 100 120 97.88 88.57
Concat 50 100 96.89 88.75
Concat 100 120 97.31 89.43

Table 4: Bi Directional Trellis Network results for
ATIS and SNIPS.

Table 4 shows results of Bidirectional Trellis with
SNIPS data set, slot F1 improves a lot as compare
to unidirectional model. But with increase in num-
ber of parameters, Bi-directional models are not
improving well. This might because of limitations
of fusion block. Therefore, there is need for trying
different fusion techniques with it.

4.3 NCIPMA Architecture Result and
Comparison with State of Art

We evaluate all the proposed architectures on open
source dataset like ATIS and SNIPS. Table 2 shows
the accuracy comparison of the proposed models
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ATIS SNIPS
Architecture Intent Slot(f1) Intent Slot(f1)
NCIPMA 97.87 95.42 98.57 91.55
NCIPMA with
CRF

97.87 96.25 98.14 92.35

Unidirectional
Trellis Network
Based Model

95.33 94.44 98.16 83.59

Bi-directional
Trellis Network
Based Model

95.11 95.70 97.88 90.01

RASA 95.88 94.47 97.56 92.91
Goo et al.
(2018)

94.1 95.2 97.0 88.8

E et al. (2019) 97.76 95.75 97.29 92.23

Table 2: Accuracy Comparison with State of the Art.

with each other in addition to state of the art mod-
els like Slot gated model (Goo et al., 2018) and
Bi-directional Interrelated model (E et al., 2019).
From the table, we are able to infer that NCIPMA
with CRF model is able to surpass state of the art
architecture and other architectures for ATIS and
SNIPS. For ATIS, intent accuracy improved by
0.11% and slot accuracy improved by 0.5%. For
SNIPS, the intent accuracy improved by 0.85% and
the slot accuracy improved by 0.12%. NCIPMA
architecture without CRF is able to perform bet-
ter intent detection for SNIPS by 1.28%. We are
able to infer that CRF has boosted the accuracy
of NCIPMA architecture because final slot predic-
tion is based on previous labels and current word,
which aided in improving the slot prediction. In ad-
dition, word level intent prediction for ATIS aides
in maintaining the accuracy for intent for ATIS
and degraded for slot by 0.43%. This indicates the
word-level intent evaluation by CRF aids in main-
taining the intent accuracy without much degra-
dation. We are also able to infer that CNN with
Self-attention architecture is able to beat models
with sequential models like GRU, LSTM. RASA
for SNIPS slot is performing the best by beating
state of the art by 0.68%.

5 Conclusion

We are able to find a replacement for sequential
learning models like LSTM, GRU and RNN by
using CNN with self-attention. We are able to see
that NCIP module is able to project the importance
of uni-gram, bi-gram and tri-gram well. Trellis

network based models worked well but further re-
search is required with them to improve on intent
classification and slot tagging tasks.

Future scopes are exploration of unified model
to predict domain, intent and slot for the said task.
Exploration of impact of shared weights across
layers for CNN with Self-attention is a needed task
to reduce size without impact in accuracy.
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Abstract

Natural Language Understanding (NLU) in-
volves two important task namely Intent De-
termination (ID) and Slot Filling (SF). With
recent advancements in Intent Determination
and Slot Filling tasks, explorations on han-
dling of multiple intent information in a sin-
gle utterance is increasing to make the NLU
more conversation based rather than command
execution based. Many has proven this task
with huge multi-intent training data. In addi-
tion, lots of research have addressed multi in-
tent problem only. The problem of multi in-
tent also pose the challenge of addressing the
order of execution of intents found. Hence,
we are proposing a unified architecture to ad-
dress multi intent detection, associated slots
detection and order of execution of found in-
tents using low proportion multi-intent corpus
in the training data. This architecture con-
sists of Multi Word Importance relation propa-
gator using Multi Head GRU and Importance
learner propagator module using self-attention.
This architecture has beaten state of the art by
2.58% on MultiIntentData dataset.

1 Introduction

Many voice assistants like Samsung Bixby, Ama-
zon Alexa, Microsoft Cortana, Google Assistant
has provided voice solution to ease the phone us-
age for the users. To make user experience more
conversational rather than command oriented, ex-
ploration on handling multi intent by NLU is in-
creasing. NLU currently handles three important
task for identification. Domain Detector (DD) is
the task of identifying which domain or applica-
tion should execute the utterance. ID is the task
of identifying what is the intent of the user from
the utterance. SF is the task of identifying the
objects of interest (named entities) on which we
execute the intent operation. For multi-intent, ID
task involves identification of one or more intents

in the utterance told by the user. Hence, ID must
be able to identify the dynamic number of intents
present in the utterance along with identification
of the boundaries or segments for each intents. In
addition, the order of execution of the identified
intents matters as one intent execution might be
dependent on the other intent execution. Lastly, we
would like to have low proportion of training data
for multi–intent so that we reduce the dependency
on data generation and maintenance. Hence, we
propose a unified architecture that address the fol-
lowing problems: multi intent identification, slot
identification, multi-intent boundary detection and
execution order of intents.

Lots of work has happened in the area of sin-
gle intent and slot. Chen et al. (2019) proposes
the exploration of BERT architecture for NLU task
where pre-trained bi-directional representation on
unlabeled corpus, with simple fine tuning, aided in
the task of combined single intent prediction and
slot detection. E et al. (2019) offer bi-directional in-
terrelated information sharing between intent learn-
ings and slot learnings. In addition, they use new
iteration mechanism to enhance the sharing of the
learnings. Chen and Yu (2019) project the usage
of word attention, calculated using word embed-
ding, in addition to semantic level attention at each
decoding step of Bi-LSTM. They also use fusion
gate for fusing the intent and slot learnings for en-
hancing the relationships between intent and slot.
Bhasin et al. (2020) recommend the use of Multi
modal Bi-Linear Pooling technique for fusing the
learnings of intent and slot. Tingting et al. (2019)
outlines the usage of Bi-LSTM along with atten-
tion for jointly learning the learnings of intent and
slot.Xu and Sarikaya (2013a) recommends the us-
age of convolutional neural network [CNN] along
with tri-crf for the joint task of intent detection and
slot learning. Liu and Lane (2016a) recommends
the usage of attention information along with recur-
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rent neural networks in encoder-decoder stage that
enhances the learnings of intent and slot. Wang
et al. (2018b) recommend the usage of encoder for
encoding the sentence representation using CNN ,
for local feature and high level phrase representa-
tion, and Bi-LSTM for capturing contextual seman-
tic information and decoding using attention infor-
mation, calculated from encoder, in each decoding
step of Long Short term Memory [LSTM] decoder.
Liu and Lane (2016b) offers the usage of recurrent
neural network[RNN] for solving the problem of
joint intent and slot by updating the intent detection
as and when words are coming from the utterance.
Wang et al. (2018a) suggest the usage of bi-model
network where two parallel Bi-LSTM are used and
they use the hidden information of one Bi-LSTM
to another in each network. Then they use the learn-
ings to predict intent and slot from each network.
Yu et al. (2018) offer to use cross-attentive infor-
mation propagation for enhancing the meaning of
the word at word level as well as tagging level to
aid the task of joint intent and slot prediction. The
above networks has explored many ways of captur-
ing important word level information and fusing
the learnings for predicting single intent and slot.
Inspired on the information captured, explorations
on multi intent detection and slots have gathered
steam recently to make the task finding generic.

Gangadharaiah and Narayanaswamy (2019) sug-
gest Bi-LSTM encoder for encoding the sentence
information and uses sentence level attention in-
formation as well as word-level attention informa-
tion for each time step in both the decoders. One
decoder predicts word-level intent detection, an-
other decoder predicts word-level slot detection and
one feed forward neural network predicts sentence-
level intent prediction. This network suffers from
contiguous boundary utterance detection. Xu and
Sarikaya (2013b) suggests the usage of share in-
formation between multiple intents to identify seg-
ments belonging to each intent by using hidden
layer to map the learning of word importance to
intent prediction. The network is very shallow and
is unable to capture the long distance word rela-
tionship. Kim et al. (2017) suggest usage of two-
stage system to detect multiple intents in a single
utterance when the model is trained with single
utterance by first breaking the utterance into two
chunks in the first stage and processing each chunk
sequentially by the model. This method suffers
from pipeline approach where error in first stage

results in propagative error in model stage. The
exploration, in this area, is very less comapred to
single intent and slot, dur to the absence of proper
open source dataset for multi intent data.Hence,
we are proposing a novel architecture, which will
address the following: multiple intent detection,
intent segmentation or boundaries and execution
order of the found multi intents and slot prediction,
where execution order determines the relationship
between intents to derive sequence of execution on
the voice assistant system.All the experiments are
run on MultiIntentData dataset, a newly deveoped
dataset.

We first address the problem statement in detail
in Dataset Section, and then followed by Dataset
Pre-Processing for extracting the required informa-
tion, architecture explanations, results discussion
and finally Conclusion.

2 Dataset

We solve four types of problem in this paper namely
word-level intent prediction, sentence-level intent
prediction, word-level order prediction, and word-
level slot prediction. We use word-level intent pre-
diction for finding the boundaries or segments of
multiple intents present in the sentence as shown
in Figure 1

Figure 1: Word level Intent Prediction

We use sentence-level intent prediction for iden-
tifying all the intents present in the sentence as
shown in Figure 2

Figure 2: Sentence level Intent Prediction

We use word-level order prediction for finding
out the order in which the intent segments or intent
boundaries must execute as shown in Figure 3

We use word-level slot prediction for finding all
the slots in the sentence as shown in Figure 4.
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Figure 3: Word level Order Prediction

Figure 4: Word level slot prediction

For handling very less multi-intent training data,
we have created new training and test dataset with
the help of linguist namely MultiIntentData. Multi-
IntentData dataset was created using single intent
information from two domains namely Gallery and
Camera.

Gallery domain contains the information shown
in Table 1.

Intent ID Description
g-101 Open gallery with or without using

picture name, album name and folder
name

g-102 Share the pictures found using pic-
ture name, album name and folder
name

g-219 Add the pictures found using picture
name, album name and folder name
to wallpaper

Table 1: Gallery domain information.

Camera domain contains the information shown
in Table 2.

Intent ID Description
c-1 Open camera
c-176 Turn on flash feature in camera
c-23 Change the picture size of front or

rear camera and take picture
c-3 Change the modes of camera and

take picture
c-408 Create emoji using the taken picture

Table 2: Camera domain information.

The data is created for natural forms of multi-
intent voice queries while also ensuring the intent
order and dependencies are ensured. For exam-
ple, we created continuous sentences without any

separators between individual intents. Example is
“Take the shot in pro mode with the flash”. Here
the user is requesting to turn on flash in camera and
then set the mode to pro before taking picture. In
this utterance, there are no separators. Consider-
ing the constraints, linguist has created data using
four types of combination from single intent data
of two domains as shown in Table 3. The created

Combination Type Example Utterance
Independent intents
within domain

share Malibu pictures and
add the latest paper to
wallpaper

Independent intents
across domain

open camera after launch-
ing gallery

Dependent intents
within domain

find latest Malibu pictures
and share it

Dependent intents
across domain

take a pic using selfie
mode and share it

Table 3: Intent Combinations with example.

data1 contains 1896 training utterances and 350 test
utterances. The training data contains 8% multi-
intent training data and 92% single-intent training
data using intents from two domains mentioned in
Table 1 and Table 2. The test data contains 92%
multi-intent data and 8% single intent data.

3 Proposed Method

This section explains Data Preprocessing followed
by Model 1, Model 2 and Model 3.

3.1 Data Preprocessing

The training data and test data are present in the
format as shown in Figure 5.

Figure 5: Word level Order Prediction

We write each utterance inside the square brack-
ets followed by intent id inside parenthesis. This
represents intent information.

In addition, we write each slot phrase in the ut-
terance by curly brackets followed by slot id inside
parenthesis. This represents slot information.

Finally each intent information is written inside
the ”<” and ”>” symbols followed by order id, a
number inside parenthesis. This represents order
information.

1https://github.com/MultiIntentData/MultiIntentData
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To get the utterance with intent, slot and order
details do the following. First, we extract the order
information by using regular expression to search
for first encountered ”<” and ”>” followed by
parenthesis. The order information contains intent
information inside the ”<” and ”>” and order id.
We extract one or more slot information from in-
tent information by using regular expression to find
all the left curly braces and matching right curly
braces along with parenthesis. This will give list of
(slot phrase, slot id) tuples. Using this list, we gen-
erate the original utterance by replacing all the slot
information with corresponding slot phrases. Then
we use another regular expression to search for left
square bracket with matching right square bracket
along with parenthesis. This provides (utterance,
Intent ID) tuple for intent information. Hence the
order tuple becomes ((utterance, Intent ID), Order
ID) where the utterance has the intent as Intent ID
and order as Order ID. Now we assign Intent Id
and order ID for each word in the utterance in IBO
format to generate word-level intent information
and word-level order information. From the list of
(slot phrase, slot ID) tuples , we create IBO format
for slots where the phrases, from the utterance, not
in the slot phrase are assigned “o” and phrases in
slot phrase are assigned Slot ID with first word as
“b-Slot ID” and rest of the slot phrases as “i-Slot
ID” to generate word-level slot information. We re-
peat the above steps for another order information
within the utterance (If present).

If more than one order is present then there might
be phrases not belonging to any order. In such
cases, we assign those phrases as “o” for word-level
intent, word-level slot and word-level order infor-
mation. We concatenate the utterances generated in
the process. The list of intent ID(s), generated by
parsing multiple order information, is assigned as
label for the final utterance generated for sentence
level intent information.

The next section explains model architecture evo-
lutions.

3.2 Model 1: GRU learner enhancer with
Self Attention

Figure 6 shows the architecture of the proposed
model. The model is explained in the following
subsections.

3.2.1 Utterance Pre-processing
First, we count the number of words in the utter-
ance (W1). If the count is less than max length

Figure 6: Bi-directional GRU with two Encoders

(L1), then we append the utterance with (W1 –L1)
padding words. We use “¡pad¿” symbol as the
padding word. Then we index individual word in
the utterance using training dictionary. In train-
ing dictionary, we assign ¡pad¿ symbol with index
0 and other words (including “unk” word) are in-
dexed one to “N - 1” (N -¿ max number of words
in the dictionary). If we do not find the word in the
training dictionary, then we assign index of “unk”
word. We pass indexed words of the utterance to
embedding layer. We use L1 as 23.

3.2.2 Embedding Layer
Embedding layer contains the weight matrix of
each index to vector of L2 dimensions. Its dimen-
sion is N * L2. We pass each indexed word through
the weight matrix to get its vector of L2 dimensions.
Since there are L1 words present in the utterance,
we get L1 * L2 matrix. Then we pass this ma-
trix to single GRU unit. We use glove embedding
of size 300 dimension to map word index to its
glove-embedding vector of 300 dimension. We
assign “unk” word with random initialization of
300-dimension vector. Hence L2 is 300.

3.2.3 Bi-directional GRU Layer
Gated Recurrent Unit (GRU) layer is a gated mech-
anism, where it uses reset gate and update gate for
information propagation at each time step.

The update gate decides what information needs
to propagate by passing previous hidden state and
current input through sigmoid function.

Sigmoid function squashes the value between
zero and one. If the value is closer to zero then we
do not propagate the info. If the value is closer to
one we propagate the info.

The reset gate decides what information from
the past needs to propagate by passing the previ-
ous hidden state and current input through sigmoid
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function and multiplying the output with previous
hidden state. The output, calculated using sigmoid
function, contains what value needs to stay and
what value needs to forget. Multiplying the output
with previous hidden state updates the past infor-
mation propagation as shown in Equation 1.

zt = σg(Wz ∗ xt + Uz ∗ ht−1 + bz)

rt = σg(Wr ∗ xt + Ur ∗ ht−1 + br)

ht = zt ∗ ht−1 + (1–zt)∗
φh(WhXt + Uh(rt ∗ ht−1) + bh)

(1)

where zt represent update gate and rt represent reset
gate. We use bi-directional GRU where we con-
catenate the outputs of forward GRU and backward
GRU.

We pass the concatenated output of Bi-
directional GRU after adding with trigonometric
position embedding. Trigonometric positional em-
bedding generates alternate sine and cosine embed-
ding taking position to generate embedding. We
pass the combined embedding to transformer en-
coder module. We use 256 as hidden dimension of
Bi-directional GRU.

3.2.4 Transformer Encoder
We use transformer encoder module (Devlin et al.,
2018) using multi-head attention layer, positional
feed forward layer, and residual connection layer
followed by normalization. We use two encoder
modules.

Multi Head attention network splits the input
embedding into “n” equal chunks and we provide
each chunk as input to self-attention. Self-attention
layer aides in enhancement of word importance
over the entire sentence. We achieve this by pro-
viding the encoded input representation as a set of
key-value pair. Then we provide query as same
encoded input sentence. We use scalar dot prod-
uct attention where we apply dot product between
query and all the keys to provide weighted sum and
then we multiply with value to provide weighted
sum of the value. We concatenate the “n” self-
attention outputs. This output contains the infor-
mation importance from different subspaces from
different positions. We pass this output to residual
connection module. We use “n” as 16. This module
produces 256 as hidden dimension output.

Residual connection module takes the input and
output of multi-head attention module as input to
this module and apply element wise addition on this
module. We give the output to Normalization layer.

This module produces 256 as hidden dimension
output.

Normalization layer apply normalization on the
input layers. We provide the output to position
wise feed forward neural network. This module
produces 256 as hidden dimension output.

Position wise feed forward neural network en-
hance the learning of the word level importance.
This module produces 256 as hidden dimension
output.

We pass the output of Positional Feed Forward
neural network as input to another encoder and re-
peat above steps. The output of the second encoder
contains 256 as hidden dimension.

We finally pass the output of second Positional
Feed forward neural network to output module.

3.2.5 Output module

The module consist of four fully connected feed
forward neural networks. Each feed forward net-
work module predicts word level slot, word level
intent, word level order and sentence level intent
using softmax on the first three networks and sig-
moid on the last one. The first three provides multi
class classification and last one provides multi la-
bel classification. There are 17 word-level intent, 5
word-level order, 20 word-level slot and 8 sentence-
level intents to identify.

3.2.6 Analysis

The proposed Model-1 able to handle simple rela-
tionship between the intents and orders.

However, it is not able to capture the relation-
ship between intent and order boundaries properly.
Increase in hidden dimension leads to poor per-
formance of the model due to less training data.
In addition, the model is not able to identify the
boundaries of slot properly. Finally, the model is
not able to differentiate between the presence of
word as part of separator and presence of word as
part of open title type slot.

Consider the example “display camera app to
make me a crazy emoji”. In this, the word-level
intent prediction segments the sentence properly.

Whereas the word-level order prediction is not
segmenting the sentence properly. It predicts only
one order when the intent is clearly presenting two
intents as shown in Figure 7 and Figure 8.

This clearly shows that common module is not
sufficient to use both intent as well as order predic-
tion. The fact that the intent and order predictions
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Figure 7: Intent Prediction. Brighter color indicates
stronger relationship

Figure 8: Order Prediction. Brighter color indicates
stronger relationship

are inter-related propagated the idea of Model 2
explained in the next section.

3.3 Model 2 : Multi Head GRU with Selective
Learning Propagation block

Figure 9: Multi Head GRU with Selective Learning
Propagation

Figure 9 shows the architecture of the proposed
model.

First, we process the utterance as explained in
3.2.1 section. Then we pass the output, indexed
words of length L1, to embedding layer. Embed-
ding layer process the indexed utterance and gen-
erates the embedding vector (L2) for each word as
explained in 3.2.2 section. Now we pass this to
Multi-Head GRU module, which we explain in the
next section

3.3.1 Multi Head GRU
We split the input embedding into four equal
chunks. We give each chunk to one bi-directional
GRU. Bi-directional GRU provides contextual in-
formation of the current word with respect to fu-
ture data and past data. We explained this in 3.2.3
section. We concatenate the output of each par-
allel Bi-directional GRU. The hypothesis behind
Multi Head GRU is we capture different phrase
importance from different positions. Then we pass
through fully connected network to pick the impor-
tant phrases from concatenated output. We sent the
fully connected network output to parallel network,
which we explain in the next section. We use 256
as hidden dimensional information.

3.3.2 Parallel Network modules
The module has two parallel transformer encoder
block. We have explained the working of Trans-
former Encoder block in 3.2.4 section. The rea-
son for two parallel networks is different learning
representation is available for the same input. In
addition, we use one network for predicting the
intent related predictions and other for slot related
predictions. This makes each network learnings to
concentrate on related task only thereby dividing
the learnings of the task between the two networks.
Now we selectively propagate the learnings of each
network for each task using Learner module, which
we explain, in the next section.

3.3.3 Importance Learner Module
This module is the most important module. It takes
the output of two parallel network modules and
selects the information from one parallel network
module to enhance the learning of another paral-
lel network module. We achieve this using the
self-attention block in transformer encoder module
where we use query and key as the output of one
parallel network module and value as other paral-
lel network module instead of passing the same
input as query, key and value. We have explained
the working of self-attention block in 3.2.4 section.
Since there are two networks that requires learning
enhancement we use two learning module. Impor-
tance Learner 1 takes query and key as output of
parallel network module 2 and value as output of
parallel network module 1. Importance Learner 2
takes query and key as output of parallel network
module 1 and value as output of parallel network
module 2. We provide the output of Importance
Learner 2 to Output module to predict word-level
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intent, word-level order and sentence-level intent.
Similarly, we provide the output of Importance
Learner 1 to output module to predict word-level
slot.

Output module takes the output of Importance
Learner 1 and Importance Learner 2 and does fi-
nal prediction. We have explained the working of
Output module in 3.2.5 section.

3.3.4 Analysis
The model is able to differentiate the boundaries
of open title kind of slots properly. In addition, the
model is able to understand the difference between
the words being part of open title slot and the words
acting as separator.

There is improvement in the relationship un-
derstanding between intent and order boundaries.
However, the model is suffering from order mix-up
within the boundary. However, the model is suf-
fering from order mix-up within the boundary. In
addition, confusion point exist between open title
slots. Consider the example “click photo in food
mode after turning on flash”. In this, the model
is able to find the intent boundaries properly but
the order boundaries is not proper due to relation-
ship misunderstanding between “click photo” and
“after” as shown in Figure 10 and Figure 11.

Figure 10: Intent Prediction. Brighter color indicates
stronger relationship

Figure 11: Order Prediction. Brighter color indicates
stronger relationship

The limitations clearly shows the need for new

way of addressing the problem of intent and order
boundary relationship as well as improvement in
open title slot detection.

3.4 Model 3: Multi Head GRU with
Importance Learner Module and Order
processing

Figure 12: Multi Head GRU with Importance Learner
module and Order Importance Module

Figure 12 shows the proposed architecture of
Model 3.

We pre-process the input utterance as mentioned
in 3.2.1 section. We get output as indexed words
for the utterance whose count will be L1.

We pass the utterance containing indexed words
of length L1 to embedding layer. Embedding layer
assigns vector to each word as explained in 3.2.2
section. The output will be a matrix of L1 words
with each word having embedding vector of length
L2. Hence its dimension will be L1 * L2. We pass
the matrix to Parallel network modules.

Parallel network modules generate different rep-
resentational information for the same input as well
as information learning is divided between the net-
works as explained in 3.3.2 section. Both the out-
puts are provided as input to Importance Learner
module.

Importance Learner module selectively chooses
the learning of one network to influence the learn-
ing of other network as explained in 3.3.3 mod-
ule. Since there are two networks, we use two
Importance Learner modules separately to enhance
each network learnings. The output of Importance
Learner 1 is given to Order Importance learner mod-
ule as explained in the next section. We also use
the output to predict word level intent and sentence-
level intent.

3.4.1 Order Importance learner module
This module enhances the learning by passing
through another transformer encoder layer where
we use the same input as query, key and value.
The working of transformer encoder is explained
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Architecture Slot Sentence
level Acc

Word Intent
Sentence level
Acc

Sen Intent
Sentence level
Acc

Word Order
Sentence level
Acc

Overall
Sentence
Level Acc

Model 1 89.14 88 88.57 86.57 86.57
Model 2 91.43 88.29 88.86 89.14 88.29
Model 3 94.86 90.29 90.29 90.29 90.29
Gangadharaiah
and
Narayanaswamy
(2019)

90.86 89.14 89.71 87.71 87.71

Table 4: Comparison of state of the art models.

in 3.2.4 section.We add the module output with
word-level intent output. For this, we reduce the
hidden dimension of the network to intent number
by passing through intent fully connected network
with “relu” activation.

The Order Importance Learner module output
predict word-level order by passing through fully
connected layer with softmax as activation.

The Importance Learner 2 predicts word-level
slot.

3.4.2 Analysis
The model, when ran on MultiIntentData dataset,
is able to differentiate the open title slots well. In
addition, the slot boundaries have improved. In
addition, the word differentiation as part of open
title or part of separator is able to identify properly.
In addition, we are able to see huge improvement in
intent and order boundary understanding. Finally,
the model has reduced the confusion within order
boundaries.

There is a need of improvement in better intent
detection and slot detection for few cases.

4 Result and Discussion

We ran all the three models using MultiIntentData
dataset. We modified Rashmi and Narayanaswamy
(2019) architecture to predict order as well, similar
to prediction of word-level intent by adding new
decoder and providing same attention information
for each decoder step to predict word-level order,
and ran on MultiIntentData dataset to compare with
state of the art. All the result are captured in Table
4.

From the table we are able to beat the state of
the art architecture by 2.58%. This is attributed
to the fact that parallel network along with impor-
tance learner module is able to enhance the learning

of intent, slot and order when compared to uni-
fied architecture proposed in Gangadharaiah and
Narayanaswamy (2019). In addition, the word dif-
ferentiation between part of the catchall and part of
the separator is handled well by Model 3.

From the result in Table 4, we are able to under-
stand that Model 3 is the best performing model
over Model 1 and Model 2 by 3.72% and 2% re-
spectively. From the result, we are able to see that
Model 3 is able to perform open slot distinction i.e.
distinction between the slots, open slot boundary
detection and word boundary detection between
part of open slot and part of separator over Model
1. For more details please have a look at 3.2.6 and
3.4.2. Model 3 is able to improve the order and
intent boundaries well as well as confusion points
between open title slots. For more details, please
see 3.3.4 and 3.4.2.

5 Conclusion

This work showed the importance of multi intent
detection with associated slots and its order of exe-
cution over single intent and slot. This also showed
the importance of multi intent learning using low
corpus data. We are able to derive that Multi Head
GRU aide in better contextual understanding of
the input embedding representation. In addition,
the presence of parallel network for intent and slot
learning, along with two-importance learner mod-
ule has shown better understanding on the differen-
tiation between boundaries of the slot and start of
the next intent. In addition, the word level intent
aided in influencing the overall sentence level in-
tent. The word level intent as well as the separator
also influence the intent ordering execution. This
has resulted in improvement to the tune of 3.72%.
Multi head self-attention learning on context aided
in improving from state of the art model by 2.58%.
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Future scope is to resolve anaphora resolution of
slots within intent and across intent.
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Abstract

Word emphasis in textual content aims at
conveying the desired intention by chang-
ing the size, color, typeface, style (bold,
italic, etc.), and other typographical fea-
tures. The emphasized words are ex-
tremely helpful in drawing the readers’ at-
tention to specific information that the au-
thors wish to emphasize. However, per-
forming such emphasis using a soft key-
board for social media interactions is time-
consuming and has an associated learning
curve. In this paper, we propose a novel
approach to automate the emphasis word
detection on short written texts. To the
best of our knowledge, this work presents
the first lightweight deep learning approach
for smartphone deployment of emphasis se-
lection. Experimental results show that
our approach achieves comparable accu-
racy at a much lower model size than ex-
isting models. Our best lightweight model
has a memory footprint of 2.82 MB with a
matching score of 0.716 on SemEval-2020
(shallowLearner, 2020) public benchmark
dataset.

Index terms: emphasis selection, mo-
bile devices, natural language processing, on-
device inferencing, deep learning.

1 Introduction
Emphasizing words or phrases is commonly
performed to drive a point strongly and/or to
highlight the key terms and phrases. While
speaking, speakers can use tone, pitch, pause,
repetition, etc. to highlight the core of a
speech in the minds of an audience. Similarly,
while writing or messaging, authors can em-
phasize the words by customizing the format-
ting like typeface, font size, bold, italic, font
color, etc. as illustrated in Figure 1. With the

Figure 1: Prominent words in a message are being
emphasized (Bold + Italic) automatically

explosion of social media and messaging plat-
forms, word emphasis has become more criti-
cal in engaging readers’ attention and convey-
ing the author’s message in the shortest possi-
ble time.

Emphasis selection of text has recently
emerged as a focus of research interest in nat-
ural language processing (NLP). The goal of
emphasis selection is to automate the identifi-
cation of words or phrases that bring clarity
and convey the desired meaning. Automatic
emphasis selection can help in better graphic
designing and presentation applications, as
well as can enable voice assistants and digi-
tal avatars to realize expressive text-to-speech
(TTS) synthesis. High-quality emphasis selec-
tion models can enable automatic design assis-
tance for creating flyers, posters and acceler-
ate the workflow of design programs such as
Adobe Spark (Adobe, 2016), Microsoft Pow-
erPoint, etc. These emphasis selection mod-
els can also empower digital avatars like Sam-
sung Neon (NEON, 2020) to achieve human-
like TTS systems. Understanding emphasis se-
lection is also crucial for many downstream ap-
plications in NLP tasks including text summa-
rization, text categorization, information re-
trieval, and opinion mining.
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In the current work, we propose a novel
lightweight neural architecture for automatic
emphasis selection in short texts, which
can perform inference in a low-resource con-
strained environment like a smartphone. Our
proposed architecture achieves near-SOTA
performance, with as low as 0.6% of its model
size.

2 Related Work

Prior work in NLP literature towards identify-
ing important words or phrases have focused
widely on keyword or key-phrase extraction.
Considerable progress has been made in key-
word or key-phrase extraction systems for long
documents such as news articles, scientific pub-
lications, etc. (Rose et al., 2010). The core op-
eration procedure of these systems is to extract
the nouns and noun phrases. To achieve these,
researchers have used statistical co-occurrence
(Matsuo and Ishizuka, 2004), SVM (Zhang
et al., 2006), CRF (Zhang, 2008), graph-based
extraction (Litvak and Last, 2008), etc. Re-
cent efforts have even expanded the idea from
a set of documents to social big data (Kim,
2020). However, in the context of short texts
like text messages, headlines, or quotes, key-
word extraction systems often mislabel most
nouns as important without considering the
essence of the text, thus performing poorly at
the task.

Emphasis selection aims to overcome this
by scoring words which properly capture the
essence of a text by focusing on subtle cues of
emotions, clarifications, and words that cap-
ture readers’ attention, as seen in Table 1. Re-
cent research interest towards these tasks of-
ten uses label distribution learning (Shirani
et al., 2019). MIDAS (Anand et al., 2020)
uses label distribution as well as contextual
embeddings. One drawback of using label dis-
tribution learning is the requirement of an-
notations, which are not readily available in
most datasets. Pre-trained language model
has also been used to achieve emphasis selec-
tion (Huang et al., 2020). Singhal et al. (Sing-
hal et al., 2020) achieves significantly good per-
formance with (a) Bi-LSTM + Attention ap-
proach, and (b) Transformers approach. To
achieve their modest performances, these ar-
chitectures produce huge models. For instance,

Table 1: Keyword Extraction (MonkeyLearn, 2020)
vs. Emphasis Selection

Input Text Keywords/Key
phrases Detected

Emphasis Selec-
tion

A simple I love you
means more than
money

A simple I love you
means more than
money

A simple I love you
means more than
money

Traveling – It leaves
you speechless then
turns you into story
teller

Traveling – It leaves
you speechless then
turns you into story
teller

Traveling – It leaves
you speechless then
turns you into story
teller

Challenges are what
make life more inter-
esting and overcom-
ing them is what
makes life meaning-
ful

Challenges are
what make life more
interesting and
overcoming them
is what makes life
meaningful

Challenges are
what make life more
interesting and
overcoming them
is what makes life
meaningful

IITK model (Singhal et al., 2020) takes up
469.20 MB in BiLSTM + Attention approach,
while requiring almost 1.5 GB in Transform-
ers approach. This is partly due to the use
of embeddings like BERT (1.2 GB) (Devlin
et al., 2018), XLNET (1.34 GB) (Yang et al.,
2019), RoBERTa (1.3 GB) (Liu et al., 2019),
etc. General-purpose models that emphasize
on model size still consume significant ROM:
200 MB (for DistilBERT (Sanh et al., 2019))
and 119 MB (for MobileBERT (Sun et al.,
2020b) quantized int8 saved model and vari-
ables; sequence length 384). Thus, in spite of
the performance benefits, these emphasis se-
lection systems with high-memory footprints
are not suitable for the storage specifications
of mobile devices.

Thus, while keyword extraction systems are
not suitable for short text content, emphasis
selection systems perform much better at such
tasks. However, most existing architectures
of the latter are not light-weight, and thus,
not suitable for on-device inferencing on low-
resource devices. This motivates us to propose
EmpLite, which (a) outperforms keyword ex-
traction systems by using emphasis selection
for use with short texts, and (b) differs from
existing emphasis selection architectures by en-
suring a very light-weight model for efficient
on-device inferencing on mobile devices. Our
decisions towards achieving low model size in-
clude using a subset of GloVe (Pennington
et al., 2014) word embeddings, thus, reduc-
ing embedding size from 347.1 MB to 2.5 MB,
which we discuss in section 4.1.
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Table 2: A short text example from dataset along with its nine annotations

Word A1 A2 A3 A4 A5 A6 A7 A8 A9 Freq [B|I|O] Emphasis Prob (B+I)/(B+I+O)
Kindness B B B O O O B B B 6|0|3 0.666

is O O O O O O I I O 0|2|7 0.222
like O O O O O O I I O 0|2|7 0.222

snow O O B O O O I I O 1|2|6 0.333

3 Data Collection
We use the officially released SemEval-2020
dataset (RiTUAL-UH, 2020), which is the
combination of Spark dataset (Adobe, 2016)
and Wisdom Quotes dataset (Quotes, 2020).
The dataset consists of 3,134 samples labeled
for token-level emphasis by multiple annota-
tors. There are 7,550 tokens with fewer than
10 words in a sample and they are randomly di-
vided into training (70%), development (10%),
and test (20%) sets by the organizers. Table
2 shows a short text example from the train-
ing set, annotated with the BIO annotations,
where ‘B (beginning) / I (inside)’ and ‘O (out-
side)’ represent emphasis and non-emphasis
words, respectively, as decided by an anno-
tator. The last column shows the emphasis
probability for a word, computed as (B+I) di-
vided by the total number of annotators, i.e.
9. We generate data labels for model train-
ing using emphasis probabilities by assigning 0
to low emphasis words (having probability <
thresholdprob) and 1 to high emphasis words
(probability ≥ thresholdprob). We experiment
with different values for thresholdprob and ob-
serve that 0.4 yields the best results.

3.1 Evaluation Metric
The evaluation metric for our problem is de-
fined as follows:

Matchm (shallowLearner, 2020): For each
instance x in the test set Dtest, we select a set
S
(x)
m of m ∈ (1..4) words with the top m prob-

abilities with high emphasis according to the
ground truth. Analogously, we select a predic-
tion set Ŝ

(x)
m for each m, on the basis of the

predicted probabilities. We define matching
score, or Matchm, as:

Matchm =

∑
x∈Dtest

∣∣∣S(x)
m ∩ Ŝ

(x)
m

∣∣∣
/
m

|Dtest|
(1)

Then, we compute the average rank score by
averaging all possible Matchm scores:

Average Score =

∑
m∈(1..4)

Matchm

4
(2)

3.2 Data Augmentation
There are only 3,134 annotated samples in the
training data, which makes it difficult to im-
prove the accuracy with our neural model. So,
to enlarge the amount of training data, we ex-
periment with four data augmentation strate-
gies (Sun et al., 2020a):

1. Randomly removing ≤ 1 word per sen-
tence,

2. Randomly removing ≥ 1 word per sen-
tence,

3. Upper-casing a word randomly, and

4. Reversing the sentence.

The effect of these techniques on our accu-
racy metric is presented in Section 5.1.

4 System Overview
We begin with a basic model and enhance
that model with contextual information (in
the form of pre-trained embeddings, char-level
embeddings, Parts of Speech Tag concatena-
tion, etc.). We describe the key components
(layers) of our final EmpLite neural network
architecture, as illustrated in Figure 2.

4.1 Character and Word level features
A combination of word-level and character-
level input representations has shown great
success for several NLP tasks (Liang et al.,
2017). This is because word representation is
suitable for relation classification, but it does
not perform well on short, informal, conversa-
tional texts, whereas char representation han-
dles such informal texts very well. To take the
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Figure 2: The proposed EmpLite Model Architec-
ture

best of both representations, our proposed Em-
pLite model employs a combination of word
and character encodings for a robust under-
standing of context.

We used two layers of CNN (Ma and Hovy,
2016) with 1D convolutional layers of filter
sizes 3 and 5 that extracts multiple character-
level representations and handles misspelled
words as well as models sub-word structures
such as prefixes and suffixes. We use the same
number of filters for both convolutional lay-
ers: 16, selected on the basis of experimental
results for optimal accuracy.

The character level embeddings obtained
are then concatenated with pre-trained GloVe
(Pennington et al., 2014) 50-dimensional word
embeddings. Here, we use a subset of the
GloVe embeddings corresponding to training
set vocabulary (4331 words), bringing the em-
bedding size down to 2.5 MB. We do not use
ELMo (Peters et al., 2018) or other deep con-
textual embeddings, as it is not feasible to port
these heavy pre-trained models for on-device
inferencing. In order to handle words not part
of training vocabulary, we use a representa-
tion, <UNK> token. We set the word embedding
layer as trainable as that yields the best score
due to fine-tuning of layer weights on our task.
The ith word encoding, owi , is computed as:

Figure 3: Percentage distribution of top POS tags
in training data and for words with emphasis prob-
ability greater than threshold

owi = concat
(
ewi ,CNN1 (ec1 , ec2 , ..., ecn) ,

CNN2 (ec1 , ec2 , ..., ecn)
)

(3)

where, ewi is the word embedding for each
word, wi, in the dataset and eci is the character
embedding for the input character ci.

4.2 Word level BiLSTM
The concatenated word representations ob-
tained are then passed through a BiLSTM
(Hochreiter and Schmidhuber, 1997) layer with
16 units. The BiLSTM layer extracts the
features from both forward and backward di-
rections and concatenates the output vectors
from each direction. Also, regular and recur-
rent dropouts with value 0.2 are applied to
reduce model overfitting. Let −→r and ←−r be
the forward and backward output states of the
BiLSTM. Then, the output vector, rb, is de-
fined as:

rb =
−→r ⊕←−r (4)

4.3 Part of Speech (POS) Tag feature
Figure 3 illustrates occurrence of top 10 POS
Tags (Marcus et al., 1994) in our training data.
We can infer that POS acts as an important
input modeling feature as words with POS
Tag: Noun (NN, NNP, NNS), Adjective (JJ)
or Verb (VB, VBP, VBG) usually have high
emphasis probability whereas Pronouns (PRP)
and Prepositions (IN) are less likely to be em-
phasized. Therefore, we use 16-dimensional
embedding to encode POS tag information,

22



Table 3: Comparison of different model architectures

Model Model Size (MB) Matchm Average Score
m = 1 m = 2 m = 3 m = 4

Base: Word_Emb + BiLSTM + Dense
Layer 1.10 0.479 0.639 0.731 0.785 0.659

Concat[LSTM(Char_Emb) +
Word_Emb] + BiLSTM + Dense Layer 1.10 0.473 0.658 0.739 0.786 0.664

Concat[LSTM(Char_Emb) +
Word_GloVe (Non-trainable)] + BiL-
STM + Dense Layer

1.02 0.514 0.660 0.748 0.795 0.679

Concat[CNN(Char_Emb) + Word_GloVe
(Non-trainable)] + BiLSTM + Dense Layer 1.04 0.523 0.669 0.754 0.801 0.687

Concat[CNN(Char_Emb) + Word_GloVe
(Trainable)] + BiLSTM + Dense Layer 2.70 0.538 0.680 0.766 0.811 0.699

Concat[CNN1 (Char_Emb) + CNN2

(Char_Emb) + Word_GloVe (Train-
able)] + BiLSTM + Dense Layer

2.77 0.528 0.690 0.771 0.810 0.701

Above Model + Attention 2.80 0.549 0.684 0.779 0.817 0.707

EmpLite: Above Model + POS Feature
Concatenation 2.82 0.541 0.698 0.782 0.823 0.711

which is concatenated with the output of the
Bi-LSTM layer (obtained from Equation 4):

−→
h = concat (rb, epos) (5)

where, epos is the POS feature embedding
for the sequence.

4.4 Attention Layer
We add the attention (Vaswani et al., 2017)
layer to effectively capture prominent words in
the input text sequence. The attention weight
is computed as the weighted sum of the output
of the previous layer, as shown below:

Z = softmax
(
wT

(
tanh

(−→
h1,
−→
h2, ...,

−→
hi , ...,

−→
hn

)))

(6)
where, −→hi represents output vector of the

previous layer, and wT is the transpose of the
trained parameter vector.

The attention layer output is then passed
through two time-distributed dense layers
with 12 and 1 units, respectively, with sigmoid
activation function to output emphasis proba-
bility with respect to each word.

5 Experimental Settings & Results
We attempt numerous small changes to our
model to enhance the performance. We
choose the hyperparameters to optimize ac-
curacy while maintaining a small model size.

As the proposed solution is for mobile devices,
we have also captured a system-specific met-
ric, the model size in MB. We use the Tensor-
flow framework (Abadi et al., 2016) for build-
ing the models. Table 3 shows the comparison
of Matchm scores across different variants of
lightweight models evaluated on test data.

The total number of trainable parameters
vary in the range of 21,574 to 238,620 for all
the model results reported in Table 3. We
train the models with 32 batch-size and com-
pile the model using Adam optimizer (Kingma
and Ba, 2014). We observe that using CNN
gives a better score as compared to LSTM be-
cause varying the size of kernels (3 and 5) and
concatenating their outputs allow the model
to detect patterns of multiple sizes.

We can also infer that using 50-dimensional
GloVe embeddings and setting it as trainable
improves the overall matching score. This
is because we are utilizing language semantic
knowledge acquired from the pre-trained em-
beddings and then fine-tuning it for our task.
However, there is an increase in model size
due to more number of trainable parameters.
Furthermore, we observe marginal gains in the
matching score by adding POS tag as a feature
followed by an attention layer as these help in
a better identification of prominent keywords
based on the context.
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Figure 4: Emphasis Heatmap for test set samples with word probabilities from EmpLite

Table 4: Comparison with SOTA (Singhal et al.,
2020)

Model Matchm Size (MB)
IITK: BiLSTM + Attention
Approach 0.747 469.20

IITK: Transformers Approach 0.804 1536.00

EmpLite 0.716 2.82

Figure 4 presents the Emphasis Heatmap for
some examples from the test set using our fi-
nal model. In Table 4 we benchmark our Em-
pLite model with the state-of-the-art solution
by IITK (Singhal et al., 2020) which utilized
huge pre-trained models like ELMo, BERT
(Devlin et al., 2018), RoBERTa (Liu et al.,
2019) and XLNet (Yang et al., 2019). These
models require huge RAM/ROM for on-device
inferencing making it unsuitable for edge de-
vices where resources are constrained.

Table 5: Data Augmentation Analysis

Augmentation Dataset Matchm

Approach modified (%) Score
None 0 0.711

Word removal
(≤1 per sentence)

20 0.705
50 0.702
100 0.716

Word removal
(≥1 per sentence)

20 0.711
50 0.704
60 0.712
70 0.705

Upper-casing a word 30 0.687

Reversing the sentence 10 0.704
100 0.707

5.1 Data Augmentation Analysis
Table 5 shows that there is a little score gain by
applying data augmentation techniques. For
each strategy, we experiment by applying the

augmentation approach to different percent-
ages of the total training data and calculated
Matchm score. We observe that word upper-
casing strategy results in a significant drop
in the score due to model overfitting whereas
word removal strategy (maximum 1 word per
sentence) on entire training data gives highest
Matchm score of 0.716.

6 Conclusion

Modeling lightweight neural models that can
run on low-resource devices can greatly en-
hance the end-user experience. In this work,
we propose a novel, lightweight EmpLite
model for text emphasis selection that can run
on edge devices such as smartphones for choos-
ing prominent words from short, informal text.
We approach the emphasis selection problem
as a sequence labeling task and multiple exper-
iments have shown consistent improvement in
the accuracy. Our experimental results show
the impact of the attention layer and of using
POS as an additional feature in boosting the
matching score. Our best performing model
achieves an overall matching score of 0.716
with a size of 2.82 MB, proving its effective-
ness to run on low-resource edge devices.

Future work includes increasing the vocabu-
lary with commonly used words in English and
exploring thin versions of BERT like Distil-
BERT (Sanh et al., 2019), MobileBERT (Sun
et al., 2020b), and TinyBERT (Jiao et al.,
2020) for modeling emphasis.
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Abstract

Determining the popularity of a Named En-
tity after completion of Named Entity Recogni-
tion (NER) task finds many applications. The
most popular of them being virtual assistants
where disambiguating entities without contex-
tual help is crucial. A single named entity
could belong to multiple domains, making it
necessary for the popularity determination ap-
proach to give accurate results. The more ac-
curate results can be used to improve the func-
tioning of virtual assistants. This work stud-
ies disambiguation of Named Entities (NE) of
Music and Movie domains and resolves popu-
larity considering relevant features like region,
movie/music awards, album count, run time
etc. Decision Trees and Random Forests ap-
proaches are applied on the dataset and the lat-
ter ensemble learning algorithm resulted in ac-
ceptable accuracy.

1 Introduction

Over the years the use of electronic devices for var-
ious tasks and services have become predominant.
These days, services such as E-commerce, video
and music streaming over the internet are common.
Thus, it is crucial that these services provide the
users with what they require and also give rele-
vant recommendations. Moreover, search engines
should know what results to show based not only on
the query string but also consider other factors like
demographic, geographic location, user’s search
history, etc. Identifying entities in a query string is
termed as Named Entity Recognition (NER). Due
to the vast and diverse collection of data, NER
sometimes alone may not be sufficient. In such
cases Name Entity Popularity Detection can be
used to prioritize results which may be more rel-

27



evant to the user based on various factors. This
is especially used while designing a conversation
smart assistant, to provide the user with the best
results. For example, if the user asks the virtual
assistant to “play wolves” then it has to decide
whether to play the song wolves or play the movie
wolves without any given context or sentence asso-
ciated with. In such a scenario information about
the user’s search history has conventionally been
used to resolve the ambiguity and judge what the
user really wanted. This process of using data other
than the query string to disambiguate between enti-
ties with similar names is known as Named Entity
Popularity Determination (NEPD). Our objective
is to accomplish this task without considering user
history.

2 Problem Statement

NEPD aims at determining the popularity of the
Named Entities. This approach can be extended
for use in Conversation Smart Assistants, helping
the application to understand user speech, disam-
biguate entities and give the best search results.
NEPD involves primarily

• Data Mining of features which help to deter-
mine the popularity of the target NE.

• Designing an algorithm to predict the pop-
ularity from the mined features for various
domains. Music and Movie domains are con-
sidered in our work.

3 Related Work

Several approaches have been put forward to get
better results for NER. Some of these methods in-
volve the use of neural architectures in addition to
Bi-LSTM methods. Lample et al. (2016) has devel-
oped a method based on transition-based parsing
and stack-LSTMs. Building on the approach of
ensemble learning for NER, multiple approaches
have been combined to obtain a better result (Speck
and Ngomo, 2014). The results of various classifier
algorithms were integrated (Florian et al., 2003),
resulting in significant strides in NER performance.

In the work of (Cucerzan, 2007), information ex-
tracted from Wikipedia is stored in two databases,
and the entities are mapped together. After entity
mappings, a disambiguation component is used for
Named Entity Disambiguation (NED). To improve
the performance of NED, in addition to Bi-LSTM;
other models that use GCN and RNN, along with

Figure 1: Correlation Matrix of the features

attention have also been experimented upon (Ce-
toli et al., 2018). Combining graphs and popularity
ranking into a single model is another approach
towards NED (Alhelbawy and Gaizauskas, 2014) ,
(Han and Zhao, 2010), where graphs, knowledge
bases, are used for Entity Generation, Entity rank-
ing and NED. Joint Embeddings have also been
used for improving the results for NED (Yamada
et al., 2016).

To enhance the results of the NER models, En-
tity Popularity models have been proposed (Govani
et al., 2013), (Blanco et al., 2013). These mod-
els use the personal history of the user, create a
ranking of entities, and have resulted in recom-
mendations that are more likely and specifically re-
lated to the concerned user. The ranking of entities
has been improved by increasing the performance
of the Language Model (LM), during Automatic
Speech Recognition (Van Gysel et al., 2020). The
model used for predicting entity popularity in this
paper resulted in improvements of 20% in word
error rate.

4 Dataset and Feature Extraction

The next step in dealing with the sparseness was
building the correlation and covariation matrix.The
correlation matrix, shown in Figure1 helped decide
which features to drop, and which features to retain,
to get a better clarity of the data we had collected.

The initial dataset of entities and the domains to
which they are to be classified into movie/music
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Feature Name Description Souce
Type Genre (applicable to musicians,songs and

movies only, and not to actress
IMDb, MusicBrainz

Count of Movies Acted The number of movies a person has acted
in (i a significant role)

IMDb

Count of Movies Directed Some artists tend to direct the
movies they work in.

IMDb

tCount of Movies Produced Some artists tend to produce the movies
they work in. Also includes the number of
albums that are self produced by an artist.

IMDb

Release Date The time description of when a particular
song or movie was released. It helps in de-
termining the popularity of that particular
work in that decade.

IMDb, MusicBrainz
and Last.fm

Region Place of release of the movie or album or
location of concert also refers to the region
where an artist is based.

IMDb

Count of Albums The higher the number, the more weigh-
tage for music domain

Last.fm API

cCount of Concerts The number of live concerts held by the
particular artist

Last.fm API

Count of Movie Awards The number of awards a particular person
has in a domain

IMDb

Count of Music Awards The number of awards a particular person
has in a domain

IMDb, MusicBrainz

Run Time Sum of durations of all the songs released
by the person

MusicBrainz

Table 1: Features and their description.

was generated. Considering the domains in the
problem statement, a list of applicable features
along with the source from which the data for that
particular feature can/could be extracted was made.
This decision was based on the considerations that
a person who is active predominantly in one of
the two domains, will have a higher value for the
features pertaining to that domain. Additionally,
people who are active in both the domains will have
values for all the features but some comparatively
higher than the other. The list of features is given
in Table 1.

The problem at hand is finding the popularity
of a person in the domain and identification of the
domain in which the person is more popular if the
person has an existence in both. The idea behind
the selection of a feature was based on this problem.
The popularity of any person in a domain is based
on the works of that person, and the accolades the
person has received for their work in the particular
field. The feature “Run Time” was included in par-

ticular as some of the artists voice for songs in the
movies they have acted in. And hence they might
have a considerable number of songs under them.
This feature will help us to distinguish between a
full-fledged singer (music domain) and actors who
just give voice for a song in a movie.

The data was collected and a .csv file was formed.
Most of the entities in the given dataset were disam-
biguous, and hence the data collected was sparse as
the entity was inclined to one of the domains. To
overcome this problem of sparseness, the dataset
was first divided into two-parts: one file contain-
ing the entities that were the names of the people
and/or music bands, while the other contained the
entities that were the names of the artwork (movie
and/or song tracks). Dividing the single file into
two, helped deal with the sparseness a bit as some
of the features that were not applicable to that par-
ticular category were removed.

There were many challenges in handling the art-
work file. Many artworks pertaining to the same
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domain had the same name but different artists. A
disambiguation had to be done to select the best
one of these. Consider the song “Bad Guy”. When
we tried to collect data regarding it, the result of the
search query included 280 songs of the same name
in all languages combined. We took the collection
of top 10 searches and the data related to each of
those songs which shared the common name.

The features “Genre”, “Region” and “Release
date” were dropped from consideration. The deci-
sion to drop them was taken based on the fact that
“Genre” didn’t work well with entities belonging
to the movie domain. The “Release Date” isn’t ap-
plicable to persons but only to the artwork. Hence
these features were considered as not needed and
were dropped.

After dropping the not required features from the
dataset, the sparseness that still existed was dealt
by filling them up with default values which was
determined in such a way so as to not change the
dynamics of the dataset (i.e., not change the nature
of the data).

5 Methodology

Flowchart in Figure2 shows the systematic ap-
proach taken. The data collected from IMDb and
MusicBrianz was analyzed. We faced the problem
of excessive sparseness after building our dataset
as some fields were not applicable for a particular
domain and hence had to be left blank. Features
like Number of movies acted, Number of movies
directed, Number of movies produced would not
be applicable for music related entities. Similarly
features like release region, release year would not
be applicable for movie artists.

We realized adding mean/median values to re-
move the sparseness would corrupt the dataset as
the missing values were not applicable for the en-
tity. For entities like number of movies acted, num-
ber of movies directed, number of movies produced
we replaced Null values with zero. For the release
year entity, we replaced Null values with 2015 and
release region with USA to avoid ambiguity as we
didn’t want these values to influence the classify-
ing decision. We replaced the Null values in the
rating columns for movie artists to four to maintain
uniformity. We made sure not to replace any miss-
ing attribute’s value with an extreme value so as to
avoid influencing the classifying decision.

We used Label encoding to encode the attribute
values as decision trees and random forests do not

Collecting data from IMDB and
MƵsicBrainǌ

 to build the dataset

Cleansing our dataset and filling
missing Yalues Zith appropriate

Yalues to tackle sparseness

Performing Label Encoding on the
features

Training our dataset Zith random
forest

Var\ing the number of trees and
test data si]e to obserYe

accurac\

Steps shoZing  the approach taken 

Finall\ choosing the result
Zhich giYes us the highest

accurac\

Fine tuning
parameters

Figure 2: Flowchart of the System Processes

accept string inputs. We used Label Encoding over
One Hot encoding because we observed One hot
encoding would result in higher data duplication
(Multiple Columns). Initially we used decision
trees after performing label encoding on the dataset
entities. The intuition behind choosing decision
trees was that the algorithm generates rules for
classification. The input data was not sequential for
us to try Machine Learning algorithms like RNN
or LSTM. The decision tree was built using the
scikit-learn library of python. The algorithm used
to build the decision tree was CART, and hence
categorical values weren’t supported and encoding
had to be done. The decision of splitting the node
at a level was based on the gini impurity of the
features.

To improve the accuracy, we used random forest
(Set of decision trees) to reduce overfitting and
give better results for new test data. Random forest
algorithm creates decision trees on data samples
and then gets the prediction from each of them
and finally selects the best solution by means of
voting. It is an ensemble method which is better
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than a single decision tree because it reduces the
over-fitting by averaging the result and improves
the classification accuracy.

6 Experimental Results

On analyzing our dataset, we decided that a ma-
chine learning approach would work well for the
problem in hand. We initially used decision trees
and achieved an accuracy of 86%. Figure3 rep-
resents the decision tree that was built using the
CART algorithm. The split of nodes at each level
is depicted along with its Gini impurity value.

Figure 3: Decision Tree generated

Algorithm Test Data
(%)

Training
Data (%)

Accuracy
(%)

Decision
Tree

20 80 86

Random
Forest

20 80 89

Random
Forest

30 70 93

Random
Forest

40 60 94.3

Table 2: Experimental Results.

To increase the accuracy of classification and pre-
vent overfitting we decided to use random forest.

Using the random forest, we obtained an accuracy
of 89%. As our dataset was relatively small, in-
creasing the number of trees for random forest did
not yield us with better accuracy, so we increased
the test data size to have larger data to classify from
20% to 40%. Results are tabulated in Table 2. Fi-
nally, we achieved an accuracy of 94.3% percent
using random forest with 100 trees.

7 Conclusion

The problem of Named Entity Popularity Deter-
mination was to be solved without any contextual
data or user history in the domains of music and
movies. In virtual assistants, users usually give
only named entity without context or a statement
associated with it. We built our customized dataset
from IMDb and MusicBrainz. The issue of exces-
sive sparseness was solved by filling the missing
values in the dataset with generic relevant values
and made sure it wouldn’t influence the classifying
decision. With decision trees, an accuracy of 86%
was achieved. To improve the accuracy and prevent
overfitting random forests was used. We finally
achieved an accuracy of 94.3%. The approach used
here to disambiguate ambiguous entities can be
extended to other related domains like TV Shows,
Podcasts and Radios by collecting relevant features.
This approach can be modelled to disambiguate am-
biguous entities between various related domains
without contextual information.

References
Ayman Alhelbawy and Robert Gaizauskas. 2014.

Graph ranking for collective named entity disam-
biguation. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 75–80.

Roi Blanco, Berkant Barla Cambazoglu, Peter Mika,
and Nicolas Torzec. 2013. Entity recommendations
in web search. In International Semantic Web Con-
ference, pages 33–48. Springer.

Alberto Cetoli, Mohammad Akbari, Stefano Bragaglia,
Andrew D O’Harney, and Marc Sloan. 2018. Named
entity disambiguation using deep learning on graphs.
arXiv preprint arXiv:1810.09164.

Silviu Cucerzan. 2007. Large-scale named entity dis-
ambiguation based on wikipedia data. In Proceed-
ings of the 2007 joint conference on empirical meth-
ods in natural language processing and computa-
tional natural language learning (EMNLP-CoNLL),
pages 708–716.

31



Radu Florian, Abe Ittycheriah, Hongyan Jing, and
Tong Zhang. 2003. Named entity recognition
through classifier combination. In Proceedings of
the seventh conference on Natural language learn-
ing at HLT-NAACL 2003, pages 168–171.

Tabreez Govani, Hugh Williams, Jamie Buckley, Nitin
Agrawal, Andy Lam, and Kenneth A Moss. 2013.
Determining entity popularity using search queries.
US Patent 8,402,031.

Xianpei Han and Jun Zhao. 2010. Structural semantic
relatedness: a knowledge-based method to named
entity disambiguation. In Proceedings of the 48th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 50–59.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.
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Abstract

Building Chatbot’s requires a large amount
of conversational data. In this paper, a
web crawler is designed to fetch multi-turn
dialogues from websites such as Twit-
ter, YouTube and Reddit in the form of
a JavaScript Object Notation (JSON) file.
Tools like Twitter Application Programming
Interface (API), LXML Library, and JSON
library are used to crawl Twitter, YouTube
and Reddit to collect conversational chat data.
The data obtained in a raw form cannot be
used directly as it will have only text metadata
such as author or name, time to provide more
information on the chat data being scraped.
The data collected has to be formatted for
a good use case, and the JSON library of
python allows us to format the data easily. The
scraped dialogues are further filtered based
on the context of a search keyword without

introducing bias and with flexible strictness of
classification.

1 Introduction

Real-world data remains a necessary part of train-
ing system models. The digital streams that indi-
viduals produce are quite useful in the Data Anal-
ysis domain, like natural language processing and
machine learning. Social networking applications
like Twitter, YouTube and Reddit contain a large
volume of data that are quite useful for various al-
gorithms. Naturally, the need to make information
easily accessible to all leads to deploying a conver-
sational agent. In order to build a chat model, a
huge volume of conversational text data is required.

Twitter is a microblogging service that allows
individuals to post short messages called tweets
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that appear on timelines. These tweets were limited
to 140 characters, which has been later expanded
to 280 characters and prone to change again in the
future. Tweets consist of two kinds of metadata
that are entities and places. Tweet entities are hash-
tags, user- mentions, images, and places in the real
world’s geographical locations. Metadata and short
prose add to fewer than 280 characters can link to
Webpages, Twitter users. Twitter timelines are cat-
egorized into the home timeline and user timeline.
Timelines are collections of tweets in chronologi-
cal order. Twitter API uses Representational State
Transfer (REST) API to crawl and collect a random
set of sample public tweets. The API allows users
to explore and search for trending topics, tweets,
hashtags, and geographical locations.

YouTube, a video-sharing website, allows
users to view, upload, rate, report on videos. It
contains a wide variety of videos such as TV show
clips, music videos, documentaries. It also provides
a platform for users to communicate and describe
their thoughts about what they watch through com-
ments.

Reddit is a social news platform where regis-
tered users may submit links, images, text, posts
and also upvote or downvote the posts posted by
other users. Posts are organized based on boards
created by the user called subreddit. It is also a
platform for web content rating and discussions.
Reddit stores all of its content in json format which
can be viewed on the browser by extending the
reddit link with the extension ’.json’.

Real-time datasets are needed to build a model
to generate accurate output. As the available
datasets are insufficient and do not contain real-
istic examples, there is a need to build a crawler
which would scrape conversational data. Building
crawlers for each website would allow collection of
conversational data. This would help in the creation
of datasets of conversational data.

2 Literature Survey

A Focused crawler is designed to crawl and retrieve
specific topics of relevance. The idea of the focused
crawler is to selectively look for pages that are
relevant while traversing and crawling the least
number of irrelevant pages on the web.

Context Focused Crawlers (CFC) use a lim-
ited number of links from a single queried docu-
ment to obtain all relevant pages to the document,
and the said obtained documents are relevant con-

cerning the context. This data obtained is then used
to train a classifier that would detect the context
of documents and allow classification of them into
categories based on the link distance from a query
to target. Features of a crawler are-

• Politeness

• Speed

• Duplicate Content

Each website comes with the inclusion of a
file known as robot.txt. It is a standardized prac-
tice where robots or bots are communicated with
the website through this protocol. This standard
provides the necessary instructions to the crawler
about the status of the website and whether it is al-
lowed to scrape the data off of the website. This is
used to inform crawlers whether the website can be
crawled either partially or fully, if the website can-
not be crawled as per the robot.txt then the server
blocks any such requests and can even lead to block-
ing of IP’s.

Websites have robot.txt, which prevent the
use of crawlers that attempt to scrape large data
from their website. Any request for a large amount
of data is blocked almost immediately. To pre-
vent such a case where the crawler should not be
blocked, a list of publicly available proxy servers
as described in Achsan (2014) is used to scale and
crawl the website. Twitter is a popular social me-
dia platform used for communication. Crawling
such a website can be useful to gain conversational
data, and such information can be targeted based
on the topic; one such example is a perception on
the internet of things as shown in Bian J (2017) or
Assessing the Adequacy of Gender Identification
Terms on Intake Forms as described in Hicks A
(2015).

3 Proposed System

3.1 Twitter Crawler

Twitter API provides the tweets encoded in JSON
format. The JSON format contains key-value pairs
as the attributes along with their values. Twitter
handles both the users and as well the tweets as
objects. The user object contains attributes includ-
ing their name, geolocation, followers. The tweet
object contains the author, message, id, timestamp,
geolocation etc. The JSON file can also contain
additional information in the media or links present
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in the tweets, including the full Uniform Resource
Locator(URL) or link’s title or description.

Each tweet object contains various child ob-
jects. It contains a User object describing the au-
thor of the object, a place object if the tweet is
geo-tagged, and entities object, which is an array
of URLs, hashtags, etc. Extended tweets include
tweets with longer text fields exceeding 140 charac-
ters. It also contains a complete list of entities like
hashtags, media, links, etc. They are identified by
the Boolean truncated field equals true, signifying
the extended tweet section to be parsed instead or
the regular section of the tweet object.

The retweet object contains the retweet object
itself as well as the original tweet object. This is
contained in the retweeted status object. Retweets
contain no new data or message, and the geoloca-
tion and place is always null. A retweet of another
retweet will still point to the original tweet.

Quote tweets contain new messages along
with retweeting the original tweet. It can also con-
tain a new set of media, links or hashtags. It con-
tains the tweet being quoted in the quoted status
section. It also contains the User object of the
person quoting the tweet.

The Twitter REST API method gives access
to core Twitter data. This includes update timelines,
status data, and user information. The API methods
allow interaction with Twitter Search and trends
data.

The Twitter streaming API obtains a set of
public tweets based upon search phrases, user IDs
as well as location. It is equipped to handle GET
and POST requests as well. However, there is a
limitation on the number of parameters specified
by GET to avoid long URLs. Filters used with this
API are-

• follow- user IDs of whom to fetch the statuses

• track- specific words to be searched for.

• location- filter tweets based on geo location.

Workflow of Twitter Crawler:

1. Crawling for public tweets

This project uses Streaming API access to
crawl and collect a random sample set of
public tweets. These tweets are crawled in
real time. These tweets can be filtered with
geo location to crawl tweets with respect to a
specific region. These sample sets of public

tweets are outputted to a json file as seen in
Figure 1.

Figure 1: The above figure depicts a tweet object. It
contains all attributes contained within a tweet

2. Crawling for tweets while searching and mon-
itoring a list of keyword

For searching and monitoring, a list of key-
words, search/tweets is used. Streaming API’s
status/filters are not used as it does not pro-
vide previous tweets at all. Search/tweets are
used to crawl and provide tweets from at most
a week back. This function continues to end-
lessly crawl for tweets matching the query.
Another advantage of using this method is
that it does not limit the number of keywords
it can track, unlike statuses/filters, which re-
quire separate or new instances to search for
different keywords.

3. Filtering Tweets with replies

The crawler filters through the collected pub-
lic sample of tweets to find specific tweets
with replies. It finds the same by checking
the ’in reply to status id’ attribute of the col-
lected tweets. It then proceeds to crawl the
parent tweet using the ’in reply to status id’.
It outputs the parent and the reply tweet to-
gether in the JSON file, as seen in Fig. 2.

4. Filtering Quoted Retweets

Quoted Retweets or retweets with com-
ments are filtered from the collected set of
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public tweets. This is achieved by pars-
ing the collected tweets and searching for
’quoted status’. The parent tweet is con-
tained within the quoted retweet inside the
’quoted status’ attribute. The crawler outputs
the quoted retweet with its contained parent
tweet to the JSON file, as seen in Fig. 3.

Figure 2: In the above diagram, the ’in reply to status’
tag used to filter the tweets is highlighted.

3.2 Youtube Crawler

Cascading Style Selector and Python are the pri-
mary tools that are used. The crawler works to
accept a CSS selector expression as input; the se-
lector compiles to XPath, and many other libraries
such as requests.

AJAX interchanges data with the server in
the background enabling the web page to be up-
dated. This allows certain sections to be up-
dated as opposed to the entire page. Python is an
object-oriented programming language for general-
purpose programming. It helps enhance code read-
ability by including the whitespace.

YouTube has server-side rendering with au-
tomation,it is impractical to wait for all comments
to get loaded in order to extract them. This work
uses the fact that YouTube sends an AJAX Request

Figure 3: In the above diagram, the ’quoted status’ tag
used to filter the tweets is highlighted.

to a URL in order to get comments. By using that
URL, the crawler makes a session with a user agent
and sends the AJAX request to the server for a
particular video id input given by the user; all the
comments are downloaded and stored in a JSON
format; each comment and its reptiles are identified
by the id it has, replies have the id of the main
comment prefixed with its id.

Figure 4: Algorithm Crawl Youtube Comments

3.3 Reddit Crawler

Reddit is a social media platform that serves the
purpose of sharing the content of many forms, in-
cluding multimedia content. A subreddit is defined
to cover a topic of interest, for example, sports
and users can make posts on sports, and others can
comment on these posts.

Usually, scraping Reddit is difficult since Red-
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dit easily blocks IP addresses after a certain number
of requests. Hence the work done focuses on view-
ing Reddit pages as a collection of JSON objects
that can be simply parsed for the required content
type. This overcomes the issue mentioned above
of having a single IP address blocked at multiple
requests.

Reddit returns a JSON object when the link is
extended with ’.json’, which is passed as an initial
request to crawl, and a callback function is called
with the response downloaded from the request. In
the callback function, the response object is parsed,
and the crawler retrieves the comments. Post links
are retrieved based on the search term entered and
sorted on hot, new, top, rising, or controversial.
The number of post links is limited based on the
limit factor. Each of these posts contains a set
of permalinks containing information about the
comments. Each of these permalinks is parsed, are
traversed, and a JSON object is retrieved. Obtained
JSON objects are parsed to retrieve the comments.

Scrapy, a web scraping framework, is used
to extract structured content from the Reddit page.
Libraries such as JSON, time are used. The JSON
library provided by python is used to parse JSON
objects returned from Reddit links. The crawler
output can be seen as in Fig. 5.

Figure 5: Crawler output in JSON format

4 Context Based Dialogue Filtering

The tool used in the comment filtering module is
python libraries centered around handling and ma-
nipulating the data obtained from the crawlers. The
filtering model uses the pandas’ library to read the
raw data from a .csv form of the output json data
from the crawlers. The filtering model uses the
nltk library to clean our data, tokenize the data, and
remove stop words.

The outputs collected from the crawlers are
all initially in JSON files. These are then converted
into a uniformly structured csv type file. The main
technology used is in the form of the bag of words
model used to analyze the importance of each gen-
erated token within the context of the extracted
data.

In the implementation, note that input is the
csv file, and output is a cleaned and appended list of
comments and replies. The comments and replies
are first to read into a data frame following which
the following cleaning methods are applied: Con-
vert to lowercase “[/()\[\]\—@,;” symbols are re-
placed by a space “0-9a-z + ” symbols are removed

Stopwords are removed according to the ’En-
glish’ stopwords from the nltk stopwords library

The first 30 comments are then analyzed to
generate a list of tokens, and their frequencies are
counted. Tokens with ”” are given high preference,
and a high-frequency list of words is taken as a sub-
set of the original list. Then all the comments and
replies from the data frame are cross-referenced.
Entries that do not contain any of the words in the
list of high-frequency words are rejected. The re-
maining entries which have been filtered are the
output.

Figure 6: Algorithm Comment filtering
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5 Analysis and Comparison

5.1 Twitter
Standard twitter crawlers use the Streaming API
statues/filters, which do not provide old tweets. The
other caveat is that it can only track a limited num-
ber of keywords. So, if the user has a lot to track,
he will need to have many separate instances, each
tracking different parts of the keywords.

The proposed Twitter crawler is beneficial
in that it uses search/tweets to get old tweets. It
searches for a portion of the keyword list at a time.
The Streaming API is used to collect a random sam-
ple of real-time public teams. The REST API is
used to filter and obtain tweets with respect to spec-
ified filters. The implemented algorithm filters the
tweets to obtain tweets relevant to conversational
data.

5.2 YouTube
Selenium, a vast tool for scraping, can crawl
YouTube. YouTube has server-side rendering,
which loads the website first upon which it can be
scraped for data. This approach’s problem is that
the website has to be loaded upon which JavaScript
has to be used to load more comments on the web
page.

The novelty in this approach lies in
that by analyzing how YouTube retrieved its
comments, and the same approach can be
used by sending AJAX requests to the URL
https://youtube.com/id/comments. Since sections
of the page that does not include comments are not
downloaded, the crawler saves time and resources
over the downloaded contents.

5.3 Reddit
Reddit being a dynamic website and communicates
through rest API; selenium is a powerful web scrap-
ing tool that can be used to scrape dynamic web-
sites. While simulating the browser, crawlers can
mimic the scrolling of the pages, clicking to read
more comments. Since the speed of retrieval will
depend on the speed at which each section of the
page loads, it is inefficient as the next load will only
start after the previous load and the cursor scrolls
further down.

Scrapy is faster and robust in handling errors
but does not allow the crawling of dynamic sites.
Scrapy can be provided with a Reddit URL ex-
tended by the ’.json’ link and get all internal links
consisting of comments and replies. Instead of

traversing the Reddit page using html and selectors,
which would be time-consuming, a simple scraper
has been built using the functionality of scrapy.

5.4 Filtering of extracted data
The filtering model is a simple algorithm that
avoids excessive computation as it does not look
outside the extracted data for filtering conditions.
It works more along the lines of ”sticking to the
topic” by using the high-frequency terms and hash-
tags from the extracted data itself. A sample of
filtered and unfiltered data for a Twitter search term
”cancer” is attached below. One of the two vari-
ables to note here is the number of comments used
to generate the high-frequency list - . Ideally, it
should depend on the volume of extracted data, at
least 2-5% of the total volume.

The other variable is the frequency number-
used to classify a token as highly frequent. This
would depend on the number of tokens used to
create a high-frequency list. Approximately the
first 80% of the tokens, when arranged in ascending
order in terms of their occurrence frequency, need
to be rejected. Samples of such filtering are seen in
Figure 7 and Figure 8.

Figure 7: Accepted and cleaned comments. This is a
sample of accepted comments that were cleaned prior
filtering for the searched keyword, ”cancer”.

Thus we see that this filtering algorithm achieves
highly flexible strictness with respect to which com-
ments are accepted and with no bias. Since this is a
simple implementation of a modified bag of words
model, it is computationally light in comparison
with ML models that do the same.

6 Conclusion

The proposed crawler can fetch multi-turn dia-
logues from Twitter, YouTube. The crawler can
scrape conversational data from Twitter, YouTube.
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Figure 8: Cleaned but rejected comments. This is a
sample of rejected comments that were cleaned before
filtering for the searched keyword, ”cancer”.

Unstructured data retrieved from the crawler is con-
verted to well-formatted data. Streaming API has
been used to crawl Twitter and retrieve random
sets of public tweets. Quoted Retweets or retweets
with comments are filtered from the collected set
of public tweets. The quoted retweet, with its con-
tained parent tweet, is outputted to the JSON file.
YouTube crawling is made easy without any limita-
tions as like which the YouTube data v3 API has,
and getting comments has never been this easy and
fast before. Reddit crawler parses the JSON object
from the response downloaded from the spider’s
request and can get the comments of the posts.
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Abstract 

Intent classification is an important task in 

natural language understanding systems. 

Existing approaches have achieved perfect 

scores on the benchmark datasets. However 

they are not suitable for deployment on 

low-resource devices like mobiles, tablets, 

etc. due to their massive model size. 

Therefore, in this paper, we present a novel 

light-weight architecture for intent 

classification that can run efficiently on a 

device. We use character features to enrich 

the word representation. Our experiments 

prove that our proposed model outperforms 

existing approaches and achieves state-of-

the-art results on benchmark datasets. We 

also report that our model has tiny memory 

footprint of ~5 MB and low inference time 

of ~2 milliseconds, which proves its 

efficiency in a resource-constrained 

environment. 

1 Introduction 

In a time where consumers and businesses alike 

are constantly adopting new technologies in hope 

of increasing efficiency and convenience, the 

intelligent virtual assistant (IVA) has been an 

immediate success1. For a high-quality IVA, it is 

very crucial to understand the intentions behind 

customer queries, emails, chat conversations, and 

more in order to automate processes and get 

insights from customer interactions. Thus research 

interest in Intent detection is on the rise. 

Intent classification is an important task in 

Natural Language Understanding (NLU) systems 

which is the task of assigning a categorical intent 

label to an input utterance. Most IVAs use cloud-

based solutions and mainly focus on accuracy 

                                                                                                                                                                                       
1 https://www.statista.com/topics/5572/virtual-assistants/ 

rather than model size. But due to factors like 

privacy and personalization, there is a need for 

deploying models on device and thus on-device 

intent classification is significant. The current 

state-of-the-art models are highly accurate on 

benchmark datasets. However, most of these 

models have a huge number of parameters and use 

complex operations. Due to these reasons, they are 

not suitable for deployment on low-resource 

devices like mobiles, tablets, etc. 

Gartner 2  predicts that by 2020, 80% of the 

smartphones shipped will have on-device AI 

capabilities. For this, there is a need for light-

weight, fast and accurate models that can run 

efficiently in a resource-constrained environment. 

Thus, in this paper, we propose an on-device intent 

classification model. 

In our proposed model, we use character 

features along with word embeddings to get 

enriched word representations. We use Long Short 

Term Memory Recurrent Neural Network (LSTM-

RNN) (Hochreiter and Schmidhuber, 1997) to 

obtain the context vector for the input utterance. 

Further, we benchmark our model against publicly 

available ATIS and SNIPS datasets. Our 

experiments show that the use of character features 

has resulted in improved accuracy on the 

benchmark datasets.  

The major contributions of this paper are given 

below. 

 We propose a novel on-device 

architecture for Intent Classification 

which uses character features along with 

word embeddings. 

 We benchmark our model against 

publicly available ATIS and SNIPS 

2 https://www.gartner.com/en/newsroom/press-

releases/2018-03-20-gartner-highlights-10-uses-for-ai-

powered-smartphones 

A character representation enhanced on-device Intent Classification 
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datasets and achieve state-of-the-art 

results.  

 We measure the system-specific metrics 

like RAM usage and inference time and 

show that our proposed model is efficient 

for low-resource devices. 

The rest of the paper is organized as follows. In 

section 2, we give a brief overview of existing 

approaches for the task. We describe our approach 

in detail in section 3. Experimental results are 

presented in section 4. In section 5, we conclude 

and discuss future work. 

2 Related work 

Intent classification is the task of predicting an 

intent label for the given input text. It is a well-

researched task. Early research include maximum 

entropy Markov models (MEMM) by Toutanova 

and Manning (2000). Haffner et al. (2003) and 

Sarikaya et al. (2011)  have approached this task 

using Support Vector Machines (SVM).  

Another popular model used were CRF based 

methods. Lafferty et al. (2001) first proposed 

Conditional (CRF) to build probabilistic models 

for segmentation and labelling sequence data 

which was proved to perform better over MEMMs. 

Following this, Triangular-chain conditional 

random fields was proposed by Jeong and Lee 

(2008) which is used to jointly represent the 

sequence and meta-sequence labels in a single 

graphical structure. This method outperformed the 

base model. 

    Purohit et al. (2015) have demonstrated the 

effectiveness of using knowledge-guided patterns 

in short-text intent classification. Sridhar et al 

(2019) have proposed the use of semantic hashing 

for intent classification for small datasets. 

Recently joint models for intent classification 

and slot filling have been developed. Taking 

inspiration from TriCRF, Xu and Sarikaya (2013) 

proposed a CNN-based TriCRF for joint Intent and 

Slot filling. This was a neural network version of 

TriCRF which outperformed the base model by 1% 

for both intent and slot. A joint model using Gated 

Recurrent Unit (GRU) and max pooling for intent 

detection and slot filling was developed by Zhang 

and Wang (2016). Following this, Hakkani-Tur et 

al. (2016) and Liu and Lane (2016) also developed 

a joint model using recurrent neural networks. To 

model the relationship between the intent and slots, 

Goo et al. (2018) and Li et al. (2018) have used gate 

mechanism. Wang et al. (2018) have proposed Bi-

model based RNN semantic frame parsing network 

structures by considering the cross-impact of both 

the tasks. Zhang et al. (2019) have used capsule 

networks that considers the hierarchical 

relationships between words, slots, and intents. E 

et al. (2019) have used SF-ID network to provide 

bidirectional interrelated mechanism for intent 

detection and slot filling tasks. Qin et al (2019) 

have used stack-propagation framework to better 

model the relationship between slots and intents. 

They further use BERT with their approach to 

achieve the current state-of-the-art results. 

Although above mentioned joint models achieve 

impressive results on benchmark datasets, they are 

inefficient for the applications where only intent 

information is sufficient. Also, their heavy 

architecture and large model size make their on-

device deployment difficult. Most of these models 

use multiple layers of operations that result in 

higher RAM usage and inference time. Our 

proposed model is light-weight, fast, and accurate, 

which makes it highly efficient for deployment on 

low-resource devices. 

 

Figure 1: Architecture of character feature 

extractor 
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3 Approach 

In this section, we discuss our approach in detail. 

We use a light-weight architecture that can be 

efficiently deployed on device. We use character-

level representation along with word embedding to 

enrich word-level representation.  

 

Character representation: The use of 

character-level features to represent a word has 

proven useful for multiple NLP tasks. It has been 

used for language modeling (Kim et al., 2015), 

parts of speech (POS) tagging (Santos and 

Zadrozny, 2014), named entity recognition (NER) 

(Santos and Guimarães, 2015), etc. The use of 

character level features makes the model robust 

towards spelling mistakes. Since representations 

are formed using characters, out-of-vocabulary 

(OOV) words also get representation which can be 

further fine-tuned. It also helps to get similar 

representations for words with common 

root/prefix. For example consider the following 

three words: petrify, petrifies, and petrifying. These 

three words get similar representation using 

character features as they share a common prefix 

‘petrif’.  

The architecture used to get character 

representation is depicted in Figure 1. Each word 

is a sequence of characters. Character embeddings 

are used to encode this information. Character 

embeddings are initialized randomly and learned 

during training. These character embeddings are 

fed to 3 convolution layers. Convolution layers 

have different convolution windows which help 

them to capture different character features. Max-

pooling is performed on the output of convolution 

to select dominant features. The output of max-

pooling layers is concatenated to get the character 

level representation.  

An illustration of the above-mentioned process 

is shown using figure 2. For illustration, we use 

character embedding size of 5. Convolution 

window sizes and filter sizes are set to (3, 5, 7) and 

(4, 2, 3) respectively. Max-pooled vectors are 

concatenated to get character features. 

 

Word level representation: We use word 

embeddings to capture semantic information. They 

are initialized with pre-trained embeddings and 

fine-tuned during training. Pre-trained word 

embeddings are trained on a huge corpus and hence 

capture the semantic representation of the word 

well, which can be further fine-tuned. The use of 

pre-trained word embeddings helps the model to 

converge quickly resulting in lower training time. 

We use pre-trained glove embeddings (Pennington 

 

Figure 3: Architecture of proposed model 

 

Figure 2: Illustration of character feature extraction. 
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et al., 2014). Final word-level representation is 

obtained by concatenating word embedding with 

the character-level representation of the word. 

These concatenated embeddings are fed as input to 

the encoder. 

An encoder is used to get the semantic vector 

representation for a given input utterance. We use 

Long Short Term Memory Recurrent Neural 

Network (LSTM-RNN) as an encoder. LSTM 

reads the inputs in the forward direction and 

accumulates rich semantic information. As a 

complete sentence passes through LSTM, its 

hidden layer stores the representation for the entire  

input sentence (Palangi et al., 2015). This 

sentence representation is used classification. 

 We use a fully connected layer followed by a 

softmax layer for classification. The fully 

connected layer learns function from sentence 

representation fed to it by the LSTM layer. 

Softmax layer gives the output probabilities for 

intent labels. We have illustrated this architecture 

using figure 3. 

4 Experimental Results 

In this section, we share the details of the 

benchmark and custom datasets, describe the 

training set-up, present experimental results, and 

compare our model with existing baselines. 

4.1 Datasets 

 To compare our model with existing approaches, 

we benchmark it against two public data sets. First 

is the widely used ATIS dataset (Hemphill et al., 

1990), which contains audio recordings of flight 

reservations. The second dataset is the custom-

intent-engines dataset called SNIPS (Coucke et al., 

2018) which is collected by Snips voice assistant. 

Details about both the datasets can be found in 

table 1. SNIPS dataset is more complex as 

compared to ATIS dataset because of multi-domain 

intents and relatively large vocabulary. We use the 

datasets that are pre-processed by Goo et al. (2018)  

with the same partition for train, test, and 

validation set. 

 

Custom dataset:  We have also curated a 

custom dataset. For initial data creation, we use 

user trial and scrape webpages. We define 10 intent 

 

Figure 4: Data distribution in custom dataset 

Attributes ATIS SNIPS 

No. of intents 21 7 

Vocabulary Size 722 11241 

Train set size 4478 13084 

Test set size 893 700 

Validation set size 500 700 

Table 1:  Details of benchmark datasets. 

 

 

Intent Example 

wish Wish you a very happy birthday James! 

invitation You are invited to our wedding. Please attend. 

announcement We are going to be parents! 

love Love you to the moon and back dear! 

thank Thank you for your unconditional love and useful advice! 

miss I hope to see you pretty soon as I miss you way too much, dear. 

sorry I hope you can accept my apology and get rid of my guilt. Sorry 

job posting We are hiring! A Registered Pharmacist, is needed at our Pune office 

sale Get 39% off on Super Skinny Women Blue Jeans. Hurry up Stock is limited 

quotes The more you fall, the more stronger you become for getting up. Never give up no 

matter what. 

Table 2:  Details of custom datasets. 
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labels to annotate custom dataset. These intent 

labels and their examples are given in table 2. 

However, the size of the data that is collected is not 

sufficient to train a neural network. Therefore we 

use different data augmentation techniques to 

increase data size. We use transformer-based data 

augmentation followed by synonyms replacement. 

In transformer-based data augmentation, we fine-

tune a pre-trained BERT (Devlin et al., 2018) 

model on collected data. We use this fine-tuned 

BERT for making predictions on a huge unlabeled 

corpus. We only consider sentences that are 

classified with high confidence. We verify these 

sentences to ensure that predictions by BERT are 

correct. Further, we use synonyms replacement for 

augmentation. In a sentence, we randomly replace 

30% of the words with their synonyms. The final 

data distribution is given in figure 4. For testing, 

we have curated a set of 100 sentences manually. 

4.2 Training 

We use the same set of parameters for training 

model on both benchmark datasets. We fix 

maximum sequence length to 25. We initialize 

word embedding with 50 dimensional pre-trained 

GloVe embedding. Character embedding size is set 

to 15. Kernel sizes are set to 3, 4, and 5 and filter 

sizes are set to 10, 20, and 30 in 3 convolution 

layers. LSTM layer has 128 units. Categorical 

cross-entropy is used for loss computation & Adam 

optimizer (Kingma and Ba, 2014) is used to 

minimize loss. The batch size is set to 16. Constant 

learning rate of 0.001 is used. Models are trained 

for 10 epochs.  

Following Goo et al. (2018) we use accuracy as 

the metric for the evaluation. After each epoch, we 

evaluate the performance of the model on 

validation set. The model performing best on 

validation set is then evaluated on test set. To 

address the issue of random initialization, we 

repeat this process 20 times and consider the 

average accuracy for analysis. 

For custom dataset, we use only 50K sentences 

per intent label. We also limit word vocabulary size 

to 12K most frequent words. Batch size is set to 64. 

Rest all parameters and hyper-parameters remains 

same as training benchmark datasets. 

4.3 On-device deployment 

We use TensorFlow (Abadi et al., 2016) to build 

all our models. We use Tensorflow Lite (tflite) to 

support on-device execution. The trained models 

on SNIPS and ATIS datasets are converted to tflite 

format. The size of the models is reduced by post-

training quantization. The final size of our models 

trained on ATIS and SNIPS is 172 KB and 686 KB 

respectively. The size of the model trained on 

custom data set is 786 KB. 

4.4 Baselines 

We compare our model with existing deep learning 

based models for intent classification. They are as 

follows: Joint Seq (Hakkani-Tur et al., 2016), 

Attention BiRNN (Liu and Lane, 2016), Slot-

Gated Attention (Goo et al., 2018), Self-Attentive 

Model (Li et al., 2018), Bi-Model (Wang et al., 

Model ATIS SNIPS 

Joint Seq (Hakkani-

Tur et al., 2016) 

92.6 96.9 

Attention BiRNN 

(Liu and Lane, 

2016) 

91.1 96.7 

Slot-Gated Full 

Atten (Goo et al., 

2018) 

93.6 97.0 

Slot-Gated Intent 

Atten (Goo et al., 

2018) 

94.1 96.8 

Self-Attentive 

Model (Li et al., 

2018) 

96.8 97.5 

Bi-Model (Wang et 

al., 2018) 

96.4 97.2 

CAPSULE-NLU 

(Zhang et al., 2019) 

95.0 97.3 

SF-ID Network (E 

et al., 2019) 

96.6 97.0 

Stack-Propagation 

(Libo et al., 2019) 

96.9 98.0 

Stack-Propagation 

+ BERT (Qin et al., 

2019) 

97.5 99 

Our Model  99.53 98.95 

Table 3:  Performance of our model compared to 

current existing approaches 

 

 

Metrics ATIS SNIPS 

Model Size 172 KB 686 KB 

Inference Time 1.87 ms 1.9 ms 

RAM 4850 KB 4822 KB 

Table 4:  On-device model performance 
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2018), Capsule-NLU (Zhang et al., 2019), SF-ID 

network (E et al., 2019) and Stack-Propagation 

(Qin et al., 2019). 

For all the baselines, we utilize the results 

reported by Qin et al. (2019). 

4.5 Results 

Detailed performance comparison of our model 

with existing approaches is shown in table 3. Our 

model achieves an average accuracy of 98.95% 

and 99.53% on SNIPS and ATIS datasets 

respectively. The variance of 0.026 on SNIPS and 

0.01 on ATIS datasets prove the robustness of our 

model. Our model outperforms the current state-of-

the-art Stack Propagation framework + BERT by  

2.03% on ATIS dataset. On SNIPS dataset, our 

model achieves results comparable to the state-of-

the-art and outperforms all other approaches. It is 

worth noticing that our model has much fewer 

parameters as compared to the state-of-the-art 

model. The model trained on custom dataset 

achieves 98% accuracy on custom test set. 

We also measure the system-centric metrics for 

our models which are presented in table 4. We use 

a Samsung galaxy A51 device (4 GB RAM, 128 

GB ROM, Android 11, Exynos 9611) for these 

experiments. Inference time includes the time 

required to pre-process the input text, tokenization, 

model execution, and label determination. We infer 

complete test set of datasets on device and report 

its average inference time. As stated in table 4, our 

models have an inference time of ~2 milliseconds. 

We also report maximum RAM usage during on-

device inferencing is less than 5 MB. 

All the above-mentioned results prove that our 

model is not only accurate but it also has low 

inference time and RAM usage. This proves that 

our model is efficient for running on low-resource 

devices. 

5 Conclusion 

In this paper, we present an on-device intent 

classification architecture that uses character level 

features to enrich the word representation. Our 

experiments prove the effectiveness of our model 

as it achieves state-of-the-art results on benchmark 

datasets. System centric metrics like RAM usage 

and inference time shows that our model is fast and 

light-weight to be deployed on low-resource 

devices. For future work, we want to extend this 

approach for slot filling and experiment with a joint 

model for on-device intent detection and slot 

filling. 
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