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Introduction

The ACL 2025 Student Research Workshop (SRW) will be held in conjunction with ACL 2025. This
workshop serves as a forum for students conducting research in Computational Linguistics, Natural
Language Processing, and Machine Learning. It offers an excellent opportunity for students to present
their work and receive mentorship and constructive feedback from members of the international research
community.

This year, we received a total of 323 valid submissions, along with 10 withdrawn and 16 desk-rejected
papers. Prior to the formal review process, 75 students applied for mentorship. Each submission was
assigned at least two reviewers. Following the review process, 104 papers were accepted—S8 for oral
presentation and 96 as poster presentations. One paper was withdrawn after acceptance.

The final acceptance rate stands at 32.2%, consistent with last year’s rate. Of the accepted papers, 85 are
archival and 19 are non-archival.

The student research workshop will be held on July 28th and 29th, for oral and poster presentations. In
organizing the virtual conference, we keep as much as possible the spirit of an in person conference. All
talks and posters are pre-recorded and made available at the beginning of the conference for participants
to watch asynchronously. Our oral session contains 8 talks followed by a Live QA part with the pre-
senters. Topic-wise, we have papers on Computational Social Science and Social Media, Dialogue and
Interactive Systems, Discourse and Pragmatics, Ethics and NLP. Information Extraction, Information
Retrieval and Text Mining, Interpretability and Analysis of Models for NLP, Language Grounding to Vi-
sion, Robotics, and Beyond, Large Language Models, Linguistic Theories, Cognitive Modeling, and Psy-
cholinguistics, Machine Learning for NLP, Machine Translation and Multilinguality, NLP Applications,
Phonology, Morphology, and Word Segmentation, Question Answering, Resources and Evaluation, Se-
mantics: Lexical, Semantics: Sentence-level Semantics, Textual - Inference, and Other Areas, Sentiment
Analysis, Stylistic Analysis, and Argument Mining, Speech and Multimodality, Summarization, Syntax:
Tagging, Chunking, and Parsing etc.

The ACL 2025 Student Research Workshop has secured substantial funding to support student participa-
tion. Thanks to the dedicated efforts of the SRW faculty advisors, multiple sources of financial support
were obtained. The faculty advisors successfully applied to the Vienna Meeting Fund, which approved
$30,000 earmarked specifically for the SRW. ACL itself committed an additional $10,000 in funding.
Together, these sources provide approximately $40,000 to directly support travel and participation for 15
student researchers, prioritizing those from underrepresented regions and economically disadvantaged
backgrounds. In addition, earlier funding was secured through the Google DeepMind Events Sponsor-
ship, providing approximately $1,300 to help cover organizational costs. These combined funding efforts
reflect the strong commitment of the ACL community to fostering early stage research and supporting
equitable participation in the field.

The SRW organizing committee and faculty advisors extend their sincere thanks to all reviewers, men-
tors, faculty advisors, program chairs, and the broader ACL community for their generous contributions
of time and expertise. We look forward to an engaging workshop that offers students valuable opportuni-
ties for feedback, networking, and professional development both in person and virtually. We especially
appreciate the collective commitment to mentoring and to creating a welcoming space for the next gene-
ration of computational linguists and NLP researchers.
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Abstract

Accents play a pivotal role in shaping human
communication, enhancing our ability to con-
vey and comprehend messages with clarity and
cultural nuance. While there has been signif-
icant progress in Automatic Speech Recogni-
tion (ASR), African-accented English ASR has
been understudied due to a lack of training
datasets, which are often expensive to create
and demand colossal human labor. By com-
bining several active learning paradigms and
the core-set approach, we propose a new multi-
round adaptation process that utilizes epistemic
uncertainty to automate annotation, thereby sig-
nificantly reducing associated costs and human
labor. This novel method streamlines data anno-
tation and strategically selects data samples that
contribute most to model uncertainty, thereby
enhancing training efficiency. We define a new
U-WER metric to track model adaptation to
hard accents. We evaluate our approach across
several domains, datasets, and high-performing
speech models. Our results show that our ap-
proach leads to a 27% WER relative average
improvement while requiring, on average, 45%
less data than established baselines. Our ap-
proach also improves out-of-distribution gener-
alization for very low-resource accents, demon-
strating its viability for building generalizable
ASR models in the context of accented African
ASR. We open-source the code here.

1 Introduction

Automatic Speech Recognition (ASR) is an ac-
tive research area that powers voice assistant sys-
tems (VASs) like Siri and Cortana, enhancing daily
communication (Kodish-Wachs et al., 2018; Finley
et al., 2018; Zapata and Kirkedal, 2015). Despite
this progress, no current VASs include African
languages, which account for about 31% of the
world languages, and their unique accents ((Eber-
hard et al., 2019; Tsvetkov, 2017)). This gap high-
lights the need for ASR systems that can effec-

1

tively handle the linguistic diversity and complex-
ity of African languages, particularly in critical
applications such as healthcare. Due to the lack of
representations of these languages and accents in
training data, existing ASR systems often perform
inadequately, even mispronouncing African names
((Olatunji et al., 2023a)).

To address these challenges, our work focuses
on adapting pre-trained speech models to transcribe
African-accented English more accurately, charac-
terized by unique intonations and pronunciations
(Benzeghiba et al., 2007; Hinsvark et al., 2021).
We use epistemic uncertainty (EU) (Kendall and
Gal, 2017) to guide the adaptation process by iden-
tifying gaps in model knowledge and prioritizing
data for the model to learn from next. This is par-
ticularly beneficial in scenarios where data anno-
tation is costly or time-consuming, as often seen
in the African context (Badenhorst and De Wet,
2019, 2017; Barnard et al., 2009; Yemmene and
Besacier, 2019; DiChristofano et al., 2022; Dossou
et al., 2022; Dossou and Emezue, 2021). EU also
improves robustness and encourages exploration
to mitigate inductive bias from underrepresented
accents. Common approaches to compute EU in-
clude Monte Carlo Dropout (MC-Dropout) (Gal
and Ghahramani, 2016) and Deep Ensembles (Lak-
shminarayanan et al., 2017), with the latter being
more effective but computationally expensive. Due
to resource constraints, we utilize MC-Dropout,
which necessitates that models incorporate dropout
components during pretraining.

We employ Active Learning (AL) techniques
further to enhance the efficiency and effectiveness
of model adaptation. AL leverages epistemic un-
certainty to select the most informative data points
from an unlabeled dataset for labeling, thereby im-
proving model performance with fewer training
instances. Common types of AL include Deep
Bayesian Active Learning (DBAL) (Gal et al.,
2017; Houlsby et al., 2011) and Adversarial Ac-
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tive Learning (AAL) (Ducoffe and Precioso, 2018).
AAL selects examples likely to be misclassified by
the current model, refining it iteratively by challeng-
ing it with complex cases to enhance robustness.
The core-set approach (CSA) (Sener and Savarese,
2017) is also related, as it selects a subset of the
training data to ensure that a model trained on this
subset performs comparably to one trained on the
entire dataset, thereby addressing scalability and
efficiency. A critical component of AL is the acqui-
sition function (AF), which determines the most
informative samples from an unlabeled dataset for
labeling. Key AFs include uncertainty sampling
(US) (Liu and Li, 2023), Bayesian Active Learning
by Disagreement (BALD) (Gal et al., 2017), and
BatchBALD (Kirsch et al., 2019). US targets data
points with the highest model uncertainty. BALD
maximizes the mutual information between model
parameters and predictions. BatchBALD is an ex-
tension of BALD that selects multiple samples si-
multaneously but may choose redundant points. US
is the least computationally expensive, making it
ideal for efficient data labeling.

In this work, we leverage and combine DBAL,
AAL, US, and CSA in the following way (in or-
der): First, we integrate the CSA by leveraging
smaller training subsets (~ 45% smaller than the
entire available training sets). Second, we utilize
DBAL with MC-Dropout to apply dropout during
both training and inference, thereby estimating the
Bayesian posterior distribution. This allows us to
practically and efficiently estimate EU in the mod-
els used (Gal et al., 2017) (see section 3.2 for more
details). Third, we use the estimated EU and in-
tegrate the idea of AAL using the US acquisition
function.

We evaluate our approach across several do-
mains (general, clinical, general+clinical aka both),
several datasets (AfriSpeech-200 (Olatunji et al.,
2023b)), SautiDB (Afonja et al., 2021b), Medical-
Speech, Common Voices English Accented Dataset
(Ardila et al., 2019), and several high-performing
speech models (Wav2Vec2-XLSR-53 (Conneau
et al., 2020), HuBERT-Large (Hsu et al., 2021),
WavLM-Large (Chen et al., 2022), and NVIDIA
Conformer-CTC Large (en-US) (Gulati et al.,
2020). Our results show a 27% Word Error Rate
(WER) relative average improvement while re-
quiring 45 % less data than established baselines.
We also adapt the standard WER to create an Un-
certainty WER (U-WER) metric to track model
adaptation to African accents.

The impact of our approach is substantial. It
develops more robust, generalizable, and cost-
efficient African-accented English ASR models,
reducing dependency on large labeled datasets and
enabling deployment in various real-world scenar-
ios. Our results demonstrate improved generaliza-
tion for out-of-distribution (OOD) cases, particu-
larly for accents with limited resources, addressing
specific challenges in African-accented automatic
speech recognition (ASR). Additionally, by focus-
ing on equitable representation in ASR training,
our methodology promotes fairness in Al, ensur-
ing technology serves users across diverse linguis-
tic backgrounds without bias (Selbst et al., 2019;
Mitchell et al., 2019; Mehrabi et al., 2021). Our
contributions are listed as follows:

¢ we combine DBAL, AAL, CSA, and EU to
propose a novel way to adapt several high-
performing pretrained speech models to build
efficient African-accented English ASR mod-
els,

* we evaluate our approach across several
speech domains (clinical, general, both), and
African-accented speech datasets AfriSpeech-
200 (Olatunji et al., 2023b), SautiDB (Afonja
et al., 2021b), MedicalSpeech, and Common-
Voices English Accented Dataset (Ardila et al.,
2019), while providing domain and accent-
specific analyses,

* we define a new and simple metric called U-
WER that allows us to measure and track how
the variance of the model, across hard accents,
changes over the adaptation process,

* we show that our approach improves the rela-
tive average WER performance by 27% while
significantly reducing the required amount of
labeled data (by ~45%),

* we show, based on additional AL experiments,
that our approach is also efficient in real-world
settings where there are no gold transcriptions.

2 Background and Related Works

2.1 Challenges for African-accented ASR

State-of-the-art (SOTA) ASR technologies, pow-
ered by deep learning and neural network archi-
tectures like transformers, achieve high accuracy
with Standard American English and major Eu-
ropean languages. However, they often fail with
African accents due to high variability in pronun-
ciation and lack of quality speech data (Koenecke
et al., 2020; Das et al., 2021). This results in



racial bias, poor performance, and potential social
exclusion as speakers might alter their speech to
be understood (Koenecke et al., 2020; Koenecke,
2021; Chiu et al., 2018; Mengesha et al., 2021).
Enhancing Automatic Speech Recognition (ASR)
for African languages is crucial for achieving equi-
table voice recognition, particularly in healthcare,
education, and customer service. Solutions should
focus on diversifying training datasets and devel-
oping robust modeling techniques tailored to the
unique characteristics of these languages.

2.2 Active Learning

AL aims to reduce the number of labeled train-
ing examples by automatically processing unla-
beled examples and selecting the most informa-
tive ones, considering a given cost function, for a
human to label. It is particularly effective when
labeled data is scarce or expensive, optimizing
the learning process by focusing on samples that
most improve the model performance and gener-
alization (Settles, 2009; Gal et al., 2017). Sev-
eral works have demonstrated its effectiveness
and efficiency. An AL setup involves an unla-
beled dataset Dpool = {xi}?:pcl"’l, a labeled train-
ing set Dipain = {Xi,yi} ™, and a predictive
model with likelihood p,,(y|x) parameterized by
w ~ p(W|Dirain) (W are the parameters of the
model). The setup assumes the presence of an or-
acle to provide predictions y for all z; € Dyl
After training, a batch of data {x}}?_, is selected
from D01 based on its EU.

In (Hakkani-Tiir et al., 2002), AL was applied
to a toy dataset of How May I Help You recordings.
Confidence scores were estimated for each word
and used to compute the overall confidence score
for the audio sample. This approach achieved com-
petitive results using 27% less data compared to
the baseline. In (Riccardi and Hakkani-Tur, 2005),
the authors estimated confidence scores for each
utterance using an online algorithm with the lattice
output of a speech recognizer. The utterance scores
were filtered through an informativeness function
to select an optimal subset of training samples, re-
ducing the labeled data needed for a given WER by
over 60%. Nallasamy et al. (2012) experimented
with AL for accent adaptation in speech recogni-
tion. They adapted a source recognizer to the target
accent by selecting a small, matched subset of utter-
ances from a large, untranscribed, multi-accented
corpus for human transcription. They employed a
cross-entropy-based relevance measure in conjunc-

tion with uncertainty-based sampling. However,
their experiments on Arabic and English accents
showed worse performance compared to baselines
while using more hours of recordings.

3 Datasets and Methodology

3.1 Datasets

We used the AfriSpeech-200 dataset (Olatunji
et al., 2023b), a 200-hour African-accented En-
glish speech corpus for clinical and general ASR.
This dataset comprises over 120 African accents
from five language families: Afro-Asiatic, Indo-
European, Khoe-Kwadi (Hainum), Niger-Congo,
and Nilo-Saharan, representing the diversity of
African regional languages. It was crowd-sourced
from over 2000 African speakers from 13 anglo-
phone countries in sub-Saharan Africa and the US
(see Table 1).

To demonstrate the dataset-agnostic nature of
our approach, we also explored three additional
datasets: (1) SautiDB (Afonja et al., 2021a), Nige-
rian accent recordings with 919 audio samples at a
48kHz sampling rate, totaling 59 minutes; (2) Med-
icalSpeech', containing 6,661 audio utterances of
common medical symptoms, totaling 8 hours; and
(3) CommonVoices English Accented Dataset,
a subset of English Common Voice (version 10)
(Ardila et al., 2019), excluding western accents to
focus on low-resource settings.

Table 1: AfriSpeech-200 Dataset statistics

AfriSpeech Dataset Statistics

Total duration 200.91 hrs
Total clips 67,577
Unique Speakers 2,463
Average Audio duration | 10.7 seconds

Speaker Gender Ratios - # Clip %

Female 57.11%
Male 42.41%
Other/Unknown 0.48%

Speaker Age Groups - # Clips

<18yrs 1,264 (1.88%)
19-25 36,728 (54.58%)
26-40 18,366 (27.29%)
41-55 10,374 (15.42%)
>56yrs 563 (0.84%)
Clip Domain - # Clips

Clinical 41,765 (61.80%)
General 25,812 (38.20%)
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Figure 1: Our adaptation pipeline involves several phases. Initially, the dataset is split into a training set (D1 =
Dy, pin» 30%) and a pool dataset (D2 = Dp401, 70%). In the iterative process between phases 2 and 3, D1 is used to
finetune a pretrained model. The top-k samples are selected using defined strategies and added to D1 for the next
round. For more details on the uncertainty selection strategy, see section 3.2.

Table 2: Dataset splits showing speakers, number of
clips, and speech duration in Train/Dev/Test splits.

AfriSpeech-200 Dataset Splits

Algorithm 1 Selection of the best-generated tran-
script in Active Learning for an input Sample x

Item Train (D},.in) Dev Test AL Top-k
# Speakers 1466 247 750

# Hours 173.4 8.74 18.77

# Accents 71 45 108

Avg secs/speaker 425.81 127.32 | 90.08
clips/speaker 39.56 13.08 8.46
speakers/accent 20.65 5.49 6.94

secs/accent 8791.96 698.82 | 625.55

# general domain | 21682 (¥*6504) 1407 2723 2000
# clinical domain | 36318 (*10895) | 1824 3623 3500
# both domain 58000 (*17400) | 3221 6346 6500

3.2 Methodology

In our approach, to compute EU for a given input
x € Dpool, We perform MC-Dropout to obtain mul-
tiple stochastic forward passes through a finetuned
ASR model g with likelihood py,~pwipz ) (y[2)
where W is the weights of g. Let f be a func-
tion that computes the WER between the predicted
and the target transcripts. Let 7' be the number
of stochastic forward passes. For each pass ¢, we
apply dropout, obtain the output transcript, and

compute the WER:

ft = f(y’ gt)agt == g(W,jt)’i’t = - Mt

"https://www.kaggle.com/
datasets/paultimothymooney/
medical-speech-transcription-and-intent

1:

we generate the predictions g1, ..,y corre-
sponding to each stochastic forward pass
(T'=10 in our experiments)
we define a list variable called wer_list and a
dictionary variable called wer_target_dict, re-
spectively tracking all pairwise WERs and the
average pairwise WER of each target predic-
tion
forvVije {1,...T} do
— ;1S set as target transcription
— target_wer = list()
for for j #ido
w = WER(f;, )
wer_list.append(w)
target_wer.append(w)
end for
werg, = mean(target_wer)
wer_target_dict[g;] < wery,

: end for
. Upest = Ui, such that wer_target_dict[y;] =

min(wer_target_dict.values())

: return (Ppest, std(wer_list))
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where M is a binary mask matrix sampled inde-
pendently for each pass. EU(z|g, T') can then be
estimated from the 7' stochastic forward passes as
follows:

BUG 0.1) = 0(0) = (#5002 (4 5F5)’
(1
The use of MC-Dropout requires models to have
dropout components during training. This exclu-
sion applies to some models, such as Whisper
(Radford et al., 2022), which we still fine-tuned
and evaluated as a baseline. We utilize four state-
of-the-art pre-trained models: Wav2Vec2-XLSR-
53, HuBERT-Large, WavLM-Large, and NVIDIA
Conformer-CTC Large (en-US), referred to as
Wav2Vec, HUBERT, WavLM, and Nemo, respec-
tively.

3.2.1 Uncertainty WER

To handle diverse accents, we aim to reduce the
EU of the models across hard accents after each
adaptation round. We define a metric called U-
WER to track this. To compute U-WER(a) where a
is a hard accent, we condition EU on a:

EU(z | 9.T,0) = o(fu) = \/ AL gt - (S )
2)

where x,, is the audio sample with accent a and

ft,u = f(y(u gt,a); gt,a = Q(W; i.t,u); :i't,u = xa‘Mt

Ideally, U-WER—0. The rationale behind U-
WER is that as beneficial data points are acquired,
U-WER should decrease or remain constant, indi-
cating increased robustness, knowledge, and per-
formance, which is crucial for generalization. Dur-
ing AL, U-WER is computed using pairwise WER
scores among predicted transcriptions, not gold
transcriptions (see section 3.3). To select the best-
generated transcript for unlabeled speech x, we
follow Algorithm 1.

3.3 Experimental Design

To work within our framework, we define the fol-
lowing selection strategies:
* random: Randomly selects audio samples
from Dy
¢ EU-Most: Selects the most uncertain audio
samples from Dp,,1 to add t0 Dyrain.

Algorithm 2 Adaptation Round using Epistemic
Uncertainty-based Selection

Require: Pretrained Model M, Training Dataset
D; Validation Dataset Dy,;, and Pool

train?

Dataset D01

1: N« 3 > Number of Adaptation Rounds
2: T+ 10 > Number of Stochastic Forward
Passes

for k + 1to N do
g < Finetune M on Dy ; using Dy
EUL + {} v Listof Uncertainty Scores
for z in Dpo01 do > x is an audio sample
EU, < EU(z|g,T) > Epistemic
Uncertainty of x

A

8: EUL «+ EUL U {(z,EU,)}

9: end for

10: topk < {x1,...,zx} > Samples with
highest EU

IT: D‘jrain = ,D:rain U topk

12: Dpool < Dpool \ topk

13: end for

* AL-EU-Most: Combines AL with the EU-
Most strategy to finetune the pretrained
model.

We also define standard fine-tuning (SFT) as
baseline using all available data for finetuning. In
SFT, Dpoo1 is empty. While running the defined
strategies in our framework, we impose data con-
straints, not exceeding 60-65% of the initial
dataset after all adaptation rounds. D;,; is 30%
Of Dirain, and D01 18 70% 0f Dyrain. This simu-
lates realistic scenarios where not all data might be
available, testing the approach’s robustness and ef-
ficiency under constraints. The number of samples
in D,,.;,, and D, is based on available training
examples for each domain (see Tables 2, 4, and
Appendix A.1).

Our EU-based pipeline is illustrated in Figure

1 and outlined in Algorithm 2. In each adapta-
tion round, we use a finetuned model and a se-
lection strategy to choose samples from D) to
add to Dj ,;,. During AL experiments, we con-
sider samples from Dy, as unlabeled: (1) using
MC-Dropout, we obtain n = 10 different input
representations per audio sample to get n different
transcripts; (2) we then learn to select the best-
generated transcription as the target transcription
according to Algorithm 1.

Our experiments aim to answer the following

research questions:



1. how does the pretrained ASR model adapt
to a set of African accents across adaptation
rounds and domains?

2. which selection strategy (EU-most or ran-
dom) works better, and for which domain(s)?

3. which domain(s) help the model perform bet-
ter, and how does the model perform (in terms
of uncertainty) across the domain(s)?

4. what is the impact of EU-based selection on
the model’s efficiency in low-resource data
scenarios?

5. is uncertainty-based selection, model, and
dataset agnostic?

U-WER will answer question 4. To answer ques-
tion 5, we evaluated our approach with three addi-
tional pretrained models (Nemo, WavLM, and Hu-
bert) and across three external datasets (SautiDB,
CommonVoices English Accented Dataset, and
MedicalSpeech). For consistency and better vi-
sualization, we considered the top 10 accents (in
terms of frequency) across three adaptation rounds
and both selection strategies to answer questions
1-4. For very low-resource settings, we considered
the five accents with the least recording hours.

For our experiments, we utilized six RTX 8000
GPUs and four A100 GPUs. Training and evalua-
tion were conducted over one month. Our models
have approximately 311 million trainable parame-
ters. Each audio sample was normalized and pro-
cessed at a sample rate of 16 kHz. We used default
parameters from the HuggingFace library for each
pretrained model.

4 Results and Discussion

To assess the performance improvement for each
domain, we compute the relative average improve-
ment

bd d

RIA yer.q = <“f_5“’> x 100%

bd

wer

where bZ . and s& . are the average WER respec-
tively of the baseline, and the best selection strat-
egy, in a domain d € {general, clinical,both}. A
higher percentage reflects a higher improvement in
our approach.

Table 3 shows the results of our experiments,
indicating that our uncertainty-based selection
approach significantly outperforms the baselines
across all models, domains, and datasets: gen-
eral (27.00%), clinical (15.51%), and both
(26.56%). Our approach also surpasses Whisper-
Medium ((Olatunji et al., 2023b; Radford et al.,

2023)), demonstrating the importance of epis-
temic uncertainty in ASR for low-resource lan-
guages. The EU-Most selection strategy proves
to be the most effective across all domains due to
the model’s exposure to highly uncertain samples,
enhancing robustness and performance. However,
performance disparities between the general and
clinical domains are noted, likely due to the com-
plexity of the clinical sample. These findings con-
firm EU-Most as the superior selection strategy, as
detailed in the results and illustrated in Figures 2,
3, and 4. This answers question 2.

To identify the best learning signals within a
diverse dataset characterized by various accents,
speaker traits, genders, and ages, we analyzed the
top-k uncertain accents using the EU-Most selec-
tion strategy. Our findings, illustrated in Figures 2,
3, and 4, show that the top-10 accents (most repre-
sented in recording hours) remained consistently
challenging across all rounds of analysis (refer to
Figures 2, 3, 4 and Tables 6, 7, and 8). These ac-
cents, characterized by high linguistic richness and
variability, facilitate model learning and improve
performance over time. We positively answer ques-
tions 1 and 3, confirming that the model adapts
effectively to the beneficial accents from all do-
mains. This demonstrates that the model adapts
qualitatively and quantitatively well to the bene-
ficial accents and benefits from all domains. Fig-
ures 2 (b), 3 (b), and 4 (b) also affirm positive
outcomes for question 4, showing consistent im-
provement or stable performance on low-resource
accents. This highlights the relevance of our ap-
proach in addressing the challenges associated with
the limited resource availability typical of many
African languages and dialects.

To demonstrate the agnostic aspect of our ap-
proach, we evaluated it using three additional pre-
trained models (Hubert, WavLM, and Nemo) and
three datasets containing accented speech in gen-
eral and clinical domains, employing only the EU-
Most selection strategy. The results, shown in Ta-
bles 3 and 4, indicate that our uncertainty-based
adaptation approach consistently outperforms base-
lines. This confirms that our approach applies to
any model architecture and dataset, allowing us to
answer question 5 positively.

5 Conclusion

We combined several AL paradigms, the CSA, and
the EU to create a novel multi-round adaptation pro-



Table 3: We utilized Wav2Vec to conduct initial experiments across various domains and strategies, aiming to
identify the optimal selection strategy. Models marked with ** are used to demonstrate that our algorithm is
model agnostic, utilizing the EU-Maost selection strategy, which has been proven to be the most effective. Our AL
experiments also use this strategy. Wav2Vec, using the random strategy, scored 0.1111, 0.3571, and 0.1666 for the
general, clinical, and both domains, respectively. We omit random results to enhance readability.

General Clinical Both
Model
Baseline EU-Most  AL-EU-Most Baseline EU-Most  AL-EU-Most Baseline EU-Most  AL-EU-Most
Wav2vec 0.2360 (Olatunji et al., 2023b) 0.1011 0.1059 0.3080 (Olatunji et al., 2023b) 0.2457 0.2545 0.2950 (Olatunji et al., 2023b) 0.1266 0.1309
**Hubert 0.1743 0.1901 0.1887 0.2907 0.2594 0.2709 0.2365 0.2453 0.2586
**WavLM 0.1635 0.1576 0.1764 0.3076 0.2313 0.2537 0.2047 0.1897 0.1976
**Nemo 0.2824 0.1765 0.1815 0.2600 0.2492 0.2526 0.3765 0.2576 0.2610
Average Performance 0.2141 0.1563 0.1631 0.2916 0.2464 0.2579 0.2782 0.2043 0.2120
Whisper-Medium 0.2806 0.3443 0.3116
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Figure 2: WER Performance on Accents from General Domain

Table 4: WER Evaluation Results on External Datasets, with o € [0.60, 0.65] as described in Section 3.1 and on
Figure 1. We observe an improvement in WER using our approach across all datasets, indicating that our algorithm

is dataset-agnostic.

Split and Size for our approach Baseline EU-Most
Dataset Finetuning Epochs
Dirain Dpoot  Top-k  Test (Dirain)  (Dirain + @Dpoot)
SautiDB (Afonja et al., 2021a) 234 547 92 138 50 0.50 0.12
MedicalSpeech 1598 3730 1333 622 5 0.30 0.28
CommonVoices English Accented Dataset (v10.0) (Ardila et al., 2019) 26614 62100 10350 232 5 0.50 0.22
Average 0.43 0.20

cess for high-performing pretrained speech models,
aiming to build efficient African-accented English
ASR models. We introduced the U-WER metric
to track model adaptation to intricate accents. Our
experiments demonstrated a remarkable 27% WER
ratio improvement while reducing the data required

for effective training by approximately 45% com-
pared to existing baselines. This reflects the effi-
ciency and potential of our approach to lower the
barriers to ASR technologies in underserved re-
gions significantly. Our method enhances model
robustness and generalization across various do-
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Figure 4: WER Performance on Accents from Clinical+General (Both) Domain

mains, datasets, and accents, which are crucial for
scalable ASR systems. This also helps mitigate
bias in ASR technologies, promoting more inclu-
sive and fair Al applications.

6 Limitations

In discussing trade-offs (Section 4), we noted that
while our approach enhances performance, partic-
ularly with linguistically rich accents, a stopping
criterion is essential for complex domains like the

clinical one to balance adaptation rounds with the
pool size. With better resources, we would con-
sider implementing Deep Ensembles ((Lakshmi-
narayanan et al., 2017)) as an alternative to our cur-
rent MC-Dropout method for estimating epistemic
uncertainty and leveraging other acquisition func-
tions (such as BALD, BatchBALD) highlighted in
this work.
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A Appendices
A.1 Hyper-parameters

Table 5 shows the hyper-parameter settings used in
this study. The top-k value in the table is changed
according to the domain used in each of the experi-
ments. For example, when conducting experiments
in the general domain, we set the value of top-k to
2k.

A.2 Country Statistics

Table 6 shows the countries’ statistics across the
AfriSpeech-200 dataset.

A.3 Dataset Accents Stats

Tables 7 and 8 provide a list of AfriSpeech accents
along with the number of unique speakers, coun-
tries where speakers for each accent are located,
duration in seconds for each accent, and their pres-
ence in the train, dev, and test splits.

A.4 Most common accent distribution

Figures 5 and 6 show the most common accent
distribution across the general domain with random
and EU-Most selection strategies.
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A.5 Ascending and Descending Accents

Figure 7 shows ascending and descending accents
across the Top 2k most uncertain samples.
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Hyper-parameters Values
attention dropout 0.1
hidden dropout 0.1
layer drop 0.1
train batch size 16

val batch size 8
number of epochs 5
learning rate 3e-4
maximum audio length 260000
maximum label length 260

minimum transcript length 10

top_k
domains

active learning rounds
sampling mode
MC-Dropout round

2000, 3500, 6500

general, clinical, all

3

EU-Most, random

10

Table 5: Hyper-parameters summary

Country Clips  Speakers Duration (seconds) Duration (hrs)
Nigeria 45875 1979 512646.88 142.40
Kenya 8304 137 75195.43 20.89
South Africa 7870 223 81688.11 22.69
Ghana 2018 37 18581.13 5.16
Botswana 1391 38 14249.01 3.96
Uganda 1092 26 10420.42 2.89
Rwanda 469 9 5300.99 1.47
United States of America 219 5 1900.98 0.53
Turkey 66 1 664.01 0.18
Zimbabwe 63 3 635.11 0.18
Malawi 60 1 554.61 0.15
Tanzania 51 2 645.51 0.18
Lesotho 7 1 78.40 0.02

Table 6: Countries Statistics across the dataset
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Accent Clips Speakers Duration(s) Countries Splits

yoruba 15407 683 161587.55 US,NG train,test,dev
igbo 8677 374 93035.79 US,NG,ZA train,test,dev
swabhili 6320 119 55932.82 KE,TZ,ZA,UG train,test,dev
hausa 5765 248 70878.67 NG train,test,dev
jjaw 2499 105 33178.9 NG train,test,dev
afrikaans 2048 33 20586.49 ZA train,test,dev
idoma 1877 72 20463.6 NG train,test,dev
zulu 1794 52 18216.97 ZA,TR,LS dev,train,test
setswana 1588 39 16553.22 BW,ZA dev,test,train
twi 1566 22 14340.12 GH test,train,dev
isizulu 1048 48 10376.09 7ZA test,train,dev
igala 919 31 9854.72 NG train,test
izon 838 47 9602.53 NG train,dev,test
kiswahili 827 6 8988.26 KE train,test
ebira 757 42 7752.94 NG train,test,dev
luganda 722 22 6768.19 UG,BW,KE test,dev,train
urhobo 646 32 6685.12 NG train,dev,test
nembe 578 16 6644.72 NG train,test,dev
ibibio 570 39 6489.29 NG train,test,dev
pidgin 514 20 5871.57 NG test,train,dev
luhya 508 4 4497.02 KE train,test
kinyarwanda 469 9 5300.99 RW train,test,dev
xhosa 392 12 4604.84 ZA train,dev,test
tswana 387 18 4148.58 7ZA . BW train,test,dev
esan 380 13 4162.63 NG train,test,dev
alago 363 8 3902.09 NG train,test
tshivenda 353 5 3264.77 ZA test,train
fulani 312 18 5084.32 NG test,train
isoko 298 16 4236.88 NG train,test,dev
akan (fante) 295 9 2848.54 GH train,dev,test
ikwere 293 14 3480.43 NG test,train,dev
sepedi 275 10 2751.68 ZA dev,test,train
efik 269 11 2559.32 NG test,train,dev
edo 237 12 1842.32 NG train,test,dev
luo 234 4 2052.25 UG,KE test,train,dev
kikuyu 229 4 1949.62 KE train,test,dev
bekwarra 218 3 2000.46 NG train,test
isixhosa 210 9 2100.28 ZA train,dev,test
hausa/fulani 202 3 2213.53 NG test,train
epie 202 6 2320.21 NG train,test
isindebele 198 2 1759.49 ZA train,test
venda and xitsonga 188 2 2603.75 ZA train,test
sotho 182 4 2082.21 ZA dev,test,train
akan 157 6 1392.47 GH test,train
nupe 156 9 1608.24 NG dev,train,test
anaang 153 8 1532.56 NG test,dev
english 151 11 2445.98 NG dev,test
afemai 142 2 1877.04 NG train,test
shona 138 8 1419.98 ZA,7ZW test,train,dev
eggon 137 5 1833.77 NG test

luganda and kiswahili 134 1 1356.93 uG train
ukwuani 133 7 1269.02 NG test

sesotho 132 10 1397.16 ZA train,dev,test
benin 124 4 1457.48 NG train,test
kagoma 123 1 1781.04 NG train
nasarawa eggon 120 1 1039.99 NG train

tiv 120 14 1084.52 NG train,test,dev
south african english 119 2 1643.82 7ZA train,test
borana 112 1 1090.71 KE train

Table 7: Dataset Accent Stats, Part |
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Accent Clips Speakers Duration(s) Countries Splits
swahili ,luganda ,arabic 109 1 929.46 uG train
ogoni 109 4 1629.7 NG train,test
mada 109 2 1786.26 NG test
bette 106 4 930.16 NG train,test
berom 105 4 1272.99 NG dev,test
bini 104 4 1499.75 NG test

ngas 102 3 1234.16 NG train,test
etsako 101 4 1074.53 NG train,test
okrika 100 3 1887.47 NG train,test
venda 99 2 938.14 ZA train,test
siswati 96 5 1367.45 ZA dev,train,test
damara 92 1 674.43 NG train
yoruba, hausa 89 5 928.98 NG test
southern sotho 89 1 889.73 ZA train
kanuri 86 7 1936.78 NG test,dev
itsekiri 82 3 778.47 NG test,dev
ekpeye 80 2 922.88 NG test
mwaghavul 78 2 738.02 NG test
bajju 72 2 758.16 NG test

luo, swabhili 71 1 616.57 KE train
dholuo 70 1 669.07 KE train
ekene 68 1 839.31 NG test
jaba 65 2 540.66 NG test

ika 65 4 576.56 NG test,dev
angas 65 1 589.99 NG test
ateso 63 1 624.28 UG train
brass 62 2 900.04 NG test
ikulu 61 1 313.2 NG test
eleme 60 2 1207.92 NG test
chichewa 60 1 554.61 MW train
oklo 58 1 871.37 NG test
meru 58 2 865.07 KE train,test
agatu 55 1 369.11 NG test
okirika 54 1 792.65 NG test
igarra 54 1 562.12 NG test
ijaw(nembe) 54 2 537.56 NG test
khana 51 2 497.42 NG test
ogbia 51 4 461.15 NG test,dev
gbagyi 51 4 693.43 NG test
portuguese 50 1 525.02 ZA train
delta 49 2 425.76 NG test
bassa 49 1 646.13 NG test
etche 49 1 637.48 NG test

kubi 46 1 495.21 NG test
jukun 44 2 362.12 NG test

igbo and yoruba 43 2 466.98 NG test
urobo 43 3 573.14 NG test
kalabari 42 5 305.49 NG test
ibani 42 1 322.34 NG test
obolo 37 1 204.79 NG test

idah 34 1 533.5 NG test
bassa-nge/nupe 31 3 267.42 NG test,dev
yala mbembe 29 1 237.27 NG test

eket 28 1 238.85 NG test

afo 26 1 171.15 NG test
ebiobo 25 1 226.27 NG test
nyandang 25 1 230.41 NG test
ishan 23 1 194.12 NG test

bagi 20 1 284.54 NG test
estako 20 1 480.78 NG test
gerawa 13 1 342.15 NG test

Table 8: Dataset Accent Stats, Part 11
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Figure 5: Most common accents distribution across the general domain with EU-Most sampling strategy.
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Originally developed to reduce the manual bur- score
den of grading standardised language tests, Au- o )
tomated Essay Scoring (AES) research has long one FZ,F:J:S 45\
focused on holistic scoring methods which of- f”e/‘;ﬂ”d ;' . —— 5 —p=35| )
fer minimal formative feedback in the class- o i 1 _/TC~011]1
room. With the increasing demand for techno- of stars... ]
logical tools that support language acquisition, | _
the field is turning to analytic AES (evaluating . \
essays according to different linguistic traits). We accomplish 3
This approach holds promise for generating more Es"fd‘:;"’e "\
more detailed essay feedback, but relies on ana- oot 35— pu=385|
lytic scoring data that is both more cognitively 57:5)’/’; gholaze 4 —/[c~095]
demanding for humans to produce, and prone —

to bias. The dominant paradigm in AES is to
aggregate disagreements between raters into a
single gold-standard label, which fails to ac-
count for genuine examiner variability. In an
attempt to make AES more representative and
trustworthy, we propose to explore the sources
of disagreements and lay out a novel AES sys-
tem design that learns from individual raters
instead of the gold standard labels.

1 Introduction

Writing practice is an essential part of learning
a second language (Graham et al., 2012; Monk,
2016). Unfortunately, assessing writing is long and
tedious, and educators frequently display inconsis-
tencies due to fatigue and biases (Uto and Ueno,
2018) which compromise the quality of their mark-
ing (Hussein et al., 2019). By providing consistent,
accessible, and cheaper written assessment, Auto-
mated Essay Scoring (AES) has the potential to
address this issue (Magliano and Graesser, 2012)."

In the past, AES research primarily focused on
holistic scoring, i.e., summarising the quality of es-
says with a single score (Phillips, 2007). However,
this approach fails to provide any kind of forma-
tive feedback in the classroom (Carlile et al., 2018).

' We limit the discussion to the assessment of written

text (or “essays”) produced by English as a Foreign Lan-
guage/English as a Second Language (EFL/ESL) students.
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Figure 1: Two essays are multi-marked by three raters
on a scale of 1-5. Their scores are then aggregated using
an average, and we obtain the same mean y. This is the
gold label. We compute a confidence score C' for each
gold label using the variance of the raw scores (Section
4.2) and find that we can be much more confident in the
second essay’s gold label than the first’s, despite their
being treated the same when training AES systems.

More recently, the field is turning to analytic scor-
ing which involves automatically assessing essays
along different dimensions to help students iden-
tify which aspects of their writing need improve-
ment (Ke and Ng, 2019). Traits like coherence
(Higgins et al., 2004), relevance to prompt (Louis
and Higgins, 2010), and persuasiveness (Carlile
et al., 2018) have already been studied. By break-
ing down essay quality into different traits, analytic
AES can help a learner identify their strengths and
weaknesses (e.g., Burstein et al., 2004).

However, though analytic scoring offers a ped-
agogically useful alternative, its implementation
in real-world classrooms is not without challenges.
The variety of writing tasks and ambiguity of scor-
ing rubrics make it difficult for AES systems to
consistently produce reliable scores (Xiao et al.,
2025). Further, concerns over the fairness, account-
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ability, and transparency of these systems are yet
to be properly addressed (Madnani et al., 2017).
These issues underscore the need for AES systems
that support teacher-Al collaboration (Deane, 2013;
Wilson and Roscoe, 2020) by not only producing
accurate scores but also providing educators with
confidence estimates, and explanations.

To design transparent systems, we must first ex-
amine the data on which AES systems are typically
trained: corpora of human-marked essays. Essay
scoring is a difficult and subjective task, prone to
rater disagreements (Brown, 2010). This is espe-
cially true for analytic scoring which is more cogni-
tively demanding and time-consuming than holistic
scoring (Hunter et al., 1996), and particularly vul-
nerable to rater effects (Myford and Wolfe, 2003).
Despite these limitations, the dominant paradigm
in Machine Learning (ML) and AES has always
been to reconcile rater disagreements under one
ground truth label referred to as the gold standard
via different aggregation methods (Abercrombie
et al., 2024). Not only does this neglect genuine
examiner variation, but it also erases precious infor-
mation about the essays (as illustrated in Figure 1)
which we could use to inform better analytic AES.

With the long-term goal of improving AES sys-
tems for teacher-in-the-loop applications (Colonna,
2024), we propose to draw on perspectivist litera-
ture (Section 2.3) which “aims at leveraging data
annotated by different individuals in order to model
varied perspectives that influence their opinions
and world view” (Frenda et al., 2024). In doing so,
we hope to align AES systems with the diversity
of rater judgements, enhancing the way in which
output confidence is measured.

This PhD thesis proposal is structured as follows:
Section 2 situates rater disagreements in written as-
sessment, advocating for a perspectivist approach
to data annotation in AES. Section 3 introduces
relevant analytic AES datasets and techniques. Sec-
tion 4 outlines our phased research plan which in-
cludes a study of disagreements in essay scoring
data, the development of multi-annotator AES mod-
els, and their application to feedback generation.
Section 5 summarises the proposal and its potential
contributions, and includes some ideas for future
research.

2 Background

We start by contextualising and introducing per-
spectivist literature as an alternative approach to
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using annotated data for model training, and make
a case that AES, and particularly analytic AES re-
search, can benefit from this paradigm shift.
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Modern NLP research is highly dependent on the
existence of annotated corpora for the training and
evaluation of models. Thanks in part to initiatives
such as SemEval or Senseval (Sabou et al., 2014),
and open-competitions such as those hosted by the
Kaggle? platform, the number of publicly available
datasets is growing. And with them, best prac-
tices on how to create annotations of consistently
high quality have been developed. Over the years,
the “science of annotation” (Hovy, 2010) has be-
come the subject of many dedicated conferences
and workshops such as HCOMP? or AnnoNLP
(Paun and Hovy, 2019).

Amongst the many guidelines that have been
set out, it is generally considered “axiomatic” that
any annotation task should be performed by two or
more raters acting independently. This allows us to
compare their rating decisions and measure the ex-
tent to which they agree (or disagree) on the same
instances of data (Hovy and Lavid, 2010). Tradi-
tional agreement measures includes Krippendorff’s
alpha (Krippendorff, 2004) or variations of Cohen’s
Kappa measure (Cohen, 1960). Reporting and act-
ing on agreement measures generally improves the
overall quality of the data being collected (Snow
et al., 2008; Nowak and Riiger, 2010).

Multi-marking

2.2 Disagreements

Full agreement is rarely possible, especially for
complex or subjective tasks (Hovy and Lavid,
2010), such as essay scoring, where a single “right”
answer may not exist (Alm, 2011). This is because
having two distinct readers arrive at an identical
judgement for the same piece of writing is not al-
ways possible (Huot, 1990a), and there is no objec-
tive way of validating either’s rating (Sadler, 2009).
In fact, there is no single written evaluation stan-
dard that can be said to embody the ideal written
product of English (Kroll, 1990). In most cases,
disagreements are initially treated as a consequence
of low annotation quality, and addressed through
various strategies to minimise noisy data, such as
annotator training (Hovy et al., 2006; Carlson et al.,
2003) or reconciliation (Hovy and Lavid, 2010).
Any remaining disagreements are then reduced to a

2See https://www.kaggle.com.
3See https://www.humancomputation.com.
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single gold label by averaging (Sabou et al., 2014),
majority vote (Leonardelli et al., 2021) or adjudica-
tion by an expert (Waseem and Hovy, 2016).
Unfortunately, these approaches reduce labels to
the opinion of just one individual, precisely where
annotation exposes complexity (Hovy and Lavid,
2010). For instance, Plank et al. (2014b) show
that disagreements in part-of-speech (POS) anno-
tation can be systematic across domains and lan-
guages, and due to “linguistically debatable” or
hard cases rather than annotation errors (e.g., pos-
sessive pronouns may be classified as determiners
or pronouns). In essay scoring, raters have to rec-
oncile their impression of the text, its particular
features, and the relevant scoring rubric. Given the
boundless nature of language, the latter can never
be exhaustive, and markers must cope with the un-
derspecification of rating (Lumley, 2002). Further,
raters may be influenced by their cultural, politi-
cal, and socio-economic background (Guerra et al.,
2011; Amorim et al., 2018). And if something as
prescriptive and well-documented as POS-tagging
leaves room for interpretation as illustrated in Plank
et al. (2014a), then the high-level descriptors typi-
cally present in essay scoring rubrics will definitely
introduce ambiguity, and with it, debatable cases.

2.3 Perspectivism

At a time when Al systems are increasingly scru-
tinised over bias and fairness concerns, it is not
enough to assume a single “ground truth” as this
can erase legitimate disagreements. Perspectivism
challenges this assumption by pursuing approaches
that understand and account for genuine human
variability (Abercrombie et al., 2024).

A few studies have explored ways in which to
use disagreements during model training. For in-
stance, Prabhakaran et al. (2012) and Plank et al.
(2014a) have tried to incorporate rater disagree-
ments into the training loss functions: by penalising
errors made on highly agreed data points more than
those incurred from mislabelling complex instances
(that is, with higher disagreement). Others have
looked at actually modelling disagreement. Akhtar
et al. (2021) divided annotators into two groups
based on their polarisation (on a hate-speech clas-
sification task), and for each, compiled a different
gold standard dataset to train individual classifiers.
Combining these using an ensemble modelling ap-
proach outperformed previous state-of-the-art su-
pervised classifiers for that task. More recently,
Davani et al. (2022) compared three training strate-
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gies including ensembling, multi-label classifica-
tion (Tsoumakas and Katakis, 2009) and multi-task
learning (MTL; Caruana, 1993) on two tasks: hate-
speech and emotion classification. Their results
demonstrated that an MTL approach performs bet-
ter than a baseline trained on aggregated gold stan-
dard labels. Additionally, these architectures pro-
vide a way to estimate uncertainty in predictions by
preserving different annotators’ perspectives until
the prediction step. See Frenda et al. (2024) for a
full survey of perspectivist approaches. We note
that, to the best of our knowledge, perspectivism
has not yet been investigated in the context of AES
research.

In the next section, we show how (analytic) AES
research exemplifies the challenges and opportuni-
ties of handling subjectivity in annotation.

2.4 Analytic Scoring

At first, AES research primarily focused on sum-
marising the quality of essays with a single score
(e.g., the Intelligent Essay Assessor™; Landauer
et al., 2003) in response to the needs of large-
scale standardised tests such as TOEFL, IELTS and
GMAT (Chodorow and Burstein, 2004; Chen et al.,
2016). But where holistic approaches fall short in
terms of providing formative feedback to students
in the classroom (Carlile et al., 2018), analytic scor-
ing shows promise (Higgins et al., 2004; Louis and
Higgins, 2010; Somasundaran et al., 2014; Persing
and Ng, 2014; Kaneko et al., 2020).

Contrary to coarse holistic evaluations, analytic
criteria consider a wide range of linguistic dimen-
sions (or traits) involved in the composition of an
essay (e.g., coherence, syntax, relevance to prompt,
etc.) to better highlight the strengths and weak-
nesses of a student’s writing (Carlile et al., 2018).
Analytic scoring ensures that raters award appropri-
ate scores while also revealing the grounds for their
decisions to students by pointing out specific writ-
ing strengths and weaknesses (Reid, 1993, p.235).
In doing so, they have the potential to reduce the
apparent arbitrariness of grading (Lumley, 2002)
and can easily be used as the basis for fine-grained
feedback (Carlile et al., 2018; Banno et al., 2024).

Unfortunately, due to the fuzzy nature of
language (Douglas, 1997), analytic scales are
more cognitively demanding to use (Cai, 2015).
They also run the risk of being psychometrically
redundant (Lee et al., 2010) due to rater effects
(Engelhard, 1994). Moreover, the very idea that
text features are independent constructs whose



sum is a valid representation of the overall quality
of a text is subject of debate (Huot, 1990b).

Given the complex and subjective nature of ana-
lytic essay scoring data, greater even than that of
holistic scoring, we should not be blindly training
models on the gold standard, and posit that analytic
AES could benefit from a perspectivist approach.

3 Related Work

In this section, we review prior work in AES, with
a special focus on analytic AES, introducing the
datasets and main techniques relevant to our study.

3.1 Datasets

As was noted by Ke and Ng (2019), progress in
analytic AES is hindered in part by the lack of large
annotated corpora needed for model training. To
the best of our knowledge, only ICLE++ (Granger,
2003; Granger et al., 2009, 2020; Li and Ng, 2024),
ASAP++ (Mathias and Bhattacharyya, 2018), IC-
NALE GRA (Ishikawa, 2020, 2023), CELA (Xue
etal., 2021), and ELLIPSE (Crossley et al., 2024)
have been publicly released for the English lan-
guage. Of those, all but CELA have released the
original, raw multi-marks, alongside the aggregated
gold standard scores. See Appendix A for more
information about these datasets. Table 1 compares
these datasets along various dimensions including,
size and analytic traits assessed.

Put together, these datasets include scores for
34 distinct analytic trait names, ranging from low-
level dimensions like “grammar” or “syntax”, lexi-
cal dimensions like “word choice” or “vocabulary”,
to complex, discourse-level dimensions like “co-
herence” or “thesis clarity”. Further, while some
of these datasets share common trait names (e.g.,
“organisation”), it is important to keep in mind that
each comes with very different scoring rubrics, and
that the definitions of these dimensions might in
fact be radically different. While this diversity can
be seen as valuable, it is also an additional chal-
lenge for analytic AES research. Indeed, we cannot
make any link between datasets before having prop-
erly studied how the essays were annotated. The
same should be said for parallels made across stud-
ies which work with different sources of essay data.

Unfortunately, while there have been some
efforts to rationalise this—notably, Li and Ng
(2024, Table 2) offer a mapping between some of
ICLE++"s traits and those of the ASAP++ dataset—
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we identify a clear gap in the field’s general under-
standing of its analytic essay scoring datasets.

3.2 Machine Learning Approaches

Up until recently, the field of (analytic) AES
mainly focused on developing effective hand-
crafted feature-based models (Craighead et al.,
2020). Common features included grammatical
errors (Andersen et al., 2013), distinctive words
or part-of-speech n-grams (Page and Paulus, 1968)
and essay length (Lee et al., 2008).

With the recent surge of interest in neural net-
works, transformer-based systems have gained
favour (Ke and Ng, 2019): see Zhang and Lit-
man (2018); Ke et al. (2019); Mayfield and Black
(2020); Xue et al. (2021); Shibata and Uto (2022);
Ajit Tambe and Kulkarni (2022); Dadi and Sanam-
pudi (2023); Doi et al. (2024); Cho et al. (2024);
Ding et al. (2024). These models perform on par
with feature-based systems, and eliminate the need
for expensive feature engineering (Qiu et al., 2020).
However, this gain comes at the cost of needing
increasingly large quantities of annotated data for
training (Zhang et al., 2021) which can be a prob-
lem for analytic AES which lacks large datasets
(Section 3.1). Additionally, neural networks are
very sensitive (Uto, 2021): the models can inherit
biases present in data they are trained on which
can result in systematic errors and a drop in perfor-
mance (Amorim et al., 2018; Huang et al., 2019;
Li et al., 2020). Finally, the inherent lack of inter-
pretability of these “black box-like models” (Ku-
mar and Boulanger, 2020) raises ethical concerns
impacting safety (Danks and London, 2017), trust
(Ribeiro et al., 2016), accountability (Kroll et al.,
2016), and industrial liability (Kingston, 2018).

The most recent breakthrough, brought about by
LLMs such as the GPT models (Brown et al., 2020;
OpenAl, 2024). Thanks to their impressive per-
formance and ease of use, these models are being
applied to an ever-growing range of tasks, includ-
ing analytic AES. So far Banno et al. (2024), Nai-
smith et al. (2023), Yamashita (2024) and Sefler
et al. (2025) have obtained promising results with
GPT-4 (OpenAl, 2024) for analytic AES. LLMs
are now widely used as evaluators to approximate
human judgements, which are otherwise very ex-
pensive to obtain (Gu et al., 2024). The “LLM-as-
a-Judge” paradigm (Zheng et al., 2023) has enor-
mous potential for AES where data is so scarce.
For instance, Xiao et al. (2025) found that LLM-
generated feedback and confidence scores could



be used to enhance the efficiency and robustness
of grading. The capability of LLMs to generate
natural language explanations opens up a lot of
possibilities for the field of explainability (Zhao
et al., 2024). At the same time, these capabilities
raise new challenges, such as hallucinated expla-
nations (incorrect or baseless), along with their in-
herent opaqueness (Singh et al., 2024), and output
variability (Xia et al., 2024).

Finally, the multi-task learning (MTL) paradigm
seems to be getting a lot of attention in AES. This
approach “improves learning for one task by us-
ing the information contained in the training sig-
nals of other related tasks” (Caruana, 1997, Chap-
ter 1). It first appears in the work of Ridley et al.
(2021) whose Cross-prompt Trait Scorer (CTS) is
frequently used as a baseline on the ASAP++ cor-
pus which builds on top of the Prompt Agnostic
Essay Scorer (PAES; Ridley et al., 2020). Since
then, all sorts of MTL analytic AES systems have
been developed. Xue et al. (2021) fine-tuned BERT
on the multi-dimensional ASAP++ dataset using
a shared BERT layer and trait-specific heads. Ku-
mar et al. (2022) proposed a system whose primary
task is holistic scoring, but leveraged information
from analytic sub-scale scores to improve its over-
all performance using MTL. See also the works of
Ramesh and Sanampudi (2022); Lee et al. (2023);
Chen and Li (2023); Doi et al. (2024); Cho et al.
(2024); Ding et al. (2024).

We note that MTL is also one of the architec-
tures we plan to explore (Section 4.2), though to
the best of our knowledge, it has never been applied
to raw essay scores. In fact, not one of the studies
mentioned above used raw analytic scores in lieu
of the aggregated gold standard scores. This re-
flects a missed opportunity: treating rater disagree-
ment as “noise” rather than signal fails to capture
the full richness and variability of human judge-
ment, which is precisely the kind of information
that could enhance the transparency and reliability
of AES systems in real-world settings. Thus, to the
best of our knowledge, this area is yet unexplored.

4 Research Plan

We frame the following three research questions:

RQO: Can we identify common patterns
between essays that have high (or
low) examiner disagreement, both
within and across analytic traits?
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RQ1: How can examiner disagreements in
analytic essay scoring data be used
to measure and enhance confidence
and performance in AES systems?

RQ2: How can analytic AES serve as a

foundation for more effective auto-

mated essay feedback systems?

Through these, we hope to explore how we can
best harness rater disagreements in analytic essay
scoring data to improve the performance and confi-
dence in AES and feedback systems.

4.1 RQO: Preliminary Work

As mentioned in Section 3.1, there is a lack of re-
search into raw analytic essay scoring data. Yet
most, if not all, current AES systems are trained
on gold standard labels which are but a product of
raw scores (Davani et al., 2022). We first seek to
address this gap. Doing so will not only inform
the research questions presented above, but also
provide broader value to the field of AES by en-
hancing the interpretability of widely used datasets
and enabling more meaningful comparisons across
existing and future studies.

Dataset mapping. We have identified four ana-
lytic scoring datasets whose raw multi-marks have
been made available to us: namely ICNALE GRA,
ELLIPSE, ICLE++, and parts of the ASAP++ cor-
pus. These differ in terms of the types of essays
they contain (e.g., argumentative or creative), score
ranges (e.g., 1-5 or 0-10), number of raters per
essay (e.g., ranging from 2 to 80), prompts, and, of
course, traits assessed (Appendix A). Our first step
will be to map the traits of these different datasets
together, where possible. For example, compar-
ing how “organisation” is defined in the rubrics of
ICLE++ and ASAP++, and how it differs from “co-
hesion” which is perhaps more broadly defined in
ELLIPSE. Obviously, we will have to take into ac-
count the types of essays as well. So far, Li and Ng
(2024, Table 2) have mapped some of ICLE++’s
traits to those of the ASAP++ dataset, for argumen-
tative essays only, which is a small subset of the
ASAP++ dataset. It is not our aim to oversimplify
the problem or forcibly merge these datasets, but
rather to offer a clearer understanding of how the
different rubrics and annotations align or diverge.
By doing so, we hope to improve the reusability
of these datasets, laying the groundwork for more
consistent cross-dataset comparisons in the field.



Qualitative analysis. Having done so, we shall
be better positioned to conduct a cross-dataset anal-
ysis of rater behaviour and scoring patterns, and
will next seek to answer RQO which we break down
into two sub-questions:

P1: What are the common patterns between the
essays that have high examiner disagreement,
both within and across analytic traits?

P2: Conversely, for essays that have high agree-
ment, what are the particular features that
make an essay prototypically good or bad?

To answer these questions, we will perform an in-
depth content analysis (Mayring, 2014) of the four
previously mentioned datasets. The goal of this
phase is to systematically code and categorise pat-
terns of rater agreement and disagreement across
traits. Coding will begin deductively using a set of
pre-defined categories informed by the rubrics of
the datasets themselves (e.g., organisation, gram-
mar, relevance to prompt) and prior studies on rater
effects (e.g., halo, severity/leniency; Myford and
Wolfe, 2003). Inductive coding will follow, allow-
ing new categories to emerge from the data where
rating patterns deviate from rubric norms or where
disagreements appear to cluster. These codes will
be applied at both the trait level (e.g., is there con-
sistent divergence in “cohesion” scores?) and the
essay level (e.g., do specific essays elicit unusually
wide score variance across traits?).

We will follow this with a thematic analysis
(Braun and Clarke, 2021) on a carefully curated
subset of essays selected based on results from the
content analysis. Specifically, we will include:

* Essays exhibiting extreme marker disagree-
ment (e.g., with scores ranging across the full
scale);

* Essays that display high cross-trait disagree-
ment (e.g., rated very highly in grammar but
poorly in coherence by the same rater); and

* Essays that exemplify strong consensus, serv-
ing as contrast cases for identifying stereotyp-
ically good or bad writing.

Selection will aim for balance across datasets,
genres, and prompts. These essays will be analysed
in depth to explore possible linguistic, structural, or
stylistic features that may account for disagreement
or consensus. Themes may include ambiguity in
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argument structure, unconventional grammar use,
cultural variation in rhetorical style, or misalign-
ment with rubric expectations.

Both content and thematic analyses will be com-
pleted on ATLAS.ti, a robust and well-established
qualitative data analysis software package (Paulus,
2023), which will support efficient coding, memo-
ing, and cross-case comparison.

Research questions P1 and P2 are conceptually
linked: by examining essays that provoke high dis-
agreement (P1), we gain insight into the limitations
or ambiguities of existing rubrics and linguistic
features that challenge human raters. Conversely,
analysing essays with high agreement (P2) helps
surface the features raters appear to consistently
associate with poor- or good-quality writing.

4.2 Towards RQ1

Using the insights of the preliminary phase, we pro-
pose a new AES system that learns from individual
raters instead of the gold standard labels.

Dataset. Despite our previous efforts to map the
dataset traits together (Dataset mapping), we do
not wish nor expect to use these datasets simultane-
ously. Doing so would require too many assump-
tions and restrict comparison with prior work. As
we turn to training and evaluating a new analytic
AES system, we must thus choose a dataset. Out
of the four previously considered, ASAP++ is by
far the largest with 12,980 essays, and has also
been widely used in holistic AES research (Section
A.2). Unfortunately, it is not well-suited to our
purposes: not all essays have been multi-marked,
and both the traits assessed and score ranges vary
depending on the essay prompts. Instead, we will
use the second-largest dataset, the ELLIPSE cor-
pus, with 6,482 essays. All of its essays have been
marked by two or three raters on a 1-5 scale using
the same analytic rubric (Section A.4). Further,
since this dataset was released as part of a Kaggle
competition?, the dataset comes with an established
test—train split (3,911 essays in the training set and
2,571 essays in the test set). For lack of an existing
set, we will use 10% of the training set for valida-
tion, aiming for balance across prompts, scores and
demographics.

Baseline. As baseline, we propose to use the pre-
trained DeBERTa model (He et al., 2021), a state-
of-the-art neural language model, which has been

* See https://www.kaggle.com/competitions/feedback-
prize-english-language-learning/data.
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used in past AES research with success (for exam-
ple: Hicke et al., 2023; Wang, 2024; Zhong, 2024,
Huang et al., 2024). Appendix B presents how we
selected this particular model. Specifically, we will
fine-tune six individual DeBERTa models (one for
each of the traits assessed in the ELLIPSE corpus)
for regression on the gold standard labels only. Ap-
pendix C describes in detail the methodology we
plan to use for these experiments.’

Modelling. Drawing from the work by Davani
et al. (2022), and for each of the six analytic traits
in ELLIPSE, we will consider three different multi-
annotator AES architectures which can mimic the
multi-marking setting, namely ensemble, multi-
label, and multi-task. We point out that some of
these architectures have already been used in an-
alytic AES in the past with success (Section 3).
However, unlike prior work and our baseline, we
will be training them on the raw, multi-marked es-
say scoring data as opposed to the gold standard
labels. See Figure 2 for a schematic overview of
this experimental design. Note that all variations
will be built on top of the pre-trained language
model DeBERTa.

Performance. We will then compare, for each
trait, the three architectures to the baseline using
the evaluation metrics defined in Appendix C.3.
Specifically, model performance will be measured
using the RMSE metric (Tyagi et al., 2022). Not
only is it a well understood and widely used metric
in ML (Karunasingha, 2022), Yannakoudakis and
Cummins (2015) argues that measures of agree-
ment (such as RMSE) are more appropriate than
correlation metrics for measuring the effectiveness
of AES systems. Beyond our baseline, we will also
compare the performance of our systems against
the leader-board of the dataset’s Kaggle competi-
tion*, and the few studies that have used ELLIPSE
(e.g., Sun and Wang, 2024).

Confidence. The main novelty these models
bring to AES is that we will be able to use their
raw outputs to estimate how confident we should
be in using an aggregate of the outputs together.
Indeed, suppose we approximate each model head,
or individual raw output as being a single rater’s
judgement. If all the outputs of our model agree,
then much like when human raters agree, we should

> All experiments presented in this proposal have been and
will be conducted using shared high-performance computing
resources which include three NVIDIA A100 GPUs.
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be highly confident that aggregating the raw scores
together accurately conveys the quality of the essay
for the considered analytic trait. If, however, the
model outputs disagree, then perhaps aggregating
the scores is not the best course of action.

Davani et al. (2022) propose to use the variance
between the different raw model outputs as a mea-
sure of uncertainty. We describe below how to
convert that into a confidence score C, with a value
between 0 and 1 (as was used in Figure 1). Given
that the maximal variance between three values in
the 1-5 score range of ELLIPSE is 02, ~ 3.6
(rounded to 1 decimal place), achieved for outputs
(1,5,5) or (1,1,5), in no particular order. Then,
given any set of three raw model outputs repre-
sented as a three-dimensional vector x € [1, 5]3,
the confidence score associated to that prediction
is given by:

0-12113,)(

To validate this metric, we will measure the ex-
tent to which it correlates with the true rater dis-
agreement, using the original raw rater scores, on
the test set. We can further assess the reliability of
the metric by segmenting the test samples based on
the predicted confidence scores and measure the
correlation between these scores and model perfor-
mance as was done by Xiao et al. (2025). We will
also explore other confidence/uncertainty metrics
such as using the prediction probability from a soft-
max distribution of the final output (Hendrycks and
Gimpel, 2018) or Monte Carlo dropouts (Gal and
Ghahramani, 2016).

4.3 Towards RQ2

Having built a series of multi-annotator AES sys-
tems for a range of essay traits, we turn our atten-
tion to the area of essay feedback: How can ana-
lytic AES serve as a foundation for more effective
automated essay feedback systems?

We envision that the raw model outputs across
multiple traits can form a kind of feedback profile
for each essay, which may be mapped to specific
linguistic features. Insights from our preliminary
analysis (RQ0) may help identify textual charac-
teristics that consistently trigger high or low rater
disagreement. Simply highlighting these features
to learners may already provide useful formative
feedback, but they could also augment existing
feedback systems by offering more nuanced, trait-
specific insights. Specifically, we can explore how
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Figure 2: Schematic overview of the multi-annotator AES models (ensemble, multi-label, and MTL) and baseline
we plan to build for each analytic trait in ELLIPSE. Adapted from Davani et al. (2022, Figure 1).

LLMs can be used to translate raw trait scores
and disagreement-informed insights into natural
language explanations. These explanations could
help bridge the gap between system output and
learner interpretation, supporting feedback that is
not only data-driven but also accessible and peda-
gogically meaningful. However, careful prompting
and validation would be needed to ensure reliability
and mitigate risks such as hallucinated feedback or
overgeneralisation (Singh et al., 2024; Zhao et al.,
2024).

Evaluating the effectiveness of this kind of ap-
proach to feedback will ideally require engagement
with actual users: teachers and students. To that
end, we will design a small-scale, controlled user
study, time and resources permitting. In particu-
lar, we may draw from Wilson and Roscoe (2020)
who measured the effectiveness of their approach
through a series of metrics: writing self-efficacy,
holistic writing quality, performance on a state En-
glish language arts test, and teachers’ perceptions
of the AES system’s social validity. Particular atten-
tion would be given to how disagreement-informed
feedback compares with more conventional, rule-
based or gold-standard approaches.

We consider this a longer-term, exploratory ex-
tension of our project, recognising that user-facing
feedback is a complex and iterative design chal-
lenge. If direct user testing is not feasible within the
current project scope, we will instead rely on proxy
evaluations—such as alignment with rubric criteria,
interpretability assessments, or expert annotation
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studies—to ensure pedagogical relevance and prac-
tical utility. Ultimately, our goal is to contribute
to a learner-centred vision of AES that supports
teaching and learning in meaningful ways.

5 Summary

In this PhD proposal, we explored the idea that we
can advance analytic AES research by harnessing
examiner disagreements, rather than viewing them
as “noise” that should be quietened. We propose to
build a series of multi-annotator models to mimic
a multi-marker setting and output automated raw
scores. By placing the original raters of the training
data at the centre of our design, our solution will
not only help measure how confident we can be in
the model’s aggregated output, but also prove more
transparent than traditional approaches. And by
focusing on analytic scoring, we will be able to use
our suite of models to generate fine-grained feed-
back, offering more tailored and effective guidance
to learners. A key part of this work will require
conducting a systematic qualitative analysis of rater
disagreement in analytic essay scoring data. By im-
proving interpretability, surfacing uncertainty, and
enabling richer feedback, we hope to contribute to
the development of AES systems that are designed
for real-world classroom use.

We list below the expected outcomes of the pro-
posed thesis:

1. A set of guidelines and suggestions for re-
searchers working with the four multi-marked



analytic AES datasets explored during the pre-
liminary phase (Section 4.1).

2. A suite of multi-annotator models fine-tuned
on each trait of the ELLIPSE corpus, and a set

of baselines (Modelling in Section 4.2).

3. A novel approach to measuring model confi-
dence (Confidence in Section 4.2).

4. A system which can, given an essay, its an-
alytic scores and confidence score, generate
fine-grained natural language feedback (Sec-
tion 4.3).

Overall, we believe the project is feasible within
the timeframe of a PhD. The phased research plan
outlines the work will look to complete over the
next 18 months. Additionally, the recent release of
public multi-marked analytic AES datasets makes
this work both timely and well-grounded.

Limitations

The primary limitation of this study is the lack
of large, publicly-available multi-marked analytic
AES datasets. While our approach seeks to better
model rater variability and improve representation
in AES systems, most of the datasets we draw from
have been annotated by no more than two or three
raters per essay (see Appendix A). This relatively
shallow annotation may limit the extent to which
we can robustly capture and model inter-rater varia-
tion, particularly for traits that are inherently more
subjective or rubric-dependent. Importantly, we
note that this is not a limitation unique to this study,
but a broader challenge across AES.

A related constraint concerns language coverage.
All of the datasets used in this study are in English,
which was also our particular focus.! However, this
limits the immediate applicability of our findings
to English-language educational contexts. Future
work could extend this approach to other languages
as suitable multi-marked datasets become available.
Such extensions would be essential for ensuring
that AES advancements benefit a more diverse set
of learners and writing contexts.

Finally, although our use of qualitative meth-
ods (content and thematic analysis) enriches the
interpretability of findings, these approaches carry
inherent subjectivity. Researcher bias in coding
and theme development is a known limitation of
qualitative work. To mitigate this, we will use a
transparent and iterative coding process, triangulate
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findings where possible, and document decisions
clearly through ATLAS.ti.

Ethical Considerations

Fairness is a core ethical concern in educational as-
sessment, particularly when deploying automated
systems that may influence learner outcomes. AES
models risk amplifying existing biases in train-
ing data, especially if rater disagreement, socio-
cultural variation, or language proficiency differ-
ences are not adequately accounted for. Our work
aims to address this by modelling rater disagree-
ment directly, promoting transparency and inter-
pretability, and supporting more equitable scoring
practices in diverse educational contexts.
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A Analytic AES Datasets

Table 1 records the main public datasets of analyti-
cally scored essays. We compare them along seven
dimensions:

1. Essay Types: the types of essays present in
the corpus—argumentative (A), response to
reading (R), narrative or creative (N), com-

ment (C), suggestion (S) and letter (L);

Writers’ Information: the language and aca-
demic levels of the essay writers;

No. of Essays: the total number of essays
present in the corpus;

Analytic Traits: the linguistic dimensions
(different from holistic) on which the essays
have been graded;

No. of Raters: the number of individual raters
(i.e., awarded marks) per essay;

Multi-marks Available?: whether those raw
marks have been made publicly available
(Yes), as opposed to only the aggregate scores
(No); and

Score Ranges: the score range of the essays
for a given dimension.

A1l ICLE++

The International Corpus of Learner English
(ICLE) is a corpus of essays written by upper-
intermediate and advanced non-native English
learners. The first version of the corpus, released
in 2002, contained 2.5 million words produced by
learners from 11 L1s (Granger, 2003). The cor-
pus has since grown to 5.7 million words from 25
L1s (Granger et al., 2020). Concurrently, the Hu-
man Language Technology Research Institute in
the University of Texas at Dallas, USA, contributed
to the corpus by annotating subsets of it along sev-
eral traits (Persing et al., 2010; Persing and Ng,
2013, 2014, 2015; Ke and Ng, 2019).

This effort culminated in the release of the
ICLE++ dataset®, which includes the annotation
of 1,006 ICLE essays with both holistic scores and
ten analytic scores (see Table 1). For the precise
definitions of these traits, refer to Li and Ng (2024).
This particular sample of essays was chosen in

6 The annotations are available via

https://github.com/samlee946/ICLE-PlusPlus.
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response to 10 specific prompts, chosen to be well-
represented in multiple languages, to support as
much L1 diversity as possible. In this annotation,
each essay was graded by two different annotators,
and disagreements were resolved through open dis-
cussion. The raw multi-mark scores have recently
been released.

A.2 ASAP++

The Automated Student Assessment Prize (ASAP)
dataset was introduced as part of the “The Hewlett
Foundation: Automated Essay Scoring” Kaggle
competition in 20127 and has since been widely
used in AES research, both for prompt-specific
(Alikaniotis et al., 2016; Taghipour and Ng, 2016;
Dong and Zhang, 2016; Dong et al., 2017; Tay
et al., 2017) and cross-prompt (Phandi et al., 2015;
Cummins et al., 2016; Jin et al., 2018; Ridley et al.,
2020) tasks. The original dataset contains eight dif-
ferent essay sets, one for each of the eight prompts
considered, for a total of 12,980 essays written by
native English speaking children between grades 7
and 10.8 Marking guidelines and rubrics specific
to each prompt were provided, and all essays were
holistically marked by two (or three) independent
human raters. Additionally, the essays for Prompts
7 and 8 were analytically scored by two markers:
the multi-marks can be found in the original dataset.
Subsequently, Mathias and Bhattacharyya (2018)
provided single-marked analytic scores for the re-
maining six prompts to form the ASAP++ dataset.”

A3 CELA

The Chinese EFL Learners’ Argumentation
(CELA) dataset'? is a collection of 144 argumen-
tative essays written by undergraduate students
in non-English majors in China first introduced
by Xue et al. (2021). Participants were asked
to write a 300-word essay in response one sin-
gle prompt. Subsequently, two expert raters in-
dependently scored the essays both holistically and
along five analytic sub-scales (Grammar, Lexicon,
Global and Local Organisation, and Supporting
Ideas). The final dataset only records the average
score of the two rater scores for each essay trait,

" The original dataset and annotation guidelines can be
downloaded from https://www.kaggle.com/c/asap-aes/data.
8 According to the K-12 (from kindergarten to 12th grade)

curriculum (Richardi, 2022)
9

These can be downloaded from
https://lwsam.github.io/AS AP++/lrec2018.html.
10 The dataset is available at

https://github.com/gzutxy/CELA.
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Table 1: Comparison of known analytic AES corpora.

Corpora Essay Writers’ No. of Analytic Traits No. of Multi-marks | Score
es nformation ssays olistic aters vailable? anges
P Inf ti Essay (# Holistic) Rat Available? Rang
Prompt Adherence
Thesis Clarity
Argument Strength
Non-native; gfvgrlgfﬁz?lt 14
ICLE++ A undergraduate 1,006 & 2 Yes (half-point
Coherence )
students Cohesion increments)
Sentence Structure
Vocabulary
Technical Quality
Content/Ideas
Conventions
Organisation 253,10——647
US students; Prompt Adherence (prompt-
ASAP++ A,R,N ¢ 12,980 Language 1-3 Partly promp .
Grades 7-10 dependent;
Sentence Fluency integer
Word Choice &
Voice scales)
Style
. Grammar
Non-native; -
ndergraduate Lexicon 1-8 (integer
CELA A u . 144 Global Organisation 2 No
students in S scales)
. Local Organisation
China -
Supporting Ideas
Cohesion
Syntax -5
A, N, C, | Non-native; Vocabulary B .
ELLIPSE S'L Grades 8-12 6,482 Phraseology 2-3 Yes ghalf-pomt
Grammar increments)
Conventions
Intelligibility
Asian English Complexity
Accuracy
language 136
ICNALE learners f:luencyh ibilit 0-10
A omprenensibility 80 Yes (half-point
GRA Logicality increments)
Sophistication
. . Purposefulness
Native English 4 Willingness
Involvement

not the raw multi-marks.

A.4 ELLIPSE Corpus

The English Language Learner Insight, Proficiency
and Skills Evaluation (ELLIPSE) Corpus was re-
leased by the Vanderbilt University and the Learn-
ing Agency Lab'! in 2022 for the “Feedback Prize —
English Language Learning” Kaggle competition*
(Crossley et al., 2024). The full dataset contains
6,482 essays written by English language learners
between the 8th and 12th grade on 29 different
prompts as part of state-wide standardised writing
assessments in the 2018/19 and 2019/20 school
years in the US.!?

All essays were independently marked by a
minimum of two raters along six analytic dimen-

1" See https://www.the-learning-agency-lab.com.

2 The dataset can be downloaded
https://github.com/scrosseye/ELLIPSE-Corpus.

from
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sions, Cohesion, Syntax, Vocabulary, Phraseol-
ogy, Grammar, and Conventions which are defined
in Crossley et al. (2024, Table 1).13, as well as a
holistic score. All scores follow a 9-point Likert
scale and range from 1.0 to 5.0 with increments
of 0.5, where a maximal score in one of these di-
mensions signifies a native-like proficiency. Any
disagreement between raters was adjudicated in a
discussion between the two parties and both mean
and raw scores have been published. Finally, the
authors of the dataset conducted an MFRM analy-
sis for the raters and essays and found the scores to
be reliable (Crossley et al., 2024).

13 These were identified by teaching and research advisory
boards of experts in the fields of composition and ELL edu-
cation as the principal components of language acquisition
(Learning Agency Lab, 2023).
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Table 2: Best hyper-parameter settings for each of the different pre-trained models when fine-tuned on the CLC

FCE corpus.
Model No. of No. of | Batch Learning Weight
Parameters Epochs Size Rate Decay
microsoft/deberta-v3-base | 184M 7 8 4.02e-5 8.98e-2
roberta-base 125M 6 8 2.02e-5 6.20e-2
bert-base-cased 109M 7 16 4.16e-5 2.87e-2
bert-base-uncased 109M 7 8 4.47e-5 4.28e-2
distilbert-base-cased 65.8M 4 8 6.87e-5 6.26¢-2
distilbert-base-uncased 65.8M 6 16 3.32e-5 3.96e-2

A.5 ICNALE GRA

The Global Rating Archive (GRA) was devel-
oped as part of the International Corpus Network
of Asian Learners of English (ICNALE) corpus
(Ishikawa, 2020, 2023), a corpus of more than
15,000 essays written by Asian English language
learners (ELLs), monologues, and speeches. In
particular, GRA includes 140 essays written to one
single prompt on the topic of part-time jobs for col-
lege students. Of those essays, 136 were written by
Asian ELLs representing ten different regions, and
the remaining four were written by native English
speakers. Most uniquely, the essays were indepen-
dently marked by 80 human raters both holistically,
and analytically for 10 different essay traits. See
Ishikawa (2020, 2023) for a detailed description of
the corpus.

B Choosing DeBERTa

To motivate our choice of underlying baseline
model (Section 4.2), we considered six variants of
the pre-trained BERT model (Devlin et al., 2019),
which have been successfully applied to AES in the
past (Mayfield and Black, 2020; H. Beseiso, 2021;
Schmalz and Brutti, 2022). Each was then fine-
tuned on the seminal holistic AES dataset (Ke and
Ng, 2019): the CLC FCE corpus (Yannakoudakis
et al., 2011).1* This dataset is a collection of
2,469 short essays written by ELLs from around the
world who sat the Cambridge English for Speak-
ers of Other Languages (ESOL) First Certificate
in English examinations between 2000 and 2001.
Essays were marked by an examiner with a 0-5
band score using the rubric from the University of
Cambridge Local Examinations Syndicate (2001,
p-19). Following Yannakoudakis et al. (2011), we
mapped these scores to a 0-20 linear scale, ideal
for a regression task. Table 2 shows a summary of
the models we considered, their size (in number of

14 Note that at the time of running these experiments, the
new corrected version of this dataset had not been published.
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parameters), and the best hyper-parameter values
we obtained for each in the step-by-step method in
Appendix C.4.

Table 3 shows the average performance of the
different models for the best hyper-parameter set-
ting in Table 2 across the five random seeds. De-
BERTa (He et al., 2021) outperforms all of the
other models across all five of our evaluation met-
rics (Appendix C.3), obtaining a record low RMSE
score of 2.308 for the random seed 1002. However,
it is also the model that has the largest variance
across different random seeds for RMSE, accuracy,
precision and recall, which suggest that the model
is not the most robust to random-seed instability
(Madhyastha and Jain, 2019). Further, DeBERTa is
more heavy-weight than the other models (i.e., it is
larger in terms of number of parameters; Table 2),
and thus, takes more time to train. But despite these
limitations, we chose to use DeBERTa for the next
part of the experiments because it unambiguously
surpassed all the other candidates.

C Methodology

In this section, we describe the research methodol-
ogy we plan to use for running our ML experiments.
Note that this may be improved in the future. This
same methodology was used in the experiment de-
scribed in Appendix B.

C.1 Reproducibility

Ensuring the computational reproducibility of a
project is very important both to allow others to
build on the research and for its credibility: anyone
should be able to obtain the same results if they use
the exact data, models and code provided by the au-
thors (Donoho et al., 2009). When it comes to ML,
many model architectures and algorithms are by
nature non-deterministic (Reimers and Gurevych,
2017). To overcome this, it is standard practice to
set a random seed, making any subsequent “ran-
dom” number deterministic.



Table 3: Average performance of the different models on the CLC FCE test set using 0-20 scores as in Yannakoudakis
et al. (2011) across the five random seeds (rounded to 3 decimal places) for the best hyper-parameter setting in Table
2 (Avg.). The (+) rows show the difference between the average and the maximal value achieved for each metric
for a particular seed. The (—) rows include the difference between the average and the minimal values. Together
they show the variation of performance across the five seeds for a metric: the largest ranges are underlined for each
metric.

Model ‘ RMSE Pearson Spearman Acc. Prec. Rec. F1
microsoft/ Avg. | 2.705 0.690 0.680 0.152 0.134 0.135 0.115
deberta-v3- + 0.477 0.025 0.034 0.040 0.042 0.023 0.037
base — 0.397 0.022 0.021 0.030 0.041 0.017 0.027
roberta-base | Avg. | 2.927 0.252 0.257 0.137 0.009 0.069 0.017
+ 0.103 0.274 0.252 0.001 0.001 0.002 0.000
— 0.045 0.326 0.269 0.004 0.000 0.002 0.001
bert-base- Avg. | 2.959 -0.022 -0.048 0.137 0.014 0.071 0.022
cased + 0.076 0.351 0.364 0.007 0.010 0.004 0.010
— 0.068 0.171 0.242 0.004 0.005 0.004 0.006
bert-base- Avg. | 2.848 0.420 0.402 0.126 0.038 0.076 0.031
uncased + 0.151 0.110 0.153 0.015 0.033 0.023 0.018
- 0.094 0.227 0.250 0.026 0.028 0.013 0.014
distilbert- Avg. | 2.949 0.305 0.363 0.135 0.027 0.078 0.031
base-cased + 0.184 0.210 0.137 0.017 0.013 0.018 0.020
— 0.238 0.270 0.065 0.013 0.017 0.008 0.014
distilbert- Avg. | 3.953 0.183 0.098 0.122 0.009 0.069 0.015
base-uncased + 0.365 0.048 0.086 0.005 0.000 0.002 0.001
— 0.267 0.087 0.056 0.003 0.001 0.002 0.000

random. seed (SEED)

set_seed (SEED)

torch.manual_seed (SEED)
torch.cuda.manual_seed_all (SEED)
np.random.seed (SEED)
os.environ['PYTHONHASHSEED']=str (SEED)

torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
torch.use_deterministic_algorithms(True)

Figure 3: The code we use to set the random seed to the different Python packages needed in the experiments (top),
and some additional lines needed to achieve consistent results with the microsoft/deberta-v3-base model in
Appendix B.

We run the experiments with five different ran-  Chapter 8). We use the Bayesian hyper-parameter
domly chosen seeds'> for better comparability and  optimisation algorithm (Snoek et al., 2012) as im-
to ensure that the results we are seeing are not sub-  plemented by Comet ML!©, a search algorithm that
optimal. See Figure 3 for the code we use to ensure  is based on distributions and balances exploita-

the reproducibility of the results. tion/exploration to make decisions about which
hyper-parameter values to try next. This approach
C.2 Hyper-parameter Optimisation achieves optimal results with considerably fewer

trials. Figure 4 shows the configuration details that
we use (i.e., objective function, hyper-parameters
considered and value ranges).

The process of hyper-parameter optimisation con-
sists of finding the set of optimal hyper-parameters
(parameters whose values control the learning pro-
cess of an ML model; Goodfellow et al., 2016,

15 Specifically, the random seeds 1601, 2911, 1044, 1002, 16 See https://www.comet.com/docs/v2/guides/
and 2510 were used in the experiments of Appendix B. optimizer/configure-optimizer/ for more details.
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{
"algorithm": "bayes",

"spec" : {
"maxCombo": 40,
"objective": "minimize",
"metric": "eval_rmse",

"minSampleSize": 100,

"retryLimit": 20,

"retryAssignLimit": 5,
1,

"parameters": {

"batch_size": {"type": "discrete", "values": [8, 16, 32]},

"learning rate": {"type": "double", "min": le-7,
"num_train_epochs": {"type": "integer", "min": 2,

"weight_decay": {"type": "double", "min": 0.0, "max":

s

"max": le-4},
"max" - 8} s

0.1}

Figure 4: Extract of the Comet ML Optimizer configuration file used in experiments.

C.3 Evaluation and Reporting

Within the field of AES, the evaluation of scoring
systems is traditionally carried out by comparing
a system’s predicted scores to the gold standard
labels for a held-out validation set of essays using
a series of metrics (Williamson et al., 2012; Yan-
nakoudakis and Cummins, 2015). Specifically, we
report:

1. the Root Mean Square Error (RMSE) (Will-
mott and Matsuura, 2005);

2. the correlation between the predicted and gold
standard scores with both the Pearson (Pear-
son, 1896) and Spearman Rank correlation
coefficients (Spearman, 1987);

3. as well as the main classification metrics (pre-
cision, recall, accuracy and F1-score; Hossin
and M.N, 2015) by rounding model predic-
tions to the closest grade class (e.g., ELLIPSE
uses a 1.0 to 5.0 scale with increments of 0.5;
Section A .4).

C.4 Step-by-step Method

Having introduced the individual components of
the experimental methodology, we now give below
the step-by-step process we use to train, evaluate
and test our models:

1. Start by running the Bayesian Hyper-
parameter Optimisation algorithm for each of
the five random seeds. Given a random seed:

(a) we wuse stratified data sampling
to randomly split the dataset of
essays into three parts using the
train_test_split() function of the
scikit-learn!” Python library using
a ratio of 70/15/15% for the training,
validation and test sets respectively to
limit sampling error;

(b) then at each step of the algorithm (the
total number of steps is given by the
maxCombo field in Figure 4 which we set
to 40), a different set of hyper-parameters
(Section C.2) is considered. With each,
a model is trained from scratch on the
training set, and then evaluated using the
RMSE on the validation set to inform
the next set of hyper-parameters the opti-
miser will try.

2. From step 1, retain the set of hyper-parameter
settings that achieved the best results on the
validation set in terms of the RMSE metric
across the five random seeds, and round the
learning rate and weight decay values to 3

17 For the documentation, see https://pypi.org/project/scikit-

learn/.
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significant figures.

3. Finally, re-run the experiments for all five
seeds with the setting obtained in step 2 and
report the maximum, minimum and average of
every evaluation metric mentioned in Section
C.3 across the five seeds on the test set.

Note that for the training and testing of mod-
els, we use the Trainer!® interface. By default,
Trainer implements the AdamW stochastic gradient
descent optimisation method, an Adam algorithm
(Kingma and Ba, 2017) with weight decay fix, as
introduced by Loshchilov and Hutter (2019). Us-
ing AdamW optimisation has become the standard,
and models trained with it generally yield better
results than those trained without (Loshchilov and
Hutter, 2019). Further, we use each model’s de-
fault regression training loss, which is typically
the Mean Squared Error (MSE), implemented with
the MSELoss () function from the PyTorch library'®
(Paszke et al., 2019). Finally, Trainer is set up such
that model weights are saved after each training
epoch and only the best model is loaded at the end
of training with regards to the RMSE metric.

'8 See https://huggingface.co/docs/transformers/main_classes/trainer
for a full documentation.

9 The library can be accessed from
https://pypi.org/project/torch/.
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Abstract

With the advent of highly capable instruction-
tuned neural language models, benchmarking
in natural language processing (NLP) is in-
creasingly shifting towards pairwise compari-
son leaderboards, such as LMSYS Arena, from
traditional global pointwise scores (e.g., GLUE,
BIG-bench, SWE-bench). This paper empiri-
cally investigates the strengths and weaknesses
of both global scores and pairwise comparisons
to aid decision-making in selecting appropriate
model evaluation strategies. Through computa-
tional experiments on synthetic and real-world
datasets using standard global metrics and the
popular Bradley—Terry model for pairwise com-
parisons, we found that while global scores
provide more reliable overall rankings, they
can underestimate strong models with rare, sig-
nificant errors or low confidence. Conversely,
pairwise comparisons are particularly effective
for identifying strong contenders among mod-
els with lower global scores, especially where
quality metrics are hard to define (e.g., text gen-
eration), though they require more comparisons
to converge if ties are frequent. Our code and
data are available at https://github.com/
HSPyroblast/srw-ranking under a permis-
sive license.

1 Introduction

Modern natural language processing (NLP) bench-
marks are often represented as pairwise compar-
ison leaderboards, as seen in projects like LM-
SYS Arena (Chiang et al., 2024) and AlpacaEval
(Dubois et al., 2024). This trend has emerged due
to the development of highly capable instruction-
tuned large language models (LLMs) that output
textual rather than categorical responses on open-
ended questions. Earlier methods could be reason-
ably evaluated using static datasets or individual
benchmarks. However, modern methods require

*The work was done during the author’s internship at Jet-
Brains.
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up-to-date benchmarks that incorporate live feed-
back from both humans and machines (Faggioli
et al., 2024). Previous benchmarks, such as GLUE
(Wang et al., 2019), BIG-bench (Srivastava et al.,
2023), and SWE-bench (Jimenez et al., 2024) or
its live-benchmark versions, relied on global point-
wise scores, prompting further research into the
best approach for NLP benchmarking. But what
method is most effective, and in which cases?

In this work, we empirically examine the
strengths and weaknesses of pairwise comparisons
and global scores. The goal of this study is to
aid decision-making in selecting the appropriate
model evaluation approach, which leads to the two
following research questions:

RQ1. What are the strengths and limitations of
global and pairwise evaluation criteria?

RQ2. Which approach is more suitable for clas-
sification problems with binary outputs and
for problems where decision values (logits) or
textual outputs are available?

To address these research questions, we con-
ducted a series of computational experiments using
both synthetic and realistic datasets that were dis-
tributed under permissive licenses and included
model decision scores. For global evaluation
scores, we selected metrics that are widely used
in natural language processing and other machine
learning tasks. These include accuracy, F-score,
and the area under the receiver operating charac-
teristic curve (ROC AUC) for classification tasks,
as well as character-level F-score (Popovié, 2015,
chrF), edit distance (ED) aka Levenshtein distance,
and word error rate (WER) for text generation
tasks.

Our findings show that while global scores pro-
vide more reliable rankings of models, they tend to
underestimate strong models that make rare but sig-
nificant errors or have modest confidence in their
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responses. In contrast, pairwise comparisons are
particularly effective for identifying strong mod-
els among those with relatively low overall scores,
especially in cases where the quality metric is dif-
ficult to define—such as in text generation, which
has been popularized since the release of highly-
capable generative models like GPT-3 (Brown et al.,
2020) and more advanced models.

The remainder of the paper is organized as fol-
lows. In Section 2, we review the related work.
In Section 3, we outline the background of our
study and formulate the problem. In Section 4, we
describe the datasets used in our study. In Sec-
tion 5, we examine the scoring stability of pairwise
comparisons in the case of similar model outputs
(RQ1). In Section 6, we analyze scoring stabil-
ity in extreme cases of model confidence (RQ2).
In Section 7, we summarize our findings and pro-
vide recommendations for using global scores and
pairwise comparisons in model selection. Finally,
in Section 8, we conclude with final remarks and
present a flowchart to guide decision-making. Ap-
pendices A, B, and C contain supplementary infor-
mation about the model scores in different settings
that we tried in our work.

2 Related Work

Earlier work by Fiirnkranz and Hiillermeier (2003)
was focused on using pairwise comparisons (rank-
ings) to train binary classifiers for ranking tasks,
while Broomell et al. (2011) explored the use of
pairwise model comparisons to identify groups of
tasks where each model performs best. Maystre
and Grossglauser (2017) shown that an optimal
ranking of models can be achieved in a linearithmic
number of comparisons, inspired by the quicksort
algorithm. Nariya et al. (2023) specifically exam-
ined the use of pairwise comparisons for small
datasets and studied how individual outliers and
confounders impact performance estimates.

In contrast to these studies, our work aimed
to identify specific scenarios in which pairwise
rankings failed or behaved inconsistently, as well
as cases in which they provided valuable insights
across different task types, namely text classifica-
tion and text generation.

3 Problem Formulation

Suppose we are given a set of models M and
an evaluation dataset X, where for each element
x; € X, the ground truth labels G and the model
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predictions M;(z;) are known in advance. Our ob-
jective is to establish a partial order on M. As
is common in NLP, this can be done using either
global scores or pairwise comparisons. Examples
of global scores include widely-used evaluation
metrics such as accuracy, ROC AUC, and F-score,
while examples of pairwise comparison methods
include Bradley and Terry (1952), Elo (1978), New-
man (2023), and others. We are interested in under-
standing the reasons behind differences in rankings
produced by various methods, so we can effectively
leverage the strengths of these metrics.

Global Scores. For global scores, a function
f(M;, G) — R, called an evaluation score, assigns
a numerical score to each model, and the ranking
is determined by a permutation P such that

f(MplvG) > f(MpzaG) > 2 f(Mpm’G)'

Note that we conducted our experiments on
global scores using evaluation measures imple-
mented in scikit-learn (Pedregosa et al., 2011), edit
distance and word error rate from JIWER (Mor-
ris et al., 2004), and chrF from sacreBLEU (Post,
2018) libraries for Python.

Pairwise Comparisons. For pairwise compar-
isons, a function f(7") — P derives a ranking from
a sequence of pairwise comparisons (M;, M;, w),
where w indicates whether M; wins, M; wins, or
the comparison results in a tie. In our case, each test
sample x; provides (’;) pairs of models through an
auxiliary function

9(Mi(xe), Mjj(2), G(2)) — {Mi, Mj, 0},

and the resulting comparisons are aggregated into
the global score, usually indicating the probability
of each model winning against the others.

For pairwise comparisons, we used the widely
known Bradley and Terry (1952) ranking model
aka BT due to its popularity and simplicity.
Although other models such as Borda count
(de Borda, 1781), Elo rating (Elo, 1978), TrueSkill
(Herbrich et al., 2006), and Rank Centrality (Ne-
gahban et al., 2017) are also widely used, we chose
BT due it its simplicity and popularity. We inten-
tionally did not use Elo or TrueSkill, as their out-
comes depend on the order of comparisons,' which
is more appropriate for competitive games than
for time-insensitive model evaluation. Bradley and

1https: //www.cip.org/blog/11lm-judges-are-
unreliable
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Dataset Response # of examples # of methods # of pairs
Jigsaw (Adams et al., 2017)  Categorical 63,812 9 2,297,232
SST-5 (Socher et al., 2013)  Categorical 2,210 8 61,880
CEval (Nguyen et al., 2024) Textual 488 6 7,320

Table 1: Descriptive statistics of the datasets used in our study; note that Jigsaw and SST-5 are classification datasets
and CEval is a text generation dataset. Numbers of examples and methods are taken from the original test datasets
and the corresponding baselines. The number of generated pairs is added by us.

Terry (1952) is a probabilistic model that estimates
a set of latent parameters pq, . . ., D, such that the
probability that model M; outperforms model M
is given by

bi

P(M; = M;) = .
( i) pi +;

We defined M; > M; to mean that the output
of i-th model is closer to the correct answer than
that of the j-th model. We computed the BT scores
considering each tie as a half-win and half-lose
for both compared items. In our work, we used
the implementation of the model from the Evalica
library (Ustalov, 2025).

4 Datasets

We conducted experiments on two classification
benchmarks, Jigsaw by Google (Adams et al.,
2017)? and Stanford Sentiment Treebank (Socher
et al., 2013) aka SST-5, and on one textual bench-
mark called CEval (Nguyen et al., 2024); see Ta-
ble 1 for details. We selected these datasets be-
cause they provided model outputs for individ-
ual examples (including decision-function values),
were widely used in the research community, and
were available under permissive licenses. We used
only test subsets of all datasets. In addition, we ran
a series of trials on synthetic and mixed datasets
combining both synthetic and real labels.

For each test instance, we compared the outputs
of m different models in a pairwise fashion, yield-
ing (")) model pairs. For each pair, we then drew
12mlog(m) comparisons at random with replace-
ment, or else used all available test instances if
their count was smaller. Finally, we applied these
sampled comparisons to build a Bradley—Terry
ranking of the models.

2https://jigsaw.google.com/

3We adopted the linearithmic sampling strategy of Maystre
and Grossglauser (2017) and found through prototyping that a
multiplier of 12 gave the best performance.
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Jigsaw. We derived a dataset from a popular bi-
nary classification dataset for detecting text toxicity
called Jigsaw (Adams et al., 2017). We collected
the submission files for nine different models from
the leaderboard published by their authors.* Since
the authors did not provide ground-truth responses
for the test subset of the dataset, we reconstructed
them by taking the majority vote from the model-
generated responses. These models included the
winning method (TTA + PL), DistilBERT, JMTC-
20, NB-SVM, XGBoost, XLM-R Conv1D, XLM-
R, XLM-RoBERTa Bayesian, and XLM-RoBERTa.
Appendix A contains scores exhibited by these
models in several variations of this dataset that we
created for our experiments. Although the Jigsaw
suite of benchmarks contained other tasks than tox-
icity detection, e.g., classification bias detection,’
we found similar results on them during prototyp-
ing. Thus, we decided not to include them in our
study.

SST-5. We used the Stanford Sentiment Treebank
dataset (Socher et al., 2013, SST-5),° a multi-class
benchmark for reviews spanning five sentiment cat-
egories. To obtain model predictions, we followed
the methodology of Gosgens et al. (2021) and re-
ran eight open-source baselines.” These baselines
included: dictionary-based methods VADER and
TextBlob, traditional machine learning methods
like logistic regression and support vector machine
(SVM), fastText classifier (Joulin et al., 2017), and
deep learning classifiers: BERT and ELMo with
Flair (Akbik et al., 2019) and fine-tuned BERT with

4https://www.kaggle.com/competitions/jigsaw—
toxic-comment-classification-challenge/code?
competitionId=8076&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

Shttps://www.kaggle.com/competitions/jigsaw-
unintended-bias-in-toxicity-classification/
code?competitionId=12500&sortBy=scoreDescending&
excludeNonAccessedDatasources=true

6https://nlp.stanford.edu/sentiment/

7https://github.com/prra087/fine—grained—
sentiment
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Measure Acc AUC BT Fi BTy
Acc 1.00 090 -0.23 0.77 0.93
AUC 0.90 1.00 0.03 0.87 0.83
BT —-0.23 0.03 1.00 0.22 -0.28

F, 0.77 0.87 0.22 1.00 0.83
BTyin 0.93 0.83 -—0.28 0.83 1.00

Table 2: Spearman (1904) correlations between model
scores in Jigsaw (Adams et al., 2017).

Hugging Face (Wolf et al., 2020). Appendix B con-
tains the exhibited scores.

CEval. For a dataset featuring textual outputs
evaluated by non-classification metrics, we em-
ployed the CEval benchmark for counterfactual
text generation (Nguyen et al., 2024),® which mea-
sured models’ ability to generate text that reversed
the emotional tone of the original English input. In
this context, we evaluated six models from the orig-
inal benchmark: Crest, Crowd, GDBA, LLaMA,
Llama 2, and MICE. Appendix C presents the ob-
served scores.

5 Sensitivity to Distributions of Decision
Values

Our first point of interest was focused on the sen-
sitivity of aggregated pairwise comparisons com-
pared to global scores (RQ1). How can we estimate
the sensitivity of these evaluations? What occurs
when the models exhibit similar performance?

We investigated this by running experiments on
the Jigsaw dataset (binary classification) and on
SST-5 (multi-class classification). We then exam-
ined the decision values of models and used the
class with the highest decision value as the model’s
output.

Raw Decision Values. We compared the nine
Jigsaw models using accuracy (Acc), ROC AUC
(AUC), Bradley-Terry (BT) and F; scores. For
SST-5, we measured Fy, accuracy and pairwise
comparisons, treating the model with the higher
confidence score in each pairing as the winner. Ta-
ble 2 showed that the global scores (Acc, AUC,
F)) yielded consistent, highly correlated rankings,
as indicated by the Spearman (1904) correlation
coefficient.

On Jigsaw, we found that the anomalous BT
ranking resulted from some models, such as XG-

8https ://github.com/aix-group/CEval-
Counterfactual-Generation-Benchmark
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Measure Acc BT F1 BTun
Acc 1.00 0.90 0.83 0.69
BT 0.90 1.00 0.93 0.55
Fq 0.83 0.93 1.00 0.71

BThin 0.69 0.55 0.71 1.00

Table 3: Spearman (1904) correlations between model
scores in SST-5 (Socher et al., 2013).

Boost, outputting only decision values of O or 1.
This caused them to win disproportionately in pair-
wise comparisons and thus distorted the BT order-
ing. We observed the same effect on SST-5: SVM
rose to the top of the Bradley—Terry ranking due to
its more extreme confidence scores, even though its
F| score lagged behind Flair-BERT, Flair-EL.Mo,
or Transformer. Therefore, we recommend apply-
ing pairwise comparisons only to models whose
decision values share a similar domain.

Binarized Decision Values. To evaluate our rec-
ommendation, we transformed the score-based out-
puts from Jigsaw and SST-5 into binary values
by assigning 1 to each model’s most confident re-
sponse and O to all others, i.e., by rounding each
output to the nearest integer.

This transformation yielded an 88% fraction of
ties on Jigsaw, which affected the rankings derived
from pairwise comparisons (denoted as BTy;, in Ta-
ble 2), but did not change any of the rankings build
using global scores. On SST-5, we observed strong
correlations among accuracy, Fy, and BT rankings
(Table 3), and the ordering remained stable across
different random samples of pairs. Unlike Jigsaw,
the larger number of classes on SST-5 resulted in
a moderate proportion of ties (about two-thirds of
all comparisons), which in turn contributed to the
stability of the pairwise rankings. From these exper-
iments, we concluded that pairwise comparisons
were sensitive to the distributions of decision
values across the compared models.

Binary Responses. We simulated a binary clas-
sification task to examine how binary responses
influenced pairwise comparisons and global scores.
Three models each produced uniform random bi-
nary outputs 1,000 times using different random
seeds. An ideal evaluation metric would not have
favored any model. We found that accuracy, ROC
AUC and F; each equaled 0.5, whereas aggre-
gated pairwise comparisons systematically fa-
vored one specific model due to its larger number
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Measure Binary AP Penalized AP
MAE 0.38 0.86
AUC 0.90 0.94

BT [0.33,0.34] [0.59,0.66]
Fq 0.50 0.50

Table 4: Performance metrics on the adjusted decision
functions in the Jigsaw dataset (Adams et al., 2017).

Measure Binary AP
ACC 1
BT [0.70,0.71]
F, 0.5

Table 5: Performance metrics on the adjusted decision
functions in the SST-5 dataset (Socher et al., 2013).

of evaluated pairs. Spearman (1904) correlation
among all global scores was 1, while the Bradley—
Terry ranking exhibited a strong inverse correlation
of —0.5. These results suggested that pairwise com-
parison methods were ill-suited for distinguishing
between highly similar (or identical) models.

6 Instability with Overly Confident
Models

Our second point of interest focused on the stabil-
ity of pairwise comparisons given varying model
confidence in the positive class (RQ2). Instead of
calculating accuracy, we computed the mean abso-
lute error (MAE) between the binary label of the
target class and the model’s decision value.

Binarized Decision Values. We inflated the con-
fidence of model decision values in the Jigsaw
dataset through binarization to assess its impact on
model rankings. A good evaluation score should
distinguish the original models from the binarized
ones, ideally ranking the originals at the top and
the binarized models at the bottom.

In the Jigsaw experiments, we observed that un-
der MAE and AUC metrics, most binarized models
fell in the rankings according to the average preci-
sion score (Buckley and Voorhees, 2000). However,
based on Fy, the binarized models received identi-
cal scores to the originals due to the binarization
performed internally inside the models. In contrast,
the Bradley—Terry rankings were disrupted by the
inflated model confidences (see Table 4, Binary
AP). Confidence intervals for the Bradley—Terry
model, here and throughout the paper, were esti-
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Measure Penalized AP
ED 0.37
WER 0.38
chrF 0.66
BT [0.66,0.70]

Table 6: Performance metrics on the adjusted decision
functions in the CEval dataset (Nguyen et al., 2024).

mated as 95% intervals by drawing 1,000 random
subsamples of 12m log(m) match sets for each
model pair.

Although increased model confidence might
challenge the evaluation in text generation tasks,
in practice it seems difficult to alter textual out-
puts in a way that changed pairwise rankings
without also affecting other evaluation metrics.
In the CEval experiments, both WER and chrF
scores remained correlated with the Bradley—Terry
pairwise rankings, even after simple manipulations
such as appending random strings to the outputs
(see Table 7).

Penalized Decision Values. In this experiment,
we artificially perturbed the model outputs in the
Jigsaw and CEval datasets using the ground-truth
responses to generate a heavier tail of incorrect
answers and to assess how the rankings responded
to such perturbations.

For the Jigsaw dataset, we binarized the decision
value whenever the model made a mistake, simi-
larly to the previous experiment; otherwise, we left
the decision values unchanged. Hence, any mistake
led to a model receiving worse scores, while mod-
els without errors retained their original scores. We
found that under MAE and AUC, most penalized
models fell to the bottom of the rankings, whereas
F; produced results identical to those of the earlier
experiment. The Bradley—Terry rankings did not
correlate well with the other metrics; nevertheless,

Measure ED WER chrF BT
ED 1.00 094 —-094 —-0.94
WER 0.94 1.00 —-1.00 -0.89

chrF —-094 —-1.00 1.00 0.89

BT —-0.94 —-0.89 0.89 1.00

Table 7: Spearman (1904) correlations between model
scores in CEval (Nguyen et al., 2024). Note that some
values are negative due to inverted rankings.
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Figure 1: Dependency of the correlation between ab-
solute and pairwise rankings in a synthetic experiment
based on the CEval dataset (Nguyen et al., 2024). The
results show that the Bradley—Terry model produces re-
liable rankings even with a large fraction of ties.

they correctly placed most original models above
the penalized ones (see Table 4, Penalized AP, and
a similar Table 5 for SST-5).

A similar pattern arose in the text-generation
tasks. We appended random long strings to a ran-
dom 5% of model outputs in the CEval dataset,
which caused their distance-based global scores
(ED and WER) to decline, positioning them near
the bottom. However, the pairwise and chrF rank-
ings remained largely stable (see Table 6, Penal-
ized AP). Given that a 5% error rate can represent a
substantial difference, we recommend filtering out
such extreme cases or employing multiple evalua-
tion metrics, since pairwise comparisons tend to be
relatively insensitive to rare but large deviations.

From this experiment, we concluded that pair-
wise comparisons can still favor promising mod-
els even when they commit rare but significant
€rrors.

Scored Responses. As suggested by Gosgens
et al. (2021) and confirmed by our experiments,
the F; score was a viable alternative to accuracy for
binary classification tasks with an available deci-
sion function. However, ROC AUC and BT yielded
more accurate results and recovered the true rank-
ing. Nonetheless, pairwise comparisons had to
be conducted carefully to avoid favoring models
that produced more confident predictions, e.g.,
decision values closer to the extremes, like logits
near 0 or 1.
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7 Discussion

Draws in Comparisons. We noticed that Bradley
and Terry (1952) rankings had performed poorly
when a large fraction of comparisons resulted in
draws (Section 5). They produced indistinguish-
able results and required a high number of observa-
tions to achieve a stable ranking, which led to high
computational costs. Accuracy also tended to pe-
nalize models that made rare but significant errors.
In contrast, pairwise comparisons identified such
models effectively, although they sometimes de-
manded additional measures to ensure correctness
(Section 6). Pairwise comparisons proved particu-
larly useful for tasks which are uneasy to evaluate
according to the ground-truth data, as had been
confirmed by modern benchmarks (Chiang et al.,
2024; Dubois et al., 2024).

In text generation tasks, ties occurred far less fre-
quently than in classification, since evaluation met-
rics for generation rarely yielded identical scores.
Using the CEval dataset as an example, we simu-
lated the effect of introducing synthetic ties on the
resulting rankings. More specifically, we measured
the correlation between average rankings and pair-
wise chrF-based rankings for five models, varying
the tie probability from O to 1 in increments of 0.01.
For each probability level, we conducted 1,000 tri-
als with 12m log(m) matches per model pair. The
results demonstrated that the rankings maintained a
strong correlation (0.8) even when ties represented
up to 50% of outcomes (see Figure 1).

However, we observed that this behavior gen-
erally depended on both the closeness of model
performance and the total number of comparisons
done.

Comparison Stability. To examine how the num-
ber of comparisons affects ranking stability, we
constructed Bradley—Terry rankings by randomly
selecting an equal number of comparisons for each
pair of models, varying this number from 10 to
1000 in increments of 10. At each step, we com-
puted the average number of changes in the rank-
ing over 100 trials, relative to the ranking obtained
using 100,000 random comparisons per pair. As
mentioned earlier, we adopted the linearithmic sam-
pling strategy proposed by Maystre and Gross-
glauser (2017) and settled on using 12m log(m)
comparisons, which provided stable results while
maintaining a low computational complexity. Fig-
ure 2 presents the corresponding plot for the Jigsaw
dataset, though a similar effect was observed across
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Figure 2: Comparison of stability in the Jigsaw
dataset (Adams et al., 2017). The red line indicates
12mlog(m).

the other datasets as well.

Magnitude of Difference. As in the binary-
response experiment described earlier, we investi-
gated the magnitude of differences that aggregated
pairwise comparisons could detect. Specifically,
we examined how the probability of correct rank-
ing depended on the difference between the deci-
sion functions of the models, such as logits or class
scores. We created a grid of score differences span-
ning 0.9 to 1.0 in 100 steps. At each step, we sub-
tracted the value from a randomly selected pair’s
scores and repeated this procedure 1,000 times. As
shown in Figure 3, pairwise comparisons per-
form best when the difference between model
outputs is non-negligible; for example, when there
was at least a 10% difference in class probability in
our synthetic example.

8 Conclusion

Our studies showed that pairwise comparisons iden-
tified potentially good models among those with
poor global scores. They performed well on prob-
lems where the quality measure was difficult to de-
fine, such as text generation (RQ2). However, when
a large fraction of comparisons ended in ties, the
algorithm required a large number of comparisons
to converge. In contrast, global scores performed
better on evaluation measures that were easier to
define and generally required smaller amounts of
data (RQ1). Nevertheless, global scores tended
to underestimate models that committed rare but
significant errors. These results were consistent
across synthetic datasets, multiple public datasets,
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Figure 3: Dependency of probability on difference in
a synthetic experiment: the larger the difference be-
tween model outputs, the better pairwise comparisons
can correctly rank the models.

and their variations.

While our study was limited to experiments on
only three datasets, we believe the actionable rec-
ommendations we have discovered will advance
the state of benchmarking in NLP. In addition to
replicating our experiments on other datasets with
different sets of models, we also find it interesting
to explore which subset of the data each model
performs best on, where we expect pairwise com-
parisons to excel. Figure 4 presents the flowchart
for the model evaluation approach selection. An-
other possible limitation of our study was the use of
well-known NLP datasets released before the wide
adoption of LLMs. However, we believe that our
results would generalize to newer datasets and mod-
els, as we observed the same effects consistently
across all datasets, including the relatively recent
textual dataset CEval. This analysis included then
state-of-the-art open LLMs, such as Llama 2 and
LLaMA. Running our experiments on a new multi-
task dataset with frontier LLM responses would
allow for a more comprehensive evaluation of the
observed effects in a modern setting.

Although our experiments had been limited to
three datasets, we believe that the actionable rec-
ommendations we derived could advance the state
of NLP benchmarking. For future work, it would
have been useful to replicate our experiments on
additional datasets with diverse model sets and to
examine the specific data subsets on which each
model performed best, anticipating that pairwise
comparisons would have excelled in those scenar-
ios.
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Figure 4: How to choose between global scores and pairwise comparisons? Pairwise comparisons are especially
effective when the evaluation involves a difficult-to-define (“‘uneasy’’) measure, such as in text generation, or when
model scores vary widely and no model shows strong confidence. In contrast, if the measure is clearly defined, the
scores are relatively consistent, or some models produce more confident predictions, global evaluation metrics may

be a better choice.
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A Jigsaw Rankings
We present below the scores of the described models from our Jigsaw-derived dataset (Adams et al., 2017).

A.1 Raw Jigsaw Dataset (Section 5)

Model Acc AUC BT Fq BThin
TTA + PL 0.895 0.954 0.082 0.740 0.122
JIMTC-20 0.895 0.955 0.083 0.739 0.121
XLM-R 0.889 0.952 0.093 0.714 0.115
XLM-RoBERTa 0.886 0.944 0.067 0.721 0.118
XLM-R ConvlD 0.883 0.943 0.167 0.731 0.117
XLM-RoBERTa Bayesian 0.849 0.501 0.029 0.171 0.110
DistilBERT 0.835 0.882 0.144 0.523 0.105
NB-SVM 0.821 0.866 0.071 0.367 0.102
XGBoost 0.754 0.745 0.264 0.572 0.089

A.2 Binarized Jigsaw Dataset (Section 6)

Model Accuracy ROCAUC BT Fq

XGBoost 0.754 0.745 0.062 0.572
XLM-RoBERTa Bayes 0.797 0.501 0.008 0.171
NB-SVM 0.812 0.866 0.013 0.367
XLM-RoBERT 0.816 0.944 0.013 0.721
DistilBERT 0.819 0.882 0.021 0.523
XLM-R Conv1D 0.834 0.943 0.023 0.731
TTA + PL 0.846 0.954 0.015 0.740
JIMTC-20 0.849 0.955 0.015 0.739
XLM-R 0.856 0.952 0.017 0.714
Binarized XGBoost 0.754 0.745 0.060 0.572
Binarized NB-SVM 0.821 0.612 0.079 0.367
Binarized DistilBERT 0.835 0.681 0.081 0.523
Binarized XLM-RoBERTa Bayes 0.849 0.499 0.089 0.171
Binarized XLM-R Conv1D 0.883 0.819 0.100 0.731
Binarized XLM-RoBERT 0.886 0.804 0.099 0.721
Binarized XLM-R 0.889 0.791 0.099 0.714
Binarized 1st Place 0.895 0.813 0.104 0.740
Binarized IMTC-20 0.895 0.811 0.101 0.739

50



A.3 Penalized Jigsaw Dataset (Section 6)

Model Acc AUC BT Fi

XGBoost 0.754 0.745 0.142 0.572
XLM-RoBERTa Bayesian 0.797 0.501 0.017 0.171
NB-SVM 0.812 0.866 0.040 0.367
XLM-RoBERT 0.816 0.944 0.032 0.721
DistilBERT 0.819 0.882 0.079 0.523
XLM-R ConvlD 0.834 0.943 0.088 0.731
TTA + PL 0.846 0.954 0.042 0.740
JIMTC-20 0.849 0.955 0.044 0.739
XLM-R 0.856 0.952 0.053 0.714
Penalized XLM-RoBERTa Bayesian 0.751 0.502 0.013 0.171
Penalized XGBoost 0.754 0.745 0.139 0.572
Penalized XLM-RoBERT 0.773 0.625 0.026 0.721
Penalized DistilBERT 0.787 0.385 0.065 0.523
Penalized NB-SVM 0.793 0.228 0.035 0.367
Penalized XLM-R Conv1D 0.793 0.656 0.072 0.731
Penalized 1st Place 0.812 0.638 0.034 0.740
Penalized IMTC-20 0.816 0.633 0.036 0.739
Penalized XLM-R 0.827 0.594 0.045 0.714

B SST-5 Rankings
We present below the scores of the described models from the SST-5 dataset (Socher et al., 2013).

B.1 Raw SST-5 Dataset (Section 5)

Model Acc BT |

TextBlob 0.284 0.067 0.255
VADER 0.316 0.084 0.315
Logistic Regression  0.409 0.135 0.383
SVM 0.414 0.126 0.401
fastText 0.434 0.120 0.384
Flair-ELMo 0.462 0.143 0.408
Transformer 0.491 0.162 0.486
Flair-BERT 0.511 0.162 0.491

B.2 Binarized SST-5 Dataset (Section 5)

Model Acc BT | O

TextBlob 0.225 0.032 0.255
VADER 0.248 0.054 0.315
Logistic Regression 0.258 0.043 0.383
fastText 0.272 0.052 0.384
Flair-ELMo 0.344 0.155 0.408
Flair-BERT 0.353 0.124 0.491
Transformer 0.360 0.154 0.486
SVM 0.384 0.386 0.401
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C CEval Rankings

We present below the scores of the described models from the CEval dataset (Nguyen et al., 2024).

C.1 Raw CEval Dataset (Section 6)
Model ED WER chrF BT

Crowd  162.041 0.239 81.326 0.444
MICE 229.711 0.299 73.674 0.163
Llama2 274.370 0.375 70.886 0.202
LLaMA 298.368 0.404 68.378 0.125
GDBA  333.184 0.540 55.427 0.017
Crest 362.584 0477 63.324 0.049

C.2 Penalized CEval Dataset (Section 6)

Model ED WER  chrF BT

Crowd 162.041 0.239 81.326 0.240
MICE 229.711  0.299 73.674 0.093
Llama 2 274.370 0.375 70.886 0.095
LLaMA 298.368 0.404 68.378 0.075
GDBA 333.184 0.540 55.427 0.025
Crest 362.584 0.477 63.324 0.023

Penalized Crowd 272.713 0.363 79.950 0.189
Penalized MICE 384.359 0.451 72.188 0.077
Penalized Llama 2 437.590 0.592 69.111 0.078
Penalized LLaMA 484.732 0.657 66.350 0.059
Penalized GDBA  475.117 0.698 54.434 0.022
Penalized Crest 458.033 0.589 62.539 0.022
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Abstract

Filtering and annotating textual data are rou-
tine tasks in many areas, including social media
and news analytics. Automating these tasks en-
ables scaling analyses with respect to speed and
breadth while reducing manual effort. Recent
advancements in Natural Language Process-
ing, particularly the success of large foundation
models, provide new tools for automating anno-
tation processes through text-to-text interfaces
with written guidelines, eliminating the need
for training samples.

This work assesses these advancements in a
real-world setting by empirically testing them
on German Twitter data about social and po-
litical European crises. We compare prompt-
based results with human annotations and es-
tablished classification approaches, including
Naive Bayes and BERT-based fine-tuning with
domain adaptation. Despite hardware limita-
tions during model selection, our prompt-based
approach achieves comparable performance to
fine-tuned BERT without requiring annotated
training data. These findings highlight the on-
going paradigm shift in NLP toward task unifi-
cation and the elimination of pre-labeled train-
ing data requirements.

1 Introduction

Since ChatGPT'’s release in November 2022, both
public and scientific interest has shifted toward
generative NLP technologies like Large Language
Models (LLMs) (Kalla et al., 2023). Key questions
focus on human-machine interaction, specifically
the benefits these tools offer for automating manual
tasks. Generative foundation models function as
multilingual chatbots (Ouyang et al., 2022), follow-
ing natural language instructions while interpreting
texts by statistically capturing human knowledge
and replicating language understanding capabili-
ties.

The formulation of these commands, termed
“prompt engineering”, combined with powerful
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models, enables solving tasks the model has not
been extensively trained on—a capability known
as zero- or few-shot learning (Brown et al., 2020).
When instruction-following, natural language un-
derstanding, and few-shot learning are combined,
they promise to significantly reduce manual effort
in automating textual data annotation processes.

Unlike traditional supervised learning ap-
proaches that require labeled datasets, prompt-
based methods leverage the model’s general lan-
guage understanding capabilities through task-
specific instructions (Liu et al., 2023). This
paradigm shift is particularly relevant given recent
research comparing in-context learning and fine-
tuning strategies (Min et al., 2022), which demon-
strates that language models can achieve compet-
itive performance without task-specific training
data.

The approach aligns well with researchers inves-
tigating current topics in online social networks. As
societal crises increase in frequency (Guterres and
Secretary-General, 2022), timely analysis becomes
crucial for understanding public opinion tipping
points. Projects like SOSEC! consult survey par-
ticipants weekly to track developments, but even
weekly updates may miss influential events. LLMs
potentially offer a complementary tool matching
the temporal and quantitative scale needed for high-
frequency analytics.

This work investigates using open pre-trained
generative language models to process social me-
dia text datasets in real-world conditions. The
requested annotations prove challenging even for
human annotators despite extensive instructions.
Our focus is not building superior annotation ap-
proaches regarding overall accuracy, but evaluating
how well current LLMs serve as automated pri-
mary annotation tools without examples, assuming

'SOSEC Project Homepage (last retrieved Jun. 23, 2025):
https://www.socialsentiment.org

Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics
(Volume 4: Student Research Workshop), pages 53—63
July 28-29, 2025 ©2025 Association for Computational Linguistics


https://www.socialsentiment.org

an experimental setup requiring open local mod-
els for control and reproducibility with moderate
hardware requirements.

Accordingly, we address the following research
questions:

RQ; Can zero-shot prompt-based classification
achieve comparable results to a fine-tuned
classifier and align well to human annota-
tions?

RQ2 How does the scope of information provided
to the model, i.e. the extent of annotation
guideline impact the performance?

In in addition to answering our research ques-
tions. We provide a standalone Python module for
prompt-based classification with local LLMs (see
Sec. 4.3).

2 Background

The motivation for our work is twofold. Content-
wise, the political and social situation in the EU
poses a relevant interdisciplinary subject. In par-
ticular, how citizens express their opinions on on-
line social media platforms. For the scope of this
work, we omit a detailed description. Collect-
ing large amounts of unlabeled data comes with
the need for annotation to enable future analysis.
Streamlining the annotation displays our techni-
cal motivation. With the advent of LLMs capa-
ble of performing various tasks, new approaches
emerged to classify textual data. Notably, meth-
ods allow classifying content through a text-2-text
interface, where the user can align the classifica-
tion expectations based on textual annotation guide-
lines (Brown et al., 2020). That omits the need for
machine-learning-based optimization and shifts the
focus to formulate human-readable guidelines that
the model can follow.

Text classification, like sentiment analysis or
topic labeling, holds significant importance in both
research and the economy (Petersen-Frey et al.,
2023). It enables us to extract valuable insights
from textual data and make informed decisions
across various domains, including customer feed-
back analysis, market research, and automated
content moderation (Minaee et al., 2021). Tra-
ditionally, text classification relied on supervised
learning approaches utilizing task specific mod-
els (Kadhim, 2019) or fine-tuning a pre-trained
models on a labeled datasets (Weiflenbacher and
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Kruschwitz, 2023). The development of opti-
mized and robust text classifiers is therefore a
resource-intensive task. Preceding research shows
that data-driven classification approaches (Ed-
wards and Camacho-Collados, 2024) outperform
prompt-based approaches on a selection of datasets.
However, the approach does not provide tailored
prompts or incorporate annotation guidelines. In
contrast, we focus on a single dataset and conduct
a more detailed experiment.

Instruction Fine-tuning The success of LLMs
was followed by a paradigm shift triggered by a
proposal from Google in 2020 (Raffel et al., 2020a),
(Sun et al., 2022). To this point, the typical pipeline
combines fine-tuned models like BERT (Vaswani
et al., 2017) or XLNet (Yang et al., 2019) with
a task-specific classification head. For classifica-
tion tasks, the attached head architecture produced
a probability distribution over the given classes
(Kant et al., 2018). For generative tasks, a sequen-
tial decoder was used as an attached head, which
generates a text sequence as output (Jiang et al.,
2021). In contrast, the unified pipeline has three
main advantages: a) the optimization pipeline, in-
cluding the data preparation, is more efficient as
the models achieve state-of-the-art performance
with less labeled data, b) the approach strengthens
the capability of transferring knowledge to unseen
tasks using a known formulations, and c) from the
non ML researchers perspective, unified models
are easier to infer and deploy.

Prompt Engineering Instruction-based model
solve tasks that are provided in human-like text
during conversations. However, the effectiveness
of these models relies heavily on the quality and
specificity of prompts given to them. Prompt en-
gineering, the process of formulating and refining
prompts, plays a crucial role in harnessing the full
potential of LLMs (Liu et al., 2023). Unlike the tra-
ditional pipeline for supervised tasks, which trains
a model to take in a textual input and predict an
output, prompt-based approaches utilize LLMs in
a dialog.

This paradigm shift allows us to bypass the afore-
mentioned bottlenecks. We no longer require pre-
labeled datasets for fine-tuning the models specifi-
cally for each application. Instead, we can utilize
the model’s general language understanding capa-
bilities and prompt it with task-specific instructions.
This significantly reduces the need for large-scale
labeled datasets (Sun et al., 2022), which can be



expensive and time-consuming to create.

2.1 Multilingual Considerations and

Real-world Challenges

The application of LLMs to non-English content
presents additional complexities that are particu-
larly relevant to our work. While many instruction-
tuned models are trained on multilingual corpora,
their instruction-following capabilities are often
predominantly developed using English examples
(Muennighoff et al., 2023a). This creates a po-
tential mismatch between the model’s general lan-
guage understanding in various languages and its
ability to follow task-specific instructions in those
languages.

Furthermore, real-world text classification sce-
narios often involve noisy, informal, and contex-
tually dependent content—characteristics that are
particularly pronounced in social media data. Tra-
ditional benchmark datasets may not adequately
reflect these challenges, potentially overestimating
the performance of both traditional and prompt-
based approaches when deployed in practical appli-
cations (Bender et al., 2021). Our focus on German
Twitter data about political crises represents an at-
tempt to address this gap by evaluating methods
under more realistic conditions.

The intersection of multilingual capabilities, in-
struction following, and real-world data complexity
forms the technical foundation for our investigation
into zero-shot prompt-based classification as a prac-
tical alternative to traditional supervised learning
approaches.

3 Data

To assess the capabilities of zero-shot prompt-
based classification in a real-world setting, we de-
liberately did not resort to an academic benchmark,
since they tend to not reflect the challenges of real-
world topic labeling appropriately. Also, we in-
tended to avoid a standard but unrealistic setting
with English only data.

3.1 Collecting

We collected a German Twitter data set according
to a topical selection defined by the survey ques-
tions of the SOSEC project about the energy crises
in the winter of 2022/2023. The non-English data
set was picked to further stress-test the LLMs’ ca-
pabilities in a realistic setup. At that time, Twitter
(now X)) still provided API access. We compiled a

55

comprehensive list of hashtags and keywords that
broadly reflected the described crises. The list con-
sisted of relevant terms, including trending key-
words, hashtag-based identifiers of political parties,
and persons of interest. We queried for each key-
word in the list consistently between October 2022
and May 2023. During this time, we collected
approximately 750,000 samples.

3.2 Manual Annotation

Two domain experts and native speaker annotated
a random selection of approx. 7000 tweets. The
annotators were instructed accordingly and given a
manual with guiding questions on whether a tweet
should be annotated or not. Of the selection sam-
ples, only 3000 could be annotated as belonging to
a topic, as many tweets did not match our criteria.
A high degree of noise due to ambiguity, variation,
and uncertainty is a common property of real-world
data sets (Beck et al., 2020).

4 Methods

The candidate methods we picked for automat-
ing the annotation task, are taken from three eras
of modern NLP: A Naive Bayes classifier, repre-
senting the pre-deep learning era, is picked as the
baseline. Next, for the deep learning era, a pre-
training and fine-tuning approach using a BERT
transformer (Kenton and Toutanova, 2019) is se-
lected. Finally, for the era of foundation models,
we use instruction-tuned models based on the trans-
former T5 (Raffel et al., 2020b). Again, we tried to
setup a realistic ”in-the-wild” scenario by picking
freely available models, that can be run on moder-
ate hardware requirements.

4.1 Baseline

In order to establish a baseline for the methods and
our prompt-based classification task, we employ
a Multinomial Naive Bayes Classifier (Manning,
2009). To represent our text data numerically, we
utilize a count vectorizer also provided by scikit-
learn (Pedregosa et al., 2011). The count vectorizer
converts the textual data into a matrix of token
counts, where each row represents a sample, and
each column represents a unique word or token in
the corpus.

4.2 Fine-tuned Transformer

We chose the model “gbert-base”, for German
BERT, which is a language model specifically de-
signed for text classification and Named-entity



recognition in German (Chan et al., 2020). For
our tasks, we fine-tune all parameters on 80% of
the annotated data as a single class classification
task. Upon completion of the model development
and training, we deployed the models to the Hug-
ging Face model hub. The models are available
under the “anonymized during review” account, al-
lowing other users to access and utilize them for
their own applications.

4.2.1 Additional Domain Adaption

To further improve the performance of our fine-
tuned classification model, we utilize our raw data
(approx. 750,000 tweets). Thus, we include an
additional pre-training phase to shift the model’s
language understanding toward the target domain
(Ramponi and Plank, 2020). We shift the fo-
cus of the generalized pre-trained BERT model
to a Twitter-specific language. That improves
the robustness of the model to achieve out-of-
distribution generalization without training a model
from scratch for our task. The inclusion of a second
pre-training phase (adaptive pre-training) improves
performance and generation significantly for clas-
sification tasks (Manjavacas and Fonteyn, 2022).

4.3 Zero-Shot Prompting

The two preceding methods set the traditional
machine-learning baseline and current SOTA for
text classification. Our text-to-text zero-shot
prompting (Kojima et al., 2022) approach differs in
two main aspects. It benefits from the text input and
text output paradigm and, thus, pulls away from
mathematical optimization. Thereby, we can study
the impact of textual formulation on our annota-
tion goal, align the annotation by words, and not
optimize by parameters. It does not rely on train-
ing data or examples (zero-shot) and, thus, cannot
overfit the provided data or assimilate the included
biases.

We restrict our setup and the model selection to
a level that modern desktop workstations (approx.
5.000€ in 2023) can effectively run the program.
With this, we underline the applicability during
active research for smaller groups or individuals.
For our experiments, we compare a monolingual
and a multilingual instruction-tuned model in four
different sizes. Regarding the prompts, we analyze
the performance of levels of textual detail, from
vague introductions to a reduced version of the
annotation guidelines.
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Model Selection To allow for a reproducible ex-
perimental setup we limit our selection to freely
available models from the platform Hugging Face
supporting English and German and trained in an
instruction-tuned text-to-text scenario. With this
filter, the selection is reduced — selection date: Mai
2023 — to two models, namely Flan-T5 (Chung
et al., 2024) and mTO (Muennighoff et al., 2023b).
Both models are based on the same fine-tuned trans-
former TS, each fine-tuned and adapted in a cus-
tom manner. This selection allows for a compari-
son and evaluation of the adaption quality beyond
prompt templates alone. Both models are available
in four different sizes, usable with our restrictions.
Thereby, we can compare, in addition, the respec-
tive performance across several parameters. It gives
us a third dimension of analysis.

Prompts We provide a baseline prompt (Prompt
1) that is generic without a specific task descrip-
tion. The terms in curly braces represent variables,
substituted during prompting. To differentiate the
task description from the text content, we use triple
back-ticks (' ' ') as delimiters (White et al., 2023).
Additionally, the template emphasizes choosing a
single class through the keywords “categorize” and
“one of”’.

prompt: str = f£"""

Categorize the following tweet into one
of the listed classes {classes}:
Yl’{text}Vll

nun

classes: List[str]

text: str

Prompt 1: base

In the preceding prompt, we omit a naming type
of classification task. In the following prompts, we
gradually add levels of information. To analyze
if and how the models benefit from an additional
explanation. In the first prompts, we introduce
the name of the respective tasks (Prompt 2). As
both models are fine-tuned for various classification
tasks, we assume that they benefit from the task
names.

In the following two prompts, we give a short
description about the task. In addition to naming
the task explicitly, we provide additional synonyms
for task (Prompt 3.

The last prompt we tested contain a condensed
version of the annotation handbook (Prompt 4. We



prompt: str = f£"""

Your task is to classify the following
tweet regarding its topic into one of
the following classes {classes}:
'll{text}IVI

nun

Prompt 2: task-name

prompt: str = f£"""

Your task is to analyze the topic of the
following tweet:

lll{text}IYI

Thus, identify the dominant subject of
the tweet content and classify it into
one of the following classes: {classes}

nun

Prompt 3: description

could not use the full version as our models are
restricted in the input length, and the complete
topic task description would not leave room for
the input of the tweet. With this information, we
provide the model with nearly identical instructions
as the human annotators.

prompt: str = £"""
Your task is to utilize the following
class descriptions — label between x's

followed by its definition - to choose
the one most fitting for the tweet:
*Wirtschaftx: The tweet contains
concerns about the economic crisis or
the personal financial situation.
*Migrationx: The tweet evaluates the
chances and dangers of migration and
makes judgmental remarks about migrants
or as migrants perceived people.
x*Demokratiex: The tweet expresses trust
or distrust towards the parliament and
advocates or rejects the democratic
system.

xUkraineunterstiitzungx: The tweet states
the author’s position on the
Russo-Ukrainian war, evaluates economic
penalties against Russia, or postulates
financial or military support for
Ukraine.

*Energiewendex: The tweet discuss
personal concerns about the power supply
or energy system transformation.

U {text}'"!

nun

Prompt 4: handbook

Metric In traditional machine learning classifica-
tion pipelines the model response represents one
of the given classes or numerical representation.
However, in our prompt-based approach, the mod-
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els respond with unrestricted free-form text. Thus,
the model is not limited to responding with one of
the targets but may produce additional explanations
or invent new classes. This fact prevents us from
utilizing traditional metrics relying on confusion
matrices. In our approach, we are not guaranteed
to receive a miss classification with a false positive
label. We cannot apply metrics relying on type I
(false positive) and type II (false negative) errors.
Therefore, we restrict our evaluation to the calcula-
tion of the macro average (unweighted mean). As
we receive a free-form text as a response, we apply
further pre-processing to extract the predicted label.
We count only exact case-insensitive matches. We
exclude responses containing additional characters
or leading/trailing spaces.

Implementation We implemented our approach
utilizing Hugging Face (Wolf et al., 2019) for
model loading and prediction, and handled data
flow and results analysis with Pandas (Wes McKin-
ney, 2010). We emphasize that the project is struc-
tured to be easily expandable for further LLMs and
API integration. We publish our pipeline as a pip
repository?. The pipeline configuration assumes
two main inputs: a list of prompts and a list of mod-
els to compare. Each model is queried with each
prompt, resulting in multiple experiments. This
approach allows for a comprehensive comparison
of model performance across different prompts.
The querying is performed batch-wise to facilitate
efficient and streamlined interactions with the mod-
els during the experimentation process. After the
querying process, the pipeline uses an automated
system for collecting results for each prompt and
model combination in every experiment to ensure
consistent and reliable data collection. We also in-
clude a basic plotting functionality, which assumes
a sequential relationship between the two dimen-
sions being analyzed.

5 Results

We utilize local resources to run all experiments.
All calculations are performed on a single NVIDIA
Tesla V100 32GB GPU combined with two Intel
Xeon Silver 12 core 2.2GHZ CPUs and 512GB
RAM. We developed our experimental environ-
ment to run the predictions batch-wise, looping
for every model over every prompt.

“Package available on PyPi: https://pypi.org/
project/cltrier_promptClassify/
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5.1 Methods Comparison

The comparison between the baseline and fine-
tuned transformer models reveals a substantial dis-
parity in their classification performance. While the
baseline model achieves an approximate weighted
average F1 score of 66%, the fine-tuned trans-
former model achieves approximately 86%, rep-
resenting a significant difference of 20% (cmp. Fig-
ure 1). This contrast emphasizes that the topic pos-
sesses an underlying semantic meaning that cannot
be effectively captured using a simplistic count-
based approach. Instead, the intricate language
comprehension capabilities of a transformer model
are required to accurately grasp the nuances and
subtleties of our topics.

Additionally, we observe variations in perfor-
mance across different classes for both approaches
(cmp. Table 1). Both models exhibit lower perfor-
mance in classifying tweets related to “Demokratie”
(approximately 56% for baseline vs. 77% for
fine-tuned transformer) and “Wirtschaft” (approx-
imately 48% for baseline vs. 78% for fine-
tuned transformer). In contrast, classes with
high F1 scores such as “Energiewende” (approx-
imately 78% for baseline vs. 85% for fine-tuned
transformer) and “Ukraineunterstiitzung” (approx-
imately 75% for baseline vs. 91% for fine-tuned
transformer) demonstrate superior classification ac-
curacy. We hypothesize that the topics with higher
F1 scores possess more distinct and well-defined
terminology, making the classification task easier,
particularly for the baseline model.

5.2 Prompting Detail

Our results show that, with more information, the
performance gradually improves with the larger
models (cmp. Table 2). However, the smaller
versions of each family does not profit from the
additional information as they struggle to under-
stand the task description in general, and their re-
sponses show that the additional information con-
fuses the model and diffuses the given task. Inter-
estingly, solely mentioning the task name notice-
ably improves the performance compared to the
base prompt. We assume that the information is
sufficient for the model to connect inside its inter-
nal parametric task memory to a similar task from
its own instruction-tuning stage. This provides a
glimpse into how zero-shot and in-context learning
works within foundation models.
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6 Discussion

While our classification results show compara-
ble performance to the baselines, we observe
new challenges unseen in classic machine-learning
pipelines. These represent the typical pitfalls of
LLM:s.

Hallucinations Independently from the sizes
both model families fabricate topics not given in
our prompts. In particular, the small and base mod-
els suffer from this behavior. We place this phe-
nomenon under the term LLM hallucination. In
general, it describes the generation of false infor-
mation when an LLM has no internal information
about a task or question asked. Interestingly, the
terminology concerning language models and be-
havior is criticized, and researchers propose the
usage of the word confabulation (Chalmers, 2023).
It describes, in a psychiatric context, the behav-
ior of people to invent plausible-sounding justifi-
cations that have no basis. These individuals ap-
pear to strongly believe in the story and do not in-
tend to deceive with the information (Moscovitch,
1995). The change in terminology and perspec-
tive allows for an analysis of the phenomenon in
contrast to human behavior and comparison with
neural pathologies: “What are LLMs but humans
with extreme amnesia and no central coherence?”
(Millidge, 2023)

Inconsistencies Our results show a highly incon-
sistent behavior not only between prompt varia-
tions but also for different samples and the same
prompt. As we described in our results, the mod-
els generate responses that do not match our task
description, like translation and code snippets for
some prompt templates. However, we observe also
the occurrence of these phenomena for individual
samples while using prompts that provide mostly
sound responses. These inconsistencies occur for
both models in all sizes, even though mTO is more
affected. Current research investigates negated
prompts and shows that models perform signifi-
cantly worse (Jang et al., 2023). These results ques-
tion the task understanding of LLMs and underline
how sensitive they are to their inputs. Transferred
to our approach, the inconsistencies may be caused
by linguistic phenomena inside the Tweets which
alters the prompt meaning for the model.

Blackbox With prompt-based approaches, we
overall move more in a direction, where the ma-
chine learning black box becomes even more
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Figure 1: Comparison of different classification methods, showing the accuracy across five political topics, compar-
ing the baseline with a fine-tuned and domain-adapted BERT and two instruction models with zero-shot approaches.
The gray lines show the average performance across all classes for a model.

Baseline BERT mT0 FLAN-TS

Naive Bayes | fine-tuned  w/ pre-training | zero-shot zero-shot

Demokratie 0.5684 0.7727 0.8276 0.6908 0.6660
Energiewende 0.7857 0.8593 0.8939 0.8500 0.9368
Migration 0.6230 0.9310 0.9367 0.7826 0.8140
UA-Unterst. 0.7521 0.9199 0.9524 0.8066 0.8604
Wirtschaft 0.4857 0.7831 0.8807 0.0254 0.5657
macro avg 0.6430 | 0.8532 0.8983 | 0.6311 0.7686

Table 1: Comparison of different classification methods, showing the accuracy and the macro average comparing
the baseline with a fine-tuned and domain-adapted BERT and two instruction models with zero-shot approaches.

Highlighted bold the best-performing model for each class.

opaque in contrast to traditional ML methods (Ol-
lion et al., 2024), as we cannot see the prediction
scores for each possible class. This is a major dis-
advantage as optimizing the pipeline relies on com-
paring the textual results with the provided prompts.
Combined with the issue that traditional metrics,
which rely on the confusion matrices, are inap-
plicable, a qualitative analysis during the prompt
optimization becomes necessary.

Inherent Model Biases LLMs inherit biases
present in their training data, which predominantly
consists of web-scraped content reflecting societal
biases and prejudices (Gallegos et al., 2024). In the
context of political and social crisis analysis, as ex-
amined in our study, these biases can significantly
skew annotation outcomes. For instance, models
may exhibit systematic preferences toward certain
political viewpoints, demographic groups, or cul-
tural perspectives that were overrepresented in their
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training data. This is particularly concerning when
analyzing German Twitter data about European
crises, where models trained predominantly on En-
glish content may not adequately capture cultural
nuances or may impose Anglo-centric interpreta-
tions on German political discourse.

7 Conclusion

Concerning R()1, our results show that with a well-
defined prompt, including a summarized annotation
handbook, our prompt-based approach achieves
nearly on-par performance with the fine-tuned base-
line and surpasses the naive baseline. When tak-
ing into account, that we tested a challenging non-
English task in a real-world setting with restrictions
in model and context window size, and the early
development stage of freely available instruction-
based models, we assume that our results will sig-
nificantly tilt towards LLMs in the future. Thus,



base w/ task-name w/ description w/ handbook

FLAN-T5 mT0 | FLAN-T5 mT0 | FLAN-T5 mT0 | FLAN-T5 mT0
Demokratie 0.4389  0.7595 0.4389  0.6832 0.5229  0.6908 0.6660  0.0324
Energiewende 0.8559 0.8015 0.8750 0.8206 0.8588  0.8500 0.9368 0.6868
Migration 09179  0.5990 0.9203 0.7150 0.8865 0.7826 0.8140 0.2126
UA-Unterst. 0.7659  0.7000 0.8000 0.7231 0.7330  0.8066 0.8604 0.6714
Wirtschaft 0.4640  0.0000 0.4831 0.0064 0.6017 0.0254 0.5657 0.1292
macro avg 0.6885  0.5720 | 0.7035  0.5896 | 0.7206  0.6311 | 0.7686  0.3465

Table 2: Impact of prompt engineering on zero-shot classification performance, comparing two instruction models
across four prompt variants on class-based accuracy and the macro average. The complexity of the prompt increases
from left to right. Highlighted bold the best-performing model for each class.

we expect that prompt-based text classification will
be highly relevant for future use in academia when
empirical studies on large quantities of text are
conducted.

Concerning R()s, analyzing our prompts in de-
tail along the predefined dimension, we found the
following: The difference in German and English
prompts in the smaller models is especially signif-
icant. Only the XL version does understand the
German task formulation. Thus, we assume multi-
lingual knowledge is reduced significantly during
the parameter pruning. Also, we conclude that in-
struction training on mostly English tasks does not
lead to multilingual task generalization despite pre-
training the model on multilingual corpora. Despite
not understanding the German task description, the
models handled German tweets and classes without
any issues. That highlights the importance of the
prompt formulation and its closeness to tasks seen
during the fine-tuning process.

Manipulating the order of the prompt segments
shows only a minor impact on the performance. In-
serting the full Tweet into the center of the prompt
reduces the quality of the results, which highlights
the importance of handling long-distance depen-
dencies. Further, the separation between task and
content led to confusion due to the usage of sym-
bols possibly resembling programming code.

Concerning the scope of detail, our results show
a correlation between the performance and the ex-
tent of information provided in the task description.
Larger models benefit more from the detailed de-
scription. That aligns with current research on the
formulation of prompts and model selection for en-
hancing the quality of prompt-based tasks (White
et al., 2023; Logan IV et al., 2022). In summary,
our results support the current techniques for zero-
shot prompting proposed in research (Liu et al.,
2023) and online learning guides (DAIR.AI, 2023).
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7.1 Future Work

Our experiments display the SOTA of Mid 2023.
The research around LLMs relevant to our ap-
proach expands in two dimensions. On a daily base,
new models are released larger in size and higher
in performance. We highly recommend extending
the research to the recent and more capable LLMs
to harness the full potential of prompt-based anno-
tation. The usage of larger models would not only
increase the zero-shot performance but also allow
more complex prompt variants (Almazrouei et al.,
2023), (Touvron et al., 2023). We suggest includ-
ing examples (few-shot) in prompts to improve the
results. We expect a reduction of inconsistencies
and hallucinations (Logan IV et al., 2022), coupled
with a higher alignment to the annotation intents.

While considering the annotation task in a real-
world setting, it also delivers inconsistencies like
human annotations, capturing personal and demo-
graphic properties of the annotators might lead to
a more insightful annotation outcome. This can
be achieved by adding personas to the prompt or
conditioning LL.Ms on individual human behavior.
Considering the domain of prompt engineering, the
proposal adapts the idea of role prompting, which
shapes the output style of the generated text re-
sembling a certain person. This adaptation method
significantly enhances the quality and accuracy of
generated content (White et al., 2023), (Shanahan
et al., 2023).

In summary, the potential for mimicking human
behavior in text annotation tasks with LLMs seems
enormous. While providing computational social
science researchers with a powerful new tool, it
also opens up many critical uses like personalized
opinion manipulation and impersonation. Poten-
tials for abuse have to be closely monitored.



Limitations

Our study acknowledges several important limita-
tions that constrain the generalizability and appli-
cability of our findings:

Language and Cultural Specificity: While we
intentionally chose German Twitter data to stress-
test multilingual capabilities, our findings may not
generalize to other languages or cultural contexts.
The models’ performance on German content, par-
ticularly with smaller model sizes, revealed signifi-
cant limitations in multilingual task understanding
that may vary across different language pairs and
cultural domains

Temporal Constraints: Our data collection pe-
riod (October 2022 to May 2023) represents a spe-
cific temporal snapshot of political and social dis-
course. The topics and language patterns during
the European energy crisis may not reflect classi-
fication challenges in other time periods or crisis
contexts, limiting the temporal generalizability of
our approach.

Annotation Subjectivity: Despite providing ex-
tensive annotation guidelines, the inherent subjec-
tivity in topic classification tasks, particularly for
political and social content, introduces variability
that affects both human baseline annotations and
model evaluation. The high degree of noise in real-
world social media data, with only 3,000 out of
7,000 initially selected tweets meeting annotation
criteria, highlights the challenging nature of the
task.

Evaluation Methodology: Our restriction to
exact case-insensitive matches for model outputs,
while necessary given the free-form nature of LLM
responses, may have been overly conservative
and potentially underestimated model performance.
The inability to apply traditional confusion matrix-
based metrics limits our ability to conduct nuanced
error analysis.

Ethical Considerations

Our research raises several ethical considerations
that warrant careful attention. LLMs inherit and
potentially amplify biases present in their train-
ing data, which predominantly consists of web-
scraped content reflecting existing societal preju-
dices. In our context of analyzing German political
discourse about European crises, these models may
systematically favor certain political viewpoints,
demographic perspectives, or cultural interpreta-
tions that were overrepresented during training.
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This bias propagation is particularly concerning
when models trained primarily on English content
are applied to German political discourse, poten-
tially imposing Anglo-centric interpretations on
European political contexts.

The automation of political and social content
classification also raises fundamental questions
about the appropriate role of Al systems in in-
terpreting politically sensitive discourse. It may
inadvertently contribute to the depersonalization
of political analysis and reduce human oversight
in contexts where nuanced cultural and political
understanding is crucial. This concern extends to
the “black box” nature of LLLMs, which creates
challenges for accountability in automated anno-
tation decisions. Unlike traditional machine learn-
ing approaches where prediction scores provide
some interpretability, prompt-based classification
offers limited insight into decision-making pro-
cesses, making it difficult to identify and correct
systematic errors or biases.

While our research demonstrates the potential
for LLMs to achieve comparable performance to
human annotators, widespread adoption could lead
to displacement of human annotation work. This
economic impact should be considered alongside
questions of whether automated systems can ade-
quately capture the full spectrum of human inter-
pretive capabilities required for sensitive political
content. We acknowledge these ethical considera-
tions and emphasize the importance of responsible
development and deployment of automated text
classification systems, particularly when applied
to politically sensitive content. Future research
should incorporate explicit bias mitigation strate-
gies and consider the broader societal implications
of automating political discourse analysis.
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Abstract

Active learning (AL) aims to reduce annotation
effort by iteratively selecting the most informa-
tive samples for labeling. The dominant strat-
egy in AL involves fully finetuning the model
on all acquired data after each round, which is
computationally expensive in multilingual and
low-resource settings. This paper investigates
continual finetuning (CF), an alternative update
strategy where the model is updated only on
newly acquired samples at each round. We eval-
uate CF against full finetuning (FA) across 28
African languages using MasakhaNEWS and
SIB-200. Our analysis reveals three key find-
ings. First, CF matches or outperforms FA for
languages included in the model’s pretraining,
achieving up to 35% reductions in GPU mem-
ory, FLOPs, and training time. Second, CF per-
forms comparably even for languages not seen
during pretraining when they are typologically
similar to those that were. Third, CF’s effective-
ness depends critically on uncertainty-based ac-
quisition; without it, performance deteriorates
significantly. While FA remains preferable for
some low-resource languages, the overall re-
sults establish CF as a robust, cost-efficient
alternative for active learning in multilingual
NLP. These findings motivate the development
of hybrid AL strategies that adapt fine-tuning
behavior based on pretraining coverage, lan-
guage typology, and acquisition dynamics. Our
code is available here.

1 Introduction

Building effective NLP systems for low-resource
languages requires strategies to optimize the use
of limited data and infrastructure. Active learn-
ing (AL) offers a compelling solution by focusing
annotation efforts on the most informative sam-
ples, thereby maximizing model performance un-
der tight resource constraints (Dossou et al., 2022).

*This work was done while the author was at Mila and
McGill University.
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This is especially critical for African languages,
where labeled corpora are expensive to collect and
often unavailable. Uncertainty-based acquisition
methods such as Monte Carlo Dropout (Gal and
Ghahramani, 2016; Gal et al., 2017a), BALD (Gal
etal., 2017b), and BatchBALD (Kirsch et al., 2019)
have been shown to reduce labeling needs while
maintaining accuracy. These techniques make AL
particularly suited to multilingual NLP in data-
scarce contexts (Settles, 2012; Lewis and Gale,
1994; Cohn et al., 1996). Yet, computational re-
sources are also constrained in many of these same
settings, making it equally important to consider
the cost of model updates during training and the
costs associated with annotation.

The standard practice in AL is to fully finetune
from scratch or pretraining checkpoints at each
acquisition round, using all accumulated labeled
data. While this approach has proven effective, it
becomes computationally expensive as the dataset
grows, requiring more GPU memory and longer
training time (Dossou et al., 2022; Gal et al., 2017b;
Kirsch et al., 2019). Given the rising computational
demands of large-scale models (Grattafiori et al.,
2024; Chowdhery et al., 2022; Hoffmann et al.,
2022; Kaplan et al., 2020; Patterson et al., 2021),
we investigate the following research questions:
how can both computational and annotation costs
in AL frameworks be balanced without compro-
mising effectiveness? Instead of fully finetuning
on all accumulated data, could updating the model
solely on newly acquired samples provide a more
computationally efficient alternative? To answer
this, we explore continual finetuning, where the
model is incrementally updated using only newly
acquired samples at each AL round.

In this paper, we conduct experiments on
MasakhaNEWS (Adelani et al., 2023b) and SIB-
200 (Adelani et al., 2023a), two datasets cover-
ing multiple African languages. We compare two
AL finetuning strategies: (1) finetuning from pre-
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training checkpoints on all acquired data and (2)
continual finetuning solely on newly acquired sam-
ples. Our evaluation examines whether the latter
maintains model performance while reducing com-
putational costs. Our study aims to provide insights
into the trade-off between computational and anno-
tation costs in active learning.

Our results show that continual finetuning re-
duces GPU memory usage by 30-35%, FLOPs by
32-38%, and clock time by 35-40%, significantly
lowering computational costs. In terms of perfor-
mance, continual finetuning achieves comparable
and even better performance when languages are
part of the pretraining corpus. However, for under-
represented languages not part of the pretraining
corpus, full finetuning helps the model integrate
new information effectively and mitigates instabil-
ity of downstream performance caused by distribu-
tional shifts. These findings challenge the assump-
tion that AL must always involve full finetuning on
all acquired data and highlight trade-offs between
computational costs and model performance.

Our main contributions are: (1) we present the
first comparative study of full versus continual fine-
tuning in active learning, across 28 African Lan-
guages; (2) we quantify the computational saving
of continual finetuning in terms of memory usage,
FLOPS, and wall-clock time; (3) we analyze per-
formance trends across languages seen and unseen
during pretraining, revealing when continual fine-
tuning is sufficient or insufficient; (4) we challenge
the common assumption that full finetuning is nec-
essary at each acquisition round in active learning,
offering practical alternatives for low-resources lan-
guages.

2 Related Work

2.1 Active Learning in NLP

Active learning (AL) is widely used in NLP to
reduce annotation costs by selecting the most
informative samples for labeling (Settles, 2012;
Lewis and Gale, 1994; Cohn et al., 1996). Most
work focuses on acquisition strategies, including
uncertainty-based methods like MC Dropout (Gal
and Ghahramani, 2016), BALD (Houlsby et al.,
2011), and CoreSet (Sener and Savarese, 2018),
which have proven effective for tasks such as clas-
sification and sequence labeling (Ein-Dor et al.,
2020; Maekawa et al., 2022; Schroder et al., 2022;
Hiibotter et al., 2024). However, this literature
emphasizes annotation cost while largely overlook-
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ing the growing computational demands of retrain-
ing large models (Hoi et al., 2006; Kirsch et al.,
2023; Azimi et al., 2012; Guo and Schuurmans,
2008). Many studies assume full retraining after
each round (Gal et al., 2017b; Dossou et al., 2022;
Kirsch et al., 2019, 2023), an approach that is im-
practical in low-resource settings where compute
access is also constrained (Dossou et al., 2022; Dos-
sou, 2023). Our work revisits this assumption and
isolates the role of update strategies, offering a new
perspective that accounts for both annotation and
computational costs.

2.2 African Languages in NLP

African languages are underrepresented in NLP due
to limited labeled data, low digital presence, and
scarce pretraining coverage (Nekoto et al., 2020;
Dossou et al., 2022). These languages belong to
families such as Bantu (e.g., Zulu, Xhosa), Afro-
Asiatic (e.g., Amharic, Hausa), and Niger-Congo
(e.g., Yoruba, Fon), and exhibit diverse characteris-
tics in terms of tone, morphology, and script. Some,
such as Swahili and Hausa, have moderate cover-
age, while others remain extremely low-resource
languages. Benchmarks such as MasakhaNEWS
(Adelani et al., 2023b) and SIB-200 (Adelani et al.,
2023a) have helped advance the field, but core
ML research still rarely explores methodological
choices that reflect the realities of African NLP.
Our work addresses this by evaluating continual
finetuning across 28 African languages, analyzing
how typology, pretraining, and acquisition strategy
interact in active learning.

2.3 Continual Finetuning and Links to
Continual Learning

Continual finetuning (CF) updates models only on
newly acquired samples, rather than all labeled
data, thereby reducing memory usage, floating-
point operations (FLOPs), and runtime. Though
CF has been studied in multi-task and domain adap-
tation (Aggarwal et al., 2024; Mundt et al., 2023;
Ayub and Fendley, 2022), little work has examined
its role in AL, particularly for diverse or multi-
lingual settings. Broader continual learning (CL)
focuses on incremental updates and preventing for-
getting across tasks (Parisi et al., 2019), often using
memory or regularization techniques (Das et al.,
2023). Our approach is intentionally simple: an
architecture-agnostic CF strategy that avoids CL-
specific modifications. We aim to assess whether
this lightweight alternative can match full retrain-



ing in AL, especially in resource-constrained mul-
tilingual environments.

3 Experimental Setup

This section outlines our experimental protocol for
evaluating active learning (AL) update strategies
in multilingual, low-resource African natural lan-
guage processing (NLP) settings. We describe the
AL framework and sampling strategy, detail the
datasets and models used, and explain our evalua-
tion metrics and computational budget.

3.1 Active Learning Strategies

Our active learning (AL) setup follows a standard
iterative pipeline. Given an initial labeled dataset
Drrain and an unlabeled pool U, AL proceeds in
rounds as follows:

1. Train the model fy on the current labeled
dataset Dipain
Use an acquisition function to select a batch
Q,» C U of unlabeled samples
. Annotate Q,» and update the labeled set:

Drrain < Dhrrain U Qr’

4. Update the model

We compare two update strategies: (1) Finetun-
ing All (FA), where the model is retrained from the
original pretraining checkpoint on the full labeled
dataset after each round, and (2) Continual Fine-
tuning (CF), where the model is updated only on
the most recently acquired batch Q,. This process
repeats for » = 10 rounds or until the pool U is
exhausted.

We use uncertainty sampling with Monte Carlo
(MC) Dropout (Gal and Ghahramani, 2016) for
sample acquisition. Specifically, we perform 10
stochastic forward passes with dropout enabled at
inference time. We compute the average token-
level entropy for each sample in ¢/ and select the
top 100 most uncertain examples to be labeled and
added to the training set. This method ensures
the model prioritizes informative or ambiguous in-
stances.

3.2 Datasets and Model

We evaluate our setup using two African NLP
benchmarks: MasakhaNEWS (Adelani et al.,
2023b) and SIB-200 (Adelani et al., 2023a), both
designed to support evaluation in multilingual, low-
resource, and typologically diverse settings.
MasakhaNEWS is the largest human-annotated
dataset for multilingual news classification in
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African languages. It spans 16 languages from
across Africa and includes 7 topic labels (e.g., pol-
itics, health, sports). Articles were sourced from
trusted outlets, such as the BBC and VOA, with doc-
ument counts per language ranging from 1,000 to
over 10,000. Annotation was performed in two
stages by native speakers using active learning,
yielding Fleiss Kappa scores ranging from 0.55
to 0.85.

SIB-200 is a sentence-level classification dataset
derived from Flores-200. It includes 1,004 an-
notated examples across 205 languages and di-
alects, covering 21 African language families such
as Bantu, Afro-Asiatic, Nilotic, and Mande. The
data spans seven topics, offering broad typological
and domain diversity for evaluating multilingual
models.

We use the official train/validation/test splits for
all experiments. As our base model, we adopt
AfroXLMR-Large (Alabi et al., 2022), a multilin-
gual encoder-only Transformer derived from XLM-
RoBERTa, finetuned on 17 African languages.
AfroXLMR is favored for its open-source nature,
classification compatibility, and efficiency, in con-
trast to decoder-only LLMs like GPT (Brown et al.,
2020), Gemini (Team et al., 2023), or LLaMA
(Grattafiori et al., 2024). While newer models such
as Aya (Ustiin et al., 2024) are emerging, AfroX-
LMR remains a robust and practical choice for
African NLP.

All experiments are run on two NVIDIA A100
GPUs (each with 48GB VRAM and 6 CPU cores),
with a maximum runtime of 10 hours. We perform
10 active learning rounds, acquiring 100 new sam-
ples per round. Full hyperparameter settings are
provided in Table 4.

3.3 Evaluation Metrics

We evaluate model performance using the mean F1
score across all AL rounds, a standard metric for
summarizing acquisition effectiveness (Gal et al.,
2017b; Kirsch et al., 2019; Jain et al., 2023). We
also compute the standard deviation of F1 scores
to assess performance stability over time. Full per-
round trends are visualized in Figures 2 and 3. We
track GPU memory usage, floating point operations
(FLOPs), and wall-clock time in hours to assess
efficiency. FLOPs are computed using the fvcore
PyTorch utility. These measurements allow us to
quantify the trade-off between computational cost
and predictive performance across update strate-
gies.



4 Results and Analysis

This section presents empirical findings on the ef-
fectiveness of Continual Finetuning (CF) compared
to Finetuning All (FA) across multiple African lan-
guages using active learning. Our results are or-
ganized around three key findings: (1) languages
included in the pretraining corpus of the model
benefit most from CF; (2) linguistic proximity to
pretraining languages improves outcomes; and (3)
principled sample selection strategies are critical
for CF’s success. We conclude each finding by dis-
cussing its implications for selecting the optimal
update strategy in multilingual AL settings.

4.1 Finding 1: Languages Covered During
Pretraining Benefit Most from Continual
Finetuning

Languages included in the pretraining corpus
of AfroXLMR consistently benefit from CF. As
shown in Figure 1, CF matches or outperforms FA
for languages such as Yoruba (yor), Swabhili (swa),
and Hausa (hau) in MasakhaNEWS, and Sesotho
(sot), Afrikaans (afr), Zulu (zul), and Xhosa (xho)
in SIB-200. These languages benefit from both
strong initial representations and, in the case of
MasakhaNEWS, relatively larger training sample
sizes, which likely contribute to stable learning
under CF.

CF also achieves significant resource savings:
GPU memory usage, FLOPs, and training time
are reduced by 33.56%, 33.78%, and 34.83%, re-
spectively, in MasakhaNEWS, with similarly large
savings in SIB-200 (Tables 1, 2). These gains are
significant for multilingual active learning, where
repeated model updates can be prohibitively expen-
sive.

To assess whether the performance differences
between CF and FA are statistically meaningful,
we apply the Wilcoxon signed-rank test, a non-
parametric method used to evaluate the significance
of paired differences across rounds. Results in Ta-
ble 3 confirm that CF is a competitive alternative to
FA. In SIB-200, no language shows a statistically
significant difference between CF and FA across
active learning rounds. In MasakhaNEWS, 9 out of
14 languages show substantial differences that fa-
vor FA. However, the corresponding effect sizes are
usually small or negligible, indicating limited prac-
tical relevance. These results suggest that CF offers
a compelling trade-off between computational ef-
ficiency and predictive performance for languages
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covered during pretraining.

4.2 Finding 2: Linguistic Proximity Amplifies
Continual Finetuning Success

CF also performs well for languages not explicitly
included in pretraining but closely related to those
that are. In both datasets, several Bantu languages
such as Luganda (lug), Tswana (tsn), Tsonga (tso),
and Luo (luo) benefit from CF despite not being
part of AfroXLMR’s pretraining. These languages
belong to the Niger-Congo phylum, specifically the
Bantu family, which includes pretraining languages
like Zulu (zul) and Xhosa (xho).

Per-round performance curves (Figures 2 and 3)
show that Bantu languages typically exhibit
smoother and more stable trajectories under CF.
This is likely due to shared linguistic features such
as noun class systems, agglutinative morphology,
and common syntactic structures. These patterns
suggest that linguistic similarity allows CF to gen-
eralize effectively across typologically related lan-
guages without explicit pretraining.

In contrast, Afro-Asiatic languages such as
Ambharic (amh), Tigrinya (tir), and Hausa (hau)
show greater volatility under both CF and FA.
These languages are typologically distant from
the Bantu family and possess unique orthographic
and morphosyntactic characteristics. For instance,
Ambharic and Tigrinya use the Ge’ez script, which
is not observed in any other training languages, and
they are low-resource even within their own fam-
ily. FA tends to perform better for these languages,
particularly in later rounds, possibly because full
updates allow the model to incorporate more task-
specific structural information gradually.

West African Niger-Congo languages such as
Yoruba (yor), Igbo (ibo), Fon (fon), and Ewe (ewe)
show mixed results. While Yoruba consistently
benefits from CF, others like Fon and Ewe experi-
ence erratic performance. This likely results from
inconsistent lexical overlap, limited dataset qual-
ity, or insufficient pretraining exposure. This vari-
ability highlights the limitations of generalizing
solely from language family and emphasizes the
importance of resource quality and orthographic
alignment.

These patterns align with the findings of Ade-
lani et al. (2022), who show that genetic, syntac-
tic, and phonological similarity among African
languages correlates with transfer effectiveness in
multilingual models. Based on family classifica-
tion, phoneme inventory overlap, and syntactic tem-
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Figure 1: Average F1-Scores Across AL rounds for each language in MasakhaNEWS and SIB-200, using FA
and CF. Pretraining/Non-Pretraining indicates whether the language was included in the pretraining set of the
AfroXLMR-Large model. Within each group (Pretraining, Non-Pretraining), languages are sorted based on the
percentage improvement of CF over FA. Error bars represent one standard deviation above and below the mean.

Metric Strategy | amh hau ibo lin lug orm pcm sna swa tir | Average Reduction (%)
GPU Memory (GB) | FA 145 152 150 147 144 149 153 151 146 150 33.56
CF 98 101 10.0 99 97 100 102 100 98 10.1
FLOPs (TFLOPs) FA 21.7 228 225 221 216 223 23.0 227 219 224 33.78
CF 145 149 148 147 144 148 150 147 145 149
Clock Time (Hours) | FA 85 92 90 88 84 89 93 91 86 89 34.83
CF 56 59 58 57 55 58 60 58 56 59

Table 1: GPU Memory, FLOPs, and Clock Time for MasakhaNEWS dataset using FA and CF. FLOPs are in
TFLOPs, and Clock Time is in hours. Bold values indicate CF’s lower computational cost. The last column presents
the average percentage reduction of CF compared to FA across all languages.

Metric Strategy | afr bem ewe fon ibo lin lua lug luo nso sot swh tir tsn  tso twi wol xho yor | Average

GPU Memory (GB) | FA 152 148 146 149 144 148 146 147 145 149 148 151 148 147 148 146 149 147 150 1176
CF 10.1 100 99 100 97 100 99 98 99 101 99 102 101 99 100 101 99 98 10.0

FLOPs (TFLOPs) FA 229 225 221 226 21.8 224 2211 222 219 226 223 228 225 220 223 219 227 224 230 3408
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