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Introduction

With billions of web pages covering nearly every topic, we should be able to collect facts that answer a
wide range of questions. However, only a small portion of this information is structured (e.g., Wikidata
and Freebase), limiting our ability to convert free-form text into structured knowledge. Additionally, the
rise of false information from unreliable sources —- both human and NLP systems like large language
models —- has garnered significant attention.

To ensure accuracy, this content must be verified, but the sheer volume makes human moderation imprac-
tical. Therefore, it is crucial to explore automated methods for verifying the accuracy and consistency of
online information and systems (such as Question Answering, Search, and Digital Personal Assistants)
that depend on it.

The seventh edition of the FEVER workshop collocated with EMNLP 2024 aims to continue promoting
ongoing research in above area, following on from the first five collocated with EMNLP 2018, EMNLP
2019, ACL 2020, EMNLP 2021, ACL 2022, and EACL 2023, and three shared tasks in 2018, 2019,
and 2021. This year’s workshop consists of 3 oral and 14 poster presentations of accepted papers (63%
overall acceptance rate), 5 poster presentations from EMNLP Findings papers, and presentations from 4
invited speakers. FEVER 2024 also hosts the AVeriTeC shared task on real-world fact-checking, which
consists of an additional 5 oral and 10 poster presentations. The workshop is held in hybrid mode with
in-person and virtual poster sessions, as well as live-streamed oral presentations and invited talks.

The organisers would like to thank the authors of all submitted papers, the reviewers, and the invited
speakers for their efforts, and we are looking forward to next year’s edition.

Best wishes,
The FEVER organisers
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Abstract

The Automated Verification of Textual Claims
(AVERITEC) shared task asks participants to
retrieve evidence and predict veracity for real-
world claims checked by fact-checkers. Evi-
dence can be found either via a search engine,
or via a knowledge store provided by the or-
ganisers. Submissions are evaluated using the
AVERITEC score, which considers a claim to
be accurately verified if and only if both the
verdict is correct and retrieved evidence is con-
sidered to meet a certain quality threshold. The
shared task received 21 submissions, 18 of
which surpassed our baseline. The winning
team was TUDA_MAI with an AVERITEC
score of 63%. In this paper we describe the
shared task, present the full results, and high-
light key takeaways from the shared task.

1 Introduction

Automated fact-checking (AFC) has been pro-
posed as an assistive tool for beleaguered fact-
checkers (Cohen et al., 2011; Vlachos and Riedel,
2014), whose work is crucial for limiting misin-
formation (Lewandowsky et al., 2020). This has
inspired applications in journalism (Miranda et al.,
2019; Dudfield, 2020; Nakov et al., 2021) and
other domains, e.g. science (Wadden et al., 2020).
Substantial progress has been made on common
benchmarks, such as FEVER (Thorne et al., 2018a)
and MultiFC (Augenstein et al., 2019). Neverthe-
less, existing resources have recently come under
criticism. Many datasets (for example, Thorne
et al. (2018a); Schuster et al. (2021); Aly et al.
(2021)) contain purpose-made claims derived e.g.
from Wikipedia, and are thus not representative
of real-world use cases. Datasets that do con-
tain real-world claims either lack evidence annota-
tion (Wang, 2017), or suffer issues resulting from
superficial automated evidence annotation (Glock-
ner et al., 2022).

Claim: The USA has succeeded in reducing 
greenhouse emissions in previous years.  

Date: 2020.11.2    Speaker: Morgan Griffith

Verdict: Conflicting Evidence/Cherrypicking.

Q1: What were the total gross U.S. greenhouse 
gas emissions in 2007? 

A1: In 2007, total gross U.S. greenhouse gas 
emissions were 7,371 MMT.

Q2: When did greenhouse gas emissions drop in 
US? 

A2: In 2017, total gross U.S. greenhouse gas 
emissions were 6,472.3 MMT, or million metric 

tons, carbon dioxide.

Q3: Did the total gross U.S. greenhouse gas 
emissions rise after 2017? 

A3: Yes. After 3 years of decline, US CO2 
emissions rose sharply last year. Based on 

preliminary power generation, natural gas, and 
oil consumption data, we estimate emissions 

increased by 3.4% in 2018.

Figure 1: Example instance from AVERITEC. Given
a claim and associated metadata, participating systems
must first retrieve appropriate evidence. Then, they must
output a verdict for the claim given that evidence.

The AVERITEC dataset was constructed to over-
come these limitations (Schlichtkrull et al., 2023a).
AVERITEC combines real-world claims with evi-
dence from the web. The process of evidence re-
trieval is broken down into question generation and
answering, providing a structured representation of
the evidential reasoning process. The annotation
process for AVERITEC was designed to ensure (1)
that claims are understandable independently of the
fact-checking articles they were sourced from, (2)
that the evidence given is sufficient to support the
verdicts, and (3) that all evidence used would have
been available on the web before the claim was
made. This avoids common problems found in pre-
vious datasets (Ousidhoum et al., 2022; Glockner
et al., 2022).
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AVERITEC consists originally of 4,568 exam-
ples, collected from 50 fact-checking organizations
using the Google FactCheck Claim Search API1;
itself based on ClaimReview2. To ensure that sys-
tems are evaluated on unseen data, we expanded
the (hidden) test set with a further 1,215 claims
for the shared task, bringing the total dataset size
to 5,783. We furthermore released a “knowledge
store” containing, for each claim in the training,
development, and test splits, documents which can
be used as evidence for that claim. This was done
to prevent participants from being limited by the
prohibitive cost of the search API we used for evi-
dence retrieval in the original paper (Schlichtkrull
et al., 2023a). We also developed an updated ver-
sion of the baseline for the shared task, which uses
the knowledge store. Participants in the shared
task were allowed to use evidence from the knowl-
edge store, use a search engine on their own, or
combine the two options. Our dataset and baseline
are available under a CC-BY-NC-4.0 license at
https://fever.ai/dataset/averitec.html.

This paper presents a description of the task and
dataset, the final test phase leaderboard. We also
summarise the submitted system description pa-
pers, drawing out commonalities, differences, and
lessons. We furthermore carry out additional anal-
ysis of the shared task results, including human
evaluation. Finally, we reflect on the task, deriv-
ing lessons for future work – and further shared
tasks – on automated fact-checking. The shared
task received 21 submissions. The winning team,
TUDA_MAI, achieved a score of 63%, a very sig-
nificant improvement on the 11% achieved by the
baseline system. Nevertheless, there are still plenty
of opportunities for further improvement. During
the process, we identified an issue with the evi-
dence set provided for participants, which for some
claims in the second half of the dataset contained
fact-checking articles written by humans about
those claims. We release an updated knowledge
store at https://fever.ai/dataset/averitec.
html, where these articles have been removed. We
leave open an evaluation page corresponding to the
new knowledge store3 so that future work can build
upon the advances made in this shared task.

1https://toolbox.google.com/factcheck/apis,
available under a CC-BY-4.0 license.

2https://www.claimreviewproject.com/
3Also available at https://fever.ai/dataset/

averitec.html

2 Task Description

Participants are given claims and associated meta-
data, such as the publication date (see Figure 1).
Based on this, they must retrieve evidence for or
against the claims. In the gold annotation, this evi-
dence is broken down into question-answer pairs,
naturally enabling multi-hop reasoning. We do
not restrict participants to providing evidence in
this format, although given the METEOR-based
evaluation setup most participants found it bene-
ficial to follow it. When submitting test set pre-
dictions, we also required participants to include
a URL to an external website for each piece of
evidence, corresponding to a webpage providing
backing. Finally, based on the evidence, partici-
pants must predict whether a veracity label from
the set supported, refuted, not enough evidence,
or conflicting evidence/cherrypicking. Unlike the
original AVERITEC dataset, we did not require
participants to submit a justification for the verdict.

2.1 Dataset
Participants are asked to use the public AVERITEC
data for training and validating their systems. To
ensure a fairer and more robust evaluation, we con-
structed a new test set consisting of 1,215 claims,
which temporally succeed the original claims, in
addition to the original 1000 hidden test set claims
of AVERITEC. Like the original test set, these will
remain hidden so as to enable future work on the
dataset.

Annotation of New Test Set We first collect
2,000 real-world fact-checking articles online from
ClaimReview, same source as AVERITEC. Then,
we follow the same 5-phase annotation guideline
of Schlichtkrull et al. (2023a).

First, given a fact-checking article, an annotator
identifies its main claim, collects metadata about
it and normalizes the claim by enriching it with
necessary context, making it context-independent.
Second, given the normalized claim, another anno-
tator generates questions and answers (QAs) with
the help of the fact-checking article and the web,
and gives a verdict label for the claim. Third, given
only the QAs as evidence, a different annotator
selects a verdict label for the claim and provides
a justification for their choice. At this point, we
compare the verdict labels annotated by different
annotators. If the labels match, we consider the
evidence is sufficient for predicting the veracity;
otherwise, we repeat the last two phases as our
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Split Train Dev Test (old) Test (new)

Claims 3,068 500 1,000 1,215
Question / Claim 2.60 2.57 2.57 2.89
Re-annotated (%) 28.1 24.4 25.1 20.0
End date 25-08-2020 31-10-2020 22-12-2021 13-08-2023
Labels (S/R/C/N) 27.6/56.8/6.4/9.2 24.4/61.0/7.6/7.0 25.5/62.0/6.3/6.2 17.3/66.5/4.1/12.1
Types (PS/NC/EPC/QV/CC) 7.8/33.7/57.8/9.6/11.5 5.8/23.8/61.4/13.8/10.8 7.0/21.9/69.8/7.7/11.9 3.5/24.3/71.9/5.2/16.1
Strategies (WE/NCP/FR/EC/SS) 78.8/30.6/6.6/29.9/3.6 88.6/19.0/7.4/27.4/2.0 88.0/19.2/7.7/29.6/1.8 82.4/22.6/10.0/37.6/4.0

Table 1: Statistics for the new test set. For better comparison, we present the statistics for the original dataset. The
Labels (%) are Supported (S), Refuted (R), Conflicting Evidence/Cherry-picking (C), and Not Enough Evidence
(N). The Claim Types (%) are Position Statement (PS), Numerical Claim (NC), Event/Property Claim (EPC), Quote
Verification (QV), and Causal Claim (CC). The Fact-checker strategies (%) are Written Evidence (WE), Numerical
Comparison (NCP), Fact-checker Reference (FR), Expert Consultation (EC) and Satirical Source (SS). Note that we
for simplicity omitted very low-frequent fact-checker strategies, e.g., Geo-location (0.3%).

fourth and fifth phases, respectively. If the labels
given by the fourth and fifth annotators still do not
match, we discard this instance. In this way, we
obtain 1,215 new instances. Each is annotated with
a normalized claim, meta-data, QA pairs as evi-
dence, a verdict label and a justification for it. For
the detailed annotation guidelines and procedures,
please refer to Schlichtkrull et al. (2023a).

To ensure high quality, we train our annotators
before formal annotation. For each phase, annota-
tors are first asked to annotate 10 instances. We
then provide feedback and highlight their most fre-
quent and common mistakes. They are then asked
to annotate another 10 instances. We select qual-
ified annotators based on their performance on 3
tasks: (1) claim type and fact-checking strategies
over 70%+ F -1 scores; (2) 2+ QA pairs per claim;
(3) veracity prediction over 50%+ accuracy. These
criteria are based on empirical consideration from
the earlier AVERITEC annotation (Schlichtkrull
et al., 2023a). Finally, we selected 12 qualified
annotators from 34 participants.

Comparison between Original and New Test
Sets Table 1 presents the statistics of our new
test set in comparison with the original AVERITEC
dataset. Our new test set (with claims up to 2023)
is temporally further removed from the training set
(ending in 2020). As such, there can be a domain
shift between new and old data, regarding the fact-
checking content. However, the majority (66.5%)
of claim labels are refuted, which is consistent with
previous data. Additionally, the distributions of
claim labels, claim types and fact-checking strate-
gies are largely similar in terms of their proportions.
The new test set has slightly more questions per
claim compared to the original one, indicating that
the annotation process was at least as thorough.

2.2 Knowledge Store

As mentioned in Schlichtkrull et al. (2023a), re-
liance on the Google search API made the original
baseline prohibitively expensive. Thus, to mitigate
the cost, we released a knowledge store along with
the shared task. The knowledge store contains a
collection of potentially useful evidence documents
for each claim, obtained via Google search.

We collected the knowledge store using a pro-
cess inspired by our original baseline. We extracted
a variety of search queries using ChatGPT4, based
on the claim, gold questions, and gold answers. We
further used distractor queries created by changing
entities, dates, and events in the claim, in order to
add plausible – but irrelevant – documents to the
knowledge store. All queries can be seen in Ap-
pendix A. For each query, we collected every URL
returned on the first page of the Google Search
API. We used the same temporal restrictions as in
Schlichtkrull et al. (2023a), ensuring that the in-
cluded documents would have been available on
the web before the claim was made. We also in-
cluded the annotator-selected evidence documents
selected for each claim. We deduplicated and shuf-
fled the documents corresponding to each claim.

We provided the URL for each document, as
well as a text version scraped using trafilatura
(Barbaresi, 2021). The knowledge store includes
text scraped from PDF URLs, a step omitted in
Schlichtkrull et al. (2023a). Furthermore, for the
train and development splits (but not test), we
made available the specific Google search query
used for each document, as well as the category
(see Table 11). The average claim has 955 as-
sociated documents, each of which have on av-
erage of 6,095 tokens. The most common URL

4We used gpt-3.5-turbo-0125.
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domains for knowledge store documents are, in
order, the National Center for Biotechnology Infor-
mation (NCBI), Wikipedia, Quora, the New York
Times, and CNN.

The knowledge store allowed participants to
compete without access to a paid search engine.
Further, it allowed inexpensive experimentation
with a variety of different retrieval strategies. Our
construction process for the knowledge store re-
lies on information not available normally to par-
ticipants, such as the gold question-answer pairs.
We found that these were necessary to ensure that
good, relevant evidence was included. At the same
time, relying on the knowledge store complicates
the finding of alternative evidence paths to the one
used by our annotators. Exploring alternative evi-
dence paths was easier for systems which directly
integrated their own search engine. As such, there
were upsides to both strategies.

2.3 Baseline

Our baseline closely follows the approach de-
scribed in Schlichtkrull et al. (2023a), with the
main difference being that, instead of requiring di-
rect access to the paid Google Search API, we use
the aforementioned knowledge store. This adjust-
ment aims to reduce the costs of participating in
the Shared Task.

Our baseline consists of the following steps. (1)
We parse the scraped text into sentences and rank
their similarity to the claim using BM25 (Robert-
son and Zaragoza, 2009), retaining the top 100
sentences per claim. (2) Questions-answer (QA)
pairs are generated for these top 100 sentences
using BLOOM,5 with the 10 most similar claim-
QA pairs from the training set used as in-context
examples. (3) The QA pairs are then re-ranked
using a pretrained BERT model as described in
Schlichtkrull et al. (2023a). (4) Finally, using the
top-3 QA pairs as evidence, we predict the veracity
label of the claim with another pretrained BERT
model, as detailed in Schlichtkrull et al. (2023a).

The baseline results are shown in Table 2. We
note that on both the development set, the old
test set, and the new test set, the shared task
baseline and the baseline from Schlichtkrull et al.
(2023a) perform similarly. Further details regard-
ing the implementation, knowledge store, and
pretrained BERT models are available at https:
//huggingface.co/chenxwh/AVeriTeC.

5We used bigscience/bloom-7b1.

2.4 Evaluation

The primary evaluation metric for the shared
task is AVERITEC score, discussed in depth in
Schlichtkrull et al. (2023a). We first compute re-
sults for question generation and question-answer
generation using Hungarian METEOR score. That
is, we use the Hungarian Algorithm (Kuhn, 1955)
to find an optimal matching of generated text to ref-
erence text in terms of METEOR score. Formally,
let X : Ŷ × Y → {0, 1} be a boolean function
denoting the assignment between the first 10 gener-
ated question-answer pairs (or questions only) Ŷ
and the reference question-answer pairs (or ques-
tions only) Y . Then, the Q + A score (or Q only
score) u is calculated as:

uf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(1)
where the pairwise scoring function f : S × S →
R is METEOR score (Banerjee and Lavie, 2005)
using the NLTK implementation (Bird et al., 2009).

To compute the AVERITEC score, we ap-
plied a cutoff of uf (Ŷ , Y ) ≥ 0.25 to determine
whether adequate evidence has been retrieved, us-
ing the Q + A Hungarian METEOR score. Any
claim for which this score is lower then 0.25 re-
ceives an AVERITEC score of 0. For claims
where the evidence score is higher than 0.25, the
AVERITEC score is defined as the accuracy of the
predicted verdict (veracity). As also discussed in
Schlichtkrull et al. (2023a), both for Q only, Q+A,
and AVERITEC score, if a system provided more
than 10 QA pairs, all pairs after the 10th were dis-
carded. We note that QA pairs beyond the 10th can
still be input to veracity prediction components,
and may as such still be useful to some systems.

3 Results

The overall results for the shared task can be seen
in Table 2. Each of the 21 participating teams were
invited to submit a paper to be reviewed in the
FEVER workshop – detailed descriptions for each
system can be found in the corresponding papers.
15 system description papers were submitted to the
workshop (with a 16th submitted and withdrawn).
We analyse the model components discussed in
each paper – see Table 3. Below, we present our
general observations on the techniques used by
participants, as reported in their respective system
description papers.
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Rank Team Name Q only Q + A AVERITEC @ .25

1 TUDA_MAI (Rothermel et al., 2024) 0.45 0.34 0.63
2 HUMANE (Yoon et al., 2024) 0.48 0.35 0.57
3 CTU AIC (Ullrich et al., 2024) 0.46 0.32 0.50
4 Dunamu-ml (Park et al., 2024) 0.49 0.35 0.50
5 Papelo (Malon, 2024) 0.44 0.30 0.48
6 UHH (Sevgili et al., 2024) 0.48 0.32 0.45
7 SynApSe (Churina et al., 2024) 0.41 0.30 0.42
8 arioriAveri (Momii et al., 2024) 0.38 0.29 0.39
9 Data-Wizards (Singhal et al., 2024) 0.35 0.27 0.33
10 MA-Bros-H (Mohammadkhani et al., 2024) 0.38 0.24 0.27
11 mitchelldehaven 0.27 0.23 0.25
12 SK_DU (Malviya and Katsigiannis, 2024) 0.40 0.26 0.22
13 UPS (Omar, 2024) 0.31 0.27 0.21
14 FZI-WIM (Liu et al., 2024b) 0.32 0.21 0.20
15 KnowComp (Liu et al., 2024a) 0.32 0.21 0.18
16 IKR3-UNIMIB (Urbani et al., 2024) 0.32 0.24 0.18
17 ngetach 0.37 0.21 0.14
18 VGyasi 0.38 0.22 0.12
19 Baseline 0.24 0.20 0.11
20 InfinityScalers! 0.26 0.19 0.08
21 AYM 0.13 0.12 0.06
22 Factors 0.20 0.14 0.05

Table 2: Overall results for the AVERITEC shared task. Performance is evaluated on the total of 2214 hidden test
set examples. Scores are given in Hungarian METEOR for question-only and question-answer performance, and in
AVERITEC-score at evidence cutoff 0.25 for total performance (see Schlichtkrull et al. (2023a)).

Knowledge Source Papelo, SynApSe, and
KnowComp relied on the Google Search API as
knowledge source, while the remaining systems all
used our knowledge store. Participants identified
shortcomings in both approaches: the knowledge
store is guaranteed to include the gold evidence
and can be searched with highly performant em-
bedding methods, whereas the search API allows
for more freedom in what information can be re-
trieved (i.e., if generating questions for a different
evidence path than the one our annotators used, the
knowledge store may not be able to answer those
questions). As evidenced by the strong results of
Team Papelo, despite the predominance of systems
relying on the knowledge store, the Google Search
API (with which the knowledge store itself was
built) remained a competitive option (see Table 2).

One issue identified by several participants was
the scraper we used for the knowledge store, based
on Trafilatura (Barbaresi, 2021). Papelo identified
how, in 297 out of 500 development examples, at
least one gold document was not correctly scraped.
Dunamu-ML similarly discussed how the scraper

did not correctly handle evidence from PDFs and
videos. In their submission, Dunamu-ML extended
the scraper to extract text and transcripts from PDFs
and YouTube videos, and noted that this helped
performance. When constructing AVERITEC, our
annotators filtered out claims requiring multimodal
reasoning; all claims in the dataset are textual and
can be verified through exclusively textual evi-
dence. Nevertheless, the helpfulness of video tran-
scripts suggests that multimodal evidence can be
useful even for that scenario.

Question Generation & Retrieval Most sys-
tems employed an LLM-based question genera-
tion strategy. That is, they generated questions or
queries, and then retrieved evidence based on those
questions. Generating questions, rather than simply
searching for the claim, was noted by many top-
scoring systems to be essential for good retrieval
performance. This supports our hypothesis from
Schlichtkrull et al. (2023a) that question genera-
tion (or query expansion (Mao et al., 2021)) is a
key avenue for further gains in retrieval.
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Team Name Evidence QG Retrieval QA Veracity

TUDA_MAI KS GPT-4o gte_base_en_v1.5 GPT-4o GPT-4o

HUMANE KS Llama-3-8b
BM25
SFR-embedding-2
Llama-3.1-70b

- Llama-3.1-70b

CTU AIC KS GPT-4o mxbai-large-v1 GPT-4o GPT-4o
Dunamu-ML KS GPT-4 BM25 GPT-4 GPT-4

Papelo Google
T5-large
GPT-4o

- GPT-4o GPT-4o

UHH KS GPT-4o-mini
BM25
gte_base_en_v1.5

GPT-4o-mini Mixtral-8x7B

SynApSe Google GPT-4o all-MiniLM-L6-v2 GPT-4o
GPT-4o
GPT-3.5
Mistral-7B

aioriAveri KS GPT-4o stella_en_400M_v5 GPT-4o GPT-4o
Data-Wizards KS Phi-3-medium stella_en_1.5B_v5 Mixtral-8x22B Mixtral-8x22B
MA-Bros-H KS Llama-3-70B BM25 Llama-3-70B Llama-3-70B

SK_DU KS GPT-4o
BM25
ms-marco-MiniLM-L-12-v2

- deberta-v3-base

UPS KS T5-large
BM25
BERT

- BERT

FZI-WIM KS Llama-3-70B ms-marco-MiniLM-L-12-v2
Llama-3-70B
bart-large-mnli

Llama-3-70B

KnowComp Google Llama-3-8b - Llama-3-8b Llama-3-8b

IKR3-UNIMIB KS -
BM25
ColBERT

GPT-3.5 BERT

Table 3: Components used by systems that submitted description papers. Systems are ordered based on AVeriTeC-
score (see Table 2). - indicates, respectively, that a system directly used claims and nothing else for search queries,
that retrieval was done only through a search API with no reranking, and that the answer used was the entire
retrieved passage.

Question generation was typically implemented
using large-scale LLMs, such as GPT-4o or Llama-
3.1-70b. Some systems based on smaller model
– HUMANE with Llama-3-8b, UHH with GPT-
4o-mini, Data-Wizards with Phi-3-medium, and
Papelo with T5 (for the first question only) – also
achieved a high question-only score. This suggests
that smaller models can be competitive on search
query generation.

Several teams – Papelo, SynApSe, and IKR3 –
mentioned that they saw benefits from modeling the
retrieval task as multi-hop retrieval. That is, instead
of retrieving all documents at once, their systems
used multiple rounds of retrieval with each round
conditional on previous rounds. The benefits of this
strategy were also documented in previous FEVER
shared tasks, e.g., Malon (2021). Team Papelo
further expanded on this strategy, showing that the
use of different components at different retrieval
steps – T5 for the first question and GPT-4o for
subsequent questions – yielded higher performance
than using a single-question generation model.

As can be seen in Table 5, high-performing sys-
tems tended to generate and submit a high num-
ber of questions. This may be a consequence of
our evaluation setup – there is no brevity penalty
(other than documents past the 10th being ignored),
so submitting more evidence documents means a
higher chance of recalling the gold evidence. Sev-
eral teams also noted that even duplicates of the
same question could slightly increase their score.

We tested this, and observed baseline perfor-
mance increase by 2 points QA score and 0.5 points
AVERITEC score when including two additional
duplicates of each question. There are two rea-
sons this might happen. First, some generated QA
pairs may be the best match for multiple gold QA
pairs (i.e. because they are very long, or because
other QA pairs are irrelevant to the claim). Dupli-
cating QA pairs means the generated pair can be
matched to multiple gold pairs when computing the
Hungarian algorithm, marginally increasing over-
all performance. Second, Hungarian METEOR is
computed by averaging over gold question-answer
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Team Name Text PDF Table Metadata Audio Video Image Other 1 doc 2 docs 3+ docs

TUDA_MAI 0.34 0.35 0.36 0.31 0.31 0.33 0.32 0.33 0.39 0.35 0.31
HUMANE 0.34 0.36 0.38 0.32 0.34 0.32 0.33 0.38 0.41 0.35 0.31
CTU AIC 0.31 0.33 0.36 0.30 0.26 0.30 0.32 0.35 0.33 0.33 0.29
Dunamu-ml 0.34 0.36 0.39 0.31 0.24 0.33 0.34 0.37 0.40 0.36 0.32
Papelo 0.3 0.31 0.32 0.27 0.22 0.29 0.29 0.3 0.35 0.3 0.27
UHH 0.31 0.34 0.36 0.29 0.23 0.31 0.31 0.37 0.37 0.32 0.28
SynApSe 0.29 0.31 0.32 0.25 0.25 0.28 0.28 0.31 0.38 0.32 0.22
arioriAveri 0.28 0.29 0.32 0.26 0.21 0.27 0.27 0.32 0.34 0.29 0.25
Data-Wizards 0.26 0.26 0.28 0.23 0.17 0.27 0.25 0.27 0.36 0.29 0.19
MA-Bros-H 0.23 0.25 0.28 0.22 0.16 0.23 0.22 0.27 0.3 0.26 0.19
mitchelldehaven 0.22 0.23 0.24 0.18 0.19 0.22 0.2 0.22 0.28 0.23 0.19
SK_DU 0.25 0.26 0.27 0.22 0.17 0.25 0.24 0.27 0.34 0.28 0.18
UPS 0.26 0.29 0.31 0.25 0.23 0.27 0.28 0.31 0.29 0.27 0.25
FZI-WIM 0.2 0.22 0.24 0.18 0.12 0.18 0.19 0.21 0.27 0.22 0.15
KnowComp 0.2 0.22 0.23 0.18 0.05 0.18 0.19 0.22 0.29 0.23 0.14
IKR3-UNIMIB 0.23 0.24 0.26 0.19 0.13 0.23 0.21 0.25 0.31 0.25 0.16
ngetach 0.21 0.22 0.23 0.18 0.15 0.19 0.2 0.23 0.24 0.23 0.18
VGyasi 0.21 0.22 0.24 0.2 0.11 0.22 0.2 0.24 0.27 0.24 0.17
Baseline 0.19 0.2 0.23 0.17 0.14 0.19 0.19 0.21 0.24 0.21 0.14
Factors 0.19 0.19 0.21 0.16 0.21 0.18 0.16 0.17 0.24 0.2 0.15
InfinityScalers! 0.11 0.11 0.1 0.08 0.07 0.11 0.1 0.09 0.22 0.12 0.06
AYM 0.13 0.13 0.13 0.1 0.05 0.12 0.11 0.13 0.26 0.14 0.06

Average 0.25 0.26 0.28 0.22 0.18 0.24 0.24 0.26 0.31 0.26 0.2

Table 4: Retrieval results in terms of Q+A Hungarian METEOR, broken down according to 1) the document type of
the gold evidence, and 2) the number of gold evidence QA pairs for the claim. The overall best performance on
retrieval was achieved by Dunamu-ML.

pairs. If there are more gold pairs than generated
pairs, some gold pairs will be unmatched. These
will receive a score of 0, as the “matched” evidence
is the empty string, dragging down the average.
Effectively, systems are heavily penalised for gen-
erating too few questions, and may benefit slightly
from generating too many.

For evidence retrieval, vector-based dense re-
trieval systems (Karpukhin et al., 2020) were com-
mon, along with BM25 (Robertson and Zaragoza,
2009). Several teams – HUMANE, UHH, SK_DU
– proposed hybrid systems where coarse retrieval
with BM25 was followed by reranking with a
vector-based approach. For vector-based retriev-
ers, the gte (Li et al., 2023; Zhang et al., 2024)
family of models were popular, and noted by par-
ticipants to perform well on the task; this includes
Stella6, an MRL (Kusupati et al., 2022) approach
based on gte. Several teams noted that their gte- or
Stella-based retrievers were chosen as they, at the
time of the competition, were top performers on
the MTEB (Muennighoff et al., 2023) leaderboard.

6https://huggingface.co/dunzhang/stella_en_
400M_v5

The overall best performing retrieval system was
Dunamu-ML, closely followed by HUMANE. In
Table 4, we break down performance on retrieval
according to which document type the gold evi-
dence originated from. We see that Dunamu-ML
do have top performance on PDFs and videos (for
which they added a custom scraper), but tie respec-
tively with HUMANE and TUDA_MAI on these
categories. On the other hand, Dunamu-ML per-
form better than other systems on tabular and image
evidence, while HUMANE is the top performer on
Metadata, Audio, and “Other” evidence (used by
participants mostly for social media posts, as well
to link to external web tools, such as a calculator
in support of numerical reasoning).

In Table 4, we also break down retrieval perfor-
mance by the number of gold evidence question-
answer pairs per claim. HUMANE performs the
best on claims with only one gold document, nar-
rowly followed by Dunamu-ML. As the number of
claims increases, Dunamu-ML takes the lead. With
an average of 2.74 questions per claim in the test
set, this may explain why Dunamu-ML achieved
the overall highest retrieval performance.
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Team name QV N E/P C PS S R NEE CE/C Avg. # Docs

TUDA_MAI 0.64 0.58 0.64 0.64 0.58 0.64 0.73 0.12 0.19 9.3
HUMANE 0.59 0.57 0.58 0.55 0.46 0.76 0.62 0.01 0.12 10.0
CTU AIC 0.57 0.49 0.51 0.52 0.38 0.58 0.58 0.1 0.01 9.89
Dunamu-ml 0.44 0.49 0.5 0.55 0.4 0.69 0.5 0.31 0.12 12.41
Papelo 0.51 0.38 0.5 0.51 0.45 0.45 0.59 0.0 0.0 9.95
UHH 0.46 0.43 0.46 0.48 0.39 0.47 0.54 0.0 0.0 10.0
SynApSe 0.45 0.39 0.43 0.43 0.36 0.42 0.5 0.02 0.21 4.26
arioriAveri 0.44 0.37 0.39 0.4 0.29 0.45 0.44 0.09 0.06 8.98
Data-Wizards 0.37 0.3 0.34 0.32 0.29 0.44 0.36 0.05 0.04 3.0
MA-Bros-H 0.29 0.3 0.26 0.25 0.19 0.4 0.27 0.08 0.0 3.74
mitchelldehaven 0.24 0.26 0.25 0.25 0.16 0.4 0.25 0.0 0.0 5.0
SK_DU 0.27 0.3 0.21 0.15 0.14 0.36 0.22 0.01 0.11 3.0
UPS 0.29 0.18 0.22 0.2 0.21 0.17 0.24 0.08 0.14 10.0
FZI-WIM 0.21 0.25 0.18 0.16 0.21 0.31 0.18 0.12 0.02 2.52
KnowComp 0.16 0.19 0.19 0.15 0.13 0.27 0.19 0.0 0.01 2.55
IKR3-UNIMIB 0.21 0.22 0.17 0.17 0.15 0.28 0.19 0.01 0.05 3.0
ngetach 0.16 0.13 0.14 0.17 0.09 0.0 0.22 0.0 0.0 4.25
VGyasi 0.16 0.11 0.13 0.11 0.10 0.1 0.12 0.22 0.03 3.46
Baseline 0.14 0.16 0.11 0.10 0.06 0.17 0.12 0.0 0.04 3.0
InfinityScalers! 0.04 0.10 0.09 0.08 0.08 0.24 0.04 0.04 0.10 3.52
AYM 0.07 0.06 0.06 0.03 0.10 0.11 0.05 0.0 0.0 1.0
Factors 0.04 0.05 0.05 0.05 0.04 0.13 0.03 0.04 0.01 1.0

Average 0.31 0.29 0.29 0.29 0.24 0.36 0.32 0.06 0.06 5.63

Table 5: We compute separate results based on claim type (QV = Quote Verification, N = Numerical, E/P =
Event/Property, C = Causal, PS = Position Statement). We also compute results separated by gold verdict (S =
Supported, R = Refuted, NEE = Not Enough Evidence, CE/C = Conflicting Evidence / Cherrypicking). Finally, we
report the average number of evidence documents submitted per claim. We note that if a team submitted more than
10 documents for a claim, only the first 10 were used to compute retrieval scores for evaluation.

Veracity Prediction Veracity prediction was also
dominated by LLM-based approaches, including
GPT-4o, Llama 3.1, and Mixtral. Teams HUMANE
and SynApSe note that some fine-tuning was nec-
essary for good performance on veracity prediction.
Various teams saw improvements both from full
fine-tuning of all the weights, and from fine-tuning
with LORA (Hu et al., 2022). Interestingly, one
team – Papelo – chose to prevent their veracity
prediction system from predicting Not Enough Ev-
idence and Conflicting Evidence, arguing that their
prompting-based model too frequently chose these
rarer labels. This may explain why calibration was
especially helpful for this task.

We note that top-scoring systems tended to use
very large models for veracity prediction, such as
GPT-4o, Llama-3.1-70b, or Mixtral-8x7b. The su-
perior reasoning capabilities of these cutting-edge
models appear especially critical to this stage of
the pipeline, unlike for question generation.

Types & Verdicts In Table 5, we provide
a detailed breakdown of the results based on
claim type (quote verification, numerical claims,
event/property claims, causal claims, position state-
ments) and verdict (supported, refuted, conflicting
evidence/cherrypicking, not enough evidence). For
each category, we report AVERITEC scores on the
corresponding subset of the test set.

Systems performed slightly better on quote veri-
fication, slightly worse on position statements, and
approximately equally well on other claims. This is
interesting, as quote verification and position state-
ments are relatively similar tasks. In the former,
systems must verify if a person has uttered a quote
verbatim; in the latter, systems must verify if a per-
son or organisation holds a specific position (e.g.,
supporting a policy), but not necessarily verbatim.
Verifying position statements often required abduc-
tive reasoning, which LLMs are known to struggle
with (Dougrez-Lewis et al., 2024).
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Among the top performing systems, perfor-
mance is frequently lower on numerical statements
(along with position statements) compared to other
claims. This suggests that the gap is smaller for
numerical reasoning than other forms of reason-
ing. As top performers often use very large LLMs,
that is suggestive of the type of reasoning gains
accomplished by scaling up these models.

In terms of performance across the different la-
bels, there is significant variation. First, systems
often have different calibration to predict supported
versus refuted claims. As refuted claims domi-
nate (making up approximately two-thirds of the
dataset), this yields a significant advantage for
some participants. We note that a common strategy
among participants was to ignore the rarer veracity
labels – not enough evidence, and conflicting evi-
dence. As mentioned e.g. by team Papelo in their
system description paper, large language models
tend to overpredict these rarer classes. Neverthe-
less, many top performers, including the winning
system, made significant gains on these classes.

Quality Controls on Test Submissions To en-
sure the reliability of submitted systems, we con-
ducted quality control on our submissions. Here,
reliability refers to the evidence (QA pairs) being
grounded and supported by their retrieved docu-
ments. Typically, participants returned answers
generated based on retrieved documents; although
some systems generated answers e.g. with an LLM,
and subsequently matched the answer to a “backing
document”.

We first used an automatic method to evalu-
ate the entailment between the answers and the
retrieved documents. Specifically, we applied
a DeBERTa-large-based NLI model (He et al.,
2020)7 on all submissions, taking each answer
as hypothesis and its corresponding document as
premise. Generally, we find that most teams see a
small proportion of entailment labels and a large
proportion of neutral labels ( 80%). This can be
because the NLI model cannot perform well on
out-of-distribution data in a zero-shot setting, in
particular when the retrieved document is much
longer than the standard NLI premise (e.g., the av-
erage document length in words in TUDA_MAI’s
submission is over 4,000, while it is around 50 in
ANLI (Mishra et al., 2021)).

7https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli,
which demonstrates the best performance on NLI tasks
amongst Hugging Face models.

Therefore, we further investigated submissions
via manual evaluation. In particular, we focused
on instances which the NLI model identified as
either neutral or contradiction, and on the top-4
performing systems (i.e.: TUDA_MAI, HUMANE,
CTU AIC and Dunamu-ml). We randomly selected
20 neutral or contradicting instances from each
submission, and then performed human evaluation.
Given an instance with its corresponding QA pairs
and retrieved documents, we identified whether the
answers were entailed by the retrieved documents.

Generally, we found that all systems were mostly
reliable, with the evidence they generate being sup-
ported by the retrieved documents. All answers
from TUDA_MAI were extractive from source doc-
uments and thus entailed. The answers from the
other three systems were more abstractive. Al-
though the answers can contain some hallucina-
tion (e.g., generating answers that contradict the
retrieved documents by mistake), our manual eval-
uation found the answers were mostly (HUMANE:
19/20; CTU AIC: 17/20; Dunamu-ml: 12/20)
entailed by their associated documents. Errors
were typically due to mistakes by the question-
answering components, such as taking a snippet
from the associated document out of context. Thus,
we conclude that the systems evaluated were re-
liable and find relevant documents that provide
useful information for predicting veracity.

4 Human Evaluation of Evidence

Following the approach taken in the first FEVER
shared task (Thorne et al., 2018b), we conducted
human evaluation of the evidence retrieved by the
systems participating in the shared task, motivated
by two concerns. First, the incompleteness of the
gold evidence annotation, since it is often the case
that adequate evidence to determine the verdict
for a claim can be found in multiple webpages, as
shown in the inter-annotation agreement study of
Schlichtkrull et al. (2023a). Second, the inaccura-
cies of automatic evaluation metrics of textual eval-
uation, especially in the case of token-matching
metrics such as METEOR (Banerjee and Lavie,
2005) used here, but also of more recent neural
ones such as FactScore (Min et al., 2023). Thus
we can gain a deeper understanding of the qual-
ity of the retrieved evidence, and assess how well
the AVERITEC scores assigned to the retrieved
evidence aligns with human judgements.
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Evaluation Process We conducted human evalu-
ation in collaboration with the participating teams.
Sixteen top-performing teams were invited to par-
ticipate in the evaluation. However, teams Dunamu-
ml, mitchelldehaven, and KnowComp did not take
part. Each of the remaining thirteen participating
teams manually evaluated thirty evidence samples
from other participants. Out of these, five were
gold-labeled, which were included to assist in the
post-processing of the collected annotations and to
assess their quality. The evidence samples were
randomly selected and evenly distributed across
all submitted systems, representing both high- and
low-scoring systems, as shown in Table 5.

Figures in Appendix B depict the evaluation
form and the instructions provided to human anno-
tators during evaluation. As a first step, we asked
annotators to assess whether “at least some part
of the evidence” was “non-empty, understandable,
and related to the claim.” If so, it was considered
eligible for further rating. In addition to assigning a
verdict label, we asked annotators to rate retrieved
evidence in comparison to provided reference evi-
dence8. Annotators rated the evidence on a scale
from 1 to 5 across five dimensions:
(1) Coverage: Measures how much of the refer-
ence evidence is covered by the predicted evidence,
ensuring that the content, meaning, entities, and
other key elements of the reference are fully repre-
sented in the retrieved evidence.
(2) Coherence: Captures whether the retrieved
evidence is coherent, i.e., if all sentences are con-
nected sensibly and the evidence makes sense as a
whole.
(3) Repetition: Evaluates whether the retrieved
evidence exhibits repetition of its content.
(4) Consistency: Assesses whether the retrieved
evidence is semantically consistent and does not
contain conflicting information. Unlike coherence,
which focuses on how well the information is struc-
tured, consistency evaluates whether the arguments
presented in the evidence for or against a claim are
sound and aligned.
(5) Relevance: Measures how relevant the re-
trieved evidence is to the content of the claim.

Insights Gained The annotation process resulted
in a total of 389 annotations. After filtering out evi-
dence samples that were labeled by evaluators as
entirely empty (1%), not understandable (1.8%), or

8We provide the exact instruction for rating each criteria
in the appendix.

Label/Pred CE/C NEE Refuted Supported

CE/C 35.7 3.6 53.6 7.1
NEE 5.9 22.1 60.3 11.8

Refuted 3.9 4.9 85.4 5.8
Supported 7.6 0 16.5 76.0

Table 6: Overview of verdict labelled by human evalua-
tors (rows) versus system predictions (columns).

completely irrelevant to the given claim (9.4%), we
were left with 344 valid annotations. Among these,
66 annotations corresponded to gold-labeled sam-
ples. Excluding the gold-labeled samples, resulted
in a final set of 278 evidence annotations.

Before labeling the system-retrieved evidence,
participants were first asked to label the ver-
dict of the retrieved evidence. Table 6 provides
an overview of the matching between system-
predicted labels (columns) and human-labeled ver-
dicts (rows). While human annotators generally
agreed with evidence labeled as refuted or sup-
ported, there was less overlap for evidence labeled
as NEE and CE/C by the submitted systems.

Analyzing human judgments across the five eval-
uated dimensions (see Table 10), we find that the
majority of predicted evidence was labeled as very
coherent, consistent, relevant, and containing lim-
ited repetition. However, in the dimension of se-
mantic coverage, approximately 15% of the evi-
dence received a rating of 0, indicating that “the
predicted evidence covers none of the reference evi-
dence.” Additionally, around 20% received a rating
of 1, meaning that “very little of the reference evi-
dence is covered.” This does not necessarily mean
that the evidence is false – low coverage can also
occur if the retrieved evidence uses different infor-
mation, arguments, or sources than the reference
evidence. Ideally, we aim for an evidence evalu-
ation that can fairly assess evidence even when it
differs from the reference and has low coverage.

To assess the relationship between human scor-
ing and the Hungarian METEOR (see Sec 2.4),
we computed both the Spearman correlation coeffi-
cient (ρ (Spearman, 1987)) and the Pearson correla-
tion coefficient (r (Pearson, 1896)) as shown in Ta-
ble 8. Correlations were calculated using both the
entire evidence text and the question text only. In
both cases, we observed a low correlation between
the Hungarian Meteor and the assessed dimensions,
with the highest correlation seen in the category of
“repetition” (see Table 8). While the results show a
similar ranking of participating systems compared
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Rating COV COV % COH COH % REP REP % CON CON % REL REL %

1 42 15.16 4 1.44 23 8.27 6 2.17 4 1.44
2 59 21.30 42 15.11 51 18.35 35 12.64 26 9.35
3 59 21.30 64 23.02 61 21.94 57 20.58 51 18.35
4 71 25.63 81 29.14 71 25.54 82 29.60 83 29.86
5 46 16.61 87 31.29 72 25.90 97 35.02 114 41.01

Table 7: Overview of ratings for Semantic Coverage, Coherence, Repetition, Consistency, and Relevance. For each
evaluation dimension, the first column depicts the absolute number of annotations for a specific score (from 1 to 5)
and the second column the percentages.

Dimension ρ r

Coverage .005 -.024
Coherence .076 .057
Repetition .117 .025
Consistency .039 .024
Relevance .008 .003

Table 8: Correlation between Q + A scores (Hungarian
METEOR) and human-rated subset of evidence. We cal-
culate correlation using the Spearman (ρ) and Pearson
(r) correlation coefficients.

to human evaluations on the subset, further work
is needed to develop scoring methods that align
more closely with human assessments of evidence.
With that said, overall, the top-ranked teams (based
on AVERITEC score) also perform well on human
evaluation, while the lower-ranked teams remain
similarly positioned, with only minor shifts in their
order.9 It is important to note that this evaluation
was solely based on a small sample of system pre-
dictions, and that the results should therefore be
taken with a grain of salt.

Human evaluation of evidence predictions of-
fers valuable insights into the limitations of the
AVERITEC score, and suggests directions for
future research. A notable observation is the
discrepancy between human evaluation and the
AVERITEC score for some of the highest-ranked
samples, such as the examples provided in Table 12
in the appendix. For instance, in row three, the pre-
dicted evidence directly contradicts the reference
evidence by providing different numbers, yet it re-
ceives a high AVERITEC score due to similar word-
ing. Similarly, for the first two rows in Table 12, the
semantic coverage score is rated with the second
lowest score 1, whereas the average score across
all examples is 3, indicating misalignment between
the predicted and reference evidence.

9See Table 10 in the appendix.

Certain low-ranked examples highlight differ-
ent challenges (see Table 13). For example, the
predicted evidence in the first row received a low
AVERITEC score despite receiving the highest
score of 5 across all categories in human evaluation.
Despite both sets of evidence reaching the same
conclusion, the large disparity in answer length
and wording leads to a much lower AVERITEC
score. The example in the second row, also ranks
low according to AVERITEC score, even though
it scores high in all categories except for cover-
age, where it scores 3. Here, both the reference
and predicted evidence reach the same verdict, but
the predicted evidence supports the claim with dif-
ferent information and wording, resulting in low
semantic coverage and a low AVERITEC score.

5 Lessons Learned

Providing a knowledge store rather than requiring
participants to rely on a search engine API made
the task more accessible. Given the cost of API ac-
cess, this allowed substantial analysis and work by
participants on retrieval. We note that most submis-
sions – 13 of 16 system description papers – used
the knowledge store. Nevertheless, because of the
size of the knowledge store and the inclusion of
distractor documents, the knowledge store did not
trivialise the task, and systems relying on search
remain competitive and provide unique advantages.
Several participants, such as team FZI-WIM, com-
mented on how the two are complementary, and
suggested hybrid systems using both as a poten-
tially fruitful extension of their systems.

AVERITEC presupposes a strong focus on
evidence retrieval. The overall score, as in
FEVER (Thorne et al., 2018a), is determined both
by retrieval performance and by veracity prediction
performance. In the AVERITEC shared task, partic-
ipant systems innovated across the pipeline, and all
of the top-scoring systems suggest improvements
to multiple subtasks of fact-checking.
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Team name 0-1000 1000-2215

TUDA_MAI 0.61 0.64
HUMANE 0.55 0.58
CTU AIC 0.45 0.55
Dunamu-ml 0.5 0.5
Papelo 0.49 0.46
UHH 0.41 0.48
SynApSe 0.41 0.43
arioriAveri 0.35 0.42
Data-Wizards 0.32 0.34
MA-Bros-H 0.22 0.31
mitchelldehaven 0.22 0.27
SK_DU 0.2 0.25
UPS 0.15 0.25
FZI-WIM 0.19 0.2
KnowComp 0.19 0.18
IKR3-UNIMIB 0.16 0.2
ngetach 0.12 0.16
VGyasi 0.12 0.12
Baseline 0.11 0.12
InfinityScalers! 0.1 0.07
AYM 0.06 0.06
Factors 0.06 0.04

Average 0.27 0.3

Table 9: AVERITEC scores for different subsections of
the dataset. We compute results for the initial test set of
1000 examples collected by Schlichtkrull et al. (2023a),
and for the additional 1215 test examples collected for
this shared task.

When submitting test set predictions,
we required participants to include a field
(“scraped_text”) for each piece of evidence in
their submission, corresponding to the webpage
providing backing for that piece of evidence. This
enabled us to carry out manual and automatic
quality control evaluation verifying that systems do
indeed ground their evidence in external sources
(see Section 3). This enabled us to detect, for
example, if some systems were hallucinating evi-
dence; we did not see any evidence of hallucinated
evidence, but we consider guardrails against this
crucial. Unfortunately, the inclusion of this field
made some submissions substantial in size, as
entire webpages were included – up to 2.3gb for
the largest submission. Our submission portal,
eval.ai, was not able to handle these large files,
blocking the portal for all participants during the
last few days of the competition. We extended the
deadline to compensate.

The scraper we used for the knowledge store
(same as in Schlichtkrull et al. (2023a)) to retrieve
evidence turned out to be a significant weakness.
As some participants noticed, many knowledge
store documents are empty. The submission with
the best retrieval performance, Dunamu-ml, used a
custom scraper, and may have derived significant
gains from that choice. We suggest that this may
be an interesting area for further research.

During the competition, we identified an issue
with the knowledge store data for the last 1215
test examples. Due to an error with date formats,
for some claims, web pages published after the
claim were included in the knowledge store. This
included fact-checking articles, as also mentioned
by CTU AIC in their system description paper. As
the first 1000 examples were not affected, we com-
puted performance on the first 1000 and last 1215
test examples separately – see Table 9.

As can be seen, the ranking of participants on
the two splits is roughly the same – and, indeed,
roughly the same as for the entire test set. The
second half was easier, and many systems perform
slightly better there. Somewhat surprisingly, some
systems which relied on Google search – specif-
ically, SynApSe – also saw a performance gain
when measured only on the second split. As such,
we do not believe this issue majorly impacted any
subset of participants, such as those not relying
on the knowledge store. We release an updated
knowledge store along with our shared task pa-
per, accessible at https://fever.ai/dataset/
averitec.html. We have re-compiled the knowl-
edge store with the correct date cutoff, and removed
any fact-checking articles that snuck through from
the evidence base.

6 Conclusions & Future Work

The AVERITEC shared task attracted submissions
from 21 teams, 18 of which outperformed our base-
line. The leaderboard was dominated by systems
relying on large language models, especially GPT-
4o; nevertheless, especially for question generation
and retrieval, smaller models – such as LLama-3-
8b – also achieved top performance. The winner
of the shared task was team TUDA_MAI, which
achieved an AVERITEC-score of 63%. In this pa-
per we have analysed the shared task, highlighting
aspects of the 16 submitted system description pa-
pers, as well as key takeaways from the shared task
itself.
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The strong performance of the participating
teams establishes a firm foundation for automating
aspects of real-world fact-checking. The results fur-
thermore indicate clear directions for future work.
First, most participating systems – especially for
veracity prediction – relied on very large models,
such as GPT-4. Further, many of these are blackbox
models. These models may be prohibitively expen-
sive for some real-world use cases, e.g., assisting
smaller fact-checking organisations (Schlichtkrull
et al., 2023b). Given that, we suggest that get-
ting smaller, more efficient models to reach the
performance of their larger counterparts may be
a fruitful direction for further research. Similarly,
we note that performance for most top-scoring sys-
tems was much higher on supported and refuted
claims, compared to conflicting evidence and not
enough evidence. We suggest that leveling this gap
is another clear avenue for future improvements.

7 Limitations & Ethics

The datasets and models described in this paper are
not intended for truth-telling, e.g. for the design of
fully automated content moderation systems. The
evidence selection and veracity labels provided in
the AVERITEC dataset relate only to the evidence
recovered by annotators, and as such are subject to
the biases of annotators and journalists. Participant
systems, which sought to maximize performance
on AVERITEC, may replicate those biases. We
furthermore note that shared task leaderboards are
a limited representation of real-world task needs,
not the least because the test set is static. Act-
ing on veracity estimates arrived at through biased
means, including automatically produced ranking
decisions for evidence retrieval, risks causing epis-
temic harm (Schlichtkrull et al., 2023b).
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AIC CTU system at AVeriTeC: Re-framing auto-
mated fact-checking as a simple RAG task. In Pro-
ceedings of the Seventh Workshop on Fact Extraction
and VERification (FEVER). Association for Compu-
tational Linguistics.

15

https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.18653/v1/2023.eacl-main.148
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.18653/v1/2022.emnlp-main.163
https://doi.org/10.18653/v1/2022.emnlp-main.163
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/2023.findings-emnlp.577
https://doi.org/10.18653/v1/2023.findings-emnlp.577
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
http://www.jstor.org/stable/1422689
http://www.jstor.org/stable/1422689
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/W18-5501
https://doi.org/10.18653/v1/W18-5501


Nicolò Urbani, Sandip Modha, and Gabriella Pasi. 2024.
Retrieving semantics for fact-checking: A compara-
tive approach using CQ (claim to question) & aq
(answer to question). In Proceedings of the Sev-
enth Workshop on Fact Extraction and VERification
(FEVER). Association for Computational Linguistics.

Andreas Vlachos and Sebastian Riedel. 2014. Fact
checking: Task definition and dataset construction.
In Proceedings of the ACL 2014 Workshop on Lan-
guage Technologies and Computational Social Sci-
ence, pages 18–22, Baltimore, MD, USA. Associa-
tion for Computational Linguistics.

David Wadden, Shanchuan Lin, Kyle Lo, Lucy Lu
Wang, Madeleine van Zuylen, Arman Cohan, and
Hannaneh Hajishirzi. 2020. Fact or fiction: Verifying
scientific claims. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 7534–7550, Online. As-
sociation for Computational Linguistics.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Yejun Yoon, Jaeyoon Jung, Seunghyun Yoon, and Kun-
woo Park. 2024. The herd of open llms for verify-
ing real-world claims. In Proceedings of the Sev-
enth Workshop on Fact Extraction and VERification
(FEVER). Association for Computational Linguistics.

Xin Zhang, Yanzhao Zhang, Dingkun Long, Wen
Xie, Ziqi Dai, Jialong Tang, Huan Lin, Baosong
Yang, Pengjun Xie, Fei Huang, Meishan Zhang,
Wenjie Li, and Min Zhang. 2024. mgte: Gener-
alized long-context text representation and rerank-
ing models for multilingual text retrieval. Preprint,
arXiv:2407.19669.

A Search Queries for Knowledge Store
Generation

When creating the knowledge stores for the train,
development, and test set, we used a series of
search query generation strategies. An overview
can be seen in Table 11. We note that some of
these rely on information not available normally
to participants, such as the gold question-answer
pairs. We note that, despite this, systems not rely-
ing on the knowledge store, such as Papelo, were
competitive.

B Human Evaluation

We carried out human evaluation of the submit-
ted test set predictions. Below in Figures 2-9, we
include screenshots of the interface used by an-
notators. We also include, in Tables 12 and 13,
instructive examples from the human evaluation.

Source Score Coverage

CTU AIC 4.1
TUDA_MAI 4.1
SynApSe 3.8
Dunamu-ML 3.5
MA-Bros-H 3.4
Factors 3.3
Data-Wizards 3.2
UHH 3.2
mitchelldehaven 3.1
SK_ DU 3.1
IKR3-UNIMIB 3.1
FZI-WIM 2.9
InfinityScalers! 2.9
arioriAveri 2.9
HUMANE 2.8
Papelo 2.8
KnowComp 2.8
UPS 2.4
VGyasi 2.3
AYM 2.3
ngetach 2.0

Table 10: Average scores assigned to evidence samples
from different participating teams for the semantic cov-
erage category, based on human evaluation.
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Query type Description

Generated questions Questions are generated with gpt-3.5-turbo based on the claim.
Three claim-question pairs from the training set are used as in-
context examples.

Generated background queries Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on background information, such as details about
entities in the claim. Three manually constructed claim-query pairs
are used as in-context examples.

Generated provenance queries Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on information necessary to establish provenance,
such as whether the claim source is a satire site. Three manually
constructed claim-query pairs are used as in-context examples.

Claim named entities Named entities from the claim are extracted and used as search
queries. One query for each entity is constructed, along with one
query containing all entities.

Most similar gold evidence The most similar paragraph in the gold evidence document is
selected using BM25, and used as a search query.

Gold URL generated questions Queries are generated with gpt-3.5-turbo based on the URL of
the gold evidence. The prompt tried to generate questions that
would retrieve the URL in question. Three manually constructed
URL-query pairs are used as in-context examples.

Different event same entity Queries are generated with gpt-3.5-turbo based on the named enti-
ties in the claim. The prompt focuses on different events involving
some of the same entities. Results are used as distractors to make
the retrieval task harder.

Similar entities Queries are generated with gpt-3.5-turbo based on the claim. The
prompt replaces entities in the claim with other similar entities,
such as changing one city to another. Results are used as distrac-
tors to make the retrieval task harder.

Gold questions Gold questions used verbatim as search queries.
Claim + gold question Gold questions used verbatim as search queries. The claim is

prepended, processed as in Schlichtkrull et al. (2023a).
Rephrased gold questions Gold questions are rephrased using gpt-3.5-turbo, and then input

as search queries.
Gold answers Gold questions used verbatim as search queries.
Rephrased gold answers Gold answers are rephrased using gpt-3.5-turbo, and then input as

search queries.

Table 11: Queries input to the Google Search API for each claim in order to build the knowledge store. Following
Schlichtkrull et al. (2023a), we restrict search results to documents published before the claim. For each claim, we
also extend the knowledge store with the corresponding gold evidence documents.

17



Figure 2: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 3: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 4: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 5: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 6: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 7: Platform for human evaluation of retrieved evidence from participating systems.

Figure 8: Platform for human evaluation of retrieved evidence from participating systems.
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Figure 9: Platform for human evaluation of retrieved evidence from participating systems.

24



cl
ai

m
pr

ed
ic

te
d

ev
id

en
ce

la
be

l
hu

m
an

ev
al

se
m

an
tic

co
ve

r-
ag

e

co
he

r-
en

ce
re

du
n-

da
nc

y
co

ns
is

t-
en

cy
re

le
-

va
nc

e
pr

e-
di

ct
ed

la
be

l

re
fe

re
nc

e
ev

id
en

ce

1
N

ew
ch

an
ge

s
to

th
e

H
ig

hw
ay

C
od

e
in

G
re

at
B

ri
ta

in
st

at
es

dr
iv

er
s

sh
ou

ld
gi

ve
fiv

e
fe

et
w

he
n

ov
er

ta
ki

ng
cy

cl
is

ts
.

Q
ue

st
io

n:
Sh

ou
ld

dr
iv

er
s

gi
ve

fiv
e

fe
et

w
he

n
ov

er
ta

ki
ng

bi
cy

-
cl

is
ts

?
A

ns
w

er
:

N
o

an
sw

er
co

ul
d

be
fo

un
d.

Q
ue

st
io

n:
W

ha
t

is
th

e
H

ig
hw

ay
C

od
e

in
G

re
at

B
ri

ta
in

?
A

ns
w

er
:

N
o

an
sw

er
co

ul
d

be
fo

un
d.

no
t

en
ou

gh
in

fo
r-

m
at

io
n

1
5

1
5

5
N

ot
E

no
ug

h
E

vi
-

de
nc

e

Q
ue

st
io

n:
W

ha
t

is
5

fe
et

in
m

et
re

s?
A

ns
w

er
:

1.
5

m
et

re
s.

Q
ue

st
io

n:
W

ha
t

is
th

e
ne

w
ov

er
-

ta
ki

ng
di

st
an

ce
be

tw
ee

n
dr

iv
er

s
an

d
cy

cl
is

ts
in

th
e

H
ig

hw
ay

C
od

e?
A

ns
w

er
:

le
av

e
at

le
as

t1
.5

m
et

re
s

w
he

n
ov

er
ta

ki
ng

cy
cl

is
ts

.Q
ue

st
io

n:
A

t
w

ha
t

m
ax

im
um

sp
ee

d
is

th
e

ne
w

1.
5-

di
st

an
ce

ru
le

ap
pl

ic
ab

le
?

A
ns

w
er

:
at

sp
ee

ds
of

up
to

30
m

ph
.

Q
ue

st
io

n:
Sh

ou
ld

dr
iv

er
s

le
av

e
m

or
e

sp
ac

e
if

dr
iv

in
g

fa
st

er
?

A
ns

w
er

:Y
es

.O
n

a
PD

F
fo

rt
he

’T
ab

le
of

C
ha

ng
es

to
th

e
H

ig
hw

ay
C

od
e’

it
st

at
es

,"
G

iv
e

th
em

m
or

e
sp

ac
e

w
he

n
ov

er
ta

k-
in

g
at

hi
gh

er
sp

ee
ds

."
2

Tw
ee

t
po

rt
ra

ys
R

av
is

h
K

um
ar

ta
rg

et
in

g
A

A
P

ah
ea

d
of

Pu
nj

ab
el

ec
-

tio
ns

Q
ue

st
io

n:
W

he
n

w
er

e
th

e
Pu

n-
ja

b
el

ec
tio

ns
?

A
ns

w
er

:
N

o
an

-
sw

er
co

ul
d

be
fo

un
d.

Q
ue

st
io

n:
W

he
n

w
as

th
e

tw
ee

tm
ad

e?
A

n-
sw

er
:

T
he

tw
ee

tw
as

al
le

ge
dl

y
m

ad
e

by
R

av
is

h
K

um
ar

in
th

e
m

id
st

of
th

e
Pu

nj
ab

el
ec

tio
n.

Q
ue

st
io

n:
Is

R
av

is
h

K
um

ar
an

A
A

P
su

pp
or

te
r?

A
ns

w
er

:
N

o
an

sw
er

co
ul

d
be

fo
un

d.

no
t

en
ou

gh
in

fo
r-

m
at

io
n

1
2

5
3

2
Su

pp
or

te
d

Q
ue

st
io

n:
W

ha
t

do
es

R
av

is
h

K
um

ar
th

in
k

of
th

e
A

A
P?

A
ns

w
er

:
N

o
an

sw
er

co
ul

d
be

fo
un

d.
Q

ue
st

io
n:

D
id

R
av

is
h

K
um

ar
tw

ee
t

ab
ou

t
th

e
A

A
P?

A
ns

w
er

:
N

o
an

sw
er

co
ul

d
be

fo
un

d.
Q

ue
st

io
n:

H
as

R
av

is
h

K
um

ar
be

en
m

is
qu

ot
ed

on
po

lit
ic

al
m

at
te

rs
?

A
ns

w
er

:S
en

io
rC

on
gr

es
s

le
ad

er
D

ig
vi

ja
ya

Si
ng

h
ap

ol
og

is
ed

to
N

D
TV

an
-

ch
or

R
av

is
h

K
um

ar
to

da
y

af
te

rs
ha

ri
ng

a
vi

de
o

on
Tw

itt
er

th
at

in
co

rr
ec

tly
su

gg
es

te
d

th
e

la
tte

r
ha

d
ab

us
ed

Pr
im

e
M

in
is

te
rN

ar
en

dr
a

M
od

ii
n

a
pu

bl
ic

sp
ee

ch
on

W
ed

ne
sd

ay
.

3
In

20
10

,a
ne

w
ly

qu
al

i-
fie

d
te

ac
he

r’
s

sa
la

ry
in

th
e

U
K

w
as

£2
1,

50
0

an
d

in
20

18
it

w
as

£2
2,

00
0.

Q
ue

st
io

n:
W

ha
t

w
as

th
e

st
ar

t-
in

g
sa

la
ry

fo
r

a
ne

w
ly

qu
al

-
ifi

ed
te

ac
he

r
in

20
10

?
A

n-
sw

er
:£

21
,5

00
.Q

ue
st

io
n:

W
ha

t
w

as
th

e
st

ar
tin

g
sa

la
ry

fo
r

a
ne

w
ly

qu
al

ifi
ed

te
ac

he
ri

n
20

18
?

A
ns

w
er

:
£2

2,
00

0.
Q

ue
st

io
n:

W
ha

t
w

as
th

e
st

ar
tin

g
sa

la
ry

fo
ra

ne
w

ly
qu

al
ifi

ed
te

ac
he

ri
n

20
10

in
20

18
pr

ic
es

?
A

ns
w

er
:

£2
5,

40
0.

Q
ue

st
io

n:
W

ha
t

w
as

th
e

st
ar

tin
g

sa
la

ry
fo

r
a

ne
w

ly
qu

al
ifi

ed
te

ac
he

r
in

20
18

in
20

10
pr

ic
es

?
A

ns
w

er
:£

23
,0

00
.

su
pp

or
te

d
5

4
1

2
4

Su
pp

or
te

d
Q

ue
st

io
n:

W
ha

t
w

as
th

e
sa

la
ry

of
a

ne
w

ly
qu

al
ifi

ed
te

ac
he

r
in

th
e

U
K

in
20

10
?

A
ns

w
er

:
£2

1,
58

8.
Q

ue
st

io
n:

W
ha

t
w

as
th

e
sa

la
ry

of
a

ne
w

ly
qu

al
ifi

ed
te

ac
he

ri
n

th
e

U
K

in
20

18
?

A
n-

sw
er

:
£2

3,
72

0.
Q

ue
st

io
n:

W
ha

tw
as

th
e

sa
la

ry
of

ne
w

te
ac

he
rs

ou
ts

id
e

of
Lo

nd
on

in
20

10
?

A
n-

sw
er

:
£2

1,
58

8.
Q

ue
st

io
n:

W
ha

tw
as

sa
la

ry
of

ne
w

te
ac

he
rs

ou
ts

id
e

of
L

on
do

n
in

20
18

?
A

n-
sw

er
:M

in
im

um
st

ar
tin

g
sa

la
ri

es
fo

rc
la

ss
ro

om
te

ac
he

rs
w

ill
in

cr
ea

se
by

be
tw

ee
n

£6
53

(r
es

t
of

E
ng

la
nd

)
an

d
£8

16
(i

nn
er

L
on

do
n)

.
T

hi
s

m
ea

ns
th

e
m

in
im

um
st

ar
tin

g
sa

la
ry

fo
ra

qu
al

i-
fie

d
te

ac
he

ri
n

20
19

/2
0

w
ill

ris
e

fr
om

£2
3,

72
0

to
£2

4,
37

3
ou

ts
id

e
of

Lo
nd

on
an

d
fr

om
£2

9,
66

4
to

£3
0,

48
0

in
in

ne
rL

on
do

n.

Ta
bl

e
12

:E
xa

m
pl

es
fo

rs
ys

te
m

pr
ed

ic
tio

ns
w

hi
ch

ar
e

hi
gh

ly
-r

an
ke

d
by

th
e

A
ve

ri
te

c
sc

or
e.

25



cl
ai

m
pr

ed
ic

te
d

ev
id

en
ce

la
be

l
hu

m
an

ev
al

se
m

an
tic

co
ve

r-
ag

e

co
he

r-
en

ce
re

du
n-

da
nc

y
co

ns
is

t-
en

cy
re

le
-

va
nc

e
pr

e-
di

ct
ed

la
be

l

re
fe

re
nc

e
ev

id
en

ce

1
T

he
re

po
rt

in
g

en
vi

ro
n-

m
en

t
fo

r
fo

re
ig

n
co

rr
e-

sp
on

de
nt

s
in

C
hi

na
is

op
en

an
d

fr
ee

.
C

om
-

m
un

ic
at

io
n

ch
an

ne
ls

be
-

tw
ee

n
fo

re
ig

n
jo

ur
na

l-
is

ts
in

C
hi

na
an

d
co

m
pe

-
te

nt
C

hi
ne

se
au

th
or

iti
es

ar
e

op
en

an
d

un
fe

tte
re

d.

Q
ue

st
io

n:
W

ha
ti

s
th

e
w

or
ki

ng
en

vi
ro

nm
en

tf
or

fo
re

ig
n

jo
ur

na
l-

is
ts

in
C

hi
na

?
A

ns
w

er
:F

or
ei

gn
co

rr
es

po
nd

en
ts

in
C

hi
na

ha
ve

re
-

po
rt

ed
hi

gh
er

le
ve

ls
of

co
nc

er
n

ab
ou

ts
ur

ve
ill

an
ce

an
d

in
va

si
on

of
pr

iv
ac

y,
as

w
el

l
as

gr
ea

te
r

pr
es

su
re

by
ov

er
se

as
C

hi
ne

se
of

fic
ia

ls
on

m
ed

ia
or

ga
ni

za
tio

n
he

ad
qu

ar
te

rs
.

N
ea

rl
y

ha
lf

of
su

rv
ey

ed
co

rr
es

po
nd

en
ts

sa
id

th
ey

ex
pe

ri
en

ce
d

in
te

rf
er

en
ce

,
ha

ra
ss

m
en

t,
an

d
ph

ys
ic

al
vi

o-
le

nc
e.

[..
.]

re
fu

te
d

5
5

5
5

5
R

ef
ut

ed
Q

ue
st

io
n:

D
oe

s
th

e
C

hi
ne

se
go

ve
rn

m
en

tp
la

ce
re

st
ri

ct
io

ns
on

jo
ur

na
lis

tc
on

te
nt

?
A

ns
w

er
:Y

es
.

T
he

Pr
op

ag
an

da
D

ep
ar

tm
en

t
of

th
e

C
hi

ne
se

C
om

m
un

is
tP

ar
ty

se
nd

s
a

de
ta

ile
d

no
tic

e
to

al
l

m
ed

ia
ev

er
y

da
y

th
at

in
cl

ud
es

ed
ito

ri
al

gu
id

e-
lin

es
an

d
ce

ns
or

ed
to

pi
cs

.

2
Ph

ili
pp

in
es

Se
na

to
rP

an
-

fil
o

L
ac

so
n

ch
an

ge
s

hi
s

op
in

io
n

an
d

sa
ys

he
se

es
th

e
se

ns
e

in
th

e
D

ep
ar

t-
m

en
t

of
N

at
io

na
l

D
e-

fe
ns

e’
s

(D
N

D
)

un
ila

t-
er

al
te

rm
in

at
io

n
of

its
19

89
ac

co
rd

w
ith

th
e

U
ni

ve
rs

ity
of

th
e

Ph
ili

p-
pi

ne
s

(U
P)

.

Q
ue

st
io

n:
W

ha
tw

as
Ph

ili
pp

in
es

Se
na

to
rP

an
fil

o
L

ac
so

n’
s

pr
ev

i-
ou

s
st

an
ce

on
th

e
D

ep
ar

tm
en

to
f

N
at

io
na

l
D

ef
en

se
’s

(D
N

D
)

te
r-

m
in

at
io

n
of

its
19

89
ac

co
rd

w
ith

th
e

U
ni

ve
rs

ity
of

th
e

Ph
ili

pp
in

es
(U

P)
?

A
ns

w
er

:P
hi

lip
pi

ne
s

Se
n-

at
or

Pa
nfi

lo
L

ac
so

n’
s

pr
ev

io
us

st
an

ce
on

th
e

D
ep

ar
tm

en
to

fN
a-

tio
na

l
D

ef
en

se
’s

(D
N

D
)

te
rm

i-
na

tio
n

of
its

19
89

ac
co

rd
w

ith
th

e
U

ni
ve

rs
ity

of
th

e
Ph

ili
pp

in
es

(U
P)

w
as

cr
iti

ca
l.

[..
.]

su
pp

or
te

d
3

5
5

5
4

Su
pp

or
te

d
Q

ue
st

io
n:

W
ha

tw
as

hi
s

in
iti

al
vi

ew
on

th
e

D
N

D
an

d
U

ni
ve

rs
ity

of
th

e
Ph

ili
pp

in
es

lo
ng

st
an

di
ng

ar
ra

ng
em

en
t?

A
ns

w
er

:
T

he
re

’s
se

ns
e

in
th

e
m

ov
e

ta
ke

n
by

th
e

Pr
es

id
en

t
an

d
Se

c.
L

or
en

-
za

na
be

ca
us

e
du

ri
ng

ou
r

re
d-

ta
gg

in
g

he
ar

in
gs

in
th

e
Se

na
te

,i
tw

as
es

ta
bl

is
he

d
th

at
—

no
to

nl
y

U
P

in
pa

rt
ic

ul
ar

,
ot

he
r

un
iv

er
si

tie
s—

ta
la

ga
ng

‘y
un

g
re

cr
ui

tm
en

tn
an

gg
ag

al
in

g
du

n
sa

m
ga

es
-

tu
dy

an
te

up
to

th
e

po
in

tt
ha

tt
he

y’
re

be
in

g
ki

lle
d

in
en

co
un

te
rs

,h
e

to
ld

A
N

C
’s

H
ea

ds
ta

rt
.

Ta
bl

e
13

:E
xa

m
pl

es
fo

rs
ys

te
m

pr
ed

ic
tio

ns
w

hi
ch

ar
e

lo
w

-r
an

ke
d

by
th

e
A

ve
ri

te
c

sc
or

e.

26



Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 27–36
November 15, 2024 ©2024 Association for Computational Linguistics

Multi-hop Evidence Pursuit Meets the Web: Team Papelo at FEVER 2024

Christopher Malon
NEC Laboratories America

Princeton, NJ 08540
malon@nec-labs.com

Abstract

Separating disinformation from fact on the web
has long challenged both the search and the
reasoning powers of humans. We show that
the reasoning power of large language mod-
els (LLMs) and the retrieval power of modern
search engines can be combined to automate
this process and explainably verify claims. We
integrate LLMs and search under a multi-hop
evidence pursuit strategy. This strategy gener-
ates an initial question based on an input claim
using a sequence to sequence model, searches
and formulates an answer to the question, and
iteratively generates follow-up questions to pur-
sue the evidence that is missing using an LLM.
We demonstrate our system on the FEVER
2024 (AVeriTeC) shared task. Compared to a
strategy of generating all the questions at once,
our method obtains .045 higher label accuracy
and .155 higher AVeriTeC score (evaluating
the adequacy of the evidence). Through abla-
tions, we show the importance of various de-
sign choices, such as the question generation
method, medium-sized context, reasoning with
one document at a time, adding metadata, para-
phrasing, reducing the problem to two classes,
and reconsidering the final verdict. Our sub-
mitted system achieves .510 AVeriTeC score on
the dev set and .477 AVeriTec score on the test
set.

1 Introduction

Since 2018, the FEVER shared task has chal-
lenged natural language processing systems to ver-
ify claims using a corpus and provide evidence
that witnesses these verdicts. It has evolved from
a simple combination of natural language infer-
ence (NLI) and entailment (Thorne et al., 2018)
to a challenge involving adversarially constructed
claims (Thorne et al., 2019), to a challenge to ver-
ify complex, multi-hop claims using a combination
of tables and free text (Aly et al., 2021). In the
current task, it finally arrives at combating real-

life disinformation on the web (Schlichtkrull et al.,
2023).

Systems are challenged to classify claim texts
as supported, refuted, not enough evidence, or con-
flicting evidence/cherrypicking. In addition to clas-
sifying the claim, the systems must submit a list
of questions and answers about a claim as evi-
dence, with each answer derived from information
on the open web and cited with a URL. Credit is
given only when both the classification matches
the ground truth and the evidence is adequate. The
AVeriTeC score determines evidence adequacy by
thresholding an average of METEOR scores be-
tween each gold QA pair and the corresponding
submitted QA pair in the best assignment of QA
pairs.

This task may involve retrieval and reasoning
skills at a level for which professional journalists
are sometimes employed. The reasoning may in-
volve quote verification, stance detection, or nu-
merical comparisons. The retrieval challenge goes
beyond previous political fact-checking tasks (Os-
trowski et al., 2021; Alhindi et al., 2018) and even
beyond previous FEVER tasks in advancing from
a closed corpus (Wikipedia) to the open web.

Whereas previous FEVER shared tasks needed
to be solved by researcher-trained models, the cur-
rent shared task allows the use of commercial API
components. The winning team in FEVEROUS
based their retriever on fitting a Dense Passage Re-
triever (Karpukhin et al., 2020) to the FEVEROUS
data (Bouziane et al., 2021), but the training data
for FEVER 2024 is quite limited, consisting of
only 3,068 claims, and a retriever trained on user
feedback from worldwide search queries should
easily be more powerful. Additionally, an external
web search engine such as Google Search may pro-
vide additional query understanding features not
found in DPR, as a recent feature (not in the API
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we used) applies generative AI to search1. Even
though the gold evidence documents are guaran-
teed to appear in the knowledge store provided by
the contest organizers, the snippets may not be ex-
tracted successfully. We found that 297 of the 500
claims in the dev set included gold documents with
empty extracted text. In contrast, web search pro-
vides at least some text even from pages that the
provided web scraper is blocked from accessing.
Therefore, we chose to incorporate web search into
our system.

Relying on a large language model (LLM) such
as GPT-4o (OpenAI, 2024) for reasoning lets us
leverage skills that could not be learned from 3,068
heterogenous claims, and go beyond the simple se-
mantic comparison of an NLI model. Beyond sim-
ple NLI, ChatGPT and GPT-4 have been utilized to
detect hallucinations in text summaries (Luo et al.,
2023), as multi-faceted evaluators that score gener-
ated text (Zheng et al., 2023), and for critiques and
corrections of generated text (Lin et al., 2024).

Though there are many ways of using a search
engine and LLM within a fact-checking system,
our main contribution is to show the power of com-
bining them in a strategy of multi-hop evidence
pursuit, which formulates additional questions only
after searching and formulating answers to previ-
ous questions. In the following sections, we also
investigate the impact of many choices of how the
questions could be generated, the nature and size
of context for generating answers, handling of mul-
tiple search results, metadata, paraphrasing, reduc-
ing the problem to two classes, and reconsidering
the final verdict.

2 Related work

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) provides a general paradigm for en-
abling an LLM to answer questions that surpass the
knowledge encoded in the LLM parameters, which
is a task somewhat isomorphic to verifying claims
(Demszky et al., 2018).

A growing body of work utilizes LLMs as high-
level reasoning controllers that can solve tasks by
querying agents to provide information or solve
subproblems (Xi et al., 2023; Wu et al., 2023a).
An early example for fact-checking an LLM’s own
output was LLM-Augmenter (Peng et al., 2023),
which called an open retrieval pipeline as an agent
action to iteratively improve an LLM response.

1https://blog.google/products/search

Chan et al. (2024) uses an LLM to rewrite, decom-
pose, and disambiguate queries before searching,
and these steps are made into a hierarchy of agents
in Chen et al. (2024). Wang et al. (2024) used
a combination of Google search and GPT-4 with
a single hop to fact-check claims in the FacTool-
KB, FELM-WK, and HaluEval datasets. Behind a
closed API, SearchGPT has been launched in beta
to a few users as a service to provide access to a
search-empowered OpenAI LLM.2

FEVER 2024 presents a multi-hop, open cor-
pus fact verification challenge. In the multi-hop
shared task of FEVEROUS, all but two contestants
collected all the needed evidence up front, after
only reading the claim (Aly et al., 2021). Later top
performers (DCUF, UniFee, SEE-ST) addressed
evidence interaction with graph-based methods but
still did not address evidence that might be missed
by the initial document retrieval (Hu et al., 2022,
2023; Wu et al., 2023b). Malon (2021) estab-
lished an iterative paradigm for fact verification
that retrieves further documents, sentences, and ta-
ble cells by generating follow-up queries that are
formulated after considering only the first retrieval,
which we follow in the present system, in multi-hop
evidence pursuit.

In medical question answering, Xiong et al.
(2024) contemporaneously has proposed “iterative
RAG for medicine” which uses an LLM to gen-
erate follow-up questions considering previous re-
trievals. In our algorithm, the relevance of each
question is assured by generating it only upon a
failure to verify the claim as true or false based on
the existing evidence. Their method may generate
irrelevant questions after an answer could already
be obtained, simply because the fixed numbers of
questions are not achieved, resulting in lower ev-
idence relevance and higher computational cost.
Our system can stop as soon as a verdict is clear,
and if our system is configured to generate addi-
tional questions by paraphrasing, their relevance is
assured by their similarity to the original questions.

3 Methodology

3.1 Overall architecture
Pseudocode outlining the overall system is given
in Algorithm 1, with the main loop shown
in Figure 1. At the core of the system are
question generation functions GetF irstQuestion
and GetNextQuestion, for which we consider

2openai.com/index/searchgpt-prototype/

28



Figure 1: Pursuing additional evidence by generating follow-up questions.

implementations either by sequence-to-sequence
encoder-decoder transformers such as T5 (Raffel
et al., 2020), or by an LLM. The GetAnswer func-
tion (Algorithm 2) prompts an LLM to implement
LLMBestDoc and LLMAnswer to answer the
generated questions. The final verdict is also cho-
sen by prompting an LLM with the generated ques-
tions and answers, in LLMV erdict.

Algorithm 1. Claim verification
Input: Claim c, max questions n
Initialize QA list Q = ∅
Let q = GetF irstQuestion(c)
while |Q| < n and q ̸= True and q ̸= False

Let a = GetAnswer(q, c)
Append (q, a) to Q
Let q = GetNextQuestion(c,Q)
# GetNextQuestion outputs True or False
# if next question not needed

Let k = |Q|
while |Q| < n

Let i = |Q|
Let q = Paraphrase(qimod k)
Let a = GetAnswer(q, c)
Append (q, a) to Q

Output: v = LLMV erify(Q, c) and Q

Unlike the baseline system (Schlichtkrull et al.,
2023), our system does not generate questions on a
post hoc basis after finding evidence, but generates
questions before web searches, playing a key role
in steering the verification process. Rather than

Algorithm 2. Function GetAnswer(q, c)

Input: Question q, claim c
Let s = c+ q concatenation
Let G = WebSearch(s)
if G = ∅:

Let G = WebSearch(NamedEntities(s))
G = {(url0, quote0), . . . , (url9, quote9)}
Let i = LLMBestDoc(G, q)
Let d = FullDocument(urli)
Let e = AlignContext(d, quotei, 5)
Output: a = LLMAnswer(q, e)

assuming all evidence can be found up front with
a single search query, we review the current set of
evidence and generate text (in our case, a question)
that provides a query to search for what is still miss-
ing and needed after each hop, like the followup
queries introduced in Malon (2021). Whereas the
queries in Malon (2021) were generated by train-
ing a sequence to sequence model to predict what
the missing evidence would look like, our system
prompts an LLM to ask a question that the missing
evidence answers.

The generation of evidence QA pairs temporar-
ily stops when GetNextQuestion thinks it can
classify the claim as supported or refuted without
asking another followup question (see Appendix
B). After that point, the already generated questions
are paraphrased using an LLM and corresponding
answers are found until the desired number of QA
pairs is obtained. Finally, an LLM uses all QA
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pairs to decide the final classification for the claim.

3.2 Question generation
We consider two variants for the functions
GetF irstQuestion and GetNextQuestion. In
the Seq version, we finetune a sequence-to-
sequence encoder-decoder transformer model.
For GetF irstQuestion, the input is the claim,
and the output is the first question. For
GetNextQuestion, the input is the claim concate-
nated with all previous question-answer pairs, in
the format

Claim: claim Question: question0

Answer: answer0 Question: question1

Answer: answer1 . . .

and the output is the next question to be gener-
ated. These input strings are prefixed with the
string “question: ”. Details of the fine-tuning pro-
cedure are in Appendix A. Question-answer pairs
from the gold data in the training set are used for
this fine-tuning.

The other variant is the LLM version, in which
we prompt the LLM with similar inputs. The
prompts are given in Appendix B. Because LLM
output is often verbose and may contain unnec-
essary explanations, we sentence split the output
and use only the first sentence containing a ques-
tion mark. If this is impossible, we use the whole
output.

If an adequate number of questions and answers
has been generated and the verdict is clear, the
model has the opportunity to output a True or False
verdict to stop the question generation.

As a further ablation, we consider a more
traditional technique of generating all the ques-
tions at once, given the claim. The function
AllAtOnce (prompt in Appendix B) replaces
GetF irstQuestion to generate a set of questions,
and the while loop in Algorithm 1 is replaced
by a loop over the generated questions, calling
GetAnswer but not GetNextQuestion.

3.3 Evidence selection
Here we describe the function GetAnswer, dis-
played in Algorithm 2, which retrieves evidence
and uses it to answer the generated questions.
Prompts for its LLM helper functions are given
in Appendix B.

The generated question is concatenated to the
claim to form a web search query, and the top ten
search results are obtained, including their URL,

the short snippet displayed in the search results, and
usually the page title, site name, and publication
date. When the web search returns no results, we
retry the search using only the named entities (and
other capitalized words after the first word) from
the initial search query, following the supplemen-
tal queries which improved retrieval by Wikipedia
page title lookups in Malon (2018).

By prompting, LLMBestDoc is used to choose
one document that best answers the question from
the set of ten web search hits. We attempt to re-
trieve and scrape the text of that document using
its URL (function FullDocument). This is im-
plemented using the scrape_text_from_url
function provided in the AVeriTeC baseline
(Schlichtkrull et al., 2023), which uses the Python
trafilatura library.3 If the scraping succeeds, we
look for a small window of text (five sentences in
our experiments) that best overlaps the web search
snippet (function AlignContext). Specifically, all
five-sentence windows of the document that in-
clude more than 70% of the words in the web
search snippet are recorded in order, and the mid-
dle such window is taken. Using this window as
the document excerpt provides more background
and context to the text that web search found to be
relevant, while avoiding prompting with the over-
whelming amount of text that might be found in
the full web page. If the scraping fails, we continue
to the next stage using only the web search snippet
as document text.

Because LLMBestDoc depends on parsing
LLM output, it may fail to choose a best document.
If a best document is chosen and the scraping suc-
ceeds, the LLM is prompted to answer the question
using the selected five-sentence window of the best
document in LLMAnswer. If the best document
is chosen and the scraping fails, LLMAnswer is
run using the text of the web search snippet only. If
a best document was not chosen in LLMBestDoc,
we use the full text of the LLM response in that
function as the answer and the web search result
page itself as the evidence.

In LLMBestDoc and LLMAnswer, the
prompt includes not only the text for each doc-
ument, but metadata including the page title, site
name, and publication date, when this metadata
appears in web search results. This metadata may
occasionally be useful in assessing the credibility
or relevance of the information to the question.

3github.com/adbar/trafilatura
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3.4 Reconsideration and Classification

The Paraphrase function asks the LLM for
paraphrases of the existing questions. In prac-
tice, multiple paraphrases of each question are
requested at once to avoid repeated calls, even
though they are used one at a time. Although
these paraphrases may not be logically necessary
once GetNextQuestion has determined a verdict,
sometimes they provide a chance to reconsider the
same questions using multiple sources. The varia-
tions in wording also improve the AVeriTec score,
as discussed in section 4.

The LLMV erdict function is called after all
question-answer pairs are collected, to choose the
predicted label for each example. Using additional
QA pairs, it may override the decision that stopped
the QA generation process. Table 1 shows the
distribution of labels in the training and develop-
ment sets. “Not Enough Evidence” and “Conflict-
ing evidence / cherrypicking” are minority classes,
and we were unable to predict them with good
F1 score. We obtained a higher score by limit-
ing LLMV erdict to predicting “Supports” or “Re-
futes.”

Class Train Dev
Supported 27.7% 24.4%
Refuted 56.8% 61.0%
NEI 9.2% 7.0%
Conflicting 6.4% 7.6%

Table 1: Distribution of class labels.

4 Experiments

We implement Algorithm 1 using GPT-4o
(gpt-4o-2024-05-13, seed 42) as the LLM,
T5 (t5-large) (Raffel et al., 2020) as the
sequence-to-sequence model, and Google as the
web search engine, and consider various ablations.
For a faster development cycle and reduced mone-
tary cost, Table 2 reports the performance of each
of our systems only on the first 200 examples of
the development set.

4.1 Question formation

Recall from Section 3.2 that in Algorithm
1, the functions GetF irstQuestion and
GetNextQuestion could be implemented
either by Seq or LLM, or instead of Algorithm
1, the questions could be generated AllAtOnce.

Whichever question generation approach is
used, at most five questions are taken from the
question generator and the paraphrase loop of
Algorithm 1 extends the list to five questions.
The submitted system follows Algorithm 1 using
Seq for GetF irstQuestion, and LLM for
GetNextQuestion (Seq+LLM).

The lower performance of the AllAtOnce al-
ternative indicates that this task requires followup
searches considering the evidence already retrieved,
with searches that cannot be anticipated using the
claim alone. It validates our choice to use a multi-
hop evidence pursuit strategy (Malon, 2021).

The LLM+LLM alternative shows that perfor-
mance worsens if we generate the first question
using GPT-4o. An inspection of the data revealed
that the gold first questions were usually simple
rephrasings of the claims, which T5 can learn well,
whereas GPT-4o often tried to generate something
more complicated.

The Seq+Seq alternative shows that performance
worsens if we generate the subsequent questions
using T5. Subsequent gold questions often re-
flected deeper reasoning using the obtained an-
swers, which we suspect are beyond the capabilities
of simple sequence to sequence models.

4.2 Label prediction
We have implementations of LLMV erdict that
use a four-class prompt, or eliminate the “Not
Enough Evidence” (NEI) and “Conflicting Evi-
dence / Cherrypicking” classes to decide only be-
tween “Supported” and “Refuted.” The 4-class re-
sult (otherwise the same as the main system) shows
very low F1 scores for the NEI and Conflicting
classes. As NEI claims form only 7.0% of the
dev set and Conflicting claims form only 7.6%, we
decided that it is always best to guess another label.

Another variant, “No late verdict,” calls
LLMV erdict only if the while loop is not ter-
minated by predicting True or False, and maintains
that early decision even after the paraphrases are
added. (If True is obtained, “Supported” is pre-
dicted and if False is obtained, “Refuted” is pre-
dicted.) The difference in label accuracy shows it
is sometimes useful to consider the whole question
and answer chain from the beginning when forming
a verdict.

4.3 Answer formation
The submitted system uses FullDocument and
AlignContext to obtain longer document contexts
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System Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
AllAtOnce .591 .813 0 0 .705 .340
LLM+LLM .644 .821 0 0 .720 .385
Seq+Seq .638 .816 0 0 .715 .370
4 class .486 .593 .148 .069 .415 .245
No late verdict .643 .811 0 0 .705 .450
No long doc .577 .819 0 0 .705 .465
Multi-doc .673 .837 0 0 .735 .460
No metadata .575 .810 0 0 .700 .410
No paraphrase .701 .839 0 0 .745 .225
Repeat not para .624 .813 0 0 .710 .340
Algorithm 1 .716 .841 0 0 .750 .495

Table 2: Results on the first 200 examples of the dev set

Data Submission Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
Dev Algorithm 1 .698 .853 0 0 .754 .486
Dev Inflated to 10 .698 .853 0 0 .754 .510
Test Algorithm 1 — — — — — .445
Test Inflated to 10 — — — — — .477

Table 3: Final results on full datasets

for prompting LLMAnswer. The “No long doc”
ablation uses only the original web search snippet
as context for LLMAnswer. The close perfor-
mance in AVeriTeC score shows that while longer
context is helpful, it is often unnecessary. Scraping
web pages to obtain this longer context has become
difficult as many sites seek to restrain robots, so
relying on snippets is convenient. In cases where
our scraping fails, the original snippet is returned
by FullDocument anyway.

The “Multi-doc” ablation calls LLMAnswer
using all ten search hits and their snippets, without
calling LLMBestDoc to focus on one. It is very
close to our system in label accuracy. Although it
narrows the depth and context of information pre-
sented to LLMAnswer, it may have advantages
in presenting multiple possible perspectives.

Metadata for each document context is usually
presented to LLMAnswer in the form

Document i : (title, from site, published date)

The lower label accuracy and AVeriTeC score of the
“No metadata” variant show that knowing where
evidence came from is helpful to the LLM.

4.4 Evidence length
When the label is predicted correctly for an ex-
ample, the AVeriTeC score thresholds an exam-

ple score, which is computed as the sum of the
METEOR scores between gold QA pairs and best
matching predicted QA pairs, divided by the num-
ber of gold QA pairs. Whenever fewer QA pairs
are predicted than gold QA pairs, those gold QA
pairs contribute zero to this average. Therefore,
to optimize the AVeriTec score, it is important to
predict at least as many QA pairs as the number of
gold pairs, even if the some predicted pairs match
poorly.

A system could submit up to ten QA pairs for
each example. However, only 5% of examples had
more than five gold QA pairs in the development
set. Since the ultimate objective is optimizing hu-
man evaluation rather than AVeriTeC score and
reading more than five QA pairs may be frustrating
for a human, we initially applied our systems to
produce five QA pairs per question.

For many examples, Algorithm 1 could reach de-
cisions of q = True or q = False in its first loop
of GetF irstQuestion and GetNextQuestion
using fewer than five QA pairs. We compared the
score obtained by repeating QA pairs, or by ask-
ing the LLM to paraphrase the existing questions
in the second loop of Algorithm 1, until five QA
pairs were obtained. In the case of paraphrase,
new answers are sought for the rewritten questions.
Besides improving the AVeriTeC score, the new an-
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swers may be used to reconsider the final verdict.
The “No paraphrase” ablation has a minimal ef-

fect on label accuracy, but since fewer QA pairs
are generated, AVeriTec score is less than half the
score of the submitted system. “Repeat not para-
phrase” to get five QA pairs can recover some of
the AVeriTeC score, but the paraphrases help the
METEOR score of the best assignment much more
than duplicates.

Ten QA pairs is the upper limit, and submitting
additional QA pairs up to ten can only improve the
score of the best assignment between submitted
pairs and gold pairs. We took our five generated
QA pairs from Algorithm 1 (GetF irstQuestion,
GetNextQuestion, and paraphrasing) and dupli-
cated them to submit ten. Naturally, repeating
can be helpful if one generated QA pair addresses
points raised in multiple gold QA pairs. The effect
of inflating the QA pairs on our full dev set and test
set performance is shown in Table 3.

5 Conclusion

The AVeriTeC shared task is a realistic fact-
checking challenge on actual web disinformation.
The best large language models offer the deep rea-
soning power needed to pursue missing evidence
to verify claims, and the best web search engines
provide the vast document indices and retrieval
capabilities needed to find it.

We have contributed a multi-hop evidence pur-
suit framework which combines the strengths of
sequence to sequence models with LLMs to gen-
erate first question and subsequent questions sepa-
rately, considering the present information; to stop
pursuit once the answer is clear; and to embellish
evidence by paraphrasing before considering the
whole evidence chain to make the final verdict.
Ablations indicate the importance of each design
choice. Multi-hop evidence pursuit outperforms
trying to generate all questions in one step. Reduc-
ing the number of classes, and using metadata and
multi-sentence context from one best document,
were important in obtaining our best performance.

The fact checking system presented may be use-
ful to expedite the work of human fact checkers or
provide a more rapid preliminary response to disin-
formation. Its full explainability could mitigate the
effect of misclassifications, if the explanations were
read and considered by a human. Over a history
of many claims, ratings of disinformation from our
system and/or human fact checkers could be used

to rate the credibility of an information source.

Limitations

When “Not Enough Evidence” (NEI) is an option,
an LLM tends to select it too often. Our system
was unable to predict either NEI or “Conflicting
Evidence / Cherrypicking” with acceptable accu-
racy. Considering this, and the fact the overall label
accuracy is only .754, humans should be cautious
in trusting this system’s output to verify a claim
without reading the rationale.

LLMs have insufficient information to judge the
overall credibility of a website, and currently just
the site name is given for the LLM’s consideration.
Metadata including the site name helps (to give an
example from the dev set, GPT-4o was aware or
discovered through its searches that Scoopertino
was a satirical website), but generally, misinforma-
tion that is corroborated elsewhere on the web may
fool our fact checking system.

Although the LLM is always prompted to an-
swer questions “based on the above information”
quoted from retrieved documents or its previous
answers, there is no guarantee that the LLM does
not apply other, untraceable knowledge in forming
its answers. We use a date filter to ensure that all
web searches return documents only from before
each claim date, but we use an LLM whose training
cutoff is after the claim dates.

Novel information first reported, which has no
basis in existing documents, can never be fact-
checked with the techniques of this system (for
example, the first report that a presidential candi-
date was shot). That kind of fact checking requires
judgments of plausibility, credibility, and consis-
tency that are out of scope for this system.
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A Fine-tuning

A t5-large model was fine-tuned for three
epochs with batch size 4, maximum source
length 64 or 256 for GetF irstQuestion or
GetNextQuestion, and maximum target length
64. For the AdamW optimizer, default Hugging-
face values of 5× 10−5 were used for the learning
rate, β1 = 0.9, and β2 = 0.999. The model was
prompted with the prefix “question: ” followed by
the inputs. Only gold data from AVeriTeC was used
for the fine-tuning of each model.

B Prompts

GetFirstQuestion. For the LLM variant, the
prompt is:

We are trying to verify the following
claim by speaker on date. Claim: claim
We aren’t sure whether this claim is true

or false. Please write one or more ques-
tions that would help us verify this claim,
as a JSON list of strings. Keep the list
short.

The JSON is parsed and only the first string in the
list is used.

AllAtOnce. For the AllAtOnce variant, we use
the same prompt as GetF irstQuestion to get the
questions, but we keep the entire list.

GetNextQuestion. For the LLM variant, the
prompt is:

We are trying to verify the follow-
ing claim by speaker on date. Claim:
claim So far we have asked the ques-
tions: Question 0: question0 An-
swer: answer0 Question 1: question1

Answer: answer1 . . . Based on these
questions and answers, can you verify
whether the claim is true or false? Please
answer [[True]] or [[False]], or
ask one more question that would help
you verify.

The response is searched for [[True]] or
[[False]]. If neither is found, then the response
is sentence tokenized with the sent_tokenize
function of NLTK 3.8.1 and the first sentence that
includes a question mark is returned.

LLMBestDoc. The prompt is:

We searched the web and found
the following information. Docu-
ment 0 (title0, from site0, published
date0): snippet0 Document 1 (title1,
from site1, published date1): snippet1
. . . Document 9 (title9, from site9, pub-
lished date9): snippet9 Based on the
above information, please answer the
following question, referring to the one
document that best answers the question.
question

Note that the original claim is not used in this
prompt. The response is searched with a regex for
the first instance of Document\s+([0-9])/ or
Documents[ 0-9,]+and ([0-9]+) and
the corresponding numbered document is taken. If
the regex search fails, the search result page itself
is used as context for answering the question, and
the full response is used as the answer.

LLMAnswer. Unlike LLMBestDoc, this is
called with context from one document. The
prompt is:
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We searched the web and found the
following information. Document (title,
from site, published date): context
Based on the above information, please
answer the following question. question

The entire response is used as the answer.
Paraphrase. The prompt is:

Please give four ways to rephrase the
following question. Give your answer as
a JSON list of strings, each string being
one question. Question: question

LLMVerify. The prompt is:

We are trying to verify the follow-
ing claim: claim Based on our web
searches, we resolved the following ques-
tions. 0. question0 answer0 . . .k.
questionk answerk Is the claim (A)
fully supported by the evidence, or (B)
contradicted by the evidence? Please re-
spond in the format [[A]] or [[B]].

We search the response for [[A]] or [[B]]. For
the four class variant, the end of the prompt is:

Is the claim (A) fully supported by
the evidence, (B) contradicted by the ev-
idence, (C) insufficient information, or
(D) conflicting evidence? Please respond
in the format [[A]], [[B]], [[C]],
or [[D]].
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Abstract

Separating disinformation from fact on the web
has long challenged both the search and the
reasoning powers of humans. We show that
the reasoning power of large language mod-
els (LLMs) and the retrieval power of modern
search engines can be combined to automate
this process and explainably verify claims. We
integrate LLMs and search under a multi-hop
evidence pursuit strategy. This strategy gener-
ates an initial question based on an input claim
using a sequence to sequence model, searches
and formulates an answer to the question, and
iteratively generates follow-up questions to pur-
sue the evidence that is missing using an LLM.
We demonstrate our system on the FEVER
2024 (AVeriTeC) shared task. Compared to a
strategy of generating all the questions at once,
our method obtains .045 higher label accuracy
and .155 higher AVeriTeC score (evaluating
the adequacy of the evidence). Through abla-
tions, we show the importance of various de-
sign choices, such as the question generation
method, medium-sized context, reasoning with
one document at a time, adding metadata, para-
phrasing, reducing the problem to two classes,
and reconsidering the final verdict. Our sub-
mitted system achieves .510 AVeriTeC score on
the dev set and .477 AVeriTec score on the test
set.

1 Introduction

Since 2018, the FEVER shared task has chal-
lenged natural language processing systems to ver-
ify claims using a corpus and provide evidence
that witnesses these verdicts. It has evolved from
a simple combination of natural language infer-
ence (NLI) and entailment (Thorne et al., 2018)
to a challenge involving adversarially constructed
claims (Thorne et al., 2019), to a challenge to ver-
ify complex, multi-hop claims using a combination
of tables and free text (Aly et al., 2021). In the
current task, it finally arrives at combating real-

life disinformation on the web (Schlichtkrull et al.,
2023).

Systems are challenged to classify claim texts
as supported, refuted, not enough evidence, or con-
flicting evidence/cherrypicking. In addition to clas-
sifying the claim, the systems must submit a list
of questions and answers about a claim as evi-
dence, with each answer derived from information
on the open web and cited with a URL. Credit is
given only when both the classification matches
the ground truth and the evidence is adequate. The
AVeriTeC score determines evidence adequacy by
thresholding an average of METEOR scores be-
tween each gold QA pair and the corresponding
submitted QA pair in the best assignment of QA
pairs.

This task may involve retrieval and reasoning
skills at a level for which professional journalists
are sometimes employed. The reasoning may in-
volve quote verification, stance detection, or nu-
merical comparisons. The retrieval challenge goes
beyond previous political fact-checking tasks (Os-
trowski et al., 2021; Alhindi et al., 2018) and even
beyond previous FEVER tasks in advancing from
a closed corpus (Wikipedia) to the open web.

Whereas previous FEVER shared tasks needed
to be solved by researcher-trained models, the cur-
rent shared task allows the use of commercial API
components. The winning team in FEVEROUS
based their retriever on fitting a Dense Passage Re-
triever (Karpukhin et al., 2020) to the FEVEROUS
data (Bouziane et al., 2021), but the training data
for FEVER 2024 is quite limited, consisting of
only 3,068 claims, and a retriever trained on user
feedback from worldwide search queries should
easily be more powerful. Additionally, an external
web search engine such as Google Search may pro-
vide additional query understanding features not
found in DPR, as a recent feature (not in the API

37



we used) applies generative AI to search1. Even
though the gold evidence documents are guaran-
teed to appear in the knowledge store provided by
the contest organizers, the snippets may not be ex-
tracted successfully. We found that 297 of the 500
claims in the dev set included gold documents with
empty extracted text. In contrast, web search pro-
vides at least some text even from pages that the
provided web scraper is blocked from accessing.
Therefore, we chose to incorporate web search into
our system.

Relying on a large language model (LLM) such
as GPT-4o (OpenAI, 2024) for reasoning lets us
leverage skills that could not be learned from 3,068
heterogenous claims, and go beyond the simple se-
mantic comparison of an NLI model. Beyond sim-
ple NLI, ChatGPT and GPT-4 have been utilized to
detect hallucinations in text summaries (Luo et al.,
2023), as multi-faceted evaluators that score gener-
ated text (Zheng et al., 2023), and for critiques and
corrections of generated text (Lin et al., 2024).

Though there are many ways of using a search
engine and LLM within a fact-checking system,
our main contribution is to show the power of com-
bining them in a strategy of multi-hop evidence
pursuit, which formulates additional questions only
after searching and formulating answers to previ-
ous questions. In the following sections, we also
investigate the impact of many choices of how the
questions could be generated, the nature and size
of context for generating answers, handling of mul-
tiple search results, metadata, paraphrasing, reduc-
ing the problem to two classes, and reconsidering
the final verdict.

2 Related work

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) provides a general paradigm for en-
abling an LLM to answer questions that surpass the
knowledge encoded in the LLM parameters, which
is a task somewhat isomorphic to verifying claims
(Demszky et al., 2018).

A growing body of work utilizes LLMs as high-
level reasoning controllers that can solve tasks by
querying agents to provide information or solve
subproblems (Xi et al., 2023; Wu et al., 2023a).
An early example for fact-checking an LLM’s own
output was LLM-Augmenter (Peng et al., 2023),
which called an open retrieval pipeline as an agent
action to iteratively improve an LLM response.

1https://blog.google/products/search

Chan et al. (2024) uses an LLM to rewrite, decom-
pose, and disambiguate queries before searching,
and these steps are made into a hierarchy of agents
in Chen et al. (2024). Wang et al. (2024) used
a combination of Google search and GPT-4 with
a single hop to fact-check claims in the FacTool-
KB, FELM-WK, and HaluEval datasets. Behind a
closed API, SearchGPT has been launched in beta
to a few users as a service to provide access to a
search-empowered OpenAI LLM.2

FEVER 2024 presents a multi-hop, open cor-
pus fact verification challenge. In the multi-hop
shared task of FEVEROUS, all but two contestants
collected all the needed evidence up front, after
only reading the claim (Aly et al., 2021). Later top
performers (DCUF, UniFee, SEE-ST) addressed
evidence interaction with graph-based methods but
still did not address evidence that might be missed
by the initial document retrieval (Hu et al., 2022,
2023; Wu et al., 2023b). Malon (2021) estab-
lished an iterative paradigm for fact verification
that retrieves further documents, sentences, and ta-
ble cells by generating follow-up queries that are
formulated after considering only the first retrieval,
which we follow in the present system, in multi-hop
evidence pursuit.

In medical question answering, Xiong et al.
(2024) contemporaneously has proposed “iterative
RAG for medicine” which uses an LLM to gen-
erate follow-up questions considering previous re-
trievals. In our algorithm, the relevance of each
question is assured by generating it only upon a
failure to verify the claim as true or false based on
the existing evidence. Their method may generate
irrelevant questions after an answer could already
be obtained, simply because the fixed numbers of
questions are not achieved, resulting in lower ev-
idence relevance and higher computational cost.
Our system can stop as soon as a verdict is clear,
and if our system is configured to generate addi-
tional questions by paraphrasing, their relevance is
assured by their similarity to the original questions.

3 Methodology

3.1 Overall architecture
Pseudocode outlining the overall system is given
in Algorithm 1, with the main loop shown
in Figure 1. At the core of the system are
question generation functions GetF irstQuestion
and GetNextQuestion, for which we consider

2openai.com/index/searchgpt-prototype/
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Figure 1: Pursuing additional evidence by generating follow-up questions.

implementations either by sequence-to-sequence
encoder-decoder transformers such as T5 (Raffel
et al., 2020), or by an LLM. The GetAnswer func-
tion (Algorithm 2) prompts an LLM to implement
LLMBestDoc and LLMAnswer to answer the
generated questions. The final verdict is also cho-
sen by prompting an LLM with the generated ques-
tions and answers, in LLMV erdict.

Algorithm 1. Claim verification
Input: Claim c, max questions n
Initialize QA list Q = ∅
Let q = GetF irstQuestion(c)
while |Q| < n and q ̸= True and q ̸= False

Let a = GetAnswer(q, c)
Append (q, a) to Q
Let q = GetNextQuestion(c,Q)
# GetNextQuestion outputs True or False
# if next question not needed

Let k = |Q|
while |Q| < n

Let i = |Q|
Let q = Paraphrase(qimod k)
Let a = GetAnswer(q, c)
Append (q, a) to Q

Output: v = LLMV erify(Q, c) and Q

Unlike the baseline system (Schlichtkrull et al.,
2023), our system does not generate questions on a
post hoc basis after finding evidence, but generates
questions before web searches, playing a key role
in steering the verification process. Rather than

Algorithm 2. Function GetAnswer(q, c)

Input: Question q, claim c
Let s = c+ q concatenation
Let G = WebSearch(s)
if G = ∅:

Let G = WebSearch(NamedEntities(s))
G = {(url0, quote0), . . . , (url9, quote9)}
Let i = LLMBestDoc(G, q)
Let d = FullDocument(urli)
Let e = AlignContext(d, quotei, 5)
Output: a = LLMAnswer(q, e)

assuming all evidence can be found up front with
a single search query, we review the current set of
evidence and generate text (in our case, a question)
that provides a query to search for what is still miss-
ing and needed after each hop, like the followup
queries introduced in Malon (2021). Whereas the
queries in Malon (2021) were generated by train-
ing a sequence to sequence model to predict what
the missing evidence would look like, our system
prompts an LLM to ask a question that the missing
evidence answers.

The generation of evidence QA pairs temporar-
ily stops when GetNextQuestion thinks it can
classify the claim as supported or refuted without
asking another followup question (see Appendix
B). After that point, the already generated questions
are paraphrased using an LLM and corresponding
answers are found until the desired number of QA
pairs is obtained. Finally, an LLM uses all QA
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pairs to decide the final classification for the claim.

3.2 Question generation
We consider two variants for the functions
GetF irstQuestion and GetNextQuestion. In
the Seq version, we finetune a sequence-to-
sequence encoder-decoder transformer model.
For GetF irstQuestion, the input is the claim,
and the output is the first question. For
GetNextQuestion, the input is the claim concate-
nated with all previous question-answer pairs, in
the format

Claim: claim Question: question0

Answer: answer0 Question: question1

Answer: answer1 . . .

and the output is the next question to be gener-
ated. These input strings are prefixed with the
string “question: ”. Details of the fine-tuning pro-
cedure are in Appendix A. Question-answer pairs
from the gold data in the training set are used for
this fine-tuning.

The other variant is the LLM version, in which
we prompt the LLM with similar inputs. The
prompts are given in Appendix B. Because LLM
output is often verbose and may contain unnec-
essary explanations, we sentence split the output
and use only the first sentence containing a ques-
tion mark. If this is impossible, we use the whole
output.

If an adequate number of questions and answers
has been generated and the verdict is clear, the
model has the opportunity to output a True or False
verdict to stop the question generation.

As a further ablation, we consider a more
traditional technique of generating all the ques-
tions at once, given the claim. The function
AllAtOnce (prompt in Appendix B) replaces
GetF irstQuestion to generate a set of questions,
and the while loop in Algorithm 1 is replaced
by a loop over the generated questions, calling
GetAnswer but not GetNextQuestion.

3.3 Evidence selection
Here we describe the function GetAnswer, dis-
played in Algorithm 2, which retrieves evidence
and uses it to answer the generated questions.
Prompts for its LLM helper functions are given
in Appendix B.

The generated question is concatenated to the
claim to form a web search query, and the top ten
search results are obtained, including their URL,

the short snippet displayed in the search results, and
usually the page title, site name, and publication
date. When the web search returns no results, we
retry the search using only the named entities (and
other capitalized words after the first word) from
the initial search query, following the supplemen-
tal queries which improved retrieval by Wikipedia
page title lookups in Malon (2018).

By prompting, LLMBestDoc is used to choose
one document that best answers the question from
the set of ten web search hits. We attempt to re-
trieve and scrape the text of that document using
its URL (function FullDocument). This is im-
plemented using the scrape_text_from_url
function provided in the AVeriTeC baseline
(Schlichtkrull et al., 2023), which uses the Python
trafilatura library.3 If the scraping succeeds, we
look for a small window of text (five sentences in
our experiments) that best overlaps the web search
snippet (function AlignContext). Specifically, all
five-sentence windows of the document that in-
clude more than 70% of the words in the web
search snippet are recorded in order, and the mid-
dle such window is taken. Using this window as
the document excerpt provides more background
and context to the text that web search found to be
relevant, while avoiding prompting with the over-
whelming amount of text that might be found in
the full web page. If the scraping fails, we continue
to the next stage using only the web search snippet
as document text.

Because LLMBestDoc depends on parsing
LLM output, it may fail to choose a best document.
If a best document is chosen and the scraping suc-
ceeds, the LLM is prompted to answer the question
using the selected five-sentence window of the best
document in LLMAnswer. If the best document
is chosen and the scraping fails, LLMAnswer is
run using the text of the web search snippet only. If
a best document was not chosen in LLMBestDoc,
we use the full text of the LLM response in that
function as the answer and the web search result
page itself as the evidence.

In LLMBestDoc and LLMAnswer, the
prompt includes not only the text for each doc-
ument, but metadata including the page title, site
name, and publication date, when this metadata
appears in web search results. This metadata may
occasionally be useful in assessing the credibility
or relevance of the information to the question.

3github.com/adbar/trafilatura
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3.4 Reconsideration and Classification

The Paraphrase function asks the LLM for
paraphrases of the existing questions. In prac-
tice, multiple paraphrases of each question are
requested at once to avoid repeated calls, even
though they are used one at a time. Although
these paraphrases may not be logically necessary
once GetNextQuestion has determined a verdict,
sometimes they provide a chance to reconsider the
same questions using multiple sources. The varia-
tions in wording also improve the AVeriTec score,
as discussed in section 4.

The LLMV erdict function is called after all
question-answer pairs are collected, to choose the
predicted label for each example. Using additional
QA pairs, it may override the decision that stopped
the QA generation process. Table 1 shows the
distribution of labels in the training and develop-
ment sets. “Not Enough Evidence” and “Conflict-
ing evidence / cherrypicking” are minority classes,
and we were unable to predict them with good
F1 score. We obtained a higher score by limit-
ing LLMV erdict to predicting “Supports” or “Re-
futes.”

Class Train Dev
Supported 27.7% 24.4%
Refuted 56.8% 61.0%
NEI 9.2% 7.0%
Conflicting 6.4% 7.6%

Table 1: Distribution of class labels.

4 Experiments

We implement Algorithm 1 using GPT-4o
(gpt-4o-2024-05-13, seed 42) as the LLM,
T5 (t5-large) (Raffel et al., 2020) as the
sequence-to-sequence model, and Google as the
web search engine, and consider various ablations.
For a faster development cycle and reduced mone-
tary cost, Table 2 reports the performance of each
of our systems only on the first 200 examples of
the development set.

4.1 Question formation

Recall from Section 3.2 that in Algorithm
1, the functions GetF irstQuestion and
GetNextQuestion could be implemented
either by Seq or LLM, or instead of Algorithm
1, the questions could be generated AllAtOnce.

Whichever question generation approach is
used, at most five questions are taken from the
question generator and the paraphrase loop of
Algorithm 1 extends the list to five questions.
The submitted system follows Algorithm 1 using
Seq for GetF irstQuestion, and LLM for
GetNextQuestion (Seq+LLM).

The lower performance of the AllAtOnce al-
ternative indicates that this task requires followup
searches considering the evidence already retrieved,
with searches that cannot be anticipated using the
claim alone. It validates our choice to use a multi-
hop evidence pursuit strategy (Malon, 2021).

The LLM+LLM alternative shows that perfor-
mance worsens if we generate the first question
using GPT-4o. An inspection of the data revealed
that the gold first questions were usually simple
rephrasings of the claims, which T5 can learn well,
whereas GPT-4o often tried to generate something
more complicated.

The Seq+Seq alternative shows that performance
worsens if we generate the subsequent questions
using T5. Subsequent gold questions often re-
flected deeper reasoning using the obtained an-
swers, which we suspect are beyond the capabilities
of simple sequence to sequence models.

4.2 Label prediction
We have implementations of LLMV erdict that
use a four-class prompt, or eliminate the “Not
Enough Evidence” (NEI) and “Conflicting Evi-
dence / Cherrypicking” classes to decide only be-
tween “Supported” and “Refuted.” The 4-class re-
sult (otherwise the same as the main system) shows
very low F1 scores for the NEI and Conflicting
classes. As NEI claims form only 7.0% of the
dev set and Conflicting claims form only 7.6%, we
decided that it is always best to guess another label.

Another variant, “No late verdict,” calls
LLMV erdict only if the while loop is not ter-
minated by predicting True or False, and maintains
that early decision even after the paraphrases are
added. (If True is obtained, “Supported” is pre-
dicted and if False is obtained, “Refuted” is pre-
dicted.) The difference in label accuracy shows it
is sometimes useful to consider the whole question
and answer chain from the beginning when forming
a verdict.

4.3 Answer formation
The submitted system uses FullDocument and
AlignContext to obtain longer document contexts
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System Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
AllAtOnce .591 .813 0 0 .705 .340
LLM+LLM .644 .821 0 0 .720 .385
Seq+Seq .638 .816 0 0 .715 .370
4 class .486 .593 .148 .069 .415 .245
No late verdict .643 .811 0 0 .705 .450
No long doc .577 .819 0 0 .705 .465
Multi-doc .673 .837 0 0 .735 .460
No metadata .575 .810 0 0 .700 .410
No paraphrase .701 .839 0 0 .745 .225
Repeat not para .624 .813 0 0 .710 .340
Algorithm 1 .716 .841 0 0 .750 .495

Table 2: Results on the first 200 examples of the dev set

Data Submission Supp F1 Ref F1 NEI F1 Conf F1 Acc AVeriTec 0.25
Dev Algorithm 1 .698 .853 0 0 .754 .486
Dev Inflated to 10 .698 .853 0 0 .754 .510
Test Algorithm 1 — — — — — .445
Test Inflated to 10 — — — — — .477

Table 3: Final results on full datasets

for prompting LLMAnswer. The “No long doc”
ablation uses only the original web search snippet
as context for LLMAnswer. The close perfor-
mance in AVeriTeC score shows that while longer
context is helpful, it is often unnecessary. Scraping
web pages to obtain this longer context has become
difficult as many sites seek to restrain robots, so
relying on snippets is convenient. In cases where
our scraping fails, the original snippet is returned
by FullDocument anyway.

The “Multi-doc” ablation calls LLMAnswer
using all ten search hits and their snippets, without
calling LLMBestDoc to focus on one. It is very
close to our system in label accuracy. Although it
narrows the depth and context of information pre-
sented to LLMAnswer, it may have advantages
in presenting multiple possible perspectives.

Metadata for each document context is usually
presented to LLMAnswer in the form

Document i : (title, from site, published date)

The lower label accuracy and AVeriTeC score of the
“No metadata” variant show that knowing where
evidence came from is helpful to the LLM.

4.4 Evidence length
When the label is predicted correctly for an ex-
ample, the AVeriTeC score thresholds an exam-

ple score, which is computed as the sum of the
METEOR scores between gold QA pairs and best
matching predicted QA pairs, divided by the num-
ber of gold QA pairs. Whenever fewer QA pairs
are predicted than gold QA pairs, those gold QA
pairs contribute zero to this average. Therefore,
to optimize the AVeriTec score, it is important to
predict at least as many QA pairs as the number of
gold pairs, even if the some predicted pairs match
poorly.

A system could submit up to ten QA pairs for
each example. However, only 5% of examples had
more than five gold QA pairs in the development
set. Since the ultimate objective is optimizing hu-
man evaluation rather than AVeriTeC score and
reading more than five QA pairs may be frustrating
for a human, we initially applied our systems to
produce five QA pairs per question.

For many examples, Algorithm 1 could reach de-
cisions of q = True or q = False in its first loop
of GetF irstQuestion and GetNextQuestion
using fewer than five QA pairs. We compared the
score obtained by repeating QA pairs, or by ask-
ing the LLM to paraphrase the existing questions
in the second loop of Algorithm 1, until five QA
pairs were obtained. In the case of paraphrase,
new answers are sought for the rewritten questions.
Besides improving the AVeriTeC score, the new an-
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swers may be used to reconsider the final verdict.
The “No paraphrase” ablation has a minimal ef-

fect on label accuracy, but since fewer QA pairs
are generated, AVeriTec score is less than half the
score of the submitted system. “Repeat not para-
phrase” to get five QA pairs can recover some of
the AVeriTeC score, but the paraphrases help the
METEOR score of the best assignment much more
than duplicates.

Ten QA pairs is the upper limit, and submitting
additional QA pairs up to ten can only improve the
score of the best assignment between submitted
pairs and gold pairs. We took our five generated
QA pairs from Algorithm 1 (GetF irstQuestion,
GetNextQuestion, and paraphrasing) and dupli-
cated them to submit ten. Naturally, repeating
can be helpful if one generated QA pair addresses
points raised in multiple gold QA pairs. The effect
of inflating the QA pairs on our full dev set and test
set performance is shown in Table 3.

5 Conclusion

The AVeriTeC shared task is a realistic fact-
checking challenge on actual web disinformation.
The best large language models offer the deep rea-
soning power needed to pursue missing evidence
to verify claims, and the best web search engines
provide the vast document indices and retrieval
capabilities needed to find it.

We have contributed a multi-hop evidence pur-
suit framework which combines the strengths of
sequence to sequence models with LLMs to gen-
erate first question and subsequent questions sepa-
rately, considering the present information; to stop
pursuit once the answer is clear; and to embellish
evidence by paraphrasing before considering the
whole evidence chain to make the final verdict.
Ablations indicate the importance of each design
choice. Multi-hop evidence pursuit outperforms
trying to generate all questions in one step. Reduc-
ing the number of classes, and using metadata and
multi-sentence context from one best document,
were important in obtaining our best performance.

The fact checking system presented may be use-
ful to expedite the work of human fact checkers or
provide a more rapid preliminary response to disin-
formation. Its full explainability could mitigate the
effect of misclassifications, if the explanations were
read and considered by a human. Over a history
of many claims, ratings of disinformation from our
system and/or human fact checkers could be used

to rate the credibility of an information source.

Limitations

When “Not Enough Evidence” (NEI) is an option,
an LLM tends to select it too often. Our system
was unable to predict either NEI or “Conflicting
Evidence / Cherrypicking” with acceptable accu-
racy. Considering this, and the fact the overall label
accuracy is only .754, humans should be cautious
in trusting this system’s output to verify a claim
without reading the rationale.

LLMs have insufficient information to judge the
overall credibility of a website, and currently just
the site name is given for the LLM’s consideration.
Metadata including the site name helps (to give an
example from the dev set, GPT-4o was aware or
discovered through its searches that Scoopertino
was a satirical website), but generally, misinforma-
tion that is corroborated elsewhere on the web may
fool our fact checking system.

Although the LLM is always prompted to an-
swer questions “based on the above information”
quoted from retrieved documents or its previous
answers, there is no guarantee that the LLM does
not apply other, untraceable knowledge in forming
its answers. We use a date filter to ensure that all
web searches return documents only from before
each claim date, but we use an LLM whose training
cutoff is after the claim dates.

Novel information first reported, which has no
basis in existing documents, can never be fact-
checked with the techniques of this system (for
example, the first report that a presidential candi-
date was shot). That kind of fact checking requires
judgments of plausibility, credibility, and consis-
tency that are out of scope for this system.
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A Fine-tuning

A t5-large model was fine-tuned for three
epochs with batch size 4, maximum source
length 64 or 256 for GetF irstQuestion or
GetNextQuestion, and maximum target length
64. For the AdamW optimizer, default Hugging-
face values of 5× 10−5 were used for the learning
rate, β1 = 0.9, and β2 = 0.999. The model was
prompted with the prefix “question: ” followed by
the inputs. Only gold data from AVeriTeC was used
for the fine-tuning of each model.

B Prompts

GetFirstQuestion. For the LLM variant, the
prompt is:

We are trying to verify the following
claim by speaker on date. Claim: claim
We aren’t sure whether this claim is true

or false. Please write one or more ques-
tions that would help us verify this claim,
as a JSON list of strings. Keep the list
short.

The JSON is parsed and only the first string in the
list is used.

AllAtOnce. For the AllAtOnce variant, we use
the same prompt as GetF irstQuestion to get the
questions, but we keep the entire list.

GetNextQuestion. For the LLM variant, the
prompt is:

We are trying to verify the follow-
ing claim by speaker on date. Claim:
claim So far we have asked the ques-
tions: Question 0: question0 An-
swer: answer0 Question 1: question1

Answer: answer1 . . . Based on these
questions and answers, can you verify
whether the claim is true or false? Please
answer [[True]] or [[False]], or
ask one more question that would help
you verify.

The response is searched for [[True]] or
[[False]]. If neither is found, then the response
is sentence tokenized with the sent_tokenize
function of NLTK 3.8.1 and the first sentence that
includes a question mark is returned.

LLMBestDoc. The prompt is:

We searched the web and found
the following information. Docu-
ment 0 (title0, from site0, published
date0): snippet0 Document 1 (title1,
from site1, published date1): snippet1
. . . Document 9 (title9, from site9, pub-
lished date9): snippet9 Based on the
above information, please answer the
following question, referring to the one
document that best answers the question.
question

Note that the original claim is not used in this
prompt. The response is searched with a regex for
the first instance of Document\s+([0-9])/ or
Documents[ 0-9,]+and ([0-9]+) and
the corresponding numbered document is taken. If
the regex search fails, the search result page itself
is used as context for answering the question, and
the full response is used as the answer.

LLMAnswer. Unlike LLMBestDoc, this is
called with context from one document. The
prompt is:
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We searched the web and found the
following information. Document (title,
from site, published date): context
Based on the above information, please
answer the following question. question

The entire response is used as the answer.
Paraphrase. The prompt is:

Please give four ways to rephrase the
following question. Give your answer as
a JSON list of strings, each string being
one question. Question: question

LLMVerify. The prompt is:

We are trying to verify the follow-
ing claim: claim Based on our web
searches, we resolved the following ques-
tions. 0. question0 answer0 . . .k.
questionk answerk Is the claim (A)
fully supported by the evidence, or (B)
contradicted by the evidence? Please re-
spond in the format [[A]] or [[B]].

We search the response for [[A]] or [[B]]. For
the four class variant, the end of the prompt is:

Is the claim (A) fully supported by
the evidence, (B) contradicted by the ev-
idence, (C) insufficient information, or
(D) conflicting evidence? Please respond
in the format [[A]], [[B]], [[C]],
or [[D]].
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Abstract

Fact-checking involves searching for relevant
evidence and determining whether the given
claim contains any misinformation. In this pa-
per, we propose a fact verification system based
on RAG-Fusion. We use GPT-4o to generate
questions from the claim, which helps improve
the accuracy of evidence retrieval.

Additionally, we adopt GPT-4o for the final
judgment module and refine the prompts to en-
hance the detection accuracy, particularly when
the claim contains misinformation. Experiment
showed that our system achieved an AVeriTeC
Score of 0.3865 on the AVeriTeC test data, sig-
nificantly surpassing the baseline score of 0.11.

1 Introduction

In recent years, misinformation has become easier
to spread online (Guo et al., 2022). Consequently,
to prevent its spread, the demand for automated
fact-checking, which automatically detects unreli-
able information has significantly increased (Nakov
et al., 2021). Fact-checking involves searching for
information necessary for verification (evidence)
from reliable external databases, and determining
the truthfulness of given claim based on that infor-
mation (Zhou et al., 2019).

There are various fact-checking datasets, with
unstructured data like text (Thorne et al., 2018;
Schuster et al., 2021) and structured data like tables
(Wenhu Chen and Wang, 2020; Aly et al., 2021) or
knowledge graphs (Kim et al., 2023). Generally,
these datasets include a claim, the evidence that
needs to be searched to verify the claim, and a
label indicating the judgment.

For example, in FEVER (Thorne et al., 2018),
claims need to be classified into three labels: “Sup-
ported”, “Refuted”, or “Not Enough Information”.
Numerous systems have been proposed (DeHaven
and Scott, 2023; Krishna et al., 2022; Liu et al.,
2020), and the accuracy of this three-class clas-

sification has reached nearly 0.81. However, the
claims included in these datasets are created from
sources like Wikipedia for specific purposes, and
they differ from the claims that journalists actually
verify. There is a dataset that include real-world
data (Wang, 2017), but they face the issue of not
providing sufficient evidence necessary for judg-
ment (Schlichtkrull et al., 2023).

In this Shared Task, AVeriTeC(Schlichtkrull
et al., 2023) has been newly created. In AVeriTeC,
the evidence is based on information collected from
the web and is provided in a Question-Answer pair
format by human annotators. The judgment labels
are: “Supported”, “Refuted”, “Not Enough Evi-
dence (NEE)”, and “Conflicting Evidence/Cherry-
picking”. Additionally, for each claim, the reasons
why annotators assign the judgment labels are an-
notated.

The system needs to extract evidence from docu-
ments obtained through web searches or from doc-
uments provided by the organizers as web search
results, and then predicts the claim label. The claim
is considered correctly judged only if the necessary
evidence is appropriately retrieved, and the final
judgment label is correctly predicted.

In this paper, we designed the system shown in
Figure 1 to improve the AVeriTeC baseline. The
baseline system primarily used BM25 (Robertson
and Zaragoza, 2009) for evidence collection, but
this method does not allow for searching based on
the meaning of the claim or web document. There-
fore, we perform searches using embedding vectors
with stella_en_400M_v52. We generate embedding
vectors for the claim and the document, and collect
50 documents related to the claim based on their
similarity.

Next, inspired by RAG-Fusion (Rackauckas,

1https://competitions.codalab.org/
competitions/18814

2https://huggingface.co/dunzhang/stella_en_
400M_v5
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2024), we use GPT-4o to generate three questions
from the claim that are needed to search for the ev-
idence. For each of these generated questions, we
select three answer sentences from the previously
collected 50 documents. These Question-Answer
pairs collected through this procedure are input into
GPT-4o along with the claim for the final judgment
in verdict inference.

The proposed fact-checking system achieved an
AVeriTec score of 0.3865 on the test data.

2 System Description

The system we developed is structured in three
phases similar to (Gi et al., 2021): Document
Retrieval, Question Generation and Sentence Re-
trieval and Verdict Inference. Document Retrieval:
Since the document set provided by the organiz-
ers is vast, this phase selects documents related to
the claim. Question Generation and Sentence
Retrieval: Referring to the RAG-Fusion method,
questions for information retrieval are generated us-
ing GPT-4o from the claim. Subsequently, the sen-
tences that answer these generated questions are re-
trieved from the sentences contained within the doc-
uments selected in the Document Retrieval phase.
Verdict Inference: Using GPT-4o, which has high
inferential capabilities, a judgment is made based
on the obtained Question-Answer pairs and the
claim. We use GPT-4o via OpenAI API3.

2.1 Document Retrieval

The AVeriTec dataset provides an average of 999.3
documents per claim, and splitting them into sen-
tences would require extensive resources. There-
fore, the target of this phase is to narrow down the
candidates at the document level.

In the baseline system, all documents related
to a claim were split into sentences, and relevant
sentences for each claim were retrieved primarily
using BM25. However, this approach doesn’t ac-
count for paraphrasing or semantic similarity, lim-
iting its search performance. Therefore, we use
stella_en_400M_v5 to perform searches for the
related documents using embedding vectors. At
the time of writing this paper, stella_en_400M_v5
was the highest-performing model under 1B on
the MTEB leader-board4. Given the vast amount
of document to be processed in this dataset, a

3https://openai.com/api/
4https://huggingface.co/spaces/mteb/

leaderboard

Figure 1: System Overview: Document Retrieval, Ques-
tion generation and Sentence Retrieval, and Verdict
inference. In Document Retrieval, 50 documents are
searched. In Sentence Retrieval, up to 3 questions are
generated, and for each question, 3 candidate answers
are retrieved.

lightweight model was chosen. Each claim and the
documents provided for that claim are converted
into embedding vectors, and relevant documents
are selected based on similarity. (The prompt used
for embedding claim was s2p_query (sentence to
passage query). When we use stella_en_400M_v5
for embedding search sentence, we can select
s2p_query or s2s_query (sentence to sentence
query) depending on our purpose).

2.2 Question Generation and Sentence
Retrieval

After narrowing down documents with Document
Retrieval, the document is split into sentences to
search for more critical information. The URL
of each sentence remains the same as that of the
original document before splitting.

The simplest approach is to convert both the
claim and each sentence into embedding vectors
then retrieve the most similar sentences. On the
other hand, a method called RAG-Fusion (Rack-
auckas, 2024) has been proposed. RAG is a system
that searches for relevant information in response
to a user’s input and uses both the input and the re-
trieved information to generate a response through
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Figure 2: Prompts designed for GPT-4o. In our final system, we use (a) and (c). The other prompts are used only for
performance evaluation purposes.

a language model (Gao et al., 2024). The concept
of retrieving relevant information and using it in
subsequent processing is similar to fact-checking.

RAG-Fusion is a method proposed to enhance
the retrieval performance of RAG. Instead of di-
rectly searching with the user’s input, it conducts
the search using multiple questions generated from
user’s input by LLMs (Large Language Models)
and re-ranks the external information based on
the search results. This approach allows for a
broader perspective in the search process compared
to searching directly with the user’s input, poten-
tially improving search accuracy.

In this study, we focus on RAG-Fusion’s ability
to retrieve diverse information through search using
multiple questions. Using the prompt shown in
Figure 2(a), three questions were generated from
the claim using GPT-4o to search for information
necessary for judgment. At this time, the claim
most similar to the target claim was retrieved from
the training data (using stella_en_400M_v5), and
questions were copied from the evidence annotated
to that claim to as the one-shot example included in
the prompt. (When experimenting with validation
data (500 claims), the claim is retrieved from the
training data (3068 claims); when experimenting

with test data (2215 claims), it’s retrieved from
both the training and validation data.)

For each question, three appropriate an-
swers were retrieved, just as before, using
stella_en_400M_v5. However, when stella is used
to search for similar claims to generate questions,
it is set to s2s_query; when searching for answers,
it is set to s2p_query.
2.3 Verdict inference

In the final judgment, based on the created Evi-
dence (Question and Answer), the system must
classify the claim into one of four categories: “Sup-
ported”, “Refuted”, “Not Enough Evidence” or
“Conflicting Evidence/Cherry-picking”. We used
GPT-4o for this judgement. In Fact-checking, the
most critical error to avoid is mistakenly classifying
a “Refuted” claim as another label. Therefore, the
prompt includes the instruction: “If there is even
the slightest possibility that it is incorrect, output
’Refuted’.” The prompt is shown in Figure 2(c).

3 Result

In this chapter, we explain the results at each phase
of the system. To consider improving search ac-
curacy, we report the experimental results using a
validation dataset (containing 500 claims) where
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the correct evidence has been distributed. Addition-
ally, when using GPT-4o, the temperature is set to
0 to ensure the reproducibility of the experiments.

3.1 Document Retrieval Result

To verify how many documents could be retrieved
necessary for judgment, we utilize the annotated
URLs. We counted the number of claims for which
the search was successful by comparing the URLs
of documents annotated as the necessary sentences
for judgment with the URLs of the documents re-
trieved through embedding vectors (up to a max-
imum of 500 claims in the validation data). The
verification is conducted under two settings: when
all the correct URLs are retrieved (All) and when
at least one correct URL is retrieved (Easy).

We compared two document retrieval methods:
one that uses embedding vectors of claims and doc-
uments as described in 2.1, and another that uses
the questions generated by the method described
in 2.2. The questions generated in 2.2 can also
be used for document retrieval. Therefore, each
question is converted into an embedding vector and
used for document retrieval. We compared whether
it is better to use the claim itself or the question
generated from the claim for document retrieval.

The search results are shown in Table 1. In the ta-
ble, “top k” refers to the top k results for each ques-
tion in the question-based search. In other words,
the top 25 for each question retrieves the same
number of documents as the top 75 in the claim-
based search (25×3=75). However, in the baseline
system of (Schlichtkrull et al., 2023), documents
were divided into sentences before the search, so a
comparison at this stage cannot be made.

The comparison between the top 75 in claim-
based search and the top 25 in question-based
search in Table 1 shows that claim-based search
yields higher accuracy. Of course, if we increase
the top k, search accuracy improves naturally. How-
ever, considering computational costs, we decided
to retrieve the top 50 documents in claim-based
search for this time.

Method Top k Easy All

Claim
Top 75 283 90
Top 50 247 78
Top 25 187 54

Question
Top 75 313 115
Top 50 295 100
Top 25 242 72

Table 1: Document Retrieval Result

Method Top k Easy All

Base
Top 10 51 14
Top 3 33 8
Top 1 17 4

Claim
Top 10 94 27
Top 3 50 15
Top 1 26 8

Question
Top 10 143 36
Top 3 79 19
Top 1 44 13

Table 2: Sentence Search Result

Method Q A Q+A
Claim (Top 3) 0.3063 0.1814 0.2258
Question (Top 1) 0.3898 0.1699 0.2436

Table 3: Evidence evaluation score of Sentence Search
Result

3.2 Sentence Retrieval Results

We compare the performance of sentence retrieval
using BM25 at the baseline and retrieval using
embedding vectors. In the original baseline, a re-
ranker was employed, but the results before intro-
ducing the re-ranker are shown for performance
comparison. For retrieval using embedding vec-
tors, we employ two methods: one based on the
RAG-Fusion method explained in 2.2 and another
based on the claim-based retrieval method. Similar
to the comparison in 3.1, the top k retrieval results
using the question correspond to the number of
documents retrieved in the top 3k using the claim.

For evaluation, we report scores based on
whether all correct URLs were retrieved or at least
one correct URL was retrieved, using the URLs ob-
tained from the retrieved sentences and the correct
URLs. The results are shown in Table 2.

When comparing the top 1 in the question-based
retrieval and the top 3 in the claim-based retrieval,
the retrieval performance is nearly equivalent. Both
methods yield higher scores than the baseline. Of
course, this evaluation simply calculates the score
based on URLs, so there might be cases where
an unrelated sentence from the same document
as the correct answer is retrieved. Therefore, we
also report the evidence evaluation score used in
this Shared Task. The evidence evaluation score is
calculated as following:

uf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(1)
Here, X is a boolean function denoting the as-

signment: Ŷ ×Y→{0, 1}. Ŷ is generated se-
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Method Q Q+A Label Accuracy AVeriTec Score (.1, .2, .25)
Claim (Top 3) 0.3063 0.2258 0.568 0.528 0.336 0.198
Question (Top 1) 0.3898 0.2436 0.612 0.588 0.384 0.264
Question (Top 3) 0.3898 0.2757 0.692 0.676 0.524 0.38
Gold Evidence 1.0 1.0 0.858 0.858 0.858 0.858

Table 4: Results of claim-based method and question-based method on the validation dataset. AVeriTec Scores are
conditioned on correct evidence (Q+A) at λ=(0.1, 0.2, 0.25)

quences and Y is the reference sequences. f is
a pairwise scoring function: Ŷ×Y →R.

In the Shared Task, two scenarios are evaluated:
one where only the question from the QA pair pro-
vided as necessary information for the judgment
is used, and another where the combination of the
question and the answer is used. In this paper, to
compare performance in more detail, we also in-
cluded the scenario where only the answer is used.

In retrieval with the claim and the baseline, the
relevant sentences associated with the claim have
been retrieved at this point. Consequently informa-
tion corresponding to the answer has been retrieved.
However, the part corresponding to the question
has not yet been created. Therefore, we used GPT-
4o to generate a question that would match the
retrieved sentence as an answer. In this way, we
created Question-Answer pairs in the same format
as the correct evidence provided for the judgment.
The prompt used is shown in Figure 2(b), and the
scores are shown in Table 3.

The comparison between claim-based and
question-based approaches shows that the pre-
creation of questions yields higher Question scores,
which in turn improves the Question+Answer
scores. On the other hand, the score for the answer
alone is slightly higher when using the approach
of retrieving with the claim alone and then gener-
ating the question afterward. Since this evaluation
metric only assesses sequence match, it is difficult
to determine superiority at this point. Therefore,
we decided to calculate the performance of both
methods in the next Verdict Inference and select
the approach with higher accuracy.

3.3 Verdict Inference Result
For the final evaluation, we employed GPT-4o. Us-
ing the prompt shown in Figure 2(d), we compare
the results of Question Top 1 and Claim Top 3.

In the Shared Task, a judgment was considered
correct only when the evidence evaluation score
(Eq. (1)) exceeded a certain threshold and the final
judgment was correct (AVeriTeC Score). However,

Figure 3: Example of increasing the number of possible
answers to a question to three. For each claim, three
evidences are created that are the same as the following
QA pairs.

the AVeriTeC Score is solely based on sequence
matching and does not account for the meaning of
the sentences. Moreover, it is possible to retrieve
information useful for judgment outside of the cor-
rect evidence. This indicates that the evidence re-
trieval may not have been adequately evaluated by
AVeriTeC Score.

Therefore, in addition to the AVeriTeC Score, we
compared how well the four-class classification of
final judgments was performed using Label Accu-
racy, ignoring the Evidence evaluation score. Since
the Label Accuracy is expected to be higher when
the necessary evidence for judgment is retrieved,
it can be considered an indicator of how well the
evidence retrieval was performed. Additionally,
since no comparison with the correct Evidence is
required, the problem with AVeriTeC Score, where
useful information must be retrieved from sources
other than the correct evidence, does not become an
issue (though there is a possibility of accidentally
making the correct judgment based on inappropri-
ate evidence).

The experimental results are shown in Table 4. A
comparison of the first and second rows of this table
shows that the Label Accuracy for Question Top 1
is higher than the Label Accuracy for Claim Top 3.
This suggests that with the current Evidence eval-
uation score, a small difference in Answer scores
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Figure 4: Confusion Matrix of verdict result of GPT-4o. (a) Given gold evidence with prompt Figure 2(d), (b) Given
Retrieved evidence with prompt Figure 2(c), (c) Given gold evidence with removing “If there is even the slightest
possibility that it is incorrect, output "Refuted"” from prompt Figure 2(d)

of around 0.1, as observed in Table 3, cannot be
conclusively interpreted as a decline in retrieval
performance.

To further improve the score,we considered the
top 3 search results for each question (i.e., when
a total of 9 sentences were retrieved). Then we
included the Top 3 sentences as Evidence, noting
the increase in URL hit rate (Table 2). However,
if there are three answers for each question, each
question will be reused three times. In this case,
if an appropriate question can be created, there is
concern that the evidence evaluation score may be
unfairly high. Therefore, as shown in Figure 3,
we used only the QA pair for the Top 1 answer,
leaving the Question field empty for the Top 2 and
Top 3 answers, and including them as evidence. In
competitions using this dataset, participants can
use up to 10 QA pairs. By following this limitation,
we select the Top 3 answer sentence. This approach
allowed for a fair evaluation of the AVeriTeC Score.
The prompt given to GPT-4o in this case is shown
in Figure 2(c). The judgment results are shown in
the third row of Table 4, where both the Evidence
score and judgment score improved by considering
more Evidence.

Based on these results on validation dataset, the
final form of the system was determined to involve
searching based on RAG-Fusion, including three
candidate answers in the questions, and making
the final judgment using GPT-4o. The scores on
the test data were Q 0.3774, Q+A 0.2851, and
AVeriTeC Score 0.3865, with a rank of 8 on the
leader-board.

4 Error Analysis

Figure 4(a)(b) shows the confusion matrix when
the correct data or retrieved data using a RAG-

Fusion-based search is provided. It can be seen
that when the correct label is “NEE (Not Enough
Evidence)” or “Conflict”, there is a tendency to
predict it as “Refuted”. This is likely due to the
instruction included in the prompt: “If there is
even the slightest possibility that it is incorrect,
output ’Refuted’.” However, in Fact-checking, to
accurately predict “Refuted” claims as Refuted is
the most important. Since it is crucial not to provide
the user with incorrect information, it is undesirable
to remove this instruction from the prompt.

Figure 4(c) shows the confusion matrix when
this instruction is removed and the correct evidence
is provided, revealing an increased risk of failing to
detect Refuted claims, even when the information
is complete.

To address this, adopting the concept of Cor-
rective Retrieval Augmented Generation (CRAG)
(Yan et al., 2024) could be considered for “NEE”.
In CRAG, a new module is introduced to determine
whether the retrieved document is necessary or not.
If we incorporate the module into our system, we
could first determine whether the information is
enough or not. If the information is not enough,
the system would classify it as “NEE”. If the in-
formation is enough, the system would proceed to
classify the remaining three classes using the simi-
lar prompt as in 2(d). By adopting this new mod-
ule, we will be able to improve the performance of
“NEE”.

As a test, using GPT-4o, we performed a two-
class classification—whether the information was
complete—using the prompt from Figure 2(e) with
the correct data provided. In this task, “Supported”,
“Refuted”, and “Conflict” were considered as hav-
ing complete information, while “NEE” was con-
sidered as lacking information. The accuracy rates
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were 90% for “Supported”, 86% for “Refuted”,
60% for “NEE”, and 78% for “Conflict”. There-
fore, further prompt improvements are needed to
adapt GPT-4o to this two-stage approach. Fine-
tuning BERT should also be considered.

The “Conflict” class is difficult to render a ver-
dict on, so further improvements will be necessary.

5 Another Approach

In this section, we will introduce a classification ap-
proach that we experimented with but did not yield
satisfactory results. Although the performance did
not exceed that of GPT-4o’s 4-class classification,
we will present it here in the hope that it may con-
tribute to future efforts by other participants.

We considered fine-tuning BERT as the final
classifier for 4-class classification. However, the
dataset exhibits a bias in the classification labels
(in the training data: “Supported” 27.6%, “Refuted”
56.8%, “Not Enough Evidence (NEE)” 6.4%,
“Conflicting Evidence/Cherry-picking” 9.2%). In
particular, the “NEE” and “Conflict” labels are un-
derrepresented. To address this, we devised two
separate classifiers: one for “Supported” and an-
other for “Refuted”. These classifiers perform bi-
nary classification, with the Supported classifier
determining whether a claim is “Supported” or not,
and the “Refuted” classifier determining whether
a claim is “Refuted” or not. The final prediction
label for the claim is then determined based on the
results of these classifiers.

If the Supported classifier predicts True and the
Refuted classifier predicts False, the final predic-
tion is “Supported”. Conversely, if the Supported
classifier predicts False and the Refuted classifier
predicts True, the final decision is “Refuted”. If
both classifiers predict False, the decision is “NEE”,
and if both predict True, it is “Conflict”. This ap-
proach can mitigate the issue of label imbalance.
For example, in the Supported classifier, claims that
are annotated as “Supported” are used as positive
examples, while “Refuted” and “NEE” claims are
used as negative examples. This allows for similar
treatment of “Refuted” and “NEE” labels.

We fine-tuned bert-base-uncased5 for both a 4-
class classifier and the combined two-classifier ap-
proach (batch size=32, learning rate=1e-5, with
the training data split 9:1 and used for fine-tuning).
The label accuracy on the validation data, when

5https://huggingface.co/google-bert/
bert-base-uncased

provided with correct evidence, was 0.536 for the
4-class classifier and 0.60 for the combined two-
classifier approach. These results indicate that
combining the two classifiers yields higher accu-
racy. However, as shown in the fourth row of Table
4, simply using GPT-4o for 4-class classification
achieves a sufficiently high accuracy of 0.858, so
this approach was not adopted for our system. We
also conducted experiments where GPT-4o was
assigned the task of the two classifiers, but the Re-
futed classifier did not perform well. We believe the
issue arises because the difference between being
“Refuted” and lacking the evidence to determine if
it is “Refuted” has become unclear.

6 Conclusion

This paper discusses a method for solving the
AVeriTeC Task. The proposed system, inspired
by RAG Fusion, pre-generates questions for infor-
mation retrieval. This approach allows for a greater
amount of information to be used in searches com-
pared to using only the claims. The Label Accuracy
and AVeriTec Score showed that pre-generating
questions resulted in higher accuracy.

Proposing an evaluation metric that can con-
sider information beyond the currently accepted ev-
idence when making judgments may lead to more
appropriate progress in future research and devel-
opment. Given the rapid advancement of LLMs,
there is also a need to conduct research on adopting
LLMs for the evaluation of evidence validity.

Limitation

In this system, the search for answers to questions
is conducted using embedding vectors. This ap-
proach carries the risk of reducing the validity of
the Question-Answer pairs compared to the method
where the relevant sentences are searched first and
the question is generated afterward. However, as
shown in Table 4 of the current dataset, the ap-
proach of generating the question first and then
searching for the answer yields higher accuracy,
indicating that the validity of the Question-Answer
pairs has not been compromised. Nonetheless,
when the search for answers is more challenging,
such as in highly specialized domains like medicine
or biology, it is necessary to carefully verify the
validity of the QA pairs.

While the current system primarily uses GPT-4o,
further experiments with other models are neces-
sary to verify its generalizability.
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Abstract
This paper presents UHH’s approach developed
for the AVeriTeC shared task. The goal of the
challenge is to verify given real-world claims
with evidences from the Web. In this shared
task, we investigate a Retrieval-Augmented
Generation (RAG) model, which mainly con-
tains retrieval, generation, and augmentation
components. We start with the selection of
the top 10k evidences via BM25 scores, and
continue with two approaches to retrieve the
most similar evidences: (1) to retrieve top 10
evidences through vector similarity, generate
questions for them, and rerank them or (2) to
generate questions for the claim and retrieve the
most similar evidence, again, through vector
similarity. After retrieving the top evidences,
a Large Language Model (LLM) is prompted
using the claim along with either all evidences
or individual evidence to predict the label. Our
system submission, UHH, using the first ap-
proach and individual evidence prompts, ranks
6th out of 23 systems.

1 Introduction

Fact-checking is a process to (automatically) as-
sess the truthfulness of a claim, which is an im-
portant task for some domains, e.g. journalism
(Guo et al., 2022; Thorne et al., 2018; Thorne and
Vlachos, 2018; Vlachos and Riedel, 2014). The
AVeriTeC shared task1(Schlichtkrull et al., 2023)
aims at dealing with the challenge of verifying real-
world claims with pieces of evidence from the Web,
as shown in Figure 1.

Recently, Retrieval-Augmented Generation
(RAG) provides a remedy for some issues of Large
Language Models (LLMs), e.g. hallucination,
while increasing the performance of especially
knowledge-intensive tasks, including fact-checking
(Gao et al., 2024). Motivated by this, we investi-
gate how to effectively leverage such a method in
this shared task.

1https://fever.ai/task.html

Real-world Claim
Evidences from the Web

1) NEW DELHI: India's imports from China decline
d by 27.63 per cent during April-August ...

2) Value of imports from China stood at $4.98 billio
n in August ...
...
n) During the first half of September, exports have 
recorded a growth ...
...

India’s imports from China increased by
 27% in April-August 2020

Label
Refuted

Figure 1: An example claim and several example evi-
dences for this claim provided by organizers.

Our submission’s pipeline is as follows; evi-
dences (in the form of short texts like sentences2)
per claim provided by task organizers are ranked
using BM25 (Robertson and Zaragoza, 2009) and
the top 10k evidences are selected. For retrieving
the most relevant evidences, we consider two ap-
proaches: (1) Retrieve-Question: retrieving the
most similar 10 evidences using vector similar-
ity and generating questions for these evidences.
Then, evidences are reranked again based on vector
similarity with evidences in the form of question-
answer.; (2) Question-Retrieve: generating ques-
tions for a claim, inspired from Chen et al. (2022),
where they see an improvement for the retrieval
with decomposed questions. We retrieve the single-
best evidence per a question using vector similar-
ity. The two approaches perform competitively in
the development set. In the last step, we prompt
LLM with the retrieved evidences to predict the
label. We experiment to prompt with either all
evidences or one evidence at a time. In our ex-
periments, prompting with individual evidence can
reach higher scores. Note that our pipeline resem-
bles the steps conducted in the organizer’s base-
line (Schlichtkrull et al., 2023), especially in the
Retrieve-Question approach, for more details see
Section 4.

The contributions of this paper as follows:

• We investigate the use of RAG in the fact-
2Thus, we use evidence and sentence, interchangeably.
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Retrieve 
top 10 

evidences 
via vector
similarity

Generate 3 
Questions
for given 

claim 

Generate 
Questions
for these 
evidences

Retrieve
top 

evidence
 via vector
similarity

Re-rank 
via vector
similarity

LLM

Approach-1: Retrieve - Question

Approach-2: Question - Retrieve

Supported 
Refuted
Not Enough Evidence
Conflicting Evidence/Cherry-Picking

SentencesSentences
Evidences
for Claim

Claim
   Select top 10k

evidences 
via BM25 

Figure 2: Inputs are the claim and evidences for this claim provided by task organizers. Top 10k evidences are
selected with BM25 scores. Top question-sentence pairs are retrieved with Approach-1 (Retrieve-Question) or
Approach-2 (Question-Retrieve). An output label is generated with LLM, prompted with either all pairs or individual
pair.

checking task with real-world claims and evi-
dences from the Web.

• We increase the baseline AVeriTeC score by
more than three times, from 0.11 to 0.45, rank-
ing 6th among 23 systems.

Considering the fact that our method is highly
similar to the baseline, we also provide a list of
main differences and/or improvements:

• We use top-10 evidences instead of top-3;

• We select 10K sentences with BM25 instead
of 100 in baseline;

• Our Approach 2 is different than their
pipeline;

• For veracity prediction, we rely on RAG-
based predictions, i.e. incorporate evidence(s)
into the prompt, while they use a finetuned
BERT-large model.

Our code3 is publicly available. The remainder
of the paper is structured as follows. We continue
with the background, and then the methodology
is explained in detail. In subsequent sections, we
present the experimental setup and discuss the re-
sults. And finally, conclusions, future work, and
limitations are discussed.

2 Background

Retrieval-Augmented Generation LLMs have
shown good performance on many tasks with their
emergent abilities, e.g. in-context learning (Zhao
et al., 2023). Yet, they still have some issues, e.g.

3https://github.com/uhh-hcds/UHH-at-AVeriTeC

hallucination. To resolve such issues, RAG inte-
grates external information into LLMs (Fan et al.,
2024; Gao et al., 2024; Li et al., 2024). Recently,
many techniques have been developed for RAG in
many aspects, for example, RaLLe (Hoshi et al.,
2023) provides a framework for the evaluation of
RAG approaches. Additionally, RAG has been ap-
plied to many tasks, e.g. question answering, fact
checking, etc. We refer the readers to surveys, e.g.
by Fan et al. (2024); Gao et al. (2024), for more
information.

Fact-Checking It is a challenging task to auto-
mate a fact-checking process (Guo et al., 2022;
Thorne and Vlachos, 2018), with different is-
sues, for example, Chen et al. (2022) discuss the
challenges of complex political claims. Many
datasets have been developed for this task, e.g.
the FEVER (Thorne et al., 2018) dataset from
Wikipedia sources. In the AVeriTeC shared task,
the dataset contains real-world claims, as shown in
Figure 1, annotated with question-answer pairs.

3 Methodology

Overview The pipeline used in our solution is
shown in Figure 2. Evidences per claim provided
by task organizers are first ranked using BM25
(Robertson and Zaragoza, 2009). The highest-
ranked 10k evidences to an input claim are selected.
We have experimented two approaches to select the
most similar evidences: (1) retrieving top 10 ev-
idences first and then generating questions from
evidences (Retrieve-Question), or (2) generating
questions for a claim and retrieving the most similar
evidence per question (Question-Retrieve). After
the most similar evidences to a claim are retrieved,
they are used to prompt LLM together with a claim.
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From the sentence below, please
formulate 1 question that could be
answered with this question. This
question and answer should help to do
the fact checking for the claim that
is also given. Which question would be
asked to get this asnwer given that we
need to know whether the claim is true?
Examples:
claim: ...
answer: ...
question: ...
...

Figure 3: Prompt for Retrieve-Question Approach

Based on an LLM response, one of the labels,
Supported, Refuted, Not Enough Evidence,
Conflicting Evidence/Cherrypicking, is as-
signed.

3.1 Selecting Evidences via BM25

The task organizers provide a document collection
in the form of short text for each claim. First, we
make all sentences unique by keeping url refer-
ences, to reduce the computation time and keep
provenance. We apply BM25 to rank these evi-
dences per claim. Then, the top 10K closest evi-
dences to a given claim are selected.

3.2 Approach-1: Retrieve-Question

In this approach, vector representations for a claim
and 10k sentences are created. Vector similarities
between each sentence and claim are computed.
The most similar 10 sentences to a claim are re-
trieved. Next, we generate a question using LLM
for each of these top 10 sentences with the prompt,
which is shown in Figure 3.

The vector representations for question + an-
swer and claim are created. Evidences are reranked
based on similarity of claim and each evidence in
the form of question and answer. We experiment
with {3,5,7,10} evidences for the next step.

3.3 Approach-2: Question-Retrieve

First, 3 questions are generated for each claim us-
ing the prompt in Figure 4. For each question, the
most similar sentence is selected using the simi-
larity between vectors of 10K sentences and the
question and claim vector.

From the sentence below, please
formulate up to 3 questions to help
to do the fact-checking. What do we
need to know to check whether the
claim is true? "Decompose" the claim
into subquestions. Generate as few
questions as possible.
Example:
claim: ...
questions: ...
...

Figure 4: Prompt for Question-Retrieve Approach

3.4 LLM Strategies
In the typical RAG (Gao et al., 2024), all selected
documents and claims are combined into a prompt.
We experiment two ways, either as in the common
RAG or to utilize one retrieved document at a time
and then based on individual predictions, assign
one label, inspired from the baseline (Schlichtkrull
et al., 2023). The prompt4 that we use in our exper-
iments for the first alternative is shown in Figure 5.

<s>[INST]
Classify the claim into “Supported”,
“Refuted”, “Not Enough Evidence”, or
“Conflicting Evidence/Cherrypicking"
based on list of evidences.
No Explanation, No Note! Your respond
should be in JSON format containing
ˋ“label”ˋ key-value pair without any
further information. For instance,
ˋˋˋjson
{
“label”: “Supported”
}
ˋˋˋ
User Claim: ...
Evidences: [...]
Class: [/INST]

Figure 5: Prompt for a label with all evidences

The prompt for the second option also includes
a prediction of a score, as shown in Figure 6.
The score prediction is only used to assign a la-
bel Not Enough Evidence. If LLM has no pre-

4We use as a reference: https://www.pinecone.io/
learn/mixtral-8x7b/
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diction of Refuted or Supported (or it generates
something different or more), and the score is
smaller than or equal to 0.5, then Not Enough
Evidence is assigned. Therefore, a smaller score
is used for the Not Enough Evidence label. We
have two strategies to assign a final label from
individual evidence labels. In the first one, sim-
ilar to the baseline, if all labels from evidences
are the same, this label is assigned, otherwise
Conflicting Evidence/Cherrypicking. In the
other one, again if there is only one label, the
predicted label will be assigned; if there are
only two different labels from evidences, then the
majority is assigned. Otherwise, Conflicting
Evidence/Cherrypicking is assigned.

LLM might generate different texts than only the
label output, in these cases, we assign Refuted, as
it is the most common label in the training set5.

4 Experimental Setup

4.1 Data, Evaluation, and Baseline

Data The task organizers provide real-world
claim files for training, development, and testing
that contain 3068, 500, 2215 samples, respectively.
They also provide document collections for each
claim from the Web, and we leverage these given
document collections.

Evaluation Evaluation is done by organizers and
based on the agreement between predicted evi-
dences and gold ones with the scoring function of
METEOR (Banerjee and Lavie, 2005), computing
for question-only pairs (Q) or question and answer
pairs (Q+A). If this evidence score is higher than a
cutoff value of 0.25, then veracity predictions are
evaluated, referred to as Veracity@25 or AVeriTeC
score, in this paper. For more information, we refer
to the paper by Schlichtkrull et al. (2023).

Baseline The pipeline in the baseline, provided
by organizers, starts with collecting evidences from
the Web by searching via Google Search API
for each claim. Our Retrieve-Question approach
pipeline is similar to their pipeline. For example,
the next step in the AVeriTeC approach is to filter
top 100 sentences using BM25, and then to gen-
erate a question for each sentence using BLOOM
(Workshop et al., 2023). The question-answer pairs

5For the best model with unique sentences (with veracity
score, 0.40) in Table 1, we assigned Refuted for 1573 evi-
dences over 5000 evidences, while for test submission 6767
over 22150 evidences were assigned Refuted.

<s>[INST]
Classify the claim into “Supported” or
“Refuted” based on list of evidences.
Produce a score for the class label.
No Explanation, No Note! Your respond
should be in JSON format containing
ˋ“label”ˋ key-value pair without any
further information. For instance,
ˋˋˋjson
{
“label”: “Supported”
“score”: 0.7
}
ˋˋˋ
User Claim: ...
Evidence: ...
Class: [/INST]

Figure 6: Prompt for a label with individual evidence

are reranked with a fine-tuned BERT-large model
(Devlin et al., 2019). The number of top evidences
and models differ in our experiments. For final
step of the veracity prediction, AVeriTeC leverages
a fine-tuned BERT-large model for an individual
question-answer pair prediction with a label of sup-
porting, refuting, or irrelevant. If all labels are
Supported or Refuted, the respective one is as-
signed, else if there are both labels, Conflicting
Evidence/CherryPicking is assigned. If no label
is assigned based on these two conditions, then Not
Enough Evidence is assigned. Our LLM strategy
with individual prompt (Figure 6) along with the
first strategy is similar to their veracity prediction.

4.2 Implementation Details

For the computation of vectors, we use the model
Alibaba-NLP/gte-base-en-v1.56 (Li et al.,
2023; Zhang et al., 2024), which is avail-
able in Hugging Face (Wolf et al., 2020),
using sentence-transformers (Reimers and
Gurevych, 2019). We choose this model from Hug-
ging Face’s MTEB leaderboard7 by using the “Re-
trieval” task and the “FEVER” data, as we consider
this task and data are relevant to the shared task.
This model was ranked 2nd in the leaderboard8;

6https://huggingface.co/Alibaba-NLP/
gte-base-en-v1.5

7https://huggingface.co/spaces/mteb/
leaderboard

8checked on a date - 08.07.2024
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LLM Retrieval
Approach

LLM
prompt top-n unique

sentences Q Q+A Veracity@0.25

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Question-Retrieve 1 3 ✔ 0.37 0.24 0.19

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 1 3 ✔ 0.40 0.24 0.19

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 1 5 ✔ 0.44 0.27 0.23

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 1 7 ✔ 0.46 0.28 0.27

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 1 10 ✔ 0.48 0.30 0.30

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 2-1 10 ✔ 0.48 0.30 0.19

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 2-2 10 ✔ 0.48 0.30 0.40

Mixtral-8x7B-Instruct-v0.1
(quantized 4bit)

Retrieve-Question 2-2 10 ✘ 0.49 0.31 0.42

Meta-Llama-3.1-8B-Instruct
(quantized 4bit)

Retrieve-Question 2-2 10 ✔ 0.48 0.30 0.26

GPT-4o-mini Retrieve-Question 2-2 10 ✔ 0.48 0.30 0.38

Baseline 0.24 0.19 0.09

Table 1: Results of different approaches on the development for Q, Q+A, Veracity@0.25 scores are shown. Baseline
is provided by task organizers. LLM: name of LLM model, used in the generation step. Retrieval Approach:
either Retrieve-Question (first retrieve sentences with vector similarity, generate questions for sentences, and rerank
with vector similarity, including questions) or Question-Retrieve (generate questions for a claim and retrieve a
sentence based on vector similarity, including questions). LLM prompt: either all evidences at once (1) or one
by one (2) - (2-1, 2-2) used strategy 1 or 2 for a final label assignment. top-n: number of evidences used for the
prompt. unique sentence: either to make sentences unique before BM25 or not.

however, we preferred it over the first-ranked model
due to a lower dimension size of 768.

For question generation, we experiment with
GPT-4o-mini LLM from OpenAI. For the LLM in
the generation step, we have experimented with
mistralai/Mixtral-8x7B-Instruct-v0.1,
Meta-Llama-3.1-8B-Instruct9 with 4-bit
quantized, also available in Hugging Face and
GPT-4o-mini. For BM25, we use the rank-25
library10, as used in the baseline system, and we
use the NLTK library (Bird et al., 2009) to tokenize
claims and evidences.

5 Results

We report Q, Q+A, and Veracity@0.25 scores in
Table 1, for the development set. According to the
results, the veracity scores for Question-Retrieve

9https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-v0.1, https://
huggingface.co/meta-llama/Llama-3.1-8B-Instruct
with pipeline parameters top_k=50 and repeti-
tion_penalty=1.204819277108434 by referencing Hoshi et al.
(2023), and do_sample=False and max_new_tokens=32

10https://pypi.org/project/rank-bm25/

and Retrieve-Question for the top 3 are the same,
however, we continue with Retrieve-Question
since the Q score is slightly higher. Although
the difference is not that much, we continue with
the higher one. Leveraging the top 10 evidences
reaches best among top {3, 5, 7, 10} evidences.
Prompting LLM with all evidences (LLM prompt
1 – Figure 5), is better than prompting individually
with labeling strategy 1 (LLM prompt 2-1 – Figure
6), however, strategy - 2 (LLM prompt 2-2 – Figure
6) reaches higher score. As explained in Section
3.1, we make sentences unique to reduce the com-
putation time, yet for the development set we have
also experimented without applying this, as marked
with a cross in the “unique sentence” field in Table
1 and observed an improvement. However, since
the number of evidences is larger in the test set, we
rather prefer to compute with unique sentences for
efficiency. We also experiment with two different
LLMs, namely Meta-Llama-3.1-8B-Instruct
and GPT-4o-mini with the same prompt,
the latter one is competitive with the
Mixtral-8x7B-Instruct-v0.1.
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Figure 7: The frequencies of the predicted labels for different model configurations and gold labels on the
development set are shown. Q-R/R-Q: Question-Retrieve or Retrieve-Question approach. Other configurations are
the same as in Table 1.

Rank Participant Team Q Q+A AVeriTeC

1 TUDA_MAI 0.45 0.34 0.63
2 HUMANE 0.48 0.35 0.57
3 CTU AIC 0.46 0.32 0.50
4 Dunamu-ml 0.49 0.35 0.50
5 Papelo 0.44 0.30 0.48
6 UHH 0.48 0.32 0.45

20 Baseline 0.24 0.20 0.11

Table 2: Results of baseline and models ranked above our system, UHH, on the test computed and provided by task
organizers for Q, Q+A, AVeriTeC scores are displayed.

Table 2 shows the test set results provided by
task organizers. We display the systems results that
ranked above us and the baseline scores, however
in total there are 23 results in the leaderboard11.
Our approach improves the baseline score and is
ranked 6th. Our Q score is in the top 3 and the
AVeriTeC score is more than quadrupled as com-
pared to baseline.

11https://eval.ai/web/challenges/
challenge-page/2285/leaderboard/5655

5.1 Analysis

To analyze the results, we first built a class distribu-
tion of the predicted results with all our approaches
and compared them with the gold standard label
distribution. From Figure 7, we can see that the
Refuted class has the highest frequency, making it
the most common label. In contrast, all models tend
to predict Supported or Not Enough Evidence
labels more frequently than Refuted, leading to
a significant mismatch between the models’ pre-
dictions and the gold standard. For Conflicting
Evidence/Cherrypicking, all models predict it
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Claim ID -
Claim

Individual
Predictions Evidences Final

Prediction Gold Label

217 -
Nigeria’s current

population exceeds 200
million.

Refuted
Q: What is Nigeria’s current estimated population?

A: With a population of roughly 200 million people, Nigeria’s

Supported Supported

Supported
Q: What is the current population estimate for Nigeria?

A: Nigeria’s population is projected to reach 262.9 and 401.3 million people in 2030 and 2050, respectively.

Refuted
Q: What is the current estimated population of Nigeria?

A: The population of Nigeria is currently estimated at 198 million, with an annual

Supported
Q: What is Nigeria’s estimated population in comparison to 200 million?

A: With over 220 million people, Nigeria is the most populated country in Africa
and the sixth in the world.

Refuted
Q: What is the estimated population of Nigeria?

A: Nigeria has a population of 180 million people (seventh largest
in the world) and an economy worth more than $500 billion (21st in the world).

Refuted
Q: Is Nigeria currently the most populous country in Africa?

A: Nigeria is the most populous country in Africa and the eighth most populous
country in the world, with approximately 162 million people.

Supported
Q: What was Nigeria’s population in 2021?

A: - The population of Nigeria in 2021 was 213,401,323, a 2.44% increase from 2020.

Supported
Q: What was Nigeria’s population in 2022?

A: - The population of Nigeria in 2022 was 218,541,212, a 2.41% increase from 2021.

Supported
Q: What was Nigeria’s population in 2020?

A: Nigeria had a population of 206.14 million people (2020) with an annual
population growth rate of 2.5%.

Supported
Q: What was Nigeria’s population as of 2008?

A: Nigeria is a West African country with about 152 million people (as of 2008). It is by far

327 -
Carlos Gimenez

approved a 67% pay
raise for himself and

increased his
own pension.

Refuted
Q: Did Carlos Gimenez approve a pay raise for himself?

A: The amount of money that employees are voluntarily putting into their own pension
funds has more than doubled and 70% of employees say they’ve paid off debt.

Refuted Supported

Refuted
Q: Did Carlos Gimenez approve a pay raise for himself and increase his pension?

A: to accrue benefits under the defined benefit pension arrangements, net
of his own contributions.

Refuted
Q: What changes did Carlos Gimenez make to his pay and pension?
A: subsequently increased the monthly pension rate above what had

Refuted
Q: Did Carlos Gimenez approve a pay raise for himself and increase his pension?

A: Gimenez gets a pension of about $120,000 a year from the city of Miami,
and has caught heat from labor for opposing the salary hikes for county employees.

Refuted
Q: What changes to retirement age and pension plans were approved under Carlos Gimenez?

A: retirement age will gradually increase to 67 by the year 2027, and

Refuted
Q: What was Carlos Gimenez’s salary before the pay raise?

A: By jacking his own salary up $100,000 for the last two years to $250,000,
he significantly improves that average.

Refuted
Q: What significant changes did Carlos Gimenez implement regarding pay

and pensions upon taking office?
A: huge boost when Carlos Gimenez came into the office

Supported
Q: What percentage of pay increase did Carlos Gimenez approve for himself?

A: Read related: Termed out Mayor Carlos Gimenez gives self undeserved 70% pay raise

Supported
Q: Did Carlos Gimenez authorize a pay raise for himself while making budget cuts in Miami-Dade?

A: In his time in office, Giménez gave himself a 67% pay raise, and kept a taxpayer funded
Mercedes while cutting $400 million in Miami-Dade jobs and investment.

Refuted
Q: What actions did Carlos Gimenez take regarding pay raises and pensions during his tenure as mayor?

A: Remember, former Mayor Carlos Alvarez gave big raises to his inner circle also before he
was recalled so that Gimenez — or Carlos II, as some have taken to call him — could be elected.

421 -
The CDC

recommended wearing
only certain beard

styles to help
prevent the spread
of coronoavirus.

Supported
Q: Did the CDC recommend wearing only certain

beard styles to help prevent the spread of coronavirus?
A: The CDC recommends shaving beards to protect against the virus

Refuted Refuted

Refuted
Q: What does the CDC say about beard styles in relation to preventing the spread of coronavirus?

A: The CDC did not, and does not, recommend that men shave their beards to protect
against the SARS-CoV-2 virus.

Refuted

Q: What does the CDC recommend regarding beard styles in relation to preventing
the spread of coronavirus?

A: To recap, CDC beard advice is not to shave your beard. Coronavirus prevention is best done by
washing your hands and practicing social distancing while wearing a cloth face covering.

Refuted
Q: Did the CDC recommend specific beard styles for preventing the spread of coronavirus?

A: It’s advice about which beards block respirators.
The CDC has not said anything about shaving beards for this Coronavirus.

Refuted
Q: Is the CDC recommending specific beard styles to prevent the spread of coronavirus?

A: And while facial hair could interfere with respirator masks,
the CDC has not recommended people shave their beards to ward off the virus.

Refuted
Q: What does the CDC say about beard styles and their impact on preventing the spread of coronavirus?
A: A headline claims that the CDC recommends men shave their beards to protect against coronavirus.

Refuted

Q: Did the CDC issue guidelines regarding facial hair styles for preventing the spread of coronavirus?
A: Social media users sharing a CDC infographic showing various styles of

facial hair have suggested that the agency is instructing people
to shave beards and mustaches to prevent the coronavirus.

Refuted

Q: What does the CDC say about facial hair styles in relation to the use of respirators?
A: While the Centers for Disease Control and Prevention (CDC) recommends against

certain facial hair stylings for workers who wear tight-fitting respirators, it has not recommended
shaving as a precaution to prevent COVID-19.

Refuted

Q: What guidelines has the CDC provided regarding personal hygiene related to the spread of coronavirus?
A: The CDC has touted basic personal hygiene like avoiding touching

your face and washing your hands since the coronavirus outbreak started, and
the same type of cleanliness can be applied to beards.

Supported
Q: What does the CDC recommend regarding beard styles for effective mask use?

A: The CDC says to shave your beard into one of a few acceptable
styles so you can ensure a snug fit for a mask, if needed.

Table 3: Some examples on the development set, where we leverage the majority choices based on Retrieve-Question
approach along with LLM 2-2, top-10 evidences from unique sentences, and with Mixtral model.
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less frequently, aligning with its lower occurrence
in the gold standard but still under-predicting it
relative to the gold standard’s distribution.

Our major concern of the pipeline is “majority
voting”. One of the hypothesis is that many of the
lower-level evidences are unrelated to the claim,
making it easier for the LLM to determine that this
claim is Refuted. In this case, majority voting is
also likely to be Refuted. To check this, we man-
ually analyze some samples with a majority and
demonstrate the examples of different cases in Ta-
ble 3. For example, the claim “Nigeria’s current
population exceeds 200 million” has Refuted label
predictions at the top of the list, however, due to
the majority vote, the correct label Supported is
selected. If we counted only top 5 evidence into
account, the final answer could be either Refuted
(majority vote) or Conflicting (both labels are
presented, no evident winner). Regarding the sec-
ond example, we can see that the claim was refuted
due to the majority of the retrieved evidence be-
ing classified as refuted. However, the majority
vote in this case led to an incorrect classification.
Regarding the third example, we can see the ma-
jority class Refuted is coherent with the correct
answer, even though the top 1 evidence is classified
as Supported.

From these examples, we can see that the higher-
ranked evidences’ labels are not coherent with
the golden labels always, the top-10 retrieved ev-
idences provide either correct or incorrect labels
regardless the lower-ranked arguments.

6 Conclusion

We have described our UHH system that is submit-
ted to the AVeriTeC shared task. We have explored
the use of RAG in this task and have used different
LLMs in different steps, with a different number of
evidences - top {3, 5, 7, 10}. Top 10 evidences us-
ing Mixtral-8x7B-Instruct-v0.1 (quantized 4-
bit) model by prompting individual evidence (strat-
egy 2-2) in the Retrieve-Question approach are
ranked 6th in the shared task. In future work, we
would like to investigate using a vector database.
We have used the evidences as provided by organiz-
ers, and we also plan to experiment with different
granularity of texts from these evidences.

Limitations

For the creation of unique sentences before BM25
ranking, we used the “set” operation that might

change the order of sentences and this might af-
fect the reproducibility regarding the same order
of sentences. Additionally, we leverage LLMs,
and it could produce different responses every time
that might affect the results if reproducing the ap-
proach from scratch. However, we have saved the
predictions that are used for the task submission.
Thus, these predictions can be used to reproduce
the results. It is important to note that the compu-
tation time for the LLM when predicting a label
using strategy 2 is longer than that for strategy 1,
as strategy 2 involves prompting individually for
each piece of evidence.
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Abstract
The AVeriTeC shared task introduces a new
real-word claim verification dataset, where a
system is tasked to verify a real-world claim
based on the evidence found in the internet. In
this paper, we proposed a claim verification
pipeline called QECV which consists of two
modules, Evidence Retrieval and Claim Veri-
fication. Our pipeline collects pairs of <Ques-
tion, Answer> as the evidence. Recognizing
the pivotal role of question quality in the ev-
idence efficacy, we proposed question enrich-
ment to enhance the retrieved evidence. Specif-
ically, we adopt three different Question Gen-
eration (QG) technique, muti-hop, single-hop,
and Fact-checker style. For the claim verifica-
tion module, we integrate an ensemble of mul-
tiple state-of-the-art LLM to enhance its robust-
ness. Experiments show that QECV achieves
0.41, 0.29, and 0.42 on Q, Q+A, and AVeriTeC
scores. Code is available here.

1 Introduction

Claim Verification has become critical in the past
few years due to the widespread of false informa-
tion. This highlight the needs for robust automated
system for claim verification. To advance the re-
search area, benchmark datasets and challenges
such as FEVER (Thorne et al., 2018) and FEVER-
OUS (Aly et al., 2021) have been introduced and
subsequent systems (Zhou et al., 2019; Liu et al.,
2020; Zhong et al., 2020; Barik et al., 2022; Chen
et al., 2022; Bouziane et al., 2021; Gi et al., 2021)
have demonstrated progress in claim verification.
Nevertheless, given the artificial claims and struc-
tured Wikipedia evidence in FEVER and FEVER-
OUS, those systems have been optimized primarily
under this condition. Verifying real-world claim
such as news claim still poses a significant chal-
lenge due to the complexity of sources, varying
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contexts, and the potential for misleading or evolv-
ing information.

Recently, a new claim verification benchmark
on real-world called AVeriTeC (Schlichtkrull et al.,
2024) was introduced. In this benchmark, the sys-
tem is required to retrieve relevant document from
articles across the internet and extract essential in-
formation from the articles that can debunk the
claim. Then, the system must classify the claim
as Supported, Refuted, Not Enough Evidence, or
Conflicting Evidence/Cherrypicking.

Compare with previous datasets that relies on
synthetic claims derived from Wikipedia, AVeriTeC
focused on real-world claims. Additionally,
question-answer pairs have been introduced to cap-
ture reasoning steps and include annotations for
conflicting evidences, offering a more nuanced ap-
proach to claim verification.

In this dataset, question generation is a struc-
tured process aimed at deconstructing the reason-
ing used in fact-checking. Annotators identify key
aspects of a claim that require verification by read-
ing original claim, relevant fact-checking source(s)
and original source of the claim. They have been
tasked to generate questions that would help break
verification into the smaller steps. These questions
need to be designed to extract specific pieces of
evidences that would be required to verify claim.

In this paper, we propose Question Enrichment
Claim Verification (QECV) consisting of 2 mod-
ules, Evidence Retrieval and Claim Verification.
To enhance the quality of the retrieved evidence,
we adopt three different question generation ap-
proaches; multi-hop, single-hop, and fact-checker
style. Single-hop aims to retrieve more general evi-
dence to verify the claim, while multi-hop targets
more detailed evidence for each component of the
claim. Fact-checker style mimic how human fact-
checker generate questions by conditioning on both
the claim and the content article. In contrast, single-
hop and multi-hop solely rely on the claim for
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question generation. Our claim verification mod-
ule combine two different approaches: evidence-
level verifier and claim-level verifier. The former
classify intermediate label to individual piece of
evidence, which are subsequently aggregated to
determine the claim label. Conversely, the latter
directly classifies the claim label based from all
the retrieved evidence. To leverage the strength
of each approach, we employ a voting-based en-
semble model to aggregate the output and obtain
the final label. Our pipeline achieves 0.41, 0.29,
and 0.42 on Q, Q+A, and AVeriTeC scores respec-
tively, which outperforms the baseline model with
a substantial margin.

2 Pipeline

As shown in Figure 1, our pipeline consists of two
modules: Evidence Retrieval and Claim Verifica-
tion. The input claim first passes through our three
variants of evidence retrieval to retrieve relevant
pairs of <Question, Answer>. Each variant gener-
ate questions from the claim and retrieve relevant
articles through Faiss: a library for efficient simi-
larity search (Douze et al., 2024). Then, it outputs
list of <Question, Answer> which later combined
to become the retrieved evidence. Thereafter, the
claim sentence and the retrieved evidence are fed
to the claim verification module to predict the final
label. The detail of each module will be elaborated
in subsequent subsections.

2.1 Evidence Retrieval
The evidence retrieval module processes a claim
sentence through a sequential of sub-modules to
extract relevant pairs of <Question, Answer> evi-
dence.

2.1.1 Question Generation
Crafting effective questions is crucial in the ques-
tion generation process, especially for claim veri-
fication. The quality of the questions can signifi-
cantly influence the verification outcome, guiding
it towards uncovering the truth or leading to ambi-
guity. Therefore, we place great importance on de-
signing these questions carefully. Specifically, we
propose three different question generation strate-
gies: multi-hop, claim as a question, and FC-style
question generation.

Multi-hop Question Generation Following
QACheck methodologies (Pan et al., 2023), we
employ two different question types in this strategy,
initial question and follow-up question. The initial

Figure 1: QECV Pipeline

question serves as the starting point for verification.
Here is the prompt structure for generating initial
question:

Claim = CLAIM

What kind of question need to be
asked to start fact checking
process?

Follow-up questions build on the initial question
and any previous responses to further validate the
claim. Here is the prompt structure for generating
follow-up questions:

Claim = CLAIM

We already know the following:

CONTEXT = Prev. QA Pairs

Given a claim and previous
questions, what follow-up
question need to be asked to
verify the claim?

Claim as Question Generation Unlike the
multi-hop question, this strategy leverages the en-
tire claim as a question to better grasp the overall
context and nuances of the claim. Specifically, a
question "Is it true that CLAIM?" is manually con-
structed and subsequently paraphrased using Ope-
nAI’s GPT4o.
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Fact-checker Style Question Generation
After manually reviewing the questions gener-

ated by annotators, we discovered that most of
these questions are more sophisticated than those
based solely on the claim. Generating such sophis-
ticated questions requires additional knowledge,
including details from the source text, information
about where the claim was published, and the na-
ture of the publishing company. Often, this infor-
mation might not seem directly connected to the
claim at first glance.

To generate these types of questions, we need
to provide more comprehensive information to the
model and tailor the question generation process
accordingly.

Here is the prompt structure for generating fact-
checker style questions:

Claim = CLAIM

Article text = TEXT Is this
article relevant to our claim?
If yes - what question need to
be asked based on the article
text that will be required to
verify claim?

By systematically asking well-structured ques-
tions, our system aims to facilitate a thorough and
accurate verification process.

2.1.2 Document Retrieval
This module accepts a question as input to extract
relevant documents. We leverage the provided doc-
ument collections from the dataset provided in the
challenge. However, given the substantial propor-
tion of empty documents (exceeding 50%) within
these collections, we augmented more documents
by querying the claim itself with Google API. We
also scraped a few hundred URLs manually for
which document-text field was empty.

To match any question with the corresponding
documents, we tried multiple techniques. In sum-
mary, we create an embedding vector for each doc-
ument and also the question, using the Sentence
Transformer library (Reimers and Gurevych, 2019).
Considering the resource constraints, we used "all-
MiniLM-L6-v2" model to get the encodings. We
found that Faiss yields fast indexing and best simi-
larity results even for extremely long texts, partly
due to the quality of encodings by Sentence Trans-
formers. We get the 20 best matches with the ques-
tion and pass it to the Reranking module which is
described below.

2.1.3 Rerank Documents
In our manual analysis, we noticed that some of
the URLs could be from inauthentic sources, and
could include wrong information. However, the
gold labeled URLs in training data seemed to have
authentic information. To leverage this, we de-
vise a simple reranking algorithm, based on the
training data’s Gold standard websites (retrieved
from the URLs). We calculate the frequency based
weighting for the training data’s ground truth web-
sites which are of type "gold", and also for the rest,
which we call "normal" website weight. Now, for
the test stage, we check every URL’s Faiss score,
and multiply it with the corresponding website
weight. Gold websites are always prioritised above
the normal weighted websites. This reranking mul-
tiplication considers only the top 20 documents and
not all, because considering all URLs could result
in dissimilar documents being at the top.

Post-reranking, we take the top 5 documents re-
trieved and pass them to the Question Answering
stage, which is described below. This reranking
stage yielded us best results for Claim-as-question
generation. However, it didn’t yield significantly
better results for the Multi-hop based QG. By
adding URL weightings (and using no claim-as-
questions yet) on the development dataset, our Q
and Q+A score slightly go down from 31.35 and
21.67 to 30.64 and 20.32 respectively. Our hypoth-
esis for this observation is that, multiple questions
retrieve multiple documents. As a result, those
retrieved documents already cover a number of au-
thentic websites. Hence, URL weighting might
hinder more than help in multi-hop stage.

2.1.4 Question Answering
Once we retrieve the five most relevant documents,
the first step is to generate a summary tailored to
the question at hand. For summary generation,
we utilize OpenAI’s GPT4o, providing it with the
question, the claim, and the text of the document
as input.

Since the summary is generated with the specific
goal of addressing the question based on the doc-
ument’s content, it is subsequently treated as the
answer in the following modules. The prompt used
for generating the summary is as follows:

Claim = CLAIM

Question= QUESTION

Text = TEXT
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Provide a brief summary of the
text, focusing on information
relevant to the question. The
summary should aim at answering
the question.

2.1.5 QA Validator
The QA Validator module plays a crucial role in
our fact-checking system, as it determines the di-
rection of subsequent verification processes. Given
that some questions may yield conflicting answers
(which could lead to cherry-picking the final label),
it is essential to determine differences in answers
before proceeding. To address this, we assign indi-
vidual labels to each QA pair based on their con-
tent.

Each QA pair can be assigned one of three labels:
Supported, Refuted, or Not Enough Evidence. Once
each QA pair is labeled, we group them based on
these three categories. The logic for handling the
labels is as follows:

• If a question has both Supported and Not
Enough Evidence pairs, we only consider the
Supported pairs.

• If a question has both Refuted and Not Enough
Evidence pairs, we only consider the Refuted
pairs.

• If a question has both Supported and Refuted
pairs, we retain both and generate follow-up
questions based on these two paths.

• If a question only has Not Enough Evidence
pairs, we proceed with that label.

After selecting the pairs to continue with, we
must choose the best QA pair within each cate-
gory. Using OpenAI’s GPT4o, we analyze each
QA pair and select the one that provides the most
informative response to the question.

2.2 Claim Verification
The claim verification module is given a claim sen-
tence and evidence as input, it tasked to classify the
label of the claim. The module is a combination
of two claim verification system variants, namely
Evidence-level verifier and Claim-level verifier.

Evidence-level Verifier In this variant, the model
was trained to independently classify the label of a
claim w.r.t a piece of evidence. The evidence is a
concatenation of a question and an answer follow-
ing this format: "Question: [Question]. Answer:

[Answer]". Claims are classified as Supported, Re-
futed, or Not Enough Evidence, constituting a fine-
grained label. Ultimately, the claim label was de-
termined through applying deterministic function
to the fine-grained labels:

• Supported: If all the fine-grained labels are
Supported.

• Refuted: If all the fine-grained labels are Re-
futed.

• Conflicting Evidence/Cherrypicking: If
both Supported and Refuted are presents in
the fine-grained labels

• Not Enough Evidence: Otherwise

Claim-level Verifier In this variant, we follow
a conventional claim verification model, in which,
the model is tasked to classify the label of the claim
given all pieces of evidence. The evidence is the
concatenation of questions and answers following
this format: Question-1: [Question-1]. Answer-1:
[Answer-1]. ... Question-N: [Question-N]. Answer-
N: [Answer-N]. The claim is classified either Sup-
ported, Refuted, Not Enough Evidence, or Conflict-
ing Evidence/Cherrypicking.

For each variant, we experimented with different
LLMs as the backbone and we combine the output
of these models through a voting-based ensemble
model to obtain the final claim label. A compre-
hensive description of each LLM is presented in
the next section.

2.2.1 Training Detail
We fine-tuned five LLMs: (1) flan-t5-Large (Chung
et al., 2024), (2) Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023), (3) Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), (4) gpt-3.5-turbo-0125, and (5) gpt-
4o-mini. For T5, Mistral, and Mixtral, we set the
learning rate to 1e−4 and fine-tuned it for 2 epochs.
We use LoRA with rank, alpha, and dropout are
set to 8, 32, and 0.05. Meanwhile, for GPT3.5
and GPT4, we use 4 epochs. We set the other
hyperparameters as default.

Evidence-level Verifier: to obtain
the training data for this variants, we
first filter out all claims with label
Conflicting Evidence/Cherrypicking. Then,
quadruplets of <claim, question, answer, label>
are obtained from the training set. For Claim-level
Verifier, we collect quadruplets of <claim, list of
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Model Q Q+A
baseline 0.24 0.19
Single 0.23 0.16
Single+Multi 0.39 0.27
Single+Multi+FC 0.44 0.31

Table 1: Evidence Retrieval Result on Development Set.
Comparison of results from different question genera-
tion types.

questions, list of answers, label> from the whole
training set.

We employ majority voting for the ensemble
models. Based from the experiments on the dev
set, our final claim verification is an ensemble of 4
different models: GPT4 on Evidence-level verifier
and Mistral, GPT3.5, and GPT4 on Claim-level
verifier.

3 Results

3.1 Evidence Retrieval

Table 1 reports the results evidence retrieval per-
formance of QECV compared to the baseline mod-
els on the development set. Among the investi-
gated Question Generation style, the single-hop
approaches yield the lowest score among other vari-
ants. This shows that claim as question is not suf-
ficient to retrieve enough evidence to verify the
claim. Nevertheless, the claim as question is com-
petitive with the baseline models. Augment the
evidence through multi-hop question led to a sub-
stantial improvement, which improves 0.13 on Q
and 0.11 on Q+A. This suggest that Q+A effec-
tively capture more detailed and relevant evidence.
Finally, adding FC-style question improve addi-
tional performance gain by 0.5 on Q and 0.4 on
Q+A, emphasizing the efficacy of this approach
to collect evidence that are hardly mention by the
claim.

3.2 Claim Verification

Table 2 reports the Evidence-level Verifier, and
Table 3 reports the Claim-level Verifier on the de-
velopment set using various fine-tuned LLM.

Effect on LLMs size: Through the experiments,
we can see that on evidence-level verifier, bigger
model such as mixtral, GPT3.5, and GPT4 outper-
forms smaller models on AVeriTeC score. Mean-
while on claim-level verifier, mistral, GPT3.5 and
GPT4 outperforms smaller models on AVeriTeC

score. Moreover, GPT3.5 and GPT4 are consis-
tently achieved the highest performance across both
variants.

Effect on Different Variants: Experimental re-
sults demonstrate that claim-level verifier are supe-
rior than the evidence-level verifier, both in macro
F1 and AVeriTeC score. The under performance
of evidence-level is attributed to the deterministic
function. For instance, for a "Supported" claim
"Amy Coney Barrett was confirmed as US Supreme
Court Justice on October 26, 2020.", our evidence
retrieval retrieves 7 evidence and the evidence-
level verifier predicts 6 out of the 7 evidence as
"Supported". The last evidence stated that "The
summarized information does not provide the ex-
act date of Amy Coney Barrett’s confirmation to
the US Supreme Court. It only states that she has
been confirmed.", which the verifier predicts as Not
Enough Evidence. Finally, the final claim label
is Not Enough Evidence due to the deterministic
function. Nevertheless, evidence-level verifier is
superior in identifying Not Enough Evidence label,
achieving 0.28 F1 score compared to 0.16 F1 score
for claim-level verifier.

Impact of using different LLMs: Experimental
results indicate that different models exhibit vary-
ing strength. In claim-level verifier, GPT3.5 and
GPT4 are superior on Supported and Refuted la-
bels, whereas Mistral and Mixtral excel on Not
Enough Evidence and Conflicting labels. Con-
versely, in the evidence-level verifier, GPT3.5 and
GPT4 are the most effective on Not Enough Evi-
dence and Conflicting labels, meanwhile Mixtral
excels on Refuted and BART on Supported. This
suggest that each LLM possesses it’s own strength
depending on the verifier variant. Consequently,
combining the strength of these models across dif-
ferent variants can enhance the robustness of the
verifier.

3.3 Full Pipeline
For our final pipeline, we use the best performance
for the evidence retrieval, which is a combination
Single+Multi+FC-style based QG. For the claim
verification, we ensemble GPT4 on evidence-level
verifier and Mistral, GPT3.5, and GPT4 on claim-
level verifier to gain benefit the strength of dif-
ferent variants. Table 4 indicates that our final
pipeline significantly outperforms the baseline on
every metrics, by 0.17 on Q, 0.10 in Q+A, and 0.31
in AVeriTeC score.
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Model AVeriTeC F1
Sup Ref Nee Conf Macro

baseline (BART_large) 0.09 0.43 0.71 0.00 0.09 0.32
T5 0.33 0.28 0.78 0.27 0.14 0.36
Mistral 0.32 0.19 0.78 0.24 0.10 0.33
Mixtral 0.36 0.33 0.81 0.16 0.09 0.35
GPT3.5 0.35 0.24 0.79 0.28 0.13 0.36
GPT4 0.37 0.40 0.80 0.22 0.14 0.39

Table 2: Evidence-level verifier results on the development set. "Sup" denotes "Supported," "Ref" stands for
"Refuted," "Nee" represents "Not Enough Information," and "Conf" corresponds to "Conflicting" or "Cherrypicking"
label types.

Model AVeriTeC F1
Sup Ref Nee Conf Macro

T5 0.39 0.42 0.79 0.11 0.14 0.37
Mistral 0.44 0.61 0.82 0.09 0.20 0.43
Mixtral 0.38 0.46 0.82 0.16 0.16 0.40
GPT3.5 0.46 0.61 0.84 0.12 0.16 0.43
GPT4 0.44 0.59 0.84 0.08 0.18 0.42

Table 3: Claim-level Verifier Result on Development Set, where "Sup" - Supported, "Ref" - Refuted, "Nee" - Not
Enough Information, "Conf" - Conflicting/Cherrypicking type of labels.

Development Set Test Set
Model Q Q+A AVeriTeC Q Q+A AVeriTeC
baseline 0.24 0.19 0.09 0.24 0.20 0.11
ours 0.44 0.31 0.46 0.41 0.30 0.42

Table 4: Result on Full Pipeline compare with baseline results, where "Q" - question-based retrieval performance,
"Q+A" - question + answer retrieval performance

4 Conclusion

In this paper, we introduced the QECV, a pipeline
for verifying real-world claims. Improving the evi-
dence retrieval through question enrichment enable
the framework to cover more evidence for verify-
ing the claim, thus achieves 0.41 and 0.30 for the
Q and Q+A performance on the test set. Addition-
ally, our pipeline combines across various claim
verifier variants and LLMs to leverage their unique
strengths, resulting in more robust verification pro-
cess and an 0.42 AVeriTeC score on the test set.

5 Limitations

We believe one of the major limitations of this
pipeline is relevance of documents we retrieve for
each question. We have tried to address this by
introducing multi-hop QG, claim-as-question mod-
ule, and emphasising fact-checking styled docu-
ments. However, there is definitely scope of further
improvement here.

Despite the ability of our question enrichment
methods on the evidence retrieval, the hallucina-
tion remains, particularly in the question answer-
ing stage. Moreover, our claim verification models
rely solely on the ground truth data for training.
Given that the previous works demonstrate the ef-
fectiveness of adding noise for claim verification
on synthethic claim, it is worthwhile to investigate
whether a similar approach can be applied to the
real-world claims.
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Abstract
This paper presents the Dunamu-ml’s submis-
sion to the AVERITEC shared task of the 7th
the Fact Extraction and VERification (FEVER)
workshop. The task focused on discriminating
whether each claim is a fact or not. Our method
is powered by the combination of an LLM and
a non-parametric lexicon-based method (i.e.
BM25). Essentially, we augmented the list
of evidences containing the query and the cor-
responding answers using an powerful LLM,
then, retrieved the relative documents using
the generated evidences. As such, our method
made a great improvement over the baseline
results, achieving 0.33 performance gain over
the baseline in AveriTec score.

1 Introduction

The rise in misinformation has led to a greater
need for fact-checking, which involves determining
the accuracy of a claim through evidence. Conse-
quently, research on methods that automatically
detect whether specific claims are true or false
is being conducted actively. (Vlachos and Riedel,
2014; Thorne et al., 2018a) As part of this effort,
the shared task Fact Extraction and VERification
(FEVER) 1 is held regularly (Thorne et al., 2018b,
2019; Wang et al., 2021; Aly et al., 2021).

Fact-checking requires large-scale retrieval.
Large-scale retrieval involves retrieving the most
relevant documents from a vast collection contain-
ing millions to billions of entries in response to a
text query. Over the past ten years, deep representa-
tion learning techniques have become essential for
large-scale retrieval, transitioning from traditional
Bag-of-Words (BoW) (Mikolov et al., 2013) meth-
ods to Pre-trained Language Models (PLMs) (De-
vlin et al., 2019). The latest advancements in LLMs
offer a quicker path to achieve zero-shot retrieval
by enhancing a query with potential answers ob-
tained from the LLMs (Gao et al., 2023).

1https://fever.ai/index.html

In this paper, we introduce our approach to the
FEVER 2024 Share Task named AveriTeC shared
tasks (Schlichtkrull et al., 2023). We aim to build
our model powered by the generation and retrieval
ability of recent LLMs (Achiam et al., 2023). Our
method is inspired by (Shen et al., 2023) which uti-
lize a non-parametric lexicon-based method (such
as BM25 (Robertson et al., 2009)) as the retrieval
component to directly measure the similarity be-
tween the query and document and boost the query
using powerful LLM.

First, we generated initial question and answer
pairs without any documents retrieved. Then, we
retrieved relevant documents and fix the initial an-
swers using it. Finally, we infer the final answer
using the given evidences. Our approach signifi-
cantly enhanced the baseline outcomes, securing
a 0.33 increase in performance compared to the
baseline according to the AveriTec score. For eval-
uation, we used the given system2.

2 Task Description

The AVeriTeC challenge (Schlichtkrull et al., 2023)
aims to evaluate the ability of systems to verify
real-world claims with evidence from the Web.

• The systems need to find evidence that either
supports or contradicts a claim, based on the
claim itself and its accompanying metadata.
This evidence can be sourced from the Web
or from the collection of documents provided
by the organizers.

• Based on the evidence gathered, classify the
claim as either Supported or Refuted, or cat-
egorize it as Not Enough Evidence if there
is insufficient evidence to make a determina-
tion. If the evidence presents conflicting view-

2https://eval.ai/web/challenges/
challenge-page/2285/overview
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points or appears selective, label the claim as
Conflicting Evidence/Cherry-picking.

• For a response to be deemed accurate, both
the label assigned and the quality of evidence
provided must be correct. Since evaluating
evidence retrieval can be challenging to auto-
mate, participants will be requested to assist
in manually evaluating it to ensure a fair as-
sessment of the systems.

The output format of each claim should be:

• claim_id: The ID of the sample.

• claim: The claim text itself.

• pred_label: The predicted label of the claim.

• evidence: A list of QA pairs. Each set con-
sists of dictionaries with four fields.

– question: The text of the generated
question.

– answer: The text of the answer of the
generated question.

– url: The source url for the answer.
– scraped_text: The text scraped from

the url.

2.1 AVERITEC Corpus
The AVeriTeC dataset, as described in the study
by (Schlichtkrull et al., 2023), comprises 4,568
examples sourced from 50 fact-checking organiza-
tions using the Google FactCheck Claim Search
API3, which is built on ClaimReview4. AVeriTeC
is distinguished as the initial AFC dataset to offer
question-answer decomposition along with justifi-
cations, while also addressing challenges related
to context dependence, evidence insufficiency, and
temporal leaks. Additional details about AVeriTeC
can be found on the project’s GitHub repository:
https://github.com/MichSchli/AVeriTeC.

2.2 Evaluation metric
The AVeriTeC score is based on adjustments made
to the FEVER scorer (Thorne et al., 2018a). While
FEVER relies on a closed evidence source such as
Wikipedia, AVERITEC is tailored to handle evi-
dence sourced from the open web. Since identical
evidence may be found across multiple sources,
precise matching for scoring retrieved evidence is

3https://toolbox.google.com/factcheck/apis
4https://www.claimreviewproject.com/

impractical. Hence, AVERITEC utilizes approx-
imate matching and utilizes the Hungarian Algo-
rithm to determine the most suitable match between
the provided evidence and the annotated evidence.

uf (Ŷ , Y ) =
1

|Y |max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(1)
During the evaluation process, the system em-

ployed the METEOR (Banerjee and Lavie, 2005)
implementation from NLTK (Bird et al., 2009)
as the scoring function f, known for its strong
correlation with human assessments of similar-
ity (Fomicheva and Specia, 2019). They do not
utilize a precision metric to prevent penalizing sys-
tems for posing extra relevant information-seeking
questions. Nevertheless, all systems are con-
strained to a maximum of k = 10 question-answer
pairs. We assess the accuracy of truthfulness predic-
tions and supporting evidence by applying a thresh-
old of f(ŷ, y) >= λ to ascertain the retrieval of
accurate evidence (using combined questions and
answers). Claims with lower evidence scores are
assigned veracity and justification scores of 0.

3 System Overview

In this section, we firstly provide a brief description
of how we pre-processed the given knowledge store
and present our approach to the task.

3.1 Data crawling and preprocessing
As we mentioned in Section 2.1, the pre-googled
knowledge store, which includes web urls and their
scraped text for each claim, is provided by the or-
ganizers. However, in the case that the url corre-
sponds to either a YouTube video or a PDF docu-
ment, the scraped text field is left blank, even if it
includes crucial evidence for verifying the claim.
To address this, we extract the transcripts from
YouTube videos and parse the text from PDF docu-
ments, subsequently saving them in the data store.
In addition, we segment all the documents into
segments comprising 10 sentences each, not con-
taining an excessive amount of information.

3.2 Model configuration
Our approach to the task consists of three steps, as
depicted in Figure 1.

Step 1: Generate initial question and answer
pairs without any documents retrieved. In or-
der to verify the veracity of claims, it is essential to
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C: In a letter to Steve Jobs, Sean Connery refused to appear 
in an apple commercial.

Q: Is there a record of a letter from Sean Connery to Steve Jobs?
A: The letter was found to be a hoax and was not written by Sean    

Connery.

Step1 Generate Initial QA

Claim type 
classification

Few-shot
select

Q: Was there any communication between Sean Connery and Steve   
Jobs?

A: No answer could be found.

Q: Is there a record of a letter from Sean Connery to Steve Jobs?
A: Yes, but the letter was revealed to be a fake. It was a bit of  

humor created as an accompaniment to an article published on 
the satirical site Scoopertino.

Step2 Fix The Initial Answer With Retrieve Documents

Q: Was there any communication between Sean Connery and Steve   
Jobs?

A: A letter was circulated online claiming to be from Sean 
Connery to Steve Jobs, but it was later revealed to be fake.

Step3 Infer Final Answer

Data Store

Chunk Retrieval

BM25

Retrieved 
Segments

C: In a letter to Steve Jobs, Sean Connery refused to appear 
in an apple commercial.

Q: Is there a record of a letter from Sean Connery to Steve Jobs?
A: Yes, but the letter was revealed to be a fake. It was a bit of  

humor created as an accompaniment to an article published on 
the satirical site Scoopertino.

Q: Was there any communication between Sean Connery and Steve   
Jobs?

A: A letter was circulated online claiming to be from Sean 
Connery to Steve Jobs, but it was later revealed to be fake.

Refuted

YouTube 
pdf

à text

Figure 1: A diagram illustrating the three steps of our method for AVERITEC shared task. The text generated by
GPT-4 is in green in Step 1 and in red in Step2. In Step 3, the predicted answer by GPT-4 is enclosed in a red box.

formulate questions that can be answered based on
reliable documents retrieved from the knowledge
store. Research has shown that utilizing artificially
generated answers in the search, as opposed to
using the questions alone, can enhance document
retrieval performance. (Gao et al., 2023) As a result,
a decision has been made to concurrently generate
both questions and answers for use in the search
process. This approach aims to improve the effi-
ciency and effectiveness of information retrieval
for fact-checking purposes.

Initially, we categorize each claim using GPT-4
with few shots which consist of pairs of (1) each
claim and (2) its corresponding claim type. We
classify each claim using the following prompt:

Every claim belongs to at least one of the
categories below.
It may also belong to multiple categories.
Return one or more categories to which the
claim belongs. The majority of claims belong
to only one category.
{’Numerical Claim’, ’Causal Claim’, ’Quote
Verification’, ’Event/Property Claim’,
’Position Statement’}

<few shots>
<claim>

Next, in training dataset, we extract samples cor-
responding to the predicted claim category. We
then create total 20 few-shot samples by randomly
selecting four samples labeled as "supported" or
"refuted," respectively and six samples from the
other two labels, respectively. Each few-shot sam-

ple consists of (1) claim, (2) claim label and (3)
its evidence list. Finally, we have gpt-4 to gener-
ate initial evidence list, question and answer pairs,
using these few shots with following prompt:

The given claim falls into one of the following
four categories.
1. Supported
2. Refuted
3. Not Enough Evidence (if there isn’t
sufficient evidence to either support or refute
it)
4. Conflicting Evidence/Cherry-picking (if the
claim has both supporting and refuting evidence)

Classify each claim into four categories
and provide evidence for the classification.
If there are not enough evidences, you should
list the evidence that needs to be supported
or refuted.

<few shots>
<claim>

Step 2: Retrieve relevant documents and fix the
initial answers using it. In the second step, we
revise the initial answers for each question we gen-
erate in Step 1. Initially, for each generated ques-
tion answer pair, we retrieved reliable document
segments. Then, we also retrieved similar questions
with each generated question for few shots. We con-
struct each few-shot sample with (1) the retrieved
questions, (2) their corresponding answers and (3)
gold documents segments. For both retrieval, we
leveraged ranked bm25 package which built on the
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algorithm taken from (Trotman et al., 2014). Using
those few shots and retrieved document segments,
we fix the initial answer with following prompt:

Given the context, you should find the answer
for each question.
When answering, try to use as many words from
the passage as possible.
But if you cannot find the answer, say "No
answer could be found." without extra words.

<few shots>
<claim>
<retrieved document segments>
<generated question>

Step 3: Infer the final answer using the given ev-
idences. In the last step, we infer the final answer.
We re-used the same samples as a few-shot in Step
1 (used in the second prompt). While in Step 1 we
utilized a sequence the claim, evidence list, and
label for one few-shot, in this step, we employed a
sequence including (1) the claim, (2) evidence list,
(3) justification, and (4) label. The justification text
describes the reason why the claim is supported
and refuted (Wei et al., 2022). Using gpt-4, we
predict final answer with the following prompt:

The given claim falls into one of the following
four categories.
1. Supported
2. Refuted
3. Not Enough Evidence (if there isn’t
sufficient evidence to either support or refute
it)
4. Conflicting Evidence/Cherry-picking (if the
claim has both supporting and refuting evidence)

Classify each claim into four categories
and provide evidence for the classification.
If there are not enough evidences, you should
list the evidence that needs to be supported
or refuted.

<few shots>
<claim>
<generated evidence>

4 Experiment

In this section, we present our experimental setup,
the tools we used and the final task results.

Implementation Details The library used to ob-
tain Youtube transcripts is youtube-transcript-api 5,
and the library used for PDF parsing is PyMuPDF 6.
We used GPT-4 as an LLM and the LLM model

5https://pypi.org/project/
youtube-transcript-api/

6https://github.com/pymupdf/PyMuPDF

Model Q only Q+A AveriTeC
TUDA_MAI_0 0.45 0.34 0.63
HerO 0.48 0.35 0.57
AIC System 0.46 0.32 0.50
papelo-ten-r773 0.44 0.30 0.48
dun-factchecker 0.49 0.35 0.50

Table 1: The systems ranked in the top 5 in the
AVERITEC leaderboard during the test phase. The
system "dun-factchecker" is ours.

used GPT-4, and BM25 was implemented through
the langchain library 7. For GPT-4 we use T = 0.7
without top-k truncation and N = 5, then select the
last answer by majority voting (Wang et al., 2022).

Baseline The baseline model that has been fine-
tuned on BLOOM (Schlichtkrull et al., 2023) can
be referred to in (Le Scao et al., 2023).

Main Results Table 1 presents the evaluation
results in test phase. We have the following obser-
vations:

• Our method achieved SOTA in Q and Q+A
humeteor scores, indicating that the few-shot
sampling method following classification in
Step 1 was effective.

• We observed that although our scores in ev-
idence generation were higher or equal to
those of the TUDA_MAI_0 and HerO sys-
tems, there was a slight drop in the perfor-
mance when it comes to the final label predic-
tion.

• It appears that utilizing generated questions
and answers for retrieval was quite effective,
but there are some limitations of the final pre-
diction in the Step 3 that need to be addressed
in the future.

5 Conclusion

In this work, we described the Dunamu-ml’s
submission to the AVERITEC shared tasks of
the FEVER 2024. By integrating a language
model (LLM) with a non-parametric lexicon-based
method (BM25), our approach bolstered the evi-
dence list by integrating the query and associated
answers using a robust LLM. This strategy allowed
us to pinpoint pertinent documents based on the

7https://github.com/langchain-ai/langchain
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generated evidence, resulting in a notable improve-
ment over the baseline outcomes with a 0.33 per-
formance gain in the AVeriTeC score.
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Abstract

This paper describes the FZI-WIM system at
the AVeriTeC shared Task, which aims to as-
sess evidence-based automated fact-checking
systems for real-world claims with evidence
retrieved from the web. The FZI-WIM system
utilizes open-source models to build a reliable
fact-checking pipeline via question-answering.
With different experimental setups, we show
that more questions lead to higher scores in the
shared task. Both in question generation and
question-answering stages, sampling can be a
way to improve the performance of our system.
We further analyze the limitations of current
open-source models for real-world claim verifi-
cation. Our code is publicly available1.

1 Introduction

Disinformation is a major concern in digital times
as recent advances in generative artificial intelli-
gence, i.e., large language models (LLMs), en-
able humans to create fake information on a large
scale. Meanwhile, LLMs have also been inte-
grated into automated fact-checking (AFC) sys-
tems (Chen and Shu, 2024), which have drawn
lots of attention. Guo et al. (2022) summarize
three stages of an AFC system: claim detection,
evidence retrieval, and claim verification. Vari-
ous evidence-based fact-checking datasets have
been proposed for testing the systems (Thorne
et al., 2018; Wadden et al., 2020; Jiang et al.,
2020; Aly et al., 2021). The AVeriTeC shared task
aims to fact-check real-world claims. Compared
to previous fact-checking datasets, the AVeriTeC
dataset (Schlichtkrull et al., 2023) utilizes question-
answer (QA) pairs to tackle the complex reasoning
task for real-world claims. Questioning is a natu-
ral step in the fact-checking process. The follow-
ing steps involve retrieving corresponding answers
and making inferences based on the QA pairs to

1https://github.com/jens5588/
FZI-WIM-AVERITEC

validate the claims. Fan et al. (2020) have intro-
duced the QABRIEF dataset, which was collected
via crowdsourcing. They demonstrate that generat-
ing questions and then answering questions using
open-domain question-answering can increase the
accuracy and efficiency of fact-checking. With the
ClaimDecomp dataset, Chen et al. (2022) show that
questions to the claim can help identify relevant
evidence and verify the claim with their answers.

The FZI-WIM system is composed of three
stages, namely, question generation, question-
answering, and claim verification. All components
in the system are designed with open-source mod-
els. Given the claim and its meta information, the
system first generates critical questions. A retrieval
augmented generation (RAG) system is utilized to
answer the generated questions with context infor-
mation from the provided knowledge store. The
generated QA pairs are fact-checked and filtered
to tackle the potential hallucination problem. The
selected QA pairs are utilized to verify the claim.
We summarize our findings regarding this shared
task as follows:

• More sets of distinct questions lead to better
performance.

• The sampling strategy can compensate for the
deficits of open-source LLMs.

• Fact-checking the RAG system is critical for
getting reliable grounded answers.

• Compared to open-source models, proprietary
models show significantly better performance
regarding context understanding and reason-
ing capabilities for answering questions.

2 Background

The AVeriTeC dataset (Schlichtkrull et al., 2023)
is a continuation of the previous evidence-based
fact-checking dataset FEVER (Thorne et al., 2018)
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and FEVEROUS (Aly et al., 2021). The dataset
contains real-world claims from various sources.
The number of claims in the train, dev, and test
set are 3068, 500, and 2215 respectively. There
are five types of claims in the dataset, namely po-
sition statement, numerical claim, event/property
claim, quote verification, and causal claim. The
corresponding evidence has been collected from in-
ternet websites. Different from the previous dataset,
which uses sentences from documents as evidence,
the evidence of the AVeriTeC dataset has been for-
mulated as QA pairs. On average, each claim in the
train and dev sets has 2.6 questions. The answers
can be classified into four types, boolean, abstrac-
tive, extractive, and unanswerable. Based on the
QA pairs, the verification labels of the claims can
be classified into supported, refuted, not enough
evidence, and conflicting evidence/cherry-picking.
Figure 1 shows an example from the dataset.

Claim: Donald Trump has kept his promises to voters.
Claim type: Event/Property Claim
Speaker: None
Claim date: 24-8-2020

Question 1: What promises did Donald Trump
make to voters?
Answer 1 (Extractive & Abstractive): During the 2016
campaign, Donald Trump made more than 280 promises,
though many were contradictory or just uttered in a single
campaign event. By 2020 Trump had made a number of
promises, 6 of which he had not fulfilled, including ...
Question 2: Of the promises Donald Trump made, did he
fulfil any of them?
Answer 2 (Boolean): Yes.
Question 3: Has President Donald Trump kept his
campaign promises to voters?
Answer 3 (Abstractive): President Trump has only kept a
few of his promises.

Verification: Conflicting Evidence/Cherrypicking
Justification: QA pairs state promises kept and not kept.
Claim does not state he kept all promises.

Figure 1: An example from the AVeriTeC dataset, which
includes the claim, meta information, questions, an-
swers (answer types), verification label, and justification

3 System Description

Figure 2 illustrates the three-stage pipeline of the
FZI-WIM system for the AVeriTeC shared task in
the test phase. In the following, we will describe
the key components of each stage. The techni-
cal implementation details are presented in Ap-
pendix A.1.

3.1 Question Generator
As mentioned by (Chen et al., 2022), questions
can help to identify relevant evidence. As the first
component of the pipeline, raising the right ques-
tions about the claim can be critical for the final
verification. Similar to the AVeriTeC dataset, the
ClaimDecomp dataset (Chen et al., 2022) contains
in total 1200 claims in the training, validation, and
test sets while, on average, each claim has 2.7 ques-
tions. We integrate both datasets and create an
instruction-tuning dataset. Besides the claim and
questions, we also include the relevant meta infor-
mation, such as the speaker and claim date, in the
instruction dataset. We show an example of the
instruction dataset in Appendix A.2.

We apply Low-rank adaption (LORA) (Hu et al.,
2022), one of the parameter-efficient fine-tuning
methods for LLMs, to fine-tune the existing LLM,
Llama-3-70B-Instruct (AI@Meta, 2024). The con-
cept of LORA assumes that the updates to the
weights have a low intrinsic rank during the adap-
tion of LLMs for downstream tasks. The parameter
updates ∆W for a pre-trained matrix W0 can be
formulated as

W0 +∆W = W0 +BA, (1)

where B ∈ Rd×r, A ∈ Rr×k and r ≪ min(d, k)
(Hu et al., 2022). Given the instruction x and tar-
get output {y1, y2, ..., ym}, i.e., questions, the loss
function of the training can be formulated as

L =
m∑

i=1

− log(pθ(yi|x, y1, ..., yi−1)), (2)

where θ represents W0, B, A and only B and A
are trainable.

With the instruction-tuned model, we first gen-
erate for each claim one set of questions greedily.
With the greedy generation strategy, the model se-
lects the token with the highest probability as its
next token2. We further sample five sets of ques-
tions for each claim with a temperature of 0.7. With
an embedding model, all-mpnet-base-v23 (Reimers
and Gurevych, 2019), we iteratively select 2 sets
from 5 sampled sets, which are most distinct from
the greedy set based on the cosine similarity. Fi-
nally, each claim has three sets of questions, one
greedy set, and two sampled sets.

2https://huggingface.co/blog/
how-to-generate

3https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 2: FZI-WIM system pipeline for the test phase in stages. In Stage 1, we first generate three sets of questions
for each claim. One set of questions can contain multiple questions. Given questions and the knowledge store, our
system utilizes an RAG system to generate answers to the questions. With an entailment model, the generated QA
pairs are filtered. The selected QA pairs have a further conditional check. If conditions are not fulfilled, the steps in
stage 2 are then repeated with another set of questions, a maximum of two repeats. Finally, an instruction-tuned
claim verifier verifies the claim based on the aggregated QA pairs.

3.2 Question Answering

After generating questions for each claim, stage
2 answers these generated questions. Beginning
with the greedy set of questions, the questions are
answered with a retrieval augmented generation
(RAG) system. We further fact-check and select
answered QA pairs. We check whether the selected
QA pairs fulfill the predefined conditions. If not,
we then repeat the process with another sampled
question set. The process is repeated at most two
times.

3.2.1 RAG-based QA
Retriever After generating questions for the
claims, we retrieve relevant evidence in the pro-
vided knowledge store to answer these questions.
Our system only uses the provided knowledge
store without querying further documents with the
Google search engine. For each claim, the rel-
evant documents are provided in the knowledge
store. Various retrieval methods have been applied
for documents and sentence retrieval in evidence-
based fact-checking, including TF-IDF (Thorne
et al., 2018), BM25 (Schlichtkrull et al., 2023), bi-
encoder (Karisani and Ji, 2024), ColBERT (Khat-
tab et al., 2021), cross-encoder (Soleimani et al.,
2020), etc. Due to the limited number of rele-
vant documents for each claim in the knowledge
store, we directly apply a cross-encoder, ms-marco-
MiniLM-L-12-v24 (Reimers and Gurevych, 2019),

4https://huggingface.co/cross-encoder/
ms-marco-MiniLM-L-12-v2

Figure 3: Input of the cross-encoder. The document
is split into multiple sentence chunks so that the total
length of the combination doesn’t exceed 512 tokens. A
sentence chunk includes about 400 to 500 tokens.

to select relevant evidence. Concretely, for each
generated question, we concatenate it with the
claim as the query. We then iteratively split each
document into chunks so that the total length of
the query and chunk pair does not exceed the maxi-
mum length of the cross-encoder, 512 tokens. Fig-
ure 3 illustrates the input of the cross-encoder. We
rank the chunks based on the relevance scores pre-
dicted by the cross-encoder. For each question, we
select the top 3 chunks for answering the question.

Generator With the retrieved top 3 chunks for each
question, we utilize a fine-tuned LLM, Llama3-
ChatQA-1.5-70B (Liu et al., 2024), to generate
answers given the question and corresponding top
chunks as the context. Besides the greedy gener-
ation, we sample 10 further answers with temper-
ature 0.7 to increase the probability that the gen-
erator correctly answers the question. We show
the prompt for answer generation in Appendix A.3.
The candidate pool for the answer is initialized with
the greedy answer. Further distinct answers from
sampling are iteratively added to the candidate pool
based on the similarity scores with an embedding
model, all-mpnet-base-v2 (Reimers and Gurevych,
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2019). In this step, one question can have multiple
distinct answers. This design choice is based on
our observation from experiments, that the correct
answer to the question can not always be generated
with the greedy decoding strategy by our generator.

3.2.2 Fact-check QA Pairs

Hallucination is a common problem of current
RAG systems and it can lead to the problem that
generated answers are not entailed in the source
chunks. Therefore, we further add an entailment
check step for generated answers. We first use
few-shot learning to convert QA pairs into state-
ments. The prompt is shown in Appendix A.4.
A pre-trained natural language inference (NLI)
model, bart-large-mnli5 (Lewis et al., 2019), is used
to check whether the statement is entailed in the
corresponding sentence chunks. The pre-trained
NLI model has three labels for (premise, hypothe-
sis) pairs, namely refuted, not enough information
(NEI), and entailed. Each statement corresponds
to three sentence chunks. As soon as the statement
is entailed in one sentence chunk, the correspond-
ing QA pair will be selected. Since one question
can have multiple entailed answers, i.e., statements,
we select the answer with the largest entailment
probability. We observe that our NLI model can-
not correctly handle the entailment relationship for
statements like No information regarding ... could
be found., which are often classified as NEI despite
being entailed (supported) in the sentence chunks.
So if a question has no entailed answer and there
are NEI answers like There is no information...,
Sorry, I cannot find the answer based on the con-
text, etc., we also select the question with a uniform
answer No answer could be found. for further pro-
cessing. The questions that have neither entailed
answers nor NEI answers are dropped.

3.2.3 Check Conditions & Aggragate

Since the fact-checking step has filtered some
QA pairs, it can make the verification step
difficult. We introduce two conditions to
check the completeness of answers to a set of
questions, namely #questions answered

#questions > 0.8

and #question answered with NEI
#questions answered < 0.3, where

#questions answered represents for the number
of answered questions and includes both the en-
tailed answer and the NEI answer. If the conditions

5https://huggingface.co/facebook/
bart-large-mnli

are not fulfilled, we repeat the steps in stage 2 with
another set of questions.

After the maximal two times repeat, we aggre-
gate all QA pairs for each claim. Each claim can
have from one to three rounds of question answer-
ing. There can be duplicated QA pairs after ag-
gregation. We first rank the QA pairs with a cross-
encoder model based on their relevance to the claim.
The QA pairs are iteratively selected with a further
embedding model so that the to-be-selected pair
does not exceed the similarity threshold to selected
pairs. Some claims do not have any entailed or NEI
answer after the third question answering round.
For these claims, we use the greedy set of ques-
tions and assign No answer could be found. as the
answer.

3.3 Claim Verification

We verify the claims with the aggregated QA pairs.
Similar to the question generation process, we uti-
lize the train and dev set to instruction-tune a pre-
trained LLM, Llama-3-70B-Instruct (AI@Meta,
2024), with LORA. We show an example of the in-
struction dataset in Appendix A.5. We also include
the justification in the target output before the veri-
fication label so that the model not only generates
the verification label but also the justification. This
mimics the chain-of-thought idea (Wei et al., 2022).
Studies (Wang et al., 2023; Liu and Thoma, 2024)
show that sampling instead of greedy decoding can
improve the reasoning performance of LLMs. We
sample 40 verifications for each claim and apply
majority voting to derive the final verification label.

4 Evaluation

In this section, we show the performance of our
proposed systems for the shared task. Besides the
system in the test phase, the FZI-WIM Test, we also
include the improved version in the after competi-
tion phase, FZI-WIM After Compet., for compari-
son. With the FZI-WIM After Compet. setup, each
claim has three sets of distinct questions without
conditional check described in Section 3.2.3.

4.1 Evaluation Metrics

For the shared task, both retrieved evidence and
veracity predictions are evaluated. For the evi-
dence evaluation, generated questions and answers
are compared to the reference (gold questions and
answers). The pairwise scoring function is de-
fined as f : S × S → R, where S is the set
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System Q Q+A AVeriTeC Score

FZI-WIM Test 0.32 0.21 0.20
FZI-WIM After Compet. 0.40 0.27 0.33

Baseline 0.24 0.20 0.11
Best scores 0.49 0.35 0.63

Table 1: Overview of our systems compared to the base-
line system and best scores in each category. FZI-WIM
Test is our proposed system in the test phase. We further
improve the system in the after competition phase with
the system FZI-WIM After Compet..

of sequence tokens. The scoring function adopts
the METEOR (Banerjee and Lavie, 2005) metric.
The Hungarian Algorithm (Kuhn, 1955) is applied
to find an optimal match between generated se-
quences and reference sequences (Schlichtkrull
et al., 2023). A boolean function X is defined
as X : Ŷ × Y → {0, 1} to denote the assignment
between the generated sequences Ŷ and the refer-
ence sequences Y . The final score u is calculated
(Schlichtkrull et al., 2023) as:

uf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(3)

The evaluation of veracity prediction uses the
accuracy metric. A cut-off of f(ŷ, y) ≥ λ has
been applied to determine whether correct evidence
(concatenation of questions and answers) has been
retrieved. Claims with an evidence score lower
than the cut-off score λ receive veracity scores of
0. The AVeriTeC score in the shared task has a λ
value of 0.25 (Schlichtkrull et al., 2023).

4.2 Results

Table 1 shows the performance of our proposed
systems compared to the baseline system and the
best scores in each category. After the competition,
we further improved our system with more ques-
tions (FZI-WIM After Compet.). Concretely, we
remove the conditional check step and further re-
peat stage 2 twice for every claim. This means each
claim has three sets of questions and three rounds
of question answering. With more questions, we
can observe significant performance improvement
regarding three metrics. In the following, we give a
detailed analysis of our system regarding question
generation & answering and claim verification.

4.3 QA Analysis

Table 2 shows the statistics of three different setups
for selecting QA pairs. In the Greedy setup, the se-
lected QA pairs for each claim are aggregated only
with the greedy set of questions. In the FZI-WIM
Test setup, with the conditional check, 1405 claims
have utilized one set of questions, 365 claims with
2 sets of questions, and 445 claims with three sets
of questions to select QA pairs. In the FZI-WIM
After Compet. setup all 2215 claims have three sets
of questions to select QA pairs. From the results,
we can observe that more sets of different questions
improve the scoring of both question and QA pairs.
This is partly because we have not retrieved extra
documents outside the knowledge store, which can
cause questions to be not properly answered. There
are various ways to ask critical questions for each
claim, i.e., various reasoning possibilities. More
sets of different questions can increase the probabil-
ity of matching the gold questions. In the following,
we give a further analysis regarding each compo-
nent in our question-answering pipeline, with a
focus on the deficits that cause errors.
Retriever We have directly applied a cross-encoder
model to select relevant chunks from the docu-
ment corpus. Compared to other methods, e.g., TF-
IDF, dual-encoder, etc., the advantage of the cross-
encoder is the retriever performance, and the disad-
vantage is the computing time. Another limitation
of the cross-encoder model is the input length, in
our case a maximum of 512 tokens. The incom-
plete context information can lead to misleading
answers, especially adversarial information, i.e.,
misinformation or satire exists in the context.
Generator We have utilized Llama3-ChatQA-1.5-
70B (Liu et al., 2024) from Nvidia to generate an-
swers with a zero-shot setup. For a question, the
corresponding context combined of the top 3 sen-
tence chunks, normally includes around 1500 to-
kens. Hallucination and insufficient understanding
of questions and contexts are two major reasons
leading to wrong answers. We observe that with
the greedy generation, the model cannot always
come to the correct answer. We further sample 10
answers with a temperature of 0.7 for each question.
Table 3 shows the distribution of answer sources.
The statistics show the necessity of sampling be-
sides the greedy generation.
Fact-check The difference between the number of
total questions and answered questions in Table 3
reflects the number of dropped questions under

81



Setup #Total Questions #Selected QA NEI (%) Q Q+A

Greedy Set of Questions 5004 3846 17.57 0.28 0.18
FZI-WIM Test 8212 5574 16.02 0.32 0.20
FZI-WIM After Compet. 16696 10048 18.68 0.40 0.27

Table 2: Comparison of different setups for QA pairs selection, including the numbers of total generated questions
and selected QA pairs, percentage of the NEI answer in selected QA pairs, and the resulting question scores,
question + answer scores.

Setup #Total Questions #Answered Greedy / Sampling (%)

Greedy Set of Questions 5004 4381 74.30 / 25.70
FZI-WIM Test 8212 7004 69.20 / 30.80
FZI-WIM After Compet. 16696 14512 68.54 / 31.46

Table 3: Distribution of answers, including entailed and
NEI answers, among greedy generation and sampling
under different setups.

System Greedy Sampling

FZI-WIM Test 0.1991 0.1959
FZI-WIM After Compet. 0.3314 0.3336

Table 4: Comparison of AVeriTeC scores under greedy
generation and sampling strategies for claim verification.
The same QA pairs are used for each system with two
strategies.

each setup. The dropped questions have neither en-
tailed answers nor NEI answers, which shows the
necessity of fact-checking the RAG system in the
pipeline. We have utilized a pre-trained discrim-
inative NLI model, bart-large-mnli (Lewis et al.,
2019), with a maximum input length of 1024 to-
kens. Existing pre-training datasets for NLI, i.e.,
MNLI, SNLI, etc., have normally short contexts.
Given the trend of growing context length in the
current RAG systems, reliable entailment-check at
the document level can be interesting for future
research.

4.4 Claim Verification

The claim is verified with an instruction-tuned
model. In the submitted systems, we have sampled
40 verifications for each claim and applied major-
ity voting to select the final label. With the same
instruction-tuned model and QA pairs, we generate
the verification greedily for comparison. Table 4
shows the verification performance of greedy gen-
eration and sampling. The performance difference
regarding the AVeriTeC score is negligible between
the two strategies. This can be partly attributed
to the final AVeriTeC scoring function. We can

only conclude the greedy generation and sampling
for claims, whose corresponding QA pairs com-
pared to gold QA pairs have exceeded the cut-off
threshold of 0.25, make a small difference. For
claims with QA scores smaller than 0.25, which
are not necessarily wrong, the effect of sampling
compared to the greedy generation is not reflected
in the AVeriTeC scores.

4.5 Open-source VS Proprietary Models

We have observed the current bottleneck of our
pipeline lies in the generator, which utilizes an
open-source LLM Llama3-ChatQA-1.5-70B (Liu
et al., 2024) as the backbone to answer ques-
tions. We conduct further experiments and replace
the open-source LLM with a proprietary model,
namely GPT4-Turbo from OpenAI 6. Concretely
we apply the same question generator, retriever,
and claim verifier as shown in Figure 2. Only the
generator is replaced with GPT4-Turbo. Due to
the budget constraint, we evaluate the model only
on the dev set and generate the answers greedily
(temperature 0) without sampling. We have not
fact-checked (entailment check) the answers from
GPT4-Turbo, which is generally wordy compared
to the open-source generator and makes the entail-
ment check difficult. We have utilized maximal
two sets of distinct questions. For comparison, we
select the FZI-WIM After Compet. system, which
utilizes three sets of distinct questions for each
claim. The results are shown in Table 5. The Q+A
scores in the table demonstrate significantly better
performance of GPT4-Turbo than the open-source
generator. Our manual investigation shows also
that GPT4-Turbo has better context understanding
and reasoning capabilities, especially in adversarial
cases.

6https://openai.com
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Setup #Selected QA Q Q+A AVeriTeC Score

FZI-WIM After Compet. 2266 0.41 0.26 0.29
GPT4-Turbo (1 Set Questions) 1096 0.32 0.22 0.24
GPT-4 Turbo (2 Sets Questions) 2372 0.42 0.30 0.45

Table 5: Comparison between open-source and propri-
etary LLMs as the generator for answering questions on
the dev dataset. FZI-WIM After Compet. utilizes all
three sets of questions.

5 Conclusion & Outlook

In this paper, we have described the FZI-WIM sys-
tem for the AVeriTeC shared task, which aims to
tackle the real-world claim verification problem.
The complex reasoning problem in fact-checking
is tackled via question-answering. For each claim,
we first generate relevant critical questions. Based
on the provided knowledge store, the questions
are answered with an RAG system. Considering
the hallucination problem in RAG systems, we fact-
check the generated QA pairs to ensure the answers
are entailed in the source texts. We show that more
questions, i.e., more question-answering rounds,
lead to better model performance. The claim verifi-
cation is based on the selected QA pairs.

Generally, our current systems need a large
amount of computing. The improvement of the
efficiency with open-source models is needed for
the real-world scenario. Compared to proprietary
models, our generator in the RAG system is not
robust enough against adversarial contexts, e.g.,
misinformation, satire, etc. Further enhancement
of the robustness can be a promising research di-
rection.
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Limitations

Due to the limited time for developing the sys-
tems in the test phase, our systems have only used
the provided knowledge store without searching
for extra relevant documents related to our ques-
tions. Extra search can make a big difference for
certain steps, e.g., the repeated processes in stage

2. With extra search, the times of repeats can be
reduced. To achieve the best performance our cur-
rent systems have always selected better-performed
open-source models, e.g., cross-encoder, LLMs,
etc., which normally have a larger size. This leads
to the fact that our systems require a large amount
of computing. In the future, we will focus on the
trade-off of performance and efficiency for real-
world fact-checking systems.
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A Appendix

A.1 Implementation details

Instruction-tuning We have applied Fully Shared
Data Parallel (FSDP) from Meta AI (Zhao et al.,
2023) for the instruction-tuning of question gen-
eration and claim verification models. The train-
ing script is based on llama-recipes7 with two
4×Nvidia-H100 nodes. The dev sets are included
for fine-tuning to make predictions on the final test
set. For question generation, we have fine-tuned
for 5 epochs and claim verification for 3 epochs.
Model inference We have applied transformers li-
brary8 for inference. For the greedy generation, we
set the parameter do_sample as false. For sampling,
we set temperature as 0.7 and top_k as 50.

A.2 Example for instruction-tuning question
generator

Figure 4 shows an example of the instruction-
tuning dataset for the question generator.

7https://github.com/meta-llama/
llama-recipes

8https://github.com/huggingface/
transformers
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You are a fact-checker and your task is to generate
critical questions for verifying the following claim.
Claim date: 25-8-2020
Claimer: Pam Bondi
Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Questions: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014? Did Hunter Biden have any
experience in Ukraine at the time he joined the board of
the Burisma energy company in 2014?

Figure 4: An example of the instruction dataset for fine-
tuning an LLM to generate questions. The prompt ends
with "Questions: ". The questions are the target output
for fine-tuning the LLM.

A.3 Prompt for question-answering
Figure 5 shows the prompt for question-answering.

System: This is a chat between a user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user’s questions
based on the context. The assistant should also indicate
when the answer cannot be found in the context.

GSK does not own Pfizer and or the Wuhan bio-
logical laboratory You have sent us an Instagram message
with these and other misleading and false relation ...

Disclosure: The Open Society Foundations and
Bill and Melinda Gates Foundation are among Africa
Check’s funders, which together provided 21% of our
income in 2019 ...

Rumor – Facts list shows that the Wuhan Labora-
tory is owned by Glaxo, Pfizer, has connections with
foreign companies and receives money from George Soros
and Bill Gates ...

User: Please give a full and complete answer for
the question. Who owns GlaxoSmithkline?

Assistant:

Figure 5: Prompt template for answering the question
given the top 3 chunks, adopted from Liu et al. (2024).
The top 3 chunks in the context are ordered reversely.

A.4 Few-shot prompt for converting QA pairs
to statements

Figure 6 shows the few-shot examples to convert
QA pairs to statements.

A.5 Example for instruction-tuning claim
verifier

Figure 7 shows an example of the instruction
dataset for the claim verification.

Your task is to convert question answer pairs into
statements. In the following there are some example
showing how to convert question answer pairs into
statements.

Question: What resolutions did Biden support in
favor of US intervention in Iraq?
Answer: He supported the H.J.Res.114 - Authorization
for Use of Military Force Against Iraq Resolution of 2002
107th Congress (2001-2002)
Statement: Joe Biden supported the H.J.Res.114 -
Authorization for Use of Military Force Against Iraq
Resolution of 2002 107th Congress (2001-2002)

Question: How much of their national budget did
the Kenyan judiciary receive in 2021?
Answer: Budget speeches for 2020/21 show the judiciary
received 0.6% of the national budget.
Statement: Budget speeches for 2020/21 show the Kenyan
judiciary received 0.6% of the national budget.

Question: Should counties be chasing the 10%
spending target or should it be done at a national level?
Answer: No answer could be found.
Statement: No answer could be found regarding whether
counties should be chasing the 10% spending target or if it
should be done at a national level.

Question: Did Hunter Biden have any experience
in the energy sector at the time he joined the board of the
Burisma energy company in 2014
Answer: No
Statement: Hunter Biden didn’t have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014.

Figure 6: Few-shot prompt for converting QA pairs to
statements.

Your task is to verify the claims based on the context
information in format of question answer pairs. Verify
the claim with justification using the following labels:
Supported, Refuted, Not Enough Evidence, Conflicting
Evidence/Cherrypicking.

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Question 1: Did Hunter Biden have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014
Answer 1: No
Question 2: Did Hunter Biden have any experience in
Ukraine at the time he joined the board of the Burisma
energy company in 2014
Answer 2: No

Justification: No former experience stated.
Label: Supported

Figure 7: An example of the instruction dataset for fine-
tuning an LLM to verify the claims. The prompt ends
with "Answer 2: No ". The justification and label are
the target output.
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Abstract

Automated fact-checking is an important task
because determining the accurate status of a
proposed claim within the vast amount of in-
formation available online is a critical chal-
lenge. This challenge requires robust evalu-
ation to prevent the spread of false information.
Modern large language models (LLMs) have
demonstrated high capability in performing a
diverse range of Natural Language Processing
(NLP) tasks. By utilizing proper prompting
strategies, their versatility—due to their under-
standing of large context sizes and zero-shot
learning ability—enables them to simulate hu-
man problem-solving intuition and move to-
wards being an alternative to humans for solv-
ing problems. In this work, we introduce a
straightforward framework based on Zero-Shot
Learning and Key Points (ZSL-KeP) for au-
tomated fact-checking, which despite its sim-
plicity, performed well on the AVeriTeC shared
task dataset by robustly improving the baseline
and achieving 10th place.1

1 Introduction

The AVeriTeC task (Schlichtkrull et al., 2024) is de-
signed to encourage the development of advanced
frameworks for automated fact-checking, a criti-
cal task in NLP. With the rapid spread of informa-
tion and misinformation online, automated fact-
checking is increasingly important. Given the
time-consuming nature of manual fact-checking,
building an effective neural language model-based
framework is valuable for saving time and costs,
improving performance, and supporting human
judgment. Significant efforts are being made to
automate this process within digital tools or LLMs
(Nakov et al., 2021).

LLMs with billions of parameters offer extensive
knowledge and strong reasoning capabilities that

1Code and data released at https://github.com/
mghiasvand1/ZSL-KeP

can be customized for various tasks. Designing
effective and appropriate prompts is crucial in this
customization process. Recent utilization of LLMs
can mainly be divided into two categories: fine-
tuning and In-Context Learning (ICL). Given the
enormous size of LLMs and the high computational
cost associated with fine-tuning them, utilizing ICL
through zero-shot or few-shot prompting is much
more efficient.

Explaining the reasoning behind a decision is
crucial for user trust in automated fact-checking,
as users need to understand the evidence behind
the model’s verdict (Guo et al., 2022). This work
employs Large Language Models (LLMs) with
Zero-Shot Learning (ZSL), which offer advantages
over simpler, classification-based models due to
their long context windows and high reasoning
capabilities. Besides using powerful LLMs and
effective prompting, accurate retrieval of relevant
information is vital. This involves hierarchical,
step-by-step prompting and decomposition-based
retrieval methods (Zhang and Gao, 2023). This
paper describes the novel approach implemented
by our team, MA-Bros-H, for the AVeriTeC shared
task, which integrates ZSL and key point utilization
within a unified and straightforward framework.

2 Related Works

To highlight a few recent research efforts in auto-
mated fact-checking, it is notable that (Kotonya
and Toni, 2020) provided explainability through
summarization, and (Lee et al., 2020) utilized the
internal knowledge of pretrained language models
such as BERT (Devlin, 2018) within their frame-
work. Additionally, (Lee et al., 2021) employed
few-shot prompting for fact-checking, (Zhang and
Gao, 2023) introduced a hierarchical, step-by-step
prompting method that involves claim decomposi-
tion followed by step-by-step reasoning to predict
the final verdict, and (Kim et al., 2024) proposed
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Figure 1: ZSL-KeP Framework Illustration

a multi-agent debate strategy for explainable fact-
checking.

3 Methodology

This section provides a detailed overview of the
problem definition of AVeriTeC task, as well as the
operational procedure of our ZSL-KeP model, as
outlined in Figure 1.

3.1 Problem Definition

Since our method is explicitly based on zero-
shot prompting, we use only the test data to ex-
ecute our framework, ignoring the train and val-
idation datasets. For each data point in the test
dataset, a claim is provided, and a verdict must
be predicted from the labels “Supported”, “Re-
futed”, “Not Enough Evidence”, and “Conflicting
Evidence/Cherry-Picking”. Additionally, for each
claim, a JSON file called a knowledge store is pro-
vided. This file contains numerous URLs with
scraped texts, including some gold documents that
assist in selecting the accurate label. The expected
output includes a verdict for the input claim and
adequate, yet non-redundant, evidence, preferably
in the form of question-answer pairs, along with
the corresponding URL and scraped text for each
pair to justify the source of each proposed question-
answer pair. It is noteworthy that the answer type
for each question can be “Extractive”, “Abstrac-
tive”, “Boolean” or “Unanswerable”.

3.2 ZSL-KeP Framework

Our ZSL-KeP framework is a procedure that con-
tains multiple steps detailed below. However,
compared to the baseline method proposed in
(Schlichtkrull et al., 2024), our method is much
more straightforward, containing fewer steps than
the baseline, does not require any fine-tuning, and
is simpler to implement.

3.2.1 Zero-Shot Key Points Construction

In the first step, we receive the claim as input
and aim to construct key points based on the re-
ceived claim using ZSL with our chosen LLM. The
primary objective of forming key points is that
even a simple claim can contain several key points.
When searching and retrieving information from
the knowledge store, more extensive retrieval typ-
ically yields more comprehensive information. A
claim might not return many helpful documents
when queried directly, but by constructing diverse
key points from it, we can obtain more relevant and
diverse information. As shown in the prompting
template in Appendix A, we limit the number of
primitive key points to four. For these distinct key
points, we ask the LLM to identify and return pairs
of key points whose combinations result in valu-
able and richer key points. This process aims to
construct an extensive set of key points based on
the input claim, facilitating more divergent retrieval
in the next step.

3.2.2 Extensive Retrieval with References

As mentioned, for each claim, we have a large
knowledge store consisting of various URLs with
their scraped texts, among which the gold docu-
ments for selecting the best and correct verdict are
present. In the previous step, we constructed sev-
eral key points for each claim, either of a normal
type or paired, as explained earlier. If the number
of constructed key points is n, we treat these key
points as a list of queries. We append the main
input claim to this list and use BM25 (Robertson
et al., 2009) to retrieve results for each of the n+ 1
queries with a different top_k parameter for each
query. For each selected retrieval result, since each
JSON file contains many URLs and each URL has
several scraped texts, we construct an ID by con-
catenating the URL index within the JSON file
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Method Q only Q + A AVeriTeC score

AVeriTeC Baseline (Schlichtkrull et al., 2024) 0.24 0.20 0.11

ZSL-KeP (Ours) 0.38 0.24 0.27

Table 1: Main results include retrieval scores for both questions alone and for questions with answers, as well as the AVeriTeC
score for the baseline and our proposed method.

with an underscore, followed by the index of the
scraped text within the list. For each retrieval docu-
ment, we attach the text “<ID>” (where ID is the
constructed corresponding ID) to the document.
After retrieving and appending all these documents
for each query, we separate them with a newline
character. Finally, we concatenate all groups of
retrievals, separating them with two newline char-
acters and several dashes in between, to form a
unified retrieval string for the input claim.

3.2.3 Zero-Shot Prediction

In this stage, which is the final step of our frame-
work, we use ZSL to generate evidence, followed
by a justification and, finally, a verdict. We pass
the original claim along with the unified retrieval
string formed in the previous step as input, exactly
as shown in Appendix A; However, due to the lim-
ited context window of the LLM we are using,
errors may arise. In such cases, we reduce the
number of documents in the unified retrieval string
and prompt the LLM again with a shorter input
length. The reason we include only the retrievals in
the unified retrieval string and omit the key points
is that we want to avoid influencing the evidence
construction process—specifically, the creation of
question-answer pairs—in our strategy. We aim to
keep this process dynamic, based on the available
selected knowledge and the claim’s purpose.

Since the number of adequate question-answer
pairs available as evidence for any claim may vary,
we limit the LLM to providing at most 4 pairs
to avoid penalties from additional, non-essential
question-answer pairs in our prompt. The justifica-
tion is needed to reason about the verdict based on
the evidence and to directly write the predicted ver-
dict afterward. Since the task requires the URL and
scraped text for each item of evidence, we instruct
the LLM to provide the citation ID when answer-
ing questions. This ensures that we can show the
source for our verdict and each question-answer
pair.

4 Experiments and Results

4.1 Experimental Setup
In this work, we utilized the Llama-3-70B model
for both steps described in Sections 3.2.1 and 3.2.3,
using the Groq API2. Additionally, we set the tem-
perature to 0 to ensure reproducibility and top_p to
0.8. For key point construction, we set max_length
to 512, and for zero-shot prediction, we set it to
1024. In the retrieval step using BM25, we set
top_k to 70 for the original claim and to 12 for
other queries, which include key points from both
normal and combined forms. For zero-shot pre-
diction, which is the third step of the strategy, if a
rate limit occurs due to input length limitations, we
retain only the first 55 documents for the original
claim and 9 documents for key point retrievals.

4.2 Evaluation Metrics
The AVeriTeC scoring follows a similar approach
to FEVER (Thorne et al., 2018) and considers the
correctness of the verdict label conditioned on the
correctness of the evidence retrieved. The label
will only be considered correct if it mathches with
the gold label and the Hungarian meteor score be-
tween the predicted evidence and the gold evidence
is at least 0.25. However, Unlike in FEVER us-
ing a closed source of evidence such as Wikipedia,
AVERITEC is intended for use with evidence re-
trieved from the open web. Since the same evidence
may be found in different sources, we cannot rely
on exact matching to score retrieved evidence. As
such, the shared task evaluation strategy instead
rely on approximate matching. Specifically, the
Hungarian Algorithm (Kuhn, 1955) is used to find
an optimal matching of provided evidence to anno-
tated evidence.

4.3 Main Results
Despite our framework’s straightforward proce-
dure, which does not require any fine-tuning and
only utilizes ZSL, as depicted in Table 1, it ro-
bustly improves the baseline in both retrieval

2https://groq.com/
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scores—calculated for questions alone and for
questions with answers—and the AVeriTeC score.
This includes improvements of 0.14, 0.04, and
0.16 in retrieval scores for questions only, re-
trieval scores for questions with answers, and the
AVeriTeC score, respectively. Based on these re-
sults, by using an open-source LLM, our frame-
work has achieved a 10th rank among all 23 system
result submissions.

5 Conclusion

In this paper, we introduced ZSL-KeP, an effec-
tive yet straightforward framework for automated
fact-checking. We utilized the ZSL capability of
LLMs and constructed key points for extensive
retrieval to generate evidence in a question-and-
answer pairs format, along with a final verdict. By
relying solely on the ICL capability of LLMs, our
strategy operates without requiring any fine-tuning
and is more straightforward compared to the base-
line. Our framework sets a new benchmark, in-
dicating promising avenues for future research in
related topics.

6 Limitations

While our work shows strong performance, it has
some limitations that suggest areas for future re-
search. Our method improves diversity by using
zero-shot key points for retrieval, but the limited
input length of our LLM, constrained by time and
budget limitations, prevented us from retrieving a
larger document set. Additionally, a more powerful
LLM could enhance accuracy in generating evi-
dence and verdicts. Addressing these issues could
significantly improve our framework’s results.
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A Prompt Templates

This section provides all of the prompting tem-
plates used within the strategy. Figure 2 illus-
trates the full prompts for section 3.2.1, while the
prompts for section 3.2.3 are shown in Figure 3. It
is noteworthy that in the user messages, the tags
“<claim>” and “<retrieval>” are replaced by the
original claim and the unified retrieval string, re-
spectively.
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[System] 

You're a helpful assistant with expertise in understanding the concepts of a given claim and writing subclaims that 
decompose the main claim well. 

 
[User] 

Based on the given claim, your task is to extract several distinct key points (2 to 4, depending on the claim's length 
and complexity) without paraphrasing, in the format of short sentences. Focus on key points that support the 
main intent of the claim, rather than unnecessary details. Then, only if the number of key points is more than two, 
identify the pairs of key points whose combination leads to new and richer key points, and return a single 
coherent short text as a representation of each combination without paraphrasing. Provide your response 
explicitly in the format of {"key_points": [], "combined_key_points": []}. 

 

Claim: <claim> 

Figure 2: The Prompts for Zero-Shot Key Points Construction

 

[System] 

You are a helpful assistant with expertise in creating evidence through suitable question-answer pairs based on a 
given claim and the available key points within the retrieved knowledge, and in providing an accurate verdict for 
that claim. 

 
[User] 

Your task is to accurately determine a correct verdict for a given claim from the labels "Refuted", "Supported", 
"Not Enough Evidence", or "Conflicting Evidence/Cherry-Picking". You need to provide 1 to 4 necessary and 
helpful question-answer (QA) pairs. Each QA pair should be well-constructed, focusing on different important 
parts of the claim and utilizing the retrieved knowledge effectively to guide accurate decision-making. Therefore, 
you need to break down the claim into its distinct and most important subclaims, focusing on these individual 
components, as well as considering direct questions related to the main claim if the retrieved knowledge is 
sufficient. Your answers can only be in the forms of extractive (preferred), abstractive, or unanswerable. 
Extractive answers are those directly pulled from the text, while abstractive answers summarize or infer 
information based on the text. Unanswerable type is very rare, and in this case, set the answer to "No answer 
could be found." and the citation_id to "". Each piece of text in the retrieved knowledge has a <citation_id> at its 
end, where the placeholder is replaced by the main citation ID. For each proposed answer to all answerable 
questions in your evidence, you must include exactly one citation ID (if there are multiple citation_id, select only 
one) solely within the "citation_id" field. After providing evidence, you must also provide a concise justification 
explaining how the evidence and the retrieved knowledge support the selected label for the claim. Provide your 
answer explicitly in the following format without any other change or additional feedback: 

{ 

  "evidence": [ 

    { 
      "question": "question", 

      "answer": "answer", 

      "citation_id": "<citation_id>" 

    }, 

    ... 

  ], 
  "justification": "justification", 

  "pred_label": "pred_label" 

} 

 

Claim: 
<claim> 

 

Retrieved Knowledge: 

      <retrieval> 

Figure 3: The Prompts for Zero-Shot Prediction
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Abstract

Given the widespread dissemination of
misinformation on social media, implementing
fact-checking mechanisms for online claims
is essential. Manually verifying every claim
is very challenging, underscoring the need
for an automated fact-checking system. This
paper presents our system designed to address
this issue. We utilize the Averitec dataset
(Schlichtkrull et al., 2023) to assess the
performance of our fact-checking system. In
addition to veracity prediction, our system
provides supporting evidence, which is
extracted from the dataset. We develop a
Retrieve and Generate (RAG) pipeline to
extract relevant evidence sentences from a
knowledge base, which are then inputted
along with the claim into a large language
model (LLM) for classification. We also
evaluate the few-shot In-Context Learning
(ICL) capabilities of multiple LLMs. Our
system achieves an ’Averitec’ score of 0.33,
which is a 22% absolute improvement over
the baseline. Our Code is publicly available
on https://github.com/ronit-singhal/evidence-
backed-fact-checking-using-rag-and-few-shot-
in-context-learning-with-llms.

1 Introduction

The proliferation of fake news and misinformation
on social media platforms has emerged as a signifi-
cant contemporary issue (Panke, 2020). False on-
line claims have, in some cases, incited riots (Lind-
say and Grewar, 2024) and even resulted in loss of
life (Kachari, 2018). This problem is particularly
amplified during critical events such as elections
(Bovet and Makse, 2019) and pandemics (Karimi
and Gambrell, 2020; Bae et al., 2022; Morales et al.,
2021). Given the vast volume of online content,
manually fact-checking every claim is impractical.
Therefore, the development of an automated fact

*Work does not relate to position at Amazon.

Figure 1: Overview diagram of our system. First, the
claim is used to retrieve the top 3 relevant documents.
Next, evidence is extracted from these documents using
questions and answers generated by an LLM. Finally,
the evidence is used for veracity prediction via few-shot
ICL.

verification system is imperative. Moreover, sim-
ply assigning a veracity label is inadequate; the
prediction must be supported by evidence to en-
sure the system’s transparency and to bolster pub-
lic trust. Although recent solutions have been pro-
posed (Patwa et al., 2021a; Capuano et al., 2023),
the problem remains far from resolved and requires
further research efforts.

In this paper, we present our system for au-
tomated fact verification. Our system classi-
fies a given textual claim into one of four cat-
egories: Supported, Refuted, Conflicting Evi-
dence/Cherrypicking, or Not Enough Evidence.
Additionally, it provides supporting evidence for
the classification. Our approach leverages re-
cent advancements in Large Language Models
(LLMs), specifically Retrieval-Augmented Genera-
tion (RAG) and In-Context Learning (ICL), to pro-
duce evidence-backed veracity predictions. Given
a claim and a collection of documents, our system
first employs a RAG pipeline to retrieve the three
most relevant documents and extract evidence from
them. Subsequently, we utilize ICL to determine
the veracity of the claim based on the extracted evi-
dence. Figure 1 provides a high-level overview of
our system. We evaluate our system on the Averitec
dataset (Schlichtkrull et al., 2023), where it outper-

91

https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms
https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms
https://github.com/ronit-singhal/evidence-backed-fact-checking-using-rag-and-few-shot-in-context-learning-with-llms


forms the official baseline by a large margin. Our
key contributions are as follows:

• We develop a system for automated fact veri-
fication that integrates RAG with ICL to pro-
vide evidence-based classifications.

• Our proposed system requires only a minimal
number of training samples, thereby eliminat-
ing the need for a large manually annotated
dataset.

• We conduct experiments with various recent
LLMs and provide a comprehensive analysis
of the results.

The remainder of this paper is structured as fol-
lows: Section 2 provides a literature review of re-
lated works, while Section 3 describes the dataset.
In Section 4, we outline our methodology, followed
by a detailed account of the experimental setup in
Section 5. Section 6 presents and analyzes our
results, and finally, we conclude in Section 7.

2 Related Work

Recently, there has been increased research interest
in fake news detection and fact checking. Glazkova
et al. (2021) proposed an ensemble of BERT (De-
vlin et al., 2019) for Covid fake news (Patwa et al.,
2021b) detection. Harrag and Djahli (2022) em-
ployed deep learning techniques for fact checking
in Arabic (Baly et al., 2018). (Song et al., 2021)
tackled the problem of fake news detection using
graph neural networks. The factify tasks (Mishra
et al., 2022; Suryavardan et al., 2023b) aimed to
detect multi-modal fake news. However, these sys-
tems only provide the veracity prediction without
any evidence.

On the FEVER dataset (Thorne et al., 2018), Kr-
ishna et al. (2022) designed a seq2seq model to gen-
erate natural logic-based inferences as proofs, re-
sulting in SoTA performance on the dataset. Schus-
ter et al. (2021) released the VitaminC dataset and
propose contrastive learning for fact verification.
Hu et al. (2022) proposed a DRQA retriever (Chen
et al., 2017) based method for fact checking over
unstructured information (Aly et al., 2021). These
systems provide evidence or explanation to back
their predictions but they test the veracity of syn-
thetic claims whereas we test real claims.

Some researchers have also used LLMs to tackle
the problem. Kim et al. (2024) leveraged multiple

Class Train Dev
Supported 847 122
Refuted 1743 305
Conflicting evidence/Cherrypicking 196 38
Not enough evidence 282 35

Total 3068 500

Table 1: Class-wise distribution of train and dev set of
the dataset. The data is skewed towards the Refuted
class.

Figure 2: Word cloud of the claims. We can see that Pol-
itics and COVID-19 are common topics in the claims.

LLMs as agents to enhance the faithfulness of ex-
planations of evidence for fact-checking. Zhang
and Gao (2023) designed a hierarchical prompting
method which directs LLMs to separate a claim
into several smaller claims and then verify each of
them progressively.

There have also been attempts to solve the prob-
lem using RAG. Khaliq et al. (2024) utilized multi-
modal LLMs with a reasoning method called chain
of RAG to provide evidence based on text and
image. Deng et al. (2024) proposed a method to
decrease misinformation in RAG pipelines by re-
ranking the documents during retrieval based on
a credibility score assigned to them. Similar to
these systems, we also use RAG and LLMs in our
solution.

For more detailed surveys, please refer to Thorne
and Vlachos (2018); Kotonya and Toni (2020); Guo
et al. (2022).

3 Data

We utilize the Averitec dataset (Schlichtkrull et al.,
2023) for fact-checking purposes. This dataset
comprises claims accompanied by a knowledge
store (a collection of articles). Each claim is an-
notated with question-answer pairs that represent
the evidence, a veracity label, and a justification
for the label. The veracity label can be one of
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Convert the following claim to one neu-
tral question. Do not miss out anything
important from the claim. Question the
claim, not the fact.
Claim: Donald Trump has stated he will
not contest for the next elections
Incorrect Question: "What did Donald
Trump state for the next elections?"
Correct Question: "Did Donald Trump
state that he will not contest for the next
elections?"
Claim: [another claim]
Incorrect Question: [example of an in-
correct question]
Correct Question: [expected correct
question]
Given claim: In a letter to Steve Jobs,
Sean Connery refused to appear in an Ap-
ple commercial.
Generated question: "Is it true that Sean
Connery wrote a letter to Steve Jobs refus-
ing to appear in an Apple commercial?"

Figure 3: The prompt used for generating questions.
Some manually created correct and incorrect examples
are given to guide the LLM.

the following: Support (S), Refute (R), Conflicting
Evidence/Cherrypicking (C), or Not Enough Evi-
dence (N). A claim is labeled as C when it contains
both supporting and refuting evidence. The data
distribution, as shown in Table 1, indicates a class
imbalance favoring the R class, while the C and N
classes have relatively few examples. The final test-
ing is conducted on 2,215 instances (Schlichtkrull
et al., 2024). For further details on the dataset,
please refer to Schlichtkrull et al. (2023, 2024).

On average, each claim consists of 17 words.
Figure 2 (word cloud of the claims) reveals that
most claims are related to politics and COVID-19.

4 Methodology

Given a claim and a knowledge store, our sys-
tem is comprised of three key components: rel-
evant document retrieval, evidence extraction from
the documents, and veracity prediction based on
the extracted evidence. The first two components
form our Retrieval-Augmented Generation (RAG)
pipeline.

4.1 Document Retrieval Using Dense
Embeddings

In the document retrieval phase, it is essential
to match claims with relevant documents from

Your task is to extract a portion of the
provided text that directly answers the
given question. The extracted informa-
tion should be a conclusive answer, ei-
ther affirmative or negative, and con-
cise, without any irrelevant words. You
do not need to provide any explanation.
Only return the extracted sentence as
instructed. You are strictly forbidden
from generating any text of your own.
Question: Is it true that Sean Connery
wrote a letter to Steve Jobs refusing to ap-
pear in an Apple commercial?
Document text: [entire text of one of the
retrieved documents]
Generated answer: "No, it is not true that
Sean Connery wrote a letter to Steve Jobs
refusing to appear in an Apple commercial.
The letter was a fabrication created for a
satirical article on Scoopertino."

Figure 4: The prompt used for generating answers. This
prompt is repeated for each of the top three documents.

a knowledge store (in our case, the knowledge
store consists of documents provided in the dataset,
though it could be replaced with documents re-
trieved via a search engine). To facilitate this, all
documents are first transformed into dense vector
embeddings using an embedding model. Since our
knowledge store is static, this transformation is a
one-time process. The claim in question is then
converted into embeddings using the same model.

Once the claim is embedded, we utilize FAISS
(Facebook AI Similarity Search) (Douze et al.,
2024) to conduct a nearest-neighbor search within
the knowledge store. FAISS is an efficient library
for similarity search and clustering of dense vec-
tors. We configure FAISS to retrieve the top three
documents most relevant to the claim. These doc-
uments are then used in the subsequent evidence
extraction and veracity prediction steps.

4.2 Evidence Extraction Using LLMs
After identifying the top three relevant documents,
the next step involves extracting evidence sup-
ported by these documents. This process consists
of two steps:

Question Generation: The claim is transformed
into a question challenging its validity using an
LLM. We employ In-Context Learning, which en-
ables the model to generate responses based on
a few provided examples, aiding in the creation
of nuanced and contextually appropriate questions.
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Classify the given claim based on provided state-
ments into one of:
1. ’Supported’ if there is sufficient evidence indi-
cating that the claim is legitimate. 2. ’Refuted’ if
there is any evidence contradicting the claim.
3. Not Enough Evidence’ If you cannot find any
conclusive factual evidence either supporting or
refuting the claim.
4. ’Conflicting Evidence/Cherrypicking’ if there
is factual evidence both supporting and refuting
the claim.
Claim: [claim ]
Statements: [statements related to claim]
Class: [ground truth class]
Claim: [claim]
Statements: [statements related to claim]
Class: [ground truth class]
Given Claim: New Zealand’s new Food Bill bans
gardening.
Given Statements: ["The Food Bill does not impose
restrictions on personal horticultural activities, such
as growing vegetables and fruits at home.", "Garden-
ing is not banned in New Zealand.", "There are no
laws against people having gardens, or sharing food
that they’ve grown at home, said a spokesperson for
New Zealand’s Ministry for Primary Industries."]
Generated class: Refuted

Figure 5: A prompt similar to the one used for gener-
ating the final prediction. The actual prompt has some
more instructions which are omitted here in the interest
of space. two annotated train examples are provided for
the LLM to learn from.

The prompt is designed to ensure that the gener-
ated question challenges the claim’s veracity rather
than simply seeking a factual answer. An example
prompt is provided in Figure 3.

Answer Generation: After generating the ques-
tion, we provide a single document to an LLM
and pose the question. The LLM is prompted to de-
liver concise and definitive answers derived directly
from the content of the document. This process is
repeated for each of the three documents, result-
ing in three distinct answers for each claim. These
answers collectively constitute our evidence. It is
important to note that in our experiments, the LLM
used for answer generation does not necessarily
need to be the same as the one used for question
generation. The prompt utilized in this step is simi-
lar to the one depicted in Figure 4.

4.3 Few-Shot ICL for Final Classification

For the final veracity prediction, we use an LLM
to classify a claim based on the three pieces of
evidence extracted earlier. The LLM is prompted

to choose one out of the four possible classes. The
prompt is designed to guide the model through
the classification process, ensuring that it correctly
interprets the relationship between the claim and
the evidence. An example prompt is given in Figure
5.

Our methodology aligns with recent advance-
ments in retrieval-augmented generation (RAG)
pipelines which alleviate hallucination and ICL
methods, which have been shown to improve the
accuracy of LLMs. The integration of these state-
of-the-art methods is an attempt to ensure that the
extracted evidence is both relevant and contextually
appropriate for validating the claims accurately.

5 Experiments

To convert documents into dense embeddings,
we utilize the dunzhang/stella_en_1.5B_v5
model1. This model is chosen because, at the time
of our experiments, it was ranked first on the Mas-
sive Text Embedding Benchmark (MTEB) leader-
board (Muennighoff et al., 2022), and holds the
second position at the time of writing this paper.

For all LLMs used in our experiments, we em-
ploy their 4-bit quantized versions via Ollama2.
This quantization enables us to load larger LLMs
onto our GPUs.

For question generation, we use the Phi-3-
medium model (Abdin et al., 2024). The temper-
ature is set to 0, and greedy decoding is used to
ensure that the answers are as factual as possible
and to minimize hallucinations.

For answer generation and final classification,
we experiment with multiple LLMs of varying
sizes, including InternLM2.5 (Cai et al., 2024),
Llama-3.1 (Dubey et al., 2024), Phi-3-medium (Ab-
din et al., 2024), Qwen2 (Yang et al., 2024), and
Mixtral (Jiang et al., 2024). These models are se-
lected based on their performance on the Open
LLM Leaderboard (Fourrier et al., 2024) and their
availability through Ollama.

We utilize an A40 GPU for Mixtral, while
all other models are run on an A100 GPU. Our
best-performing model, Mixtral, requires an
average of 2 minutes for evidence extraction and
final prediction. Our code is publicly available on
https://github.com/ronit-singhal/evidence-backed-
fact-checking-using-rag-and-few-shot-in-context-

1https://huggingface.co/dunzhang/stella_en_1.
5B_v5

2https://github.com/ollama/ollama
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Model Size Q+A ↑ Averitec ↑ Acc ↑
InternLM2.5 7B 0.278 0.194 0.374
Llama3.1 8B 0.259 0.224 0.538
Phi-3-Medium 14B 0.259 0.28 0.654
Llama 3.1 70B 0.272 0.328 0.662
Qwen2 72B 0.285 0.33 0.61
Mixtral 8*22B 0.292 0.356 0.636

Table 2: Results of various models on the dev set. Per-
formance improves as the model size increases. Acc
refers to accuracy. Q+A and Averitec scores are de-
scribed in Section 5.1.

System Q ↑ Q+A ↑ Averitec ↑
Official Baseline 0.24 0.2 0.11
Mixtral (ours) 0.35 0.27 0.33

Table 3: Results on the test set. Our system which
uses Mixtral for final prediction outperforms the official
baseline in all metrics. For more details of the metrics,
please refer to section 5.1.

learning-with-llms.

5.1 Evaluation Metrics
The evaluation metrics used ensure that credit for a
correct veracity prediction is given only when the
correct evidence has been identified.

To evaluate how well the generated questions
and answers align with the reference data, the pair-
wise scoring function METEOR (Banerjee and
Lavie, 2005) is used. The Hungarian Algorithm
(Kuhn, 1955) is then applied to find the optimal
matching between the generated sequences and the
reference sequences. This evidence scoring method
is referred to as Hungarian METEOR. The system
is evaluated on the test set using the following met-
rics:

• Q only: Hungarian METEOR score for the
generated questions.

• Q + A: Hungarian METEOR score for the
concatenation of the generated questions and
answers.

• Averitec Score: Correct veracity predictions
where the Q+A score is greater than or equal
to 0.25. Any claim with a lower evidence
score receives a score of 0.

6 Results and Analysis

Table 2 provides a summary of the performance
of various models on the development set. The

Model S R N C Macro
Mixtral 0.605 0.780 0.126 0.117 0.47
Qwen2 0.620 0.754 0.157 0.153 0.42
Llama 3.1 70b 0.613 0.809 0.022 0 0.361

Table 4: Class-wise F1 scores of our top three LLMs
on the dev set. Classes are Supported (S), Refuted
(R), Not enough evidence (N), and conflicting evi-
dence/cherrypicking. Macro-averaged F1 score is also
reported.

Mixtral 8*22B model (Jiang et al., 2024) achieves
the highest Averitec score, while the Llama 3.1
model (Dubey et al., 2024) attains the highest ac-
curacy. These findings indicate that model perfor-
mance generally improves with increasing model
size. Moreover, the relative rankings of these mod-
els on the development set differ from their posi-
tions on the Open LLM leaderboard (Fourrier et al.,
2024), suggesting that superior performance on the
Open LLM leaderboard does not necessarily corre-
late with better performance in the fact verification
task.

Given that Mixtral achievs the highest Averitec
score on the development set, we select it for eval-
uation on the test set. Table 3 provides a com-
parison of our system and the official baseline
(Schlichtkrull et al., 2023) on the test set. The
baseline model utilizes Bloom (Scao et al., 2023)
for evidence generation, followed by re-ranking of
the evidence using a finetuned BERT-large model
and finally a finetuned BERT-large model veracity
prediction. Unlike the baseline, which uses fine-
tuned models, we only use a few train examples
via ICL. Despite that, our system outperforms the
baseline across all three evaluation metrics. No-
tably, our Averitec score of 0.33 is a 22% absolute
improvement over the baseline.

6.1 Class-wise Performance

Table 4 presents the class-wise performance of our
top three models on the development set. Across
all models, the Refuted class emerges as the eas-
iest to predict, while the "Not Enough Evidence"
and "Conflicting Evidence/Cherrypicking" classes
present greater challenges. Notably, no single
model excels across all classes. Although Mix-
tral achieves the highest macro F1 score, it is not
the top-performing model for any individual class.
Qwen2 surpasses the other models in performance
across all classes except Refuted. This suggests
that exploring ensemble techniques could be a valu-
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Figure 6: Confusion matrix of Mixtral on the develop-
ment set, illustrating the model’s performance across
four classes (C, N, R, S). While class R is mostly accu-
rately classified, classes C and N are often mis-predicted
as R or N.

able direction for future research.
Figure 6 illustrates the confusion matrix of Mix-

tral 8*22B on the development set. It reveals that
both the N and C classes are equally likely to be
misclassified as the R and S classes. Additionally,
there is significant confusion between the S and R
classes, highlighting the inherent difficulty of fact
verification.

7 Conclusion and Future Work

In this paper, we introduced our system for
evidence-supported automated fact verification.
Our system - based on RAG and ICL - requires
only a minimal number of training examples to
extract relevant evidence and make veracity pre-
dictions. We observed that all LLMs demonstrate
sub-optimal performance on the "Conflicting Evi-
dence/Cherrypicking" and "Not Enough Evidence"
categories, which emphasizes the inherent chal-
lenges of these categories. Additionally, no single
LLM consistently outperforms others across all cat-
egories. Our system achieved an Averitec score
of 0.33, highlighting the complexity of the prob-
lem and indicating a substantial potential for future
improvement.

Future research could involve fine-tuning the
LLM using parameter-efficient fine-tuning (PEFT)
techniques (Liu et al., 2022; Patwa et al., 2024)
and improving performance through the use of en-
semble techniques (Mohammed and Kora, 2022).
Extending the system to include multi-modal fact

verification (Patwa et al., 2022; Suryavardan et al.,
2023a) also represents an interesting direction for
further investigation.

8 Limitation

As we are using few-shot ICL, our system can-
not make use of large annotated datasets if avail-
able, because of the limitation of the prompt size.
Furthermore, we assume the availability of high-
quality LLMs, which might not be the case for
some low-resource languages.

9 Ethical Statement

LLMs are prone to hallucination. In our case, the
extracted evidence could be incorrect due to hallu-
cination. Furthermore, the prompts can be tweaked
to intentionally generate wrong evidence or predic-
tions. We caution the reader to be aware of such
issues and to not misuse the system.
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Abstract

As part of the AVeriTeC shared task, we de-
veloped a pipelined system comprising robust
and finely tuned models. Our system integrates
advanced techniques for evidence retrieval and
question generation, leveraging cross-encoders
and large language models (LLMs) for opti-
mal performance. With multi-stage process-
ing, the pipeline demonstrates improvements
over baseline models, particularly in handling
complex claims that require nuanced reason-
ing, by improved evidence extraction, question
generation and veracity prediction. Through
detailed experiments and ablation studies, we
provide insights into the strengths and weak-
nesses of our approach, highlighting the critical
role of evidence sufficiency and context depen-
dency in automated fact-checking systems. Our
system secured a competitive rank, 7th on the
development and 12th on the test data, in the
shared task, underscoring the effectiveness of
our methods in addressing the challenges of
real-world claim verification.

1 Introduction

Fact-checking has become an essential tool in the
fight against misinformation, which can have far-
reaching impacts on public opinion and policy.
Manual fact-checking is a resource-intensive pro-
cess, requiring skilled analysts to meticulously
scrutinise claims and verify their authenticity. This
necessity has driven the development of automated
fact-checking (AFC) systems designed to assist hu-
man fact-checkers by efficiently processing large
volumes of information and detecting false claims.
(Nakov et al., 2021; Guo et al., 2022). The effec-
tiveness of AFC systems depends significantly on
the quality of the datasets used to train and evaluate
them. Common datasets, such as FEVER (Thorne
et al., 2018), FEVEROUS (Aly et al., 2021) and
MultiFC (Augenstein et al., 2019), have been in-
strumental in advancing AFC research, but come
with limitations, including the reliance on artifi-

cially constructed claims and inadequate evidence
annotations (Schlichtkrull et al., 2023).

In response to these limitations, the 2024
AVeriTeC (Automated VERIfication of TExtual
Claims) task was specifically designed to address
the challenges of real-world claim verification
(Schlichtkrull et al., 2023). AVeriTeC comprises
5,783 claims sourced from 50 fact-checking or-
ganisations, collected via the Google FactCheck
Claim Search API. Each claim in the dataset is
meticulously annotated with question-answer pairs,
supported by online evidence, and accompanied by
textual justifications explaining how the evidence
leads to a verdict. This structured annotation ap-
proach ensures that the dataset supports robust AFC
model training and evaluation (Schlichtkrull et al.,
2023). This advancement aligns the dataset more
closely with real-world scenarios, potentially en-
hancing the generalisation ability of the developed
models and facilitating the creation of more ro-
bust approaches. The diversity of the data presents
unique challenges, necessitating a deeper under-
standing of the data and the development of effec-
tive reasoning strategies. Our method (SK_DU)
achieved the 12th Rank in the AVeriTeC shared
task during the testing phase1, providing valuable
insights into the strengths and weaknesses of our
pipeline and highlighting areas for further improve-
ment.

In this paper, we aim to describe the design
of our proposed fact verification pipeline and to
share the insights we gained on the AVeriTeC
dataset (Schlichtkrull et al., 2023) during the work-
shop competition. The paper introduces a com-
prehensive approach to real-world claim verifi-
cation, leveraging the AVeriTeC dataset to de-
velop and evaluate a sophisticated pipeline for
automated fact-checking. The proposed system
incorporates cutting-edge models and techniques,

1https://eval.ai/web/challenges/challenge-
page/2285/leaderboard/5655
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including cross-encoders for precise evidence re-
trieval/reranking (Humeau et al., 2019) and large
language models (LLMs) for effective question
generation (Schlichtkrull et al., 2023), and Cross-
Encoder based natural language inference (NLI) for
veracity prediction (Li et al., 2022). By focusing
on multi-stage processing—ranging from the se-
lection of evidence to nuanced reasoning for claim
validation, the work addresses the complexities of
real-world data, emphasising the importance of
context and evidence sufficiency in fact-checking
processes. Our code is released to the public for
further exploration2.

In short, the contributions of this paper are the
following:

• The paper presents a detailed pipeline that in-
tegrates cross-encoders for evidence retrieval
and LLMs for question generation, improving
the overall accuracy of claim verification.

• Showing a pretrained Cross-Encoder model
performs better than a fine-tuned BERT model
on evidence extraction and reranking tasks.

• The paper provides in-depth ablation studies
and performance analysis, offering insights
into the strengths and weaknesses of the pro-
posed approach.

• The model’s competitive performance in the
AVeriTeC shared task highlights its practical
applicability and potential for real-world de-
ployment in automated fact-checking systems.

2 Dataset Insights

AVeriTeC consists of 5,783 claims sourced from 50
reputable fact-checking organisations, where 4,568
claims’ data were released earlier, while 1,215 were
released during the testing phase of the AVeriTeC
Shared Task3. Each claim is annotated with de-
tailed question-answer (QA) pairs as evidence, a
veracity label, and a textual justification, ensur-
ing a robust foundation for training and evaluating
AFC systems (Schlichtkrull et al., 2023). Addition-
ally, the meta-data information, e.g., speaker, date,
URL, location, etc., provides contextual details to
the claim to support questions, answers, and justifi-
cations. This structured and meticulous approach
aims to bridge the gap between academic research

2https://github.com/skmalviya/AVeriTeC_SKDU
3https://fever.ai/task.html

Property Stats

Avg questions per claim 2.60
Avg answers per question 1.07
Questions with extractive answer 53%
Questions with abstractive answer 26%
Questions with boolean answer 17%
Questions with no answer 4%

Table 1: Dataset statistics.

and practical application in building systems for
misinformation detection.

As the claims in AVeriTeC are also annotated
with date, the dataset is split temporally (ordered
by date) into training, validation, and test sets, hav-
ing 500, 3,068, and 2,215 claims data, respectively.
Table 1 illustrates some properties of the AVeriTeC
dataset. Claims contain an average of 2.60 ques-
tions each, with questions averaging 1.07 answers
each. Most answers are extractive (53%), followed
by abstractive (26%), and boolean (17%), with 4%
being unanswerable. The dataset is somewhat un-
balanced, with the majority of claims being refuted,
reflecting the focus of journalists on false or mis-
leading claims.

Reasoning about evidence is structured through a
question-and-answer format, allowing for multiple
answers to reflect potential disagreements. Multi-
hop reasoning is also allowed by referring to pre-
vious questions, and all answers must be backed
by source URLs. In the AVeriTeC dataset, the ve-
racity of claims is predicted into typical classes:
Supported, Refuted, and Not Enough Evidence.
AVeriTeC also introduces a fourth class: Conflict-
ing evidence/Cherry-picking, which includes con-
flicting evidence and technically true claims that
mislead by omitting crucial context. This addition
addresses real-world scenarios where sources may
legitimately disagree on interpretations.

One of the primary challenges is context depen-
dence. Many claims cannot be accurately verified
without additional context that is not always avail-
able in the fact-checking articles. This lack of con-
text can lead to incorrect or incomplete verification
outcomes. Another major challenge is evidence
sufficiency. Ensuring that the evidence provided is
comprehensive enough to support or refute claims
is crucial, as incomplete evidence can skew the
verification results. Temporal leakage is another
critical challenge, where evidence published af-
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ter the claim date may inadvertently influence the
verification process. This can result in biased or
inaccurate conclusions, undermining the integrity
of the dataset. Additionally, the diverse nature of
the data from various sources and the wide range
of claim types introduce complexity in data annota-
tion and processing, making it difficult to maintain
consistency and accuracy across the dataset.

3 System Description

3.1 AVeriTeC Baseline

The baseline model for AVeriTeC employs a so-
phisticated approach to automate the fact-checking
process, leveraging state-of-the-art natural lan-
guage processing (NLP) techniques. Specifically,
it utilises transformer-based models, such as BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) and its variants,
which have proven highly effective in understand-
ing and processing natural language. These mod-
els are fine-tuned on the AVeriTeC dataset to op-
timise their performance in various stages of the
fact-checking pipeline, including claim representa-
tion, evidence retrieval, and veracity prediction.

The evidence retrieval component of the baseline
model is designed to efficiently retrieve relevant ev-
idence from a vast pool of sentences scrapped from
Google Search API. The baseline applies BM25
(Robertson and Zaragoza, 2009) as a coarse filter
to select the top 100 sentences to keep relevant ev-
idence pinpointed and presented for evaluation in
further stages in the pipeline.

Further, during the question generation stage,
each evidence is paired with a question gener-
ated by an LLM based on few-shot prompting,
where the QA pairs as few-shot examples are ex-
tracted from the training data using BM25. Base-
line utilises BLOOM (Workshop et al., 2023) for
this task. It is empirically shown that a 10-shot set-
ting consistently outperforms other configurations,
such as 1, 3, or 5-shot prompting, in generating
accurate and contextually appropriate questions.
To further refine the generated QA pairs, a fine-
tuned BERT-large model (Devlin et al., 2019) is
employed to rerank the outputs, ultimately select-
ing the top N = 3 evidence sets that best support
or refute the claim.

The final stage of the baseline model is veracity
prediction, where the selected evidence as QA pairs
are used to determine the truthfulness of the claim.
This step involves integrating the claim-evidence

pairs into a coherent representation and feeding it
into a classification model that assigns a veracity la-
bel. The labels typically include categories such as
“supported” or “refuted”, “not enough evidence” or
“conflicting evidence/cherry-picking”. The baseline
uses a fine-tuned BERT-large model, fine-tuned
on annotated examples from the AVeriTeC dataset,
learning to weigh the evidence and make informed
decisions about the claim’s veracity (Schlichtkrull
et al., 2023).

3.2 Our Pipeline
Similar to AVeriTeC, our pipeline consists of sev-
eral models integrated into a multi-stage process,
offering a comprehensive solution framework for
real-world claim verification. Figure 1 depicts our
pipeline, showing various components for a spe-
cific task. Each pipeline stage is crucial for ac-
curate claim verification, from retrieving relevant
evidence to predicting the claim’s veracity. Below,
we outline the models utilised in our pipeline. We
make use of the evidence collection (knowledge
store) retrieved through the Google Search API, as
provided in the AVeriTeC shared task.

3.2.1 Evidence Selection
For evidence retrieval, we employ a Cross-Encoder
to extract evidence sentences from the knowledge
store. (Humeau et al., 2019) has shown that
cross-encoders typically outperform bi-encoders
on sentence-scoring tasks by enabling rich inter-
actions between the claim and candidate evidence.
We also compared the retrieval results with those
of BM25, TF-IDF, and Bi-Encoder to evaluate their
effectiveness. Similar to the baseline, we keep only
the top 100 sentences based on the score predicted
by the Cross-Encoder. The Cross-Encoder takes
the pair of claim c and evidence e and processes it
through a transformer model, e.g. RoBERTa (Liu
et al., 2019):

h[CLS] = RoBERTa([c; e]) (1)

where h[CLS] is the final hidden state correspond-
ing to the special [CLS] token. The score s(c, e)
for the (claim, evidence) pair is then computed
by applying a linear layer followed by a sigmoid
activation function as:

s(c, e) = σ(W · h[CLS] + b) (2)

where W and b are the linear layer’s weight matrix
and bias term, and σ is the sigmoid function.
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Select top-100 sentences
from the knowledge store Collect 100 QA pairs Rerank and Pick 

Top-3 QA pairs
Predict Veracity label
based on (claim, QA)

Verdict:
supported
refuted
not enough evidence
conflicting evidence/cherry-picking

Figure 1: Overview of the pipelined Evidence-Retrieval and Verdict Prediction for a given claim.

Evidence:...
Question answered:...

Evidence:...
Question answered:...

...

Evidence:...
Question answered:

(a) Prompt1

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

...

Outrageously, example[‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

(b) Prompt2

Figure 2: Prompts used by an LLM for question generation task.

This strategy ensures that the most pertinent evi-
dence is identified (relevance) and made computa-
tionally feasible (top-100) for further stages in the
verification pipeline.

3.2.2 Question Generation

To generate questions for the extracted evidence
sentences from the previous step, we conducted
experiments on two fronts: 1) Prompt Engineer-
ing, and 2) Utilisation of Various Large Language
Models (LLMs).

Prompt Engineering We experimented with
two prompt configurations for few-shot learning:
Prompt1: A straightforward pair of evidence and

questions.
Prompt2: A more descriptive prompt that in-

cludes a triplet of claim, answer, and
question.

Figure 2 illustrates the prompt configurations
employed in our study. In “Prompt2", if a sample
lacks a ‘speaker’ field or is set to NULL, we sub-
stitute it with “Speaker" to maintain consistency
across the prompts.

In line with baseline criteria for question gen-
eration, we adopt a 10-shot approach for prompt
construction. Additionally, we explored using the
Bi-Encoder model to identify the 10 most relevant

examples from the training set for prompting. The
Bi-Encoder, based on a transformer architecture,
is effective in retrieving in-context examples, en-
hancing the quality of few-shot prompting. An
ablation study in the results section compares the
effectiveness of these approaches.

Utilisation of Various Large Language Mod-
els (LLMs) With the GPU resources at our dis-
posal, we conducted question-generation experi-
ments using LLMs with up to 8 billion parame-
ters. We evaluated leading open-source models
such as BLOOM (Workshop et al., 2023) and Meta-
Llama-3-8B (Dubey et al., 2024). Additionally, we
tested the recently released Meta-Llama-3.1-8B
for the generation task. For comparison, we also
utilised the ChatGPT API4 with the ‘OpenAI-GPT-
4o’ model.

3.2.3 Question-Answer Reranking
After retrieving the initial set of evidence, we apply
a reranking process to ensure that the most relevant
pieces are selected for the claim verification task.
This reranking is essential for identifying specific
question-answer (QA) pairs that directly support
or refute the claim, thereby sharpening the focus

4https://platform.openai.com/docs/api-
reference/introduction
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on the most pertinent information. To achieve this,
we again utilise a Cross-Encoder model, which
is particularly effective in capturing nuanced re-
lationships between the claim and the evidence.
At this stage, the input format changes to (claim,
QA), allowing the model to evaluate the alignment
between the claim and the concatenated question-
answer (QA) pairs as:

h[CLS] = RoBERTa([c;q · a]) (3)

the final hidden state h[CLS] is then processed
through a linear layer followed by a sigmoid acti-
vation function (as in Equation 2) to obtain a score
s(c,qa) for the (claim, QA) pair.

By carefully selecting the most relevant evi-
dence, the system significantly reduces noise and
enhances the precision of the information used
in the final verification step. This meticulous ap-
proach ensures that the verification process is not
only accurate but also efficient, ultimately lead-
ing to more reliable outcomes in automated fact-
checking.

3.2.4 Veracity Prediction
Veracity prediction is the final and most criti-
cal stage in the automated fact-checking pipeline.
In this stage, the model classifies a claim based
on the evidence retrieved (e.g., Top 3 QA pairs)
and selected in previous stages to predict its ve-
racity into four classes. Unlike the baseline ap-
proach using a BERT-Large model, we fine-tune
a Cross-Encoder—a smaller, transformer-based
model—through supervised natural language infer-
ence (NLI) training. This approach is computation-
ally less expensive and well-suited for entailment
tasks, where it infers the relationship between pairs
of sentences (premise and hypothesis) (Li et al.,
2022)

We use the Cross-Encoder with a text classifica-
tion head for the task. Similar to Equation 3, the
claim c and evidence pair q · a are inputted to the
model to obtain an encoded input representation
h[CLS] = RoBERTa([c;q · a]). The hidden state
h[CLS] is then passed through a linear layer (clas-
sification head) followed by a softmax activation
function to produce a probability distribution p
over the possible veracity labels (e.g., supported,
refuted, insufficient evidence, conflicting/cherry-
picking) as:

p = softmax(W · h[CLS] + b) (4)

where W is the weight matrix and b is the bias
term of the linear layer. The output p is a vector of
probabilities corresponding to each veracity class.

The model is trained using a cross-entropy loss
function, which measures the difference between
the predicted probability distribution and the true
distribution. If y is the true label (encoded as a
one-hot vector) and p is the predicted probability
distribution, the loss function L is given by:

L = −
K∑

k=1

yk log(pk) (5)

where K is the number of veracity classes, yk is
the true label for class k, and pk is the predicted
probability for class k. The model parameters are
optimised to minimise this loss, thereby improving
the accuracy of veracity prediction.

4 Experiments

4.1 Evaluation Metrics
In the evaluation of the AVeriTeC dataset and the
associated automated fact-checking (AFC) systems,
several metrics are employed to assess the perfor-
mance at various stages of the pipeline. These
stages consist of evidence retrieval, evidence se-
lection, and veracity prediction. The metrics are
designed to comprehensively measure the effective-
ness and accuracy of each component, ensuring
robust evaluation and comparison.

Unlike the FEVER dataset and others that
use a closed source of evidence like Wikipedia,
AVeriTeC is designed to retrieve evidence from
the open web. This approach can result in finding
the same evidence across multiple sources, making
exact matching impractical for scoring purposes.
Therefore, a Hungarian algorithm-based pairwise
scoring function f : S × S → R is utilised to
evaluate how well a set of generated sequences,
such as questions or answers, aligns with the ref-
erence sequences of tokens. The Hungarian algo-
rithm provides the solution as a boolean function
X : Ŷ × Y → {0, 1}, maximising the assignment
problem between the generated sequences Ŷ and
the reference sequences Y (Crouse, 2016). This
metric, referred to as the Hungarian METEOR (Hu-
METEOR) score sf and is then calculated between
Ŷ and Y as:

sf (Ŷ , Y ) =
1

|Y | max
∑

ŷ∈Ŷ

∑

y∈Y
f(ŷ, y)X(ŷ, y)

(6)
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where f denotes METEOR, a pointwise scoring
function, and X is a boolean function optimised
as a linear sum assignment problem. The Final
Hu-METEOR score is estimated as the mean of
scores between all pairs of generated and reference
sequences. The Hu-METEOR is used twice to eval-
uate questions-only sequences and concatenated
question-answer (QA) pairs.

AVeriTeC Score is an accuracy metric utilised
to compare the overall performance of the system.
The metric considers veracity prediction True for
a given claim if the Hu-METEOR score between
generated and reference evidence is above a certain
threshold (λ > 0.25):

AVeriTeC_Score =
1

|C|
∑

c∈C

(
cpred_label == ctrue_label,

f(cŷ, cy) > (λ = 0.25)
) (7)

where, cpred_label, ctrue_label denotes predicted and
true labels, respectively, and cŷ and cy are the gen-
erated and reference evidence sets of the claim.

4.2 Implementation Details

Table 2 provides a comprehensive overview of the
models used within the various components of our
pipeline, including specific details and the corre-
sponding checkpoints.

In the evidence retrieval step, we extracted sen-
tences from the provided knowledge store using
three models: 1) BM25 (AVeriTeC baseline), 2)
Bi-Encoder, and 3) Cross-Encoder, for compari-
son. For the Bi-Encoder, we employed the standard
BERT model with a hidden size of 768. For the
Cross-Encoder, we utilised a smaller transformer
model with a hidden size of 384, fine-tuned specif-
ically for reranking tasks such as MS-Marco Pas-
sage reranking (Nguyen et al., 2016). We set the
batch size to 32 for both Bi-Encoder and Cross-
Encoder. The average time in scoring 1,000 sen-
tences by BM25, Cross-Encoder, and Bi-Encoder
are 10.9, 31.9, and 80.3 milliseconds, respectively.

For the question generation task, we leverage
several large language models (LLMs), including
BLOOM, Meta-Llama-3-8B, and Meta-Llama-3.1-
8B. For comparison, ChatGPT’s GPT-4o model is
accessed through its API. Due to financial restric-
tions, the questions are generated only for the top
25 evidence with ChatGPT. The average time to
generate a single question varies across the models,
with BLOOM taking 8.9 seconds, Meta-Llama-3-
8B taking 3.1 seconds, and Meta-Llama-3.1-8B

taking 3.6 seconds. This performance data high-
lights the efficiency of the Meta-Llama models,
particularly in resource-constrained environments.
For prompting, BM25 and Bi-Encoder are consid-
ered for selecting the 10 most relevant examples
from the training set for prompting.

For the Question-Answer reranking, Cross-
Encoder with ‘ms-marco-MiniLM-L-12-v2’ check-
point is utilised instead of the baseline’s BERT-
large model. It requires no training and is com-
putationally less expensive due to its smaller size,
leading to 5 times faster performance. For each
claim, it takes approx 40 ms to reorder the QA
pairs.

The final stage verdict prediction involves train-
ing a supervised NLI model as an entailment task.
The model takes a pair of a claim and concatenated
QA as input and predicts a veracity label. With
a cross-encoder setting, we fine-tune a DeBERTa-
NLI model on examples from train/development
data using Adam (Kingma and Ba, 2017) with a
learning rate of 2e-5 and a batch size of 16 for four
epochs.

All the experiments were conducted on an
NVIDIA RTX 6000 Ada 48GB type GPUs.

5 Results

The proposed pipeline’s evaluation involved a com-
prehensive analysis of performance across various
stages, including evidence retrieval, evidence se-
lection, and veracity prediction. The results high-
light the effectiveness of the proposed approach
in handling the complexities of real-world claim
verification and the challenges encountered during
the process.

5.1 Evidence Selection

In the evidence retrieval step, we extract the top-
100 evidence sentences for each claim from a vast
pool of a knowledge store. Table 3 shows the Hu-
METEOR based retrieval score by various meth-
ods, i.e. BM25, TF-IDF, Bi-Encoder and Cross-
Encoder. The Cross-Encoder model demonstrated
strong performance in identifying pieces of evi-
dence that were most relevant to the claims. The
model’s ability to consider both the claim and the
evidence sentence jointly allowed it to capture nu-
anced relationships, leading to improved evidence
selection effectively. Additionally, its lightweight
architecture makes it comparable to Bi-Encoder.
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Models Checkpoint Hidden Size #Parameters Task

Cross-Encoder ms-marco-MiniLM-L-12-v25 384 22.7M Evidence-Retr, QA Reranking
Bi-Encoder bert-base-uncased6 768 109.5M Evidence-Retr, 10-Shot Prompt
BLOOM bloom-7b17 4096 7B Q-Generation
Meta-3 Meta-Llama-3-8B8 4096 8B Q-Generation
Meta-3.1 Meta-Llama-3.1-8B9 4096 8B Q-Generation
ChatGPT Openai-GPT-4o10 – – Q-Generation
DeBERTa-NLI deberta-v3-base11 768 82M Veracity Prediction

Table 2: The details for models used for various tasks in the pipeline.

Models A only @ (3 / 5 / 10 / 50 / 100)

BM25 (baseline) 0.1027 0.1207 0.1452 0.2049 0.2338
TF-IDF 0.1062 0.1237 0.1474 0.2077 0.2382
Bi-Encoder 0.1311 0.1521 0.1787 0.2474 0.2753
Cross-Encoder 0.1413 0.1624 0.1913 0.2614 0.2907

Table 3: Results of evidence selection in terms of Hu-
METEOR on the development set.

Prompt Few-Shot Q only QA only
Setting Selection @ (3 / 5 / 10 / 100) @ (3 / 5 / 10 / 100)

Prompt1 Bi-Encoder 0.21 0.25 0.30 0.43 0.22 0.25 0.28 0.36
Prompt1 BM25 0.23 0.27 0.33 0.46 0.22 0.25 0.28 0.36
Prompt2 Bi-Encoder 0.24 0.29 0.34 0.48 0.23 0.26 0.29 0.37
Prompt2 BM25 0.26 0.30 0.36 0.49 0.23 0.26 0.29 0.38

Table 4: Influence of Prompt setting on question gen-
eration. bigscience/bloom-7b1 is used as LLM for
generation.

5.2 Question Generation

We consider various LLMs for the question gen-
eration task based on the extracted evidence, i.e.
bloom-7b1, Meta-Llama-3-8B, Meta-Llama-3.1-
8B, and Openai-GPT-4o. We also experimented
with sparse, e.g. BM25, and dense, e.g. Bi-
Encoder, methods for selecting few-shot exam-
ples during prompt construction. The result on
prompt construction is shown in Table 4 with both
few-shot selection methods under prompt-setting
Prompt1 and Prompt2. We found that a descriptive
prompt can generate relevant questions in the con-
text of given claims and evidence pairs. This shows
BM25’s superiority to Bi-Encoders for few-shot
example selection in prompting due to its emphasis
on exact term matching and robustness in low data
scenarios.

5https://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-12-v2

6https://huggingface.co/google-bert/bert-base-uncased
7https://huggingface.co/bigscience/bloom-7b1/tree/main
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
9https://huggingface.co/meta-llama/Meta-Llama-3.1-8B

10https://platform.openai.com/docs/models/gpt-4o
11https://huggingface.co/microsoft/deberta-v3-base

LLM
Q only QA only

@ (3 / 5 / 10 / 100) @ (3 / 5 / 10 / 100)

bloom-7b1 0.26 0.30 0.36 0.49 0.23 0.26 0.29 0.38
Meta-Llama-3-8B 0.28 0.32 0.37 0.49 0.23 0.26 0.29 0.38
Meta-Llama-3.1-8B 0.28 0.32 0.37 0.49 0.23 0.26 0.30 0.38
Openai-GPT-4o 0.41 0.45 0.49 – 0.25 0.29 0.32 –

Table 5: Influence of using various LLMs on question
generation task. Few-shot selection is done by BM25.
Openai-GPT-4o has been used to generate questions for
only the first 25 sentences.

Reranking
LLM

Q only A only QA
Models @3 @3 @3

BERT-Dual
Encoder
(baseline)

Meta-Llama-3-8B 0.2799 0.1173 0.2032
Meta-Llama-3.1-8B 0.2832 0.1199 0.2069
Openai-GPT-4o 0.4023 0.1392 0.2464

Cross-
Encoder

Meta-Llama-3-8B 0.2991 0.1360 0.2341
Meta-Llama-3.1-8B 0.3018 0.1323 0.2334
Openai-GPT-4o 0.4122 0.1374 0.2584

Table 6: Results of post-QA reranking Hu-METEOR
score @3 through BERT-Dual Encoder (baseline) and
Cross-Encoder.

Table 5 depicts the influence of using various
LLMs for question generation. It shows Meta mod-
els are better than BLOOM due to their bigger
architecture and being trained on more diverse and
high-quality data (Dubey et al., 2024). ChatGPT-
based Openai-GPT-4o model has shown a 0.13
jump in Hu-METEOR score on Q only @3, achiev-
ing an overall high performance on AVeriTeC task.

5.3 QA Reranking

In the question-answer reranking stage, a pre-
trained Cross-Encoder is utilised to select top QA
pairs achieving higher Hu-METEOR scores than
the baseline’s BERT-large, which requires explicit
fine-tuning on the training data. Table 6 presents
the Hu-METEOR scores for questions only (Q),
answers only (A), and combined question-answer
(QA) across various LLMs, including Meta-Llama-
3-8B, Meta-Llama-3.1-8B, and OpenAI-GPT-4o.
The Cross-Encoder based reranking consistently
outperforms the baseline in question generation.
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LLM
Development set Test set

Q Only A Only QA A.S Q Only A Only QA A.S

Official Baseline 0.24 – 0.19 0.09 0.24 – 0.20 0.11

Meta-Llama-3-8B 0.2992 0.1360 0.2342 0.1780 0.2976 – 0.2409 0.1986
Meta-Llama-3.1-8B 0.3018 0.1323 0.2334 0.1900 0.2978 – 0.2405 0.1937
Openai-GPT-4o 0.4122 0.1374 0.2584 0.2240 0.3961 – 0.2613 0.2239

Table 7: Performance on the development set and test set. A.S is the AVeriTeC score, and Q Only, A Only, and QA
are the Hu-METEOR scores of question, answer and question-answer, respectively.

5.4 Overall results: Veracity Prediction

The veracity prediction stage was crucial for deter-
mining the final classification of the claims. We
fine-tuned a transformer-based classification model,
DeBERTa-NLI, on the AVeriTeC dataset, achiev-
ing strong results in classifying claims into the
predefined categories: supported, refuted, insuffi-
cient evidence, and conflicting/cherry-picking. The
model’s performance was evaluated using metrics
Q Only, A Only, QA, and A.S (AVeriTeC Score),
where the Q Only, A Only, QA scores are Hu-
METEOR scores of the retrieved evidence and A.S
is a special metric that considers veracity prediction
true for a given claim if the Hu-METEOR is above
a certain threshold (λ = 0.25) as shown in Table 7.
We observe that under the same pipeline models,
Meta LLMs outperform the baseline by 0.9 to 0.10
AVeriTeC score through obtaining improved QA
evidence. Openai-GPT-4o shows a remarkable im-
provement in question generation, which leads to
achieving a higher overall AVeriTec score on both
development and test data.

6 Conclusion

In this paper, we presented a comprehensive
pipeline for real-world claim verification tailored
to the AVeriTeC dataset. Our approach, which in-
tegrates cross-encoders for evidence retrieval and
LLMs for question generation, has shown to be ef-
fective in improving the accuracy of automated fact-
checking systems. We show that the cross-encoder
performs better than the baseline on both evidence
extraction and reranking. The results of our ex-
periments highlight the importance of multi-stage
processing and the careful selection of evidence to
support or refute claims. Our model’s performance
in the AVeriTeC shared task demonstrated its po-
tential in real-world applications, particularly in
scenarios requiring detailed reasoning and context
understanding. Although our system has made sig-

nificant strides in addressing the complexities of
real-world claim verification, further improvements
are necessary, particularly in handling ambiguous
claims and ensuring the completeness of evidence.

7 Limitations

Despite the promising results, our approach has
several limitations. First, we rely on the knowl-
edge store provided by the shared task; therefore,
retrieving evidence from scratch from Google with
better scrapping and parsing methods may provide
a better knowledge space. Secondly, the reliance on
cross-encoders, while effective, is computationally
expensive, which may hinder scalability in real-
time applications. Additionally, advanced rerank-
ing models, such as HLATR (Zhang et al., 2023),
HybRank (Zhang et al., 2022), and M-ReRank
(Malviya and Katsigiannis, 2024) can further en-
hance evidence retrieval. Thirdly, "the performance
of our question generation model, though robust,
can be affected by the quality and diversity of few-
shot examples used for prompting.

Additionally, our system’s ability to handle
claims with insufficient or conflicting evidence re-
mains a challenge, often leading to less accurate
veracity predictions. Finally, the dataset’s tempo-
ral dependency introduces potential biases, as evi-
dence published after the claim date could influence
the verification process. Addressing these limita-
tions will be crucial for enhancing our system’s
robustness and generalisability in future work.
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Abstract

The spread of disinformation poses a global
threat to democratic societies, necessitating ro-
bust and scalable Automated Fact-Checking
(AFC) systems. The AVERITEC Shared Task
Challenge 2024 offers a realistic benchmark
for text-based fact-checking methods. This
paper presents Information-Retrieving Fact-
Checker (INFACT), an LLM-based approach
that breaks down the task of claim verification
into a 6-stage process, including evidence re-
trieval. When using GPT-4O as the backbone,
INFACT achieves an AVERITEC score of 63%
on the test set, outperforming all other 20 teams
competing in the challenge, and establishing a
new strong baseline for future text-only AFC
systems. Qualitative analysis of mislabeled in-
stances reveals that INFACT often yields a more
accurate conclusion than AVERITEC’s human-
annotated ground truth.

1 Introduction

The weaponization of disinformation poses a crit-
ical threat to global stability. The World Eco-
nomic Forum, in its January report (World Eco-
nomic Forum, 2024), identified mis- and disinfor-
mation as the most significant global risk for the
next 24 months, surpassing even extreme weather
events and military conflicts. As such, the develop-
ment and deployment of Automated Fact-Checking
(AFC) is essential in safeguarding the integrity of
democratic societies worldwide.

Schlichtkrull et al. (2023) introduced the
Automated VERIfication of TExtual Claims
(AVERITEC) benchmark, consisting of 4, 568 real-
world claims subject to fact-checks by 50 or-
ganizations. AVERITEC classifies each claim
as either Supported, Refuted, NEI
(Not Enough Information) or C/CP if there is
conflicting evidence or the claim is technically true
but misleading due to the exclusion of important

*These authors contributed equally to this work.

context (cherry-picking). The benchmark expects
the fact-check to be structured as a set of questions
and answers, comparing them against the gold QA
pairs using the Hungarian METEOR metric in
order to ensure that the predicted veracity is suffi-
ciently justified. It further provides a Knowledge
Base (KB), a collection of scraped web pages. Each
claim is associated with the resources used to fact-
check it (gold evidence) and ca. 1, 000 unrelated
resources to simulate open web search.

Several early works suggest that LLMs and LLM
prompting techniques such as Chain-of-Thought
could be used for AFC (Geng et al., 2024; Khaliq
et al., 2024; Zhang and Gao, 2023; Wei et al.,
2024; Zhou et al., 2024). Following these works,
we present an approach that is customized for the
AVERITEC challenge (Schlichtkrull et al., 2024)
and incorporates intermediate question generation
and evidence retrieval to provide answers.

We propose Information-Augmented Fact-
Checker (INFACT), an AFC system with the ca-
pability of retrieving evidence. INFACT achieves
an AVERITEC score of 62.6% on the test set
and yields an accuracy of 72.4% on the devel-
opment dataset. Qualitative analysis shows that
our method’s retrieval process and reasoning ca-
pabilities provide a powerful baseline for text-
only AFC. Further details will be provided on
https://github.com/multimodal-ai-lab/InFact.

2 The INFACT System

Open-domain, text-only claim verification requires
world and commonsense knowledge and some de-
gree of reasoning. Due to their remarkable success
in both of these skills, we chose to drive the fact-
check by an LLM, supplemented with a custom
evidence retrieval module. While our approach
is agnostic to the choice of the LLM, the LLM’s
abilities influence the quality and accuracy of the re-
sulting fact-check. Since the task of fact-checking
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Figure 1: The INFACT System. (1) Interpret the claim,
(2) pose 10 questions, (3) for each question individually,
generate search queries and retrieve potentially rele-
vant evidence from the AVERITEC Knowledge Base,
(4) answer the corresponding question using the found
evidence, (5) after completing all questions, predict a
verdict and (6) generate a justification.

is broad and complex, we subdivide the process
into six stages, as shown in Figure 1.

In short, INFACT addresses the task with a
static, single-pass pipeline that poses critical ques-
tions which are answered through evidence re-
trieved from the AVERITEC KB. Each of the six
stages corresponds to an engineered prompt, apply-
ing prompting best practices including Chain-of-
Thought (Wei et al., 2022) and In-Context Learn-
ing (Min et al., 2021), whenever applicable.
Stage 1: Interpret the Claim. The pipeline begins
with an augmentation of the claim text with its au-
thor, date, and origin URL. Subsequently the LLM
is prompted to reformulate the claim, considering
the supplied metadata. This step is helpful when
the time frame is unclear as in “Joe Biden’s income
has increased recently.” We also expect the inter-
pretation to help when the claim misses context as
in “Tourism, lockdown key to deep New Zealand
recession.”
Stage 2: Pose Questions. Next, INFACT produces
a list of 10 questions that it deems essential for
fact-checking. To facilitate the question generation,
we provide the LLM with manually selected in-
context examples. Furthermore, the instructions are
inspired by fact-checking best practices from Sil-
verman (2014).

Stage 3: Retrieve Evidence. For each generated
question, INFACT iteratively retrieves a list of evi-
dence resources. INFACT approaches this by letting
the LLM propose one or multiple search queries,
which are submitted to the AVERITEC KB, yield-
ing a list of 5 search results per query.

The AVERITEC KB contains a collection of
about 1, 000 resources per claim. A resource is
a scraped URL, ranging from news articles over
social media posts to PDF documents. We decided
to use the AVERITEC KB over open-web search
for two main reasons: First, it guarantees to contain
the gold evidence (possibly erased from the open
web) and, second, it yields reproducible results (in
contrast to open-web search).

To retrieve the most relevant resources from
the KB, we implement a semantic search mecha-
nism. For each resource, we compute its document-
level embedding by employing a text embedding
model. We chose gte-base-en-v1.5 (Alibaba-
NLP, 2024) due to its competitive FEVER score
at time of the challenge given its manageable size.
We compute the query’s text embedding and use
it to perform k-nearest neighbor search w.r.t. the
Euclidean Distance in the document embedding
space. This outputs a list of the semantically clos-
est 5 resources. We drop resources that were found
in previous searches and end up with a list of ≤ 5n
evidences per question. We found this approach
qualitatively superior to the common BM25 rank-
ing method.
Stage 4: Answer Questions. Taking all the search
results, INFACT iterates from the semantically most
similar to the least similar, instructing the LLM to
either answer the question using the information
from the result or respond with NONE if the result is
deemed unhelpful. If the LLM returned an answer
to the question, INFACT saves the answer along
with the evidence URL, and the Q&A process con-
tinues with the next question. However, if the LLM
returned NONE for all search results, the question is
dropped for the remainder of the fact-check.
Stage 5: Predict a Verdict. Once all the ques-
tions are processed, the LLM judges the claim’s
veracity based on the recorded QA pairs in a single
prompt as follows: First, it summarizes the key
insights from the Q&A. Second, it identifies any
pending, missing information. Third, it writes a
brief conclusion, including the final verdict.
Stage 6: Justify the Verdict. In this last stage, IN-
FACT generates a brief justification for the verdict
through summarization of the previous findings.
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System METEOR AVERITEC
Q-Only Q&A Score

INFACT (Ours) 45 34 63
HERO 48 35 57
AIC 46 32 50
DUN-FACTCHECKER 49 35 50
PAPELO-TEN 44 30 48

Challenge Baseline 24 20 11

Table 1: Top-5 systems and the baseline on the
AVERITEC challenge test set, ranked by AVERITEC
score (in %) as defined in Schlichtkrull et al. (2023).

The LLM takes the claim, all the QA pairs, the
verdict, and any in-between reasoning (e.g., from
stage 5) and creates a summary, focusing on the
main reasons for the verdict. This stage is not re-
quired by the AVERITEC task and does not affect
any of the metrics.

3 Experimental Results

Experimental Setup. We evaluate INFACT

on the development set which consists of
305 Refuted, 122 Supported, 35 NEI
and 38 C/CP claims, 500 claims in total. As
our LLM backbone, we test three models: (a)
the open-source LLAMA 3 (70B), (b) the closed-
source GPT-4O MINI, and (c) the more expensive
GPT-4O model. We use the models without any
finetuning and set the temperature to 0.01 and top-
p to 0.9. Additionally, we truncate each resource
to about 8 k tokens, which is the maximum input
length of the embedding model. We compare IN-
FACT with the following baseline and ablations:
The Naive baseline instructs the LLM to predict
the verdict right away in a single prompt, skipping
evidence retrieval entirely and relying solely on the
LLM’s parametric knowledge; the No Interpreta-
tion ablation omits stage 1; No Evidence answers
the questions by leaving out stage 3 (evidence re-
trieval); No Q&A generates search queries based
on the claim instead of a Q&A, gathers 10 results
and proceeds to make a verdict based on those;
No Query Generation skips the step of query gen-
eration by using the question as the search query
directly.
Challenge Results. Table 1 presents the top-5
entries from the challenge leaderboard, sorted by
the AVERITEC score on the test set. INFACT

achieves the best score with a significant margin
to the second-best system. Yet, it is not the best in
terms of the retrieval metrics.

Metric LLM INFACT Variant
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AVERITEC
Score

✓ - 42.4 40.8 - 40.4 40.2
✓ - 48.2 36.4 - 41.6 47.2

✓ - 59.8 53.0 - 56.4 58.8

Accuracy
✓ 67.0 63.2 67.0 52.9 65.0 61.8

✓ 36.2 61.6 56.8 54.8 59.6 60.2
✓ 52.6 71.8 71.0 68.8 70.2 72.4

Q-Only
METEOR

✓ - 39.5 41.8 - 37.8 39.6
✓ - 43.0 44.3 - 42.1 43.3

✓ - 46.2 45.7 - 44.3 45.8

Q&A
METEOR

✓ - 29.6 28.7 - 28.4 29.5
✓ - 31.2 29.1 - 30.9 31.5

✓ - 33.5 32.0 - 32.8 33.2

Table 2: Results in % on the AVERITEC development
dataset, showing four metrics for INFACT and the five
ablation variants, all tested with three different LLMs.

Analysis. The ablation comparison is shown in
Table 2. GPT-4O almost consistently outperforms
both other LLMs. INFACT and No Interpretation
score best in terms of AVERITEC score and ac-
curacy. Their similarity hints at a potential re-
dundancy of the interpretation step in the case of
AVERITEC. While our experiments show that gen-
erating search queries is superior to searching the
literal question, the optimal value for the number
of queries per question n remains unknown. More-
over, and surprisingly, leaving out all evidence
does not lead to a drastic decline of the METEOR
scores, showing its insensitivity to generated (thus
potentially hallucinated) evidence vs. actually re-
trieved evidence.

Judging by the confusion matrices (cf. Fig. 2,
the most distinct confusion for LLAMA 3 and GPT-
4O MINI happens between NEI (predicted) and

Refuted (true), which is less critical than con-
fusion between Supported and Refuted.
At the same time, GPT-4O predicts much fewer

NEI in favor of Refuted, which could be
attributed to its stronger reasoning capabilities.

Surprisingly, in the Naive setting, LLAMA 3
outperforms the GPT models by a large mar-
gin. As opposed to the GPT models, LLAMA 3
commits more often to either Supported or

Refuted rather than choosing NEI, showing
a “self-confident” behavior despite having little evi-
dence. In the No Evidence variant, the GPT models
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Figure 2: Confusion matrices of INFACT on the AVERITEC development set for three different LLMs.

achieve a higher accuracy and predict NEI much
less, while still having no access to any external in-
formation. This indicates that structured reasoning
elevates GPT models’ confidence, regardless of the
knowledge source.

Qualitative analysis of 20 failure cases reveals
that, in more than half of the cases, the ground
truth was at least debatable or INFACT delivered
a valid alternative fact-check. E.g., the ground
truth of “While serving as Town Supervisor on
Grand Island, Nebraska, US Nate McMurray voted
to raise taxes on homeowners” is Supported,
however McMurray served on Grand Island, New
York. In two cases, the gold fact-check considered
a different claim than the one presented. E.g., the
claim: “Scientific American magazine warned that
5G technology is not safe” is about the magazine
issuing a warning about 5G. However, the gold
fact-check analyzed the safety of 5G itself.

In only 6 of the analyzed 20 failure cases, the
cause for the mislabeling can be clearly attributed
to INFACT. The cases include the usage of unre-
liable evidence sources, misinterpretations of the
claim, the missing ability to process non-textual
evidence, and the confusion between clearly re-
futed and merely unsupported claims. In a nutshell,
the analysis implies that the model performs better
than the metrics might reflect.

4 Discussion & Conclusion

INFACT establishes a robust baseline for
information-augmented fact-checking without
requiring fine-tuning. Its LLM-agnostic design
ensures that it benefits from advancements in the
reasoning capabilities of LLMs, making it adapt-
able to future developments. Additionally, INFACT

provides justifications, enhancing interpretability
and trust in its outputs. However, INFACT also

has limitations. The inclusion of closed-source
models limits transparency, reproducibility, and
incurs high cost with about $ 0.46 per claim when
using GPT-4O. While GPT-4O MINI is much
cheaper (about $ 0.01 per claim), it exhibited
lower performance. The open-source alternative
LLAMA 3 resulted in 8 times longer computation
times and reduced effectiveness. Also the number
of retrievals was relatively high (7 searches
per claim). Increasing INFACT’s efficiency by
reducing searches and skipping and/or combining
steps in the pipeline are a great opportunity for
future work. All LLMs evaluated in this study
were pre-trained on datasets that extend into 2023,
likely covering many of AVERITEC’s claims and
evidence available online.

Moreover, the AVERITEC dataset comes with
its own limitations. The wording of the QA pairs is
crucial when using the METEOR score to evaluate
them against gold-standard QA pairs. The auto-
mated comparison method is limited in capturing
semantically similar statements, and it is infeasi-
ble to provide an exhaustive list of all potentially
relevant evidence. Moreover, we found many ques-
tionable ground truth answers, cf. Section 3. We
suspect that these inaccuracies stem from layper-
son annotations. Addressing these limitations and
refining the dataset/metric will benefit measuring
progress in this challenging task.
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Abstract

Automated Fact-Checking (AFC) has recently
gained considerable attention to address the in-
creasing misinformation spreading in the web
and social media. The recently introduced
AVeriTeC dataset alleviates some limitations
of existing AFC benchmarks. In this paper,
we propose to explore Retrieval Augmented
Generation (RAG) and describe the system
(UPS participant) we implemented to solve the
AVeriTeC shared task. Our end-to-end system
integrates retrieval and generation in a joint
training setup to enhance evidence retrieval and
question generation. Our system operates as
follows: First, we conduct dense retrieval of
evidence by encoding candidate evidence sen-
tences from the provided knowledge store doc-
uments. Next, we perform a secondary retrieval
of question-answer pairs from the training set,
encoding these into dense vectors to support
question generation with relevant in-context
examples. During training, the question gener-
ator is optimized to generate questions based
on retrieved or gold evidence. In preliminary
automatic evaluation, our system achieved re-
spectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets.

1 Introduction

With the unprecedented growing of fake news in
the web and on social media, several research ef-
forts have been supported in the recent years to
combat online misinformation. While manual fact-
checking is the most reliable method for verify-
ing information, the large-scale amount of daily
published and shared content has made the devel-
opment of automated fact-checking solutions cru-
cial to assist in the manual fact checking process.
Following such initiatives, the recently introduced
AVeriTeC (Automated VERIfication of TExtual
Claims) dataset (Schlichtkrull et al., 2024) con-
tributes to address the aforementioned challenges,
and serves as a benchmark for the AVeriTeC shared

task. In this paper, we report our findings in ad-
dressing the AVeriTeC shared task and describe the
proposed system which is evaluated on its ability
of verifying real-world claims with evidence from
the Web. In contrast to other fact-checking datasets
such as FEVER (Thorne et al., 2018), VITAM-
INC (Schuster et al., 2021) and FEVEROUS (Aly
et al., 2021), AVeriTeC focuses on realistic scenar-
ios where real-world claims are derived from the
web rather than Wikipedia. In this context, systems
are required to retrieve evidence that either supports
or refutes a given claim, using sources from either
the Web or a document collection scrapped from
the web and provided by the organizers. Based on
this evidence, systems must categorize the claim as
Supported, Refuted, Not Enough Evidence (when
there is insufficient evidence to make a determi-
nation), or Conflicting Evidence/Cherry-picking
(when both supporting and refuting evidence are
present). A response is considered correct only
if it includes both the accurate label and sufficient
supporting evidence. Due to the complexity of eval-
uating evidence retrieval automatically, a manual
evaluation process will be conducted to ensure a
fair assessment of the participant systems.

2 AVeriTeC baseline

The AVeriTeC shared task organizers proposed a
pipeline system which comprises the following
steps: 1) Given a claim c, it is used as a query input
of a search engine (Google API) to obtain relevant
URLs which are parsed into sentences. The col-
lection of sentences serves for evidence retrieval.
2) For each claim c, only the top 100 sentences
{si}100i=1 are kept based on the BM25 similarity be-
tween each si and c. 3) For each of the top 100
sentence si, BLOOM (Le Scao et al., 2023) allows
to generate QA pairs which are used as evidence
for veracity prediction. To allow more in-context
examples for QA pairs generation, the 10 closest
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claim-QA pairs are retrieved from the training set
using the BM25 similarity between si and each
answer included in a claim-QA pair of the training
set. 4) The top 3 generated QA pairs are kept as
evidence using a pre-trained BERT-based re-ranker
(Devlin et al., 2019). 5) Finally, a claim c and its 3
generated QA evidence pairs are input in another
pre-trained BERT model to predict the veracity la-
bel.

3 Proposed system

Following the baseline pipeline, we propose a sim-
pler end-to-end integrated system ( see Figure 1)
which relies on the Retrieval Augmented Genera-
tion (RAG) framework to solve the AVeriTeC chal-
lenge where retrieval and generation complement
each other using joint training. At the first stage,
we perform evidence dense retrieval after encod-
ing all potential evidence sentences retrieved from
the provided knowledge store documents. Then,
we perform a second retrieval of question-answer
pairs from the training set (encoder into dense vec-
tors) to support question generation with in-context
examples. During training, the question genera-
tor learns to generate question given retrieved/gold
evidence by jointly updating both generator and ev-
idence/answer encoder using the RAG loss (Lewis
et al., 2020). Finally, a veracity prediction model
is employed to label the retrieved evidence.

3.1 Evidence retrieval

Using the searched documents provided by the
search engine, we similarly keep the top 100 sen-
tences as potential evidence using BM25. We then
encode each sentence si into dense vector repre-
sentations using a Bert-base encoder Es(·). We
represent each sentence using the 768-d pooled
vector of the [CLS] special token. Given a dataset
D of N claims, instead of encoding all sentences
into a (N×100×768) matrix, we rather encode the
top 100 potential sentence evidence of each claim
ci ∈ D into one (N × 100 × 768) matrix. This
allows to reduce the search space during evidence
retrieval since the relevant evidence sentences of
claim ci are likely to be found in its correspond-
ing top-100 retrieved sentence set. Thus, we build
N Faiss indexes (Johnson et al., 2019) for each
ci ∈ D where each of them, maps evidence sen-
tences to dense vectors. These enable us to perform
fast exact maximum inner product search (MIPS).
Formally, given a claim ci, and its top-100 evidence

sentence set Si = {sj}100j=1, we compute the inner
product between its dense vectors and all sj ∈ Si

as follows :

s(ci, sj) = Es(ci)Es(sj) (1)

In this way, given an input claim ci, we retrieve
the top-K most relevant sentence using the highest
relevance scores s(·).

3.2 In-context QA pairs retrieval
Similar to (Schlichtkrull et al., 2024), in order
to provide the generator in-context examples for
question-answer pair generation, we retrieve the
top L QA-pairs from the training set which serve
for building the final prompt. Given a retrieved sen-
tence si obtained after the first step, we encode it
using the same pre-train BERT-base encoder Es(·).
Similar to the baseline system, the top L QA-pairs
are selected according to the semantic similarity
between answers in the QA pair training set and the
retrieved evidence sentences. We therefore perform
maximum inner product search for each sentence
si after encoding and indexing all the answers in
the training set as follows:

s(si, aj) = Es(si)Es(aj) (2)

Similar to the sentence retrieval stage, we select the
top-L QA pairs whose answers achieve the highest
retrieval scores.

3.3 Question generation
In this step, given a claim ci, we generate a question
for each sentence retrieved in the first stage. Note
that the top-L retrieved QA pairs (in-context exam-
ples) are used in the same way as in (Schlichtkrull
et al., 2024) to build the prompt. Given a generated
question qi and a retrieved sentence si, we consider
(qi, si) as a QA evidence pair for ci.

3.4 Veracity prediction
Given a claim ci, its top-K QA generated pairs
as evidence, we followed the baseline system to
predict the veracity label which relies on a pre-
trained BERT sequence classification model.

3.5 Training and inference
During training, given a claim ci, we use its ground-
truth QA evidence pairs provided in the training
set to build the question generation prompt as well
as generation labels. More precisely, given a set of
ground truth QA pairs, we use the question of the
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Figure 1: Our proposed pipeline system overview.

first QA pair as the generation target while the re-
maining pairs are used as in-context QA examples
to build the final prompt. Experiments showed that
using ground-truth QA pairs to build the prompt
during training showed better performance than us-
ing retrieved ones. Thus, evidence retrieval and
in-context QA pairs retrieval are only performed at
inference time. In this setting, the sentence encoder
and the question generator are jointly trained on
the following RAG loss (Lewis et al., 2020):

LRAG = −
N∑

i=1

(log(s(ci, a
∗) · pΦ(q∗|pt(ci), a∗)))

(3)
where N is the number of claims in the dataset,
q∗ is the ground truth question, a∗ is the ground
truth answer and pΦ(q

∗|pt(ci), a∗) is the probabil-
ity distribution of generating the question q∗ given
the built prompt pt(ci) and a∗, and Φ is the gener-
ator’s parameters. s(ci, a∗) is the similarity score
between the claim ci and the ground truth answer.
This learning objective allows to condition the gen-
erated questions on the retrieved evidence since
the gradients are propagated through both the sen-
tence encoder and the generator. At inference time,
more relevant evidence sentences are expected to
be retrieved thanks to the generator feedback sig-
nals during training while improved retrieval will
contribute to generate more accurate questions.

4 Experiments

4.1 Evaluation

Systems are evaluated on their ability to retrieve
evidence and to predict veracity labels. Note that
veracity predictions are considered correct only
when correct evidence has been found. The Hun-
garian METEOR metric (Schlichtkrull et al., 2024)
is used to score retrieved questions and retrieved

questions + answers. Furthermore, systems are
ranked according to the Averitec score (METEOR)
conditioned on correct evidence retrieved at a cut-
off value of 0.25.

4.2 Implementation details
We initialized the pre-trained BERT-base model
used for evidence retrieval and in-context QA re-
trieval with an answer encoder trained on Trivi-
aQA (Joshi et al., 2017). For question generation,
we experiment with the T5-large (738M param-
eters) (Raffel et al., 2020) pre-trained generator.
The batch size is set to 2 due to GPU memory limit.
We trained our system using a 2e-5 learning rate
for 20 epochs. At inference time, we decode us-
ing beam-search with 2 beams. We selected the
model checkpoints based on the validation perfor-
mance. All experiments needed only one Nvidia
A100 (80G) GPU. Our implementation is based
on PyTorch (Paszke et al., 2017). Pretrained mod-
els are obtained using Hugginface and Transform-
ers (Wolf et al., 2020). The Faiss library (Johnson
et al., 2019) is used for MIPS search and vector
indexing.

5 Results

Table 1 reports the performance results of our
approach and baseline systems evaluated on the
AVeriTeC shared task for the dev and test splits.
Models are evaluated based on their ability to: 1)
retrieve evidence in two settings: Question only
(Q only), Question and Answer (Q+A). 2) Verify-
ing veracity of claims using the AVeriTeC score
for different cutoff values. Overall, our system
with 955M parameters (BERT encoder + T5-large)
significantly outperforms the AVeriTeC-BLOOM-
7b baseline on both evidence retrieval and verac-
ity checking across all the metrics suggesting that
LLM’s parametric memory is not sufficient to solve
knowledge-intensive tasks such as fact-checking.
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Model split Q only Q+A Veracity@0.2 Veracity@0.25 Veracity@0.3

AVeriTeC-BLOOM-7b dev 0.240 0.185 0.186 0.092 0.050
AVeriTeC-BLOOM-7b test 0.248 0.185 0.176 0.109 0.059
Ours (UPS) dev 0.280 0.250 0.280 0.198 0.092
Ours (UPS) test 0.310 0.270 - 0.210 -

Table 1: Averitec shared task results

Claim Type Veracity score

Event/Property Claim 0.131
Position Statement 0.168
Causal Claim 0.118
Numerical Claim 0.144
Quote Verification 0.123

Table 2: Averitec scores by type @0.25 of our best
performing system for dev set.

Veracity Label F1

Supported 0.292
Refuted 0.653
Not Enough Evidence 0.160
Conflicting Evidence/Cherrypicking 0.166

Table 3: Veracity prediction dev set F1 results for each
veracity label.

At inference time, we achieved the best perfor-
mance with the number of retrieved evidence K=10,
while higher values decreases both evidence re-
trieval and veracity checking. Regarding the num-
ber of retrieved in-context examples L, we found
that building the prompt using only L=3 is suffi-
cient for the question generation model to reach our
best performing system. We assume that our BERT-
base retrieval provides more useful in-context ex-
amples in the top retrieved QA pairs and does not
need to re-rank evidence compared to the baseline
model which relies on BM25 to retrieve evidence.
Indeed, while we do not perform evidence retrieval
during training, we still update the BERT retrieval
encoder parameters using the claim-evidence simi-
larity scores with the RAG loss. This latter allows
to learn retrieving more relevant evidence for the
target question using the feedback from the ques-
tion generator.

We reports in Table 2 the veracity scores of our
best performing system for each claim type. We
note that there is no substantial performance gap
between claim types, even if our system struggles

more with causal and Quote Verification claims.
Analysing these results need more investigations in
future work.

Table 3 shows the F1 scores for each veracity
label. We employed the provided checkpoint for
veracity prediction which failed to predict the Con-
flicting Evidence/Cherrypicking label even with
gold evidence (Schlichtkrull et al., 2024). Verac-
ity prediction performs better on this label using
our system however predictions are worse for the
Supported label which suggests that improving evi-
dence retrieval plays an important role to achieve
the best fact-checking performance.

6 Conclusion

We presented in this paper our participant system
(UPS) at the AVeriTeC shared task on verifying real-
world claims with evidence from the Web. In pre-
liminary automatic evaluation, our system achieved
respectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets, and was ranked 13 out of 23
participant teams. In terms of limitations, our pro-
posed system relies solely on the AVeriTeC train-
ing set which is relatively small size. We believe
that our RAG approach would benefit from more
training data. Moreover, experimenting with larger
generator models may improve the quality of gen-
erated questions and thus the overall fact-checking
performance.
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Abstract

In the information era, the vast proliferation
of online content poses significant challenges,
particularly concerning the trustworthiness of
these digital statements, which can have pro-
found societal implications. Although it is pos-
sible to manually annotate and verify the au-
thenticity of such content, the sheer volume
and rapid pace of information generation ren-
der this approach impractical, both in terms
of time and cost. Therefore, it is impera-
tive to develop automated systems capable of
validating online claims, ensuring that users
can use the wealth of information available
on the Internet effectively and reliably. Us-
ing primarily ChatGPT and the Google search
API, GProofT fact checking framework gener-
ates question-answer pairs to systematically ex-
tract and verify the facts within claims. Based
on the outcomes of these QA pairs, claims
are subsequently labeled as Supported, Con-
flicted Evidence/Cherry-Picking, or Refuted.
Shown by extensive experiments, GProofT Re-
trieval generally performs effectively in fact-
checking and makes a substantial contribution
to the task. Our code is released on https:
//github.com/HKUST-KnowComp/GProofT.

1 Introduction

With the chaotic nature of information on the Inter-
net, it appears to be challenging to determine the
credibility of claims on the web. This poses diffi-
culties on Large Language Models (LLMs) such as
ChatGPT (OpenAI, 2023) to conduct fact checking
as the hallucination (Huang et al., 2023; Ji et al.,
2022; Chan et al., 2024a) of them can produce
seemingly feasible but fake information. Though
time-consuming and tedious when performed man-
ually, fact-checking is rather crucial to ensure the
trustworthiness of information, especially for the
fact-sensitive industry such as journalism and sci-
ence. In the explosion of information, it’s far from

*First three authors make equal contribution to this paper.

adequate to solely rely on manual check to elimi-
nate the rumor and misinformation, while remain
difficult to be detected simply with commonsense
knowledge (Fang et al., 2021b,a; Shi et al., 2023;
Lu et al., 2024). Therefore, it’s pivotal to develop
a trustworthy automatic process to complete fact-
checking efficiently and accurately. Recent ad-
vancements in LLMs have showcased remarkable
performance in tasks involving text comprehension
and generation (OpenAI et al., 2024; Wang et al.,
2023b; He et al., 2023). However, the application
of LLMs in automatic fact-checking has remained
a persistent challenge, undergoing continuous ex-
ploration and development (Hang et al., 2024; Kim
et al., 2024). Current LLMs can only memorize the
knowledge embedded in their pretrain data, which
makes them struggle with fact-checking when the
event is out of their pretrain corpus, namely, out
of their knowledge domain. Under this circum-
stance, it is necessary and crucial to incorporate
real-time online search engine to provide LLMs
with real-time facts information to assist its reason-
ing. However, the chaotic nature of internet could
imply that the knowledge provided from the search
engine could result in misinformation to the LLMs,
hindering its reasoning process. Hence, a consis-
tent framework for multi-dimension, multi-round
fact checking needs to be proposed to generate sta-
ble and trustworthy fact checking result.

To solve the limitation, we propose GProofT fact
checking framework to crawl and analyze web evi-
dence based on Google Search API and ChatGPT.
As demonstrated in Figure 1, For each given textual
claim, we incorporate three stages to retrieve the
pertinent evidence from the Internet and a final step
to attribute a label based on the retrieved evidence.
As suggested in the shared task, our retrieved ev-
idence is in the format of QA pair. The retrieval
procedure includes Claim Split, Question Gener-
ation, Answer Generation and Expansion. More
information could be found in Section 3.1. Overall,
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Claim: The United States of America
and its Western allies have been

using their media outlets to publish
articles based on fabricated

information under allegations of non-
compliance with the Chemical

Weapons Convention. 

Q: What are the chemical
weapons and their

destruction (chemical
weapons convention or cwc)

Evidentia: A new report
from the International
Atomic Energy Agency

(IAEA) shows that Iran has
not been complying with its

nuclear deal with world
powers, des?

A: Chemical Weapons and
on their Destruction
(Chemical Weapons

Convention or CWC)

Q: What are the chemical
weapons and their

destruction (chemical
weapons convention or cwc)

Evidentia: A new report
from the International
Atomic Energy Agency

(IAEA) shows that Iran has
not been complying with its

nuclear deal with world
powers, des?

A: Chemical Weapons and
on their Destruction
(Chemical Weapons

Convention or CWC)

Q: What are the chemical
weapons and their

destruction (chemical
weapons convention or cwc)

Evidentia: A new report from
the International Atomic
Energy Agency (IAEA)

shows that Iran has not been
complying with its nuclear

deal with world powers, des?
A: Chemical Weapons and

on their Destruction
(Chemical Weapons

Convention or CWC)

AVeriTeC

Irrelevant
Questions

Meaningless
Answer

Q: Have the United
States of America and
its Western allies been

using their media
outlets to publish
articles based on

fabricated information?
A: No, because the text

does not provide
evidence of fabricated

information being
published by the United
States of America and

its Western allies.

Q: Did allegations of non-
compliance with the
Chemical Weapons
Convention occur?

A: Yes, because the text
contains mentions of

investigations regarding
possible non-compliance

with the Chemical
Weapons Convention.

Questions
with high
associati-

vity

Reasonable
answer

GProofT

Figure 1: An overview structure of GProofT retrieval

our framework could be decomposed into 3 stages:
1. Claim Split: It focuses on the decomposition

of the claim for the following question generation.
2. Question Generation: Based on the resulted

subclaims in Claim Split, binary questions are gen-
erated respectively to validate the claim.

3. Answer Generation: Google Search API is
employed to search for the questions in Question
Generation and 9 relevant snippets are saved in
the search results. ChatGPT is then adopted to
determine whether they are supporting or refuting
the original claim and generate the rationale.

After the retrieved evidence is obtained through
our GProofT framework, we adopt LLMs to pre-
dict the label and benchmark our system based
on the evaluation metrics proposed in AVeriTeC
(Schlichtkrull et al., 2023). In-Context Learn-
ing (Agrawal et al., 2023; Hu et al., 2022b; Levy
et al., 2023) and fine-tuning (Hu et al., 2022a; Xu
et al., 2024b) are employed for gpt-3.5-turbo and
Llama-3 (Huang et al., 2024) respectively to im-
prove the accuracy of prediction. Subsequently,
extensive experiments are conducted to further in-
vestigate both the strengths and weaknesses of our
framework. As our Question-answer score is lower

than the Question-only score, we suspect that our
binary answer with a subsequent rationale is not
sufficient for language models to make more accu-
rate predictions. In this case, future study could
focus on instructing LLMs to generate more infor-
mative responses based on the retrieved snippets,
which could subsequently assist the fact checking
process of LLMs. Overall, our work could be sum-
marized in three main aspects:

• We design claim fact extraction to divide
claims into informative subclaims which
could be beneficial for its downstream fact
checking.

• We propose GProofT framework, a multi-
dimension, multi-round fact checking frame-
work which can conduct fact checking without
heavy human intervention.

• We benchmark a series of LLMs with differ-
ent techiniques incorporated to demonstrate
a comprehensive LLMs evaluation on fact
checking task.
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Claim: In a letter to Steve Jobs, Sean Connery refused
to appear in an apple commercial.

Sean Connery refused to appear
in an apple commercial.

Sean Connery wrote a letter to
Steve Jobs.

Did Sean Connery refuse to
appear in an apple commercial?

Did Sean Connery write a letter to
Steve Jobs?

Yes Yes Yes NoNoYes

Yes No

...... ......

Yes, because the typewritten letter
dated 1998 shows Sean Connery's

outrage over Steve Jobs asking
him to appear in an Apple

commercial.

No, because the letter attributed
to Sean Connery was confirmed

to be fake.

binary answers:

binary questions:

final binary answers:

complete answers:

Figure 2: A comprehensive example of the GProofT retrieval process is provided by analyzing the claim, “In a letter
to Steve Jobs, Sean Connery refused to appear in an Apple commercial.” This example traces the progression from
the original claim through to the final question-answer (QA) pair.

2 Problem Definition

2.1 Dataset Description

We leverage the dataset proposed by Schlichtkrull
et al. (2023) for training and benchmarking. The
training set includes 3068 claims, while the devel-
opment set and test set include 500 and 2215 claims
respectively. The dataset contains claims accom-
panied by their gold evidence and labels prepared
by a hired annotator as well as their metadata in-
cluding speaker, publisher, date, and location. The
claims are collected from 6661 fact-checking ar-
ticles with duplicated and dead articles removed.
The extraction of claims and metadata, question
and answer generation, verdict prediction are com-
pleted by annotators. For each instance, the label,
either Supported, Refuted, Not Enough Evidence
or Conflicted Evidence/CherryPicking is assigned
based on retrieved evidence. Specifically, Sup-
ported and Refuted indicate that the authenticity of
the claim can be identified based on the evidence
recovered. In case of insufficient evidence or con-
flicted retrieved evidence, Not Enough Evidence
or Conflicted Evidence/CherryPicking will be at-
tributed to the specific claim.

2.2 Task Definition
We follow the task definition formulated by
Schlichtkrull et al. (2023). Formally, for each claim
C, one or multiple QA pairs {Qi, A′

i} (i=1, 2, ...,
n) are served as evidence, in which Qi is a fact-
checking question, and Ai is its complete answer.
The objective is to predict the validity of the fact by
leveraging the evidence retrieved. Specifically, we
utilize LLMs to label each QA pair as supported,
refuted, or irrelevant. Then we predict the label
with the label of each QA pair.

3 System Overview

In this section, we would introduce the GProofT
fact checking framework and elaborate our bench-
mark setup.

3.1 GProofT Fact Checking Framework
The GProofT fact-checking framework is a multi-
dimension, multi-round fact checking framework.
It decompose the original claims into several sub-
claims, enabling a comprehensive evaluation from
various dimensions and multiple rounds. The
GProofT fact-checking framework consist of three
stages: Claim Decomposition, Question Genera-
tion and Answer Generation. The overall frame-
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work pipeline is exhibited in Figure 2. We would
like to explain them in detail in the following para-
graphs.

3.1.1 Claim Decomposition
By examining the instances, we observe that claims
could be consisted of multiple opinions. Address-
ing these complex claims as singular entities can
pose significant challenges for LLMs. Conse-
quently, we decompose each claim C into several
subclaims C1, C2, ..., Cn, ensuring that each resul-
tant subclaim encompasses 1 to 2 facts.

To conduct decomposition, we employ a set of
heuristic rules designed to guide ChatGPT (Ope-
nAI, 2023) in effectively implementing this ap-
proach. The following rules outline this methodol-
ogy:

• The overall mission involves instructing the
LLMs to divide a claim into multiple sub-
claims based on the number of distinct facts it
contains.

• Return only the subclaims, separated by peri-
ods rather than numbers.

• Avoid generating duplicated subclaims.

• The response from ChatGPT should be spe-
cific and avoid unnecessary pronouns to main-
tain clarity and conciseness.

• Limit subclaims to 15 words or less, ensuring
they are shorter than the original claim.

• Capture the opinions or facts already present
within it.

• Extract multiple subclaims, unless the claim
is confined to a single fact.

Upon receiving the response from ChatGPT, we
utilize SpaCy (Honnibal and Montani, 2017) to
systematically split the subclaims. This process
ensures that each subclaim is individually extracted,
thereby deriving the subclaims from the original
claim.

3.1.2 Question Generation
Subsequently, we proceed to generate the question
of the QA pairs. We utilize ChatGPT to trans-
form the subclaims into binary questions, which
are structured to elicit yes or no responses. The
heuristic rules adopted in this stage are as followed:

• Recognize the factual statement within the
claim and formulate a binary question that
can be used to verify this fact.

• Output the question directly without any ratio-
nales.

• Answers should be specific and avoid unnec-
essary pronouns to maintain clarity and con-
ciseness.

3.1.3 Answer Generation
After preparing the binary questions, we employ
the Google API to retrieve relevant evidence from
online sources. For each question, 9 relevant snip-
pets from 9 different websites are returned in the
search results. Note that the default numbers of
returned results for Google search API is 10, in
order to avoid ties in latter majority voting, we set
the hyperparameter to be 9 to maintain the max-
imum completeness. Our pipeline then prompts
ChatGPT to determine the binary answer for each
search result, given both the question and the cor-
responding snippet (Yu et al., 2023; Chan et al.,
2024b). Following the resulted answers, we ap-
ply majority voting to determine the final binary
response to the question. To give more insight
on the rationale between the claim and each ques-
tion, we expand the binary answer into a complete
sentence that includes the binary response and the
rationale derived from the snippet. Formally, given
the question Qi, the complete answer Ai is formu-
lated as {Binary answer,Rationale}. The follow-
ing heuristic rules are employed in this approach:

• Extend the initial binary answer into a com-
prehensive sentence.

• The answer should be formatted as “Yes, be-
cause ...” or “No, because ...”.

• Answer the question directly without addi-
tional information.

The prompt for GProofT Fact Checking Framework
is in appendix B.

3.2 Label Prediction
3.2.1 Zero-shot learning
We benchmark the performance of different models
under zero-shot setting. The evidence generated
in previous stages is cohesively incorporated into
the input-prompted sentence. For each claim, we
obtain {C, {Qi, Ai}} from the retrieval process.
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Gold evidence Baseline evidence GProofT evidence

Q only score 1.000 0.241 0.331
Q+A score 1.000 0.185 0.204

macro F1 AVeriTeC score macro F1 AVeriTeC score macro F1 AVeriTeC score

Baseline Model - - 0.321 0.092 - -

Zero-shot model
GPT-3.5-turbo 0.387 0.472 0.166 0.076 0.180 0.096
Llama-3-8B-Instruct 0.341 0.640 0.263 0.108 0.288 0.166
Llama-3.1-8B-Instruct 0.404 0.730 0.327 0.114 0.288 0.174
falcon-7b-instruct 0.335 0.550 0.290 0.096 0.299 0.172
Gemma-2-2b-it 0.324 0.528 0.303 0.098 0.266 0.146
Gemma-2-9b-it 0.453 0.694 0.351 0.092 0.332 0.170
Mistral-7B-Instruct-v0.3 0.365 0.642 0.301 0.106 0.295 0.174
Mistral-Nemo-Instruct 0.383 0.632 0.297 0.086 0.333 0.172
Qwen2-7B-Instruct 0.417 0.654 0.317 0.090 0.311 0.166

Finetuned model
GPT-3.5-turbo (one-shot) 0.532 0.656 0.243 0.080 0.347 0.166
Llama3-8B 0.607 0.806 0.361 0.112 0.347 0.186
Llama-3-8B-Instruct 0.629 0.786 0.332 0.114 0.321 0.162
Llama-3.1-8B 0.627 0.782 0.342 0.122 0.329 0.180
Llama-3.1-8B-Instruct 0.684 0.800 0.320 0.108 0.330 0.186
Mistral-7B-Instruct-v0.1 0.639 0.748 0.332 0.106 0.332 0.184
Mistral-7B-Instruct-v0.2 0.675 0.770 0.337 0.110 0.334 0.185
Mistral-7B-Instruct-v0.3 0.623 0.780 0.357 0.114 0.339 0.178
Qwen2-7B-Instruct 0.653 0.758 0.345 0.106 0.338 0.170

Table 1: Evaluation results on development set of AVeriTeC. The best performances are bold-faced. “Q only” and
“Q+A” refer to Hungarian METEOR score (Schlichtkrull et al., 2023). “AVeriTeC” indicates using accuracy at
λ = 0.25. We present the results of three distinct versions: utilizing gold evidence (Gold evidence), employing
evidence from baseline (Baseline search), and utilizing evidence procured through GProofT (GProofT evidence).

To instruct the model to predict the label based
on given evidence, we formulated the prompt as
follows: Determine one most possible verdict for
the claim "{C}", based on the given question and
answer pairs Q: {Qi} A: {Ai} (i=1, 2, ..., n).

3.3 Fine-tuning

To assess the effectiveness of GProofT across vari-
ous settings, we fine-tune LLMs and evaluate them
on the development set. Formally, for each instance
{C, {Qi, Ai}}, we integrate the claim with all QA
pairs and fine-tune the model to predict the final
label using the cross-entropy loss. Detailed settings
and implementation of the fine-tuning process are
discussed in 4.2.2.

4 Experiments

In this section, we will elaborate the data process-
ing flow and the evaluation setting we adopted in
the experiments.

4.1 Data processing

To construct comprehensive experiments, we pre-
process three versions of the development set:

Gold Evidence: Gold evidence provided by the
organizer is annotated manually. This evidence

is considered highly reliable and has been meticu-
lously curated for accuracy.

Baseline Evidence: The second type of evi-
dence is retrieved by the organizer using a baseline
model. This evidence serves as a comparison point
to evaluate the performance of different systems.

GProofT Evidence: The last type of evidence
is retrieved using our GProofT framework. This
system has been optimized to improve the accuracy
and relevance of the retrieved evidence.

We employ different LLMs to make verdicts on
claims based on these different types of evidence,
allowing us to assess system performance under
various conditions.

4.2 Evaluation

We will introduce the evaluation experiments setup
and analyze the experiment results in the following
paragraphs.

4.2.1 Zero-shot
For the evaluation under zero-shot setting, we em-
ploy COT (Wei et al., 2022) and COT with self-
consistency (Wang et al., 2023c) prompting to gen-
erate the label for combined QA pairs of each claim.
For ChatGPT, the temperature τ is set to 0.1 for
non-Self-Consistency decoding and 0.7 otherwise.
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Specifically, for claims whose content is blocked
by OpenAI filtering regulation, we set the label
as Not Answerable. For other models under zero-
shot setting, we adhere to the default configurations
provided by HuggingFace. We benchmark differ-
ent versions of LLAMA-3 (Huang et al., 2024),
Mistral (Jiang et al., 2023), Falcon (Almazrouei
et al., 2023), Gemma (Team et al., 2024), and
Qwen2 (Yang et al., 2024).

4.2.2 Fine-tuning

We fine-tune the model using the label of claim in
training set. Specifically, we input all QA pairs of
one claim simultaneously into the LLMs and fine-
tune it using the final label. During the evaluation
phases, we maintain consistency with the training
settings, distinguishing our approach from zero-
shot learning.

For fine-tuning LLMs, we use the open-sourced
library LLaMA-Factory (Zheng et al., 2024; Xu
et al., 2024a; Ding et al., 2024) to train all models
with cross-entropy loss. All hyperparameters fol-
low the default settings, and a LoRA rank (Hu et al.,
2022a) of α = 64 is used. We fine-tune different
versions of LLAMA-3, Mistral, and Qwen2. We
conduct all experiments on a Linux machine with
eight NVIDIA V100 GPUs.

4.3 Experiment results

The main results are demonstrated in Table 1. The
evaluation metrics are consistent with the setting
in Schlichtkrull et al. (2023), where we involve
the Hungarian METEOR score, macro F1, and
AVeriTeC at λ = 0.25. The evaluation results
are obtained with the script. Our GProofT ap-
pendix checking framework achieves a Question
Hu-meteor score(Banerjee and Lavie, 2005) of
0.331 and a Question+Answer Hu-meteor score
of 0.204 on the development set of this shared
task, encompassing the baseline. We observed that
performance on our GProofT evidence generally
surpasses that of the baseline evidence, and fine-
tuning significantly enhances model performance.
The fine-tuned Llama3-8B model demonstrates the
most outstanding performance on GProofT evi-
dence, achieving the AVeriTeC score of 0.186, out-
performing the baseline model. In the zero-shot set-
ting, the Gemma-2-9b model consistently outper-
forms other models across three distinct datasets.

5 Analysis

In this section, we conduct error analysis and case
study to further investigate the strengths and po-
tential drawbacks of our framework. Furthermore,
a imbalance prediction analysis is attached in ap-
pendix A to serve as a analysis on prediction distri-
bution of our framework.

5.1 Error Analysis
The section analyzes the failure cases arise with
GProofT framework. The issues could be cate-
gorized into two types: duplicated subclaims and
biased claim split.

5.1.1 Duplicated Subclaims
When we processed the claim “Tanzania has not
been affected by COVID-19.” using our pipeline
for subclaim generation, GPT initially produced
two identical subclaims: “Tanzania was not af-
fected by COVID-19.” This occurred despite ex-
plicit instructions in the prompt to avoid generat-
ing duplicate subclaims. Similar problems have
been observed with claims containing fewer than
15 words, as demonstrated in Table 2. We hypothe-
size that the phrasing of our prompt might incline
GPT to generate more than one subclaim, leading
to instances where the claim is unnecessarily split
into multiple subclaims that are highly similar or
identical.

5.1.2 Biased Claim Split
Occasionally, splitting claims may introduce inac-
curate or irrelevant subclaims. For instance, in the
development dataset, there is a claim that states
“Over thirty million people... in the last several
months had to file for unemployment.” When pro-
cessed by our pipeline, this claim was split into
a subclaim stating “The last several months have
passed.” This subclaim clearly originates from the
phrase “in the last several months” within the origi-
nal claim. However, it represents a trivial fact rather
than a meaningful assertion relevant to the original
context. More examples are shown in Table 2.

5.2 Case Study
Generally, our framework is proved to be success-
ful in most cases. In Table 3, We present sev-
eral successful examples of the claim split process,
which effectively avoided issues such as duplicate
subclaims or biased splits. These instances cor-
rectly identified the key facts within the claims and
generated corresponding subclaims. For instance,
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Error Type Claim Subclaims one Subclaims two

Duplicated sub-
claims

Viral video purportedly shows
Pakistani opposition MPs
chanted 2018Modi, Modi2019
(India’s PM) inside the Pakistani
Parliament.

Pakistani opposition MPs
chanted ’Modi, Modi’ inside
the Pakistani Parliament.

Pakistani opposition MPs
chanted ’Modi, Modi’ inside
the Pakistani Parliament.

Duplicated sub-
claims

All USA Ballots Arriving After
Election Day Will Be Thrown
Out.

All USA ballots arriving after
Election Day will be thrown out.

Ballots arriving after Election
Day will be thrown out.

Duplicated sub-
claims

Olive Garden prohibits its em-
ployees from wearing face
masks depicting the American
flag.

Olive Garden prohibits its em-
ployees from wearing face
masks depicting the American
flag.

Olive Garden prohibits employ-
ees from wearing face masks
with American flag.

Biased claim
split

Over thirty million people... in
the last several months had to
file for unemployment.

The last several months have
passed.

Over thirty million people filed
for unemployment.

Biased claim
split

Edo State in Nigeria has a 19%
unemployment rate.

The unemployment rate in Edo
State is 19%.

Unemployment rate is a signifi-
cant issue in Edo State.

Table 2: Failure examples of claim split part in GProofT Framework. The table categorizes two types of issues
encountered in claim splitting: duplicated subclaims and biased claim splits.

Claim Subclaim One Subclaim Two

Congress MP Rahul Gandhi has been
listed as the seventh most educated
leader by Forbes.

Rahul Gandhi has been listed as the
seventh most educated leader.

It is Forbes that has listed Rahul
Gandhi as the seventh most educated
leader.

Ulysses S. Grant, commander of the
Union Army during the American Civil
War, was a slave owner.

Ulysses S. Grant was the comman-
der of the Union Army during Amer-
ican Civil War.

Ulysses S. Grant owned slaves.

Joe Biden proposed a US wide 2% prop-
erty tax increase.

Joe Biden proposed a 2% property
tax increase.

The tax increase that Joe Biden pro-
posed apply to the entire US.

Table 3: Successful examples of claim split in GProofT Framework.In the majority of cases, GProofT Framework
effectively identifies the facts within claims and splits them appropriately.

in the case of “Congress MP Rahul Gandhi has
been listed as the seventh most educated leader by
Forbes”, the process not only accurately extracted
the primary facts that Gandhi was listed as the sev-
enth most educated leader and was featured by
Forbes, but also leveraged the emphatic sentence
structure to underscore these facts within the sub-
claims. This approach enhanced the effectiveness
of the subsequent claim split process.

6 Conclusion

In this paper, we introduced GProofT, a multi-
dimension, multi-round fact-checking framework
designed to improve the efficacy and accuracy of
validating online claims by leveraging LLMs and
web evidence retrieval. Through extensive experi-

ments, our approach demonstrated superior perfor-
mance compared to baseline models, particularly
in the critical task of evidence retrieval. More-
over, our framework requires less human labor in-
volved in evidence checking which means it could
be easily scale up when there is a huge amount of
fact checking workload, improving the efficiency.
Apart from such advantages, our framework also
encounter challenges such as duplicated subclaims
and biased claim splits, indicating areas for further
improvement. Furthermore, refining the claim de-
composition process and enhancing the handling of
conflicting evidence will be crucial steps in advanc-
ing automated fact-checking systems. Our work
contributes to the ongoing efforts to develop reli-
able, scalable, and automated tools for ensuring the
trustworthiness of online information.
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Limitation

In our research pipeline, we employed GProofT
Retrieval, incorporating the Google Search API
and ChatGPT to generate question-answer (QA)
pairs, which were subsequently utilized to inform
predictions in conjunction with the Llama model
for the labeling of numerous claims. Throughout
this process, the API of Large Language Models
was invoked multiple times. On average, the pro-
cessing of each claim necessitated approximately
30 API calls to ChatGPT, leading to considerable
computational overhead. Moreover, the heightened
frequency of API calls led to a reduction in pro-
gram execution speed, thereby impeding the ef-
ficient processing of large-scale datasets. Future
research could concentrate on improving the claim
decomposition stage, as this upstream task signif-
icantly influences the final outcome. Conceptual-
ization(Wang et al., 2023b,a, 2024b,c,a; Wang and
Song, 2024; He et al., 2024; Bai et al., 2023) could
serve as an additional tool to improve the quality
of claim decomposition, and manual annotations
could be done to enhance the performance.

Ethics statement

All models and datasets accessed are freely accessi-
ble for research purposes and we do not create any
harmful contents that would yield negative impact.
The authors thus believe that this paper does not
raise additional ethics concerns.

References
Sweta Agrawal, Chunting Zhou, Mike Lewis, Luke

Zettlemoyer, and Marjan Ghazvininejad. 2023. In-
context examples selection for machine translation.
In Findings of the Association for Computational
Linguistics: ACL 2023, Toronto, Canada, July 9-14,
2023, pages 8857–8873. Association for Computa-
tional Linguistics.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Al-
shamsi, Alessandro Cappelli, Ruxandra Cojocaru,

Mérouane Debbah, Étienne Goffinet, Daniel Hesslow,
Julien Launay, Quentin Malartic, Daniele Mazzotta,
Badreddine Noune, Baptiste Pannier, and Guilherme
Penedo. 2023. The falcon series of open language
models. Preprint, arXiv:2311.16867.

Jiaxin Bai, Xin Liu, Weiqi Wang, Chen Luo, and
Yangqiu Song. 2023. Complex query answering on
eventuality knowledge graph with implicit logical
constraints. In Advances in Neural Information Pro-
cessing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023,
New Orleans, LA, USA, December 10 - 16, 2023.

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An
automatic metric for mt evaluation with improved cor-
relation with human judgments. In Proceedings of
the ACL Workshop on Intrinsic and Extrinsic Evalua-
tion Measures for Machine Translation and/or Sum-
marization.

Chunkit Chan, Cheng Jiayang, Weiqi Wang, Yuxin
Jiang, Tianqing Fang, Xin Liu, and Yangqiu Song.
2024a. Exploring the potential of chatgpt on sen-
tence level relations: A focus on temporal, causal,
and discourse relations. In Findings of the Associa-
tion for Computational Linguistics: EACL 2024, St.
Julian’s, Malta, March 17-22, 2024, pages 684–721.
Association for Computational Linguistics.

Chunkit Chan, Cheng Jiayang, Yauwai Yim, Zheye
Deng, Wei Fan, Haoran Li, Xin Liu, Hongming
Zhang, Weiqi Wang, and Yangqiu Song. 2024b. Ne-
gotiationtom: A benchmark for stress-testing ma-
chine theory of mind on negotiation surrounding.
CoRR, abs/2404.13627.

Wenxuan Ding, Weiqi Wang, Sze Heng Douglas Kwok,
Minghao Liu, Tianqing Fang, Jiaxin Bai, Junxian He,
and Yangqiu Song. 2024. Intentionqa: A benchmark
for evaluating purchase intention comprehension abil-
ities of language models in e-commerce. CoRR,
abs/2406.10173.

Tianqing Fang, Weiqi Wang, Sehyun Choi, Shibo Hao,
Hongming Zhang, Yangqiu Song, and Bin He. 2021a.
Benchmarking commonsense knowledge base pop-
ulation with an effective evaluation dataset. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, EMNLP 2021,
Virtual Event / Punta Cana, Dominican Republic, 7-
11 November, 2021, pages 8949–8964. Association
for Computational Linguistics.

Tianqing Fang, Hongming Zhang, Weiqi Wang,
Yangqiu Song, and Bin He. 2021b. DISCOS: bridg-
ing the gap between discourse knowledge and com-
monsense knowledge. In WWW ’21: The Web Con-
ference 2021, Virtual Event / Ljubljana, Slovenia,
April 19-23, 2021, pages 2648–2659. ACM / IW3C2.

Ching Nam Hang, Pei-Duo Yu, and Chee Wei Tan. 2024.
Trumorgpt: Query optimization and semantic reason-
ing over networks for automated fact-checking. In
58th Annual Conference on Information Sciences and

125

https://doi.org/10.18653/V1/2023.FINDINGS-ACL.564
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.564
https://arxiv.org/abs/2311.16867
https://arxiv.org/abs/2311.16867
http://papers.nips.cc/paper_files/paper/2023/hash/6174c67b136621f3f2e4a6b1d3286f6b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6174c67b136621f3f2e4a6b1d3286f6b-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/6174c67b136621f3f2e4a6b1d3286f6b-Abstract-Conference.html
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/W05-0909
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://aclanthology.org/2024.findings-eacl.47
https://doi.org/10.48550/ARXIV.2404.13627
https://doi.org/10.48550/ARXIV.2404.13627
https://doi.org/10.48550/ARXIV.2404.13627
https://doi.org/10.48550/ARXIV.2406.10173
https://doi.org/10.48550/ARXIV.2406.10173
https://doi.org/10.48550/ARXIV.2406.10173
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.705
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.705
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1145/3442381.3450117
https://doi.org/10.1109/CISS59072.2024.10480162
https://doi.org/10.1109/CISS59072.2024.10480162


Systems, CISS 2024, Princeton, NJ, USA, March 13-
15, 2024, pages 1–6. IEEE.

Mutian He, Tianqing Fang, Weiqi Wang, and Yangqiu
Song. 2024. Acquiring and modeling abstract com-
monsense knowledge via conceptualization. Artif.
Intell., 333:104149.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style
pre-training with gradient-disentangled embedding
sharing. In The Eleventh International Conference
on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net.

Matthew Honnibal and Ines Montani. 2017. spaCy 2:
Natural language understanding with Bloom embed-
dings, convolutional neural networks and incremental
parsing. To appear.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022a. Lora: Low-rank adaptation of
large language models. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A. Smith, and Mari Ostendorf. 2022b. In-
context learning for few-shot dialogue state tracking.
In Findings of the Association for Computational
Linguistics: EMNLP 2022, Abu Dhabi, United Arab
Emirates, December 7-11, 2022, pages 2627–2643.
Association for Computational Linguistics.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen,
Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting
Liu. 2023. A survey on hallucination in large lan-
guage models: Principles, taxonomy, challenges, and
open questions. ArXiv, abs/2311.05232.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin,
Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan Qi, Xi-
anglong Liu, and Michele Magno. 2024. An empiri-
cal study of llama3 quantization: From llms to mllms.
Preprint, arXiv:2404.14047.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan
Su, Yan Xu, Etsuko Ishii, Yejin Bang, Delong Chen,
Wenliang Dai, Andrea Madotto, and Pascale Fung.
2022. Survey of hallucination in natural language
generation. ACM Computing Surveys, 55:1 – 38.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7b. Preprint,
arXiv:2310.06825.

Kyungha Kim, Sangyun Lee, Kung-Hsiang Huang,
Hou Pong Chan, Manling Li, and Heng Ji. 2024. Can
llms produce faithful explanations for fact-checking?

towards faithful explainable fact-checking via multi-
agent debate. CoRR, abs/2402.07401.

Itay Levy, Ben Bogin, and Jonathan Berant. 2023. Di-
verse demonstrations improve in-context composi-
tional generalization. In Proceedings of the 61st An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 1401–1422.
Association for Computational Linguistics.

Feihong Lu, Weiqi Wang, Yangyifei Luo, Ziqin Zhu,
Qingyun Sun, Baixuan Xu, Haochen Shi, Shiqi Gao,
Qian Li, Yangqiu Song, and Jianxin Li. 2024. MIKO:
multimodal intention knowledge distillation from
large language models for social-media common-
sense discovery. CoRR, abs/2402.18169.

OpenAI. 2023. Gpt-3.5 turbo.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal,
Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, Red Avila, Igor Babuschkin,
Suchir Balaji, Valerie Balcom, Paul Baltescu, Haim-
ing Bao, Mohammad Bavarian, Jeff Belgum, Ir-
wan Bello, Jake Berdine, Gabriel Bernadett-Shapiro,
Christopher Berner, Lenny Bogdonoff, Oleg Boiko,
Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button,
Trevor Cai, Rosie Campbell, Andrew Cann, Brittany
Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully
Chen, Ruby Chen, Jason Chen, Mark Chen, Ben
Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai,
Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve
Dowling, Sheila Dunning, Adrien Ecoffet, Atty Eleti,
Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix,
Simón Posada Fishman, Juston Forte, Isabella Ful-
ford, Leo Gao, Elie Georges, Christian Gibson, Vik
Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott
Gray, Ryan Greene, Joshua Gross, Shixiang Shane
Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris,
Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele,
Brandon Houghton, Kenny Hsu, Shengli Hu, Xin
Hu, Joost Huizinga, Shantanu Jain, Shawn Jain,
Joanne Jang, Angela Jiang, Roger Jiang, Haozhun
Jin, Denny Jin, Shino Jomoto, Billie Jonn, Hee-
woo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Ka-
mali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim,
Christina Kim, Yongjik Kim, Jan Hendrik Kirch-
ner, Jamie Kiros, Matt Knight, Daniel Kokotajlo,
Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal
Kuo, Michael Lampe, Ikai Lan, Teddy Lee, Jan
Leike, Jade Leung, Daniel Levy, Chak Ming Li,
Rachel Lim, Molly Lin, Stephanie Lin, Mateusz
Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue,
Anna Makanju, Kim Malfacini, Sam Manning, Todor
Markov, Yaniv Markovski, Bianca Martin, Katie

126

https://doi.org/10.1016/J.ARTINT.2024.104149
https://doi.org/10.1016/J.ARTINT.2024.104149
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=sE7-XhLxHA
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.193
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://api.semanticscholar.org/CorpusID:265067168
https://arxiv.org/abs/2404.14047
https://arxiv.org/abs/2404.14047
https://api.semanticscholar.org/CorpusID:246652372
https://api.semanticscholar.org/CorpusID:246652372
https://arxiv.org/abs/2310.06825
https://doi.org/10.48550/ARXIV.2402.07401
https://doi.org/10.48550/ARXIV.2402.07401
https://doi.org/10.48550/ARXIV.2402.07401
https://doi.org/10.48550/ARXIV.2402.07401
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.18653/V1/2023.ACL-LONG.78
https://doi.org/10.48550/ARXIV.2402.18169
https://doi.org/10.48550/ARXIV.2402.18169
https://doi.org/10.48550/ARXIV.2402.18169
https://doi.org/10.48550/ARXIV.2402.18169
https://platform.openai.com/docs/models


Mayer, Andrew Mayne, Bob McGrew, Scott Mayer
McKinney, Christine McLeavey, Paul McMillan,
Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela
Mishkin, Vinnie Monaco, Evan Morikawa, Daniel
Mossing, Tong Mu, Mira Murati, Oleg Murk, David
Mély, Ashvin Nair, Reiichiro Nakano, Rajeev Nayak,
Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh,
Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex
Paino, Joe Palermo, Ashley Pantuliano, Giambat-
tista Parascandolo, Joel Parish, Emy Parparita, Alex
Passos, Mikhail Pavlov, Andrew Peng, Adam Perel-
man, Filipe de Avila Belbute Peres, Michael Petrov,
Henrique Ponde de Oliveira Pinto, Michael, Poko-
rny, Michelle Pokrass, Vitchyr H. Pong, Tolly Pow-
ell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh,
Cameron Raymond, Francis Real, Kendra Rimbach,
Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar,
Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav
Shyam, Szymon Sidor, Eric Sigler, Maddie Simens,
Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Fe-
lipe Petroski Such, Natalie Summers, Ilya Sutskever,
Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng,
Preston Tuggle, Nick Turley, Jerry Tworek, Juan Fe-
lipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang,
Alvin Wang, Ben Wang, Jonathan Ward, Jason Wei,
CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner,
Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qim-
ing Yuan, Wojciech Zaremba, Rowan Zellers, Chong
Zhang, Marvin Zhang, Shengjia Zhao, Tianhao
Zheng, Juntang Zhuang, William Zhuk, and Bar-
ret Zoph. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Michael Sejr Schlichtkrull, Zhijiang Guo, and Andreas
Vlachos. 2023. Averitec: A dataset for real-world
claim verification with evidence from the web. In
Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Haochen Shi, Weiqi Wang, Tianqing Fang, Baixuan Xu,
Wenxuan Ding, Xin Liu, and Yangqiu Song. 2023.
QADYNAMICS: training dynamics-driven synthetic
QA diagnostic for zero-shot commonsense question
answering. In Findings of the Association for Com-
putational Linguistics: EMNLP 2023, Singapore, De-
cember 6-10, 2023, pages 15329–15341. Association
for Computational Linguistics.

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam

Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Weiqi Wang, Limeng Cui, Xin Liu, Sreyashi Nag,
Wenju Xu, Sheikh Sarwar, Chen Luo, Yang Lau-
rence Li, Hansu Gu, Hui Liu, Changlong Yu, Jiaxin
Bai, Yifan Gao, Haiyang Zhang, Qi He, Shuiwang Ji,
and Yangqiu Song. 2024a. EcomScript: A multi-task
benchmark for e-commerce script planning via step-
wise intention-driven product association. CoRR.

Weiqi Wang, Tianqing Fang, Wenxuan Ding, Baixuan
Xu, Xin Liu, Yangqiu Song, and Antoine Bosselut.
2023a. CAR: conceptualization-augmented reasoner
for zero-shot commonsense question answering. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 13520–13545. Association for Computa-
tional Linguistics.

Weiqi Wang, Tianqing Fang, Chunyang Li, Haochen
Shi, Wenxuan Ding, Baixuan Xu, Zhaowei Wang, Ji-
axin Bai, Xin Liu, Cheng Jiayang, Chunkit Chan, and
Yangqiu Song. 2024b. CANDLE: iterative concep-
tualization and instantiation distillation from large
language models for commonsense reasoning. In
Proceedings of the 62nd Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2024, Bangkok, Thailand, Au-
gust 11-16, 2024, pages 2351–2374. Association for
Computational Linguistics.

Weiqi Wang, Tianqing Fang, Haochen Shi, Baixuan
Xu, Wenxuan Ding, Liyu Zhang, Wei Fan, Jiaxin
Bai, Haoran Li, Xin Liu, and Yangqiu Song. 2024c.

127

https://arxiv.org/abs/2303.08774
https://openreview.net/forum?id=fKzSz0oyaI
https://openreview.net/forum?id=fKzSz0oyaI
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.1023
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.1023
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.1023
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.902
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.902
https://doi.org/10.18653/V1/2024.ACL-LONG.128
https://doi.org/10.18653/V1/2024.ACL-LONG.128
https://doi.org/10.18653/V1/2024.ACL-LONG.128


On the role of entity and event level conceptualiza-
tion in generalizable reasoning: A survey of tasks,
methods, applications, and future directions. CoRR,
abs/2406.10885.

Weiqi Wang, Tianqing Fang, Baixuan Xu, Chun
Yi Louis Bo, Yangqiu Song, and Lei Chen. 2023b.
CAT: A contextualized conceptualization and instan-
tiation framework for commonsense reasoning. In
Proceedings of the 61st Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), ACL 2023, Toronto, Canada, July 9-14,
2023, pages 13111–13140. Association for Computa-
tional Linguistics.

Weiqi Wang and Yangqiu Song. 2024. MARS: bench-
marking the metaphysical reasoning abilities of lan-
guage models with a multi-task evaluation dataset.
CoRR, abs/2406.02106.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc
Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. 2023c. Self-consistency im-
proves chain of thought reasoning in language mod-
els. Preprint, arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Brian Ichter, Fei Xia, Ed H. Chi, Quoc V. Le,
and Denny Zhou. 2022. Chain-of-thought prompting
elicits reasoning in large language models. In Ad-
vances in Neural Information Processing Systems 35:
Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA,
USA, November 28 - December 9, 2022.

Baixuan Xu, Weiqi Wang, Haochen Shi, Wenxuan
Ding, Huihao Jing, Tianqing Fang, Jiaxin Bai, Long
Chen, and Yangqiu Song. 2024a. MIND: multimodal
shopping intention distillation from large vision-
language models for e-commerce purchase under-
standing. CoRR, abs/2406.10701.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng
Chang, Hengheng Zhang, Zhengsu Chen, Xiaopeng
Zhang, and Qi Tian. 2024b. Qa-lora: Quantization-
aware low-rank adaptation of large language models.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Hao-
ran Wei, Huan Lin, Jialong Tang, Jialin Wang,
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Ma, Jianxin Yang, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Ke-
qin Chen, Kexin Yang, Mei Li, Mingfeng Xue, Na Ni,
Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize
Gao, Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan,
Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge,
Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren,
Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing
Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan,
Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,

Zhifang Guo, and Zhihao Fan. 2024. Qwen2 techni-
cal report. Preprint, arXiv:2407.10671.

Changlong Yu, Weiqi Wang, Xin Liu, Jiaxin Bai,
Yangqiu Song, Zheng Li, Yifan Gao, Tianyu Cao,
and Bing Yin. 2023. Folkscope: Intention knowledge
graph construction for e-commerce commonsense
discovery. In Findings of the Association for Com-
putational Linguistics: ACL 2023, Toronto, Canada,
July 9-14, 2023, pages 1173–1191. Association for
Computational Linguistics.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning of
100+ language models.

A Imbalanced Prediction

Model S R C N Macro

baseline .41 .69 .10 .16 .23
gpt-3.5 turbo .57 .59 .08 .16 .34
llama3 .54 .74 .04 .06 .35
mistral .55 .74 .00 .11 .35

Table 4: Performance of models on different categories
of claim.

As demonstrated in Table 4, our model exhibits
better performance on the "Supported" (S) and
"Refuted" (R) labels but struggles with "Con-
flicting Evidence/Cherrypicking" (C) and "Not
Enough Evidence" (N) labels. This performance
discrepancy suggests a few potential reasons:
1. Evidence Retrieval Challenges: For Supported
and Refuted labels, the evidence is clear and
directly relevant, making it easier for the model
to make accurate predictions. For Conflicting
Evidence/Cherrypicking, the model struggles
with retrieving or interpreting evidence that is
contradictory or only partially relevant. If the
model fails to retrieve diverse or contradictory
evidence, it default to classifying the claim as
either supported or refuted, missing the nuance
required for the conflicting/cherrypicking evidence
label.
2. Training Data Imbalance: The training
data had more examples of claims with verdict
supported or refuted, leading the model to be
better at these tasks. Fewer examples of conflicting
evidence or cherrypicking cases leads the model
not have learned to handle these as effectively.
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B Prompt

B.1 Claim Decomposition

Prompt: Now I have a mission, and please help
me deal with it: I have a claim: {claim}, and I
need to split it into different subclaims according
to THE FACT it contains. For example, if I have a
claim: "Trump is a student born in 2005", then I
want to split it into two parts (since there are two
facts in it):"Trump is a student" and "Trump was
born in 2005". For this special case, I need the re-
sponse to be: "Trump is a student. Trump was born
in 2005.". There are several RULES for the split-
ing process: (1)VERY IMPORTANT!!! PLEASE
RETURN THE SUBCLAIMS ONLY (DO NOT IN-
CLUDE ANYTHING ELSE!!!) and please sepa-
rate the subclaims ONLY BY PERIOD instead of
numbers. (2)VERY IMPORTANT: DO NOT GEN-
ERATE DUPLICATE SUBCLAIMS!!!!!!! (3)TRY
TO BE MORE SPECIFIC and CLEAR(for example,
if you want to generate "the orgarnization", try to
generate the orgarnization’s name), and AVOID
USING PRONOUNS. (4)In most cases, the length
of subclaims should be LESS THAN the length
of the original claim. And in most cases, each
subclaims SHOULD NOT BE LONGER THAN 10
words. (5)Do not expand the meaning of the origi-
nal claim or generate subclaims that do not exist
in the original claim. (6)DO NOT generate a sub-
claim that is totally the same as the original claim
UNLESS there is only one fact to check in the origi-
nal claim. (7)For example: for the claim "BJP MP
Sushil Modi claims first five Indian education min-
isters were Muslims", You should recognize that
there is ONLY ONE FACT in the claim, which is
whether BJP MP Sushil Modi really states the fol-
lowing claim , so the subclaim should be itself.
At the same time, if there are several facts in the
claim, you should split the claim into same amount
of subclaim, each representing a fact. (8)If the
claim is more that 30 words, try to generate at
least 3 subclaims. (9)Here are some EXAMPLES:
If the claim is "Lionel Messi is 36-year-old football
player who has a long career.", then according to
the claim, there are three facts introducing Lionel
Messi, which are: Lionel Messi is 36-year-old, Li-
onel Messi is a football player, LionelMessi has
a long career. So what you should generate is:
"Lionel Messi is 36-year-old. Lionel Messi is a
football player. Lionel Messi has a long career.".

Note that the variable claim is the original input
statement.

B.2 Question Generation
Prompt: According to the claim below, generate
a binary question to CHECK THE FACTS in the
claim: {subclaim_text}. Note that (1)ONLY RE-
PLY THE QUESTION ITSELF!!! DO NOT IN-
CLUDE ANYTHING ELSE!!! (2)Try to be more
SPECIFIC, for example, if the claim is "Trump
was a student.", then you should AVOID GENER-
ATING QUESTIONS CONTAINING PRONOUNS
like "Was he a student?" and instead generate "Was
Trump a student?" (3)Try to NOTICE THE FACT
in the claim and generate the binary question to
CHECK THE FACT. For example: for a claim:
"BJP MP Sushil Modi claims first five Indian ed-
ucation ministers were Muslims", the fact to be
checked will be whether BJP MP Sushil really
states the claim, instead of whether the first five
Indian education ministers are Muslims. Thus, you
should generate "Did BJP MP Sushil Modi claim
that the first five Indian education ministers were
Muslims?" (4)Here are some EXAMPLES: If the
claim is "Lionel Messi is loyal to FC Barcelona",
then the binary question should be "Is Lionel Messi
loyal to FC Barcelona?". If the claim is "Biden has
been to Beijing twice.", then the binary question
should be "Has Biden been to Beijing twice?".

Note that the variable subclaim_text is a single
subclaim obtained from the Claim Decomposition
stage.

B.3 Answer Generation
Prompt: According to the question: {query} and
the approximate answer: {item[’snippet’]}, give
me a yes or no answer.(only a word is needed)

Note that the variable query is the binary ques-
tion obtained from the Question Generation stage
and item[’snippet’] is an attribute acquired from
the Google search API.
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Abstract

To tackle the AVeriTeC shared task hosted by
the FEVER-24, we introduce a system that only
employs publicly available large language mod-
els (LLMs) for each step of automated fact-
checking, dubbed the Herd of Open LLMs for
verifying real-world claims (HerO). For evi-
dence retrieval, a language model is used to en-
hance a query by generating hypothetical fact-
checking documents. We prompt pretrained and
fine-tuned LLMs for question generation and
veracity prediction by crafting prompts with re-
trieved in-context samples. HerO achieved 2nd
place on the leaderboard with the AVeriTeC
score of 0.57, suggesting the potential of open
LLMs for verifying real-world claims. For fu-
ture research, we make our code publicly avail-
able at https://github.com/ssu-humane/
HerO.

1 Introduction

Automated fact-checking is a task that predicts
a claim’s veracity by referring to pieces of evi-
dence (Guo et al., 2022). Claim verification re-
quires the retrieval of relevant information from
a reliable document collection and the decision
on whether the claim is supported by the known
relevant information. Early research attempted to
automate the fact-checking process by generat-
ing synthetic claims based on Wikipedia docu-
ments (Thorne et al., 2018; Aly et al., 2021) or
collecting manually verified claims by human ex-
perts (Wang, 2017; Augenstein et al., 2019). How-
ever, most datasets suffer from critical issues such
as context dependence, evidence insufficiency, and
temporal leaks; these limitations made the result-
ing systems less applicable to the verification of
real-world claims. In light of this, a recent study
proposed a dataset called AVeriTeC (Schlichtkrull
et al., 2023). They addressed the limitations by con-
ducting fine-grained crowdsourced annotations for
the fact-checking process.

This paper describes our system for the
AVeriTeC shared task hosted by the FEVER-24
workshop (Schlichtkrull et al., 2024). Motivated by
the recent advancements in large language models,
we introduce a fact-checking system that utilizes
LLMs for each step of evidence-based fact verifi-
cation: evidence retrieval, question generation, and
veracity prediction. Our system, the Herd of Open
LLMs for verifying real-world claims (HerO), em-
ploys publicly available LLMs without using pro-
prietary LLMs, to ensure the transparency of the
system. HerO achieved 2nd place in the shared task
with an AVeriTeC score of 0.57. Given that the
winning system used gpt-4o (Schlichtkrull et al.,
2024), HerO’s competitive performance imply the
potential of open LLMs for verifying real-world
claims.

2 Related Work

LLMs have achieved remarkable success in natu-
ral language understanding and generation (Brown
et al., 2020; Thoppilan et al., 2022; Achiam et al.,
2023). While major tech companies primarily
drove the initial success, they only provided limited
access to the model through an API. On the other
hand, some research groups have attempted to de-
velop open LLMs to facilitate open research. While
the performance of the initial models was unsatis-
factory (Zhang et al., 2022; Le Scao et al., 2023),
recent models are on par with closed models and
even outperform them in certain categories (Jiang
et al., 2023; Dubey et al., 2024).

3 Task Definition

The AVeriTeC shared task aims to develop a fact-
checking system that verifies real-world claims by
retrieving evidence from the web. To verify a given
claim, the system first needs to retrieve relevant
information from the web documents (evidence
retrieval). For each of the collected evidence, the
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Figure 1: Inference pipeline of our system

System Evidence Retrieval Question Generation Reranking Veracity PredictionQuery Model

Baseline Claim BM25 Bloom-7b BERT-base BERT-base

HerO HyDE-FC
(Llama-3.1-70b)

BM25
w/ SFR-embedding-2 Llama-3-8b - Llama-3.1-70b

Table 1: Model configurations

system may generate questions that can help verify
the claim (question generation) or choose not to.
The last step of the fact-checking is to verify the
claim by referring to the collected information (ve-
racity prediction). The final verdict is a four-class
variable: supported, refuted, not enough evidence,
or conflicting evidence/cherry-picking. Each sys-
tem is evaluated using three metrics, where a higher
value indicates a better score. Two metrics are the
Hungarian METEOR score1 to assess the quality
of questions (Q score) and question-answer pairs
(Q+A score), respectively. The overall accuracy is
measured by the AVeriTeC score. Details about the
task, dataset, and evaluation metrics can be found
in Schlichtkrull et al. (2023) and Schlichtkrull et al.
(2024).

4 Our System

This section describes our fact-checking system,
the Herd of Open LLMs for verifying real-world
claims (HerO). Inspired by the recent progress of
open LLMs (Jiang et al., 2023; Dubey et al., 2024),

1The score uses the Hungarian algorithm (Kuhn, 1955)
to find optimal matching pairs and evaluates them with the
METEOR score (Banerjee and Lavie, 2005).

we only employ open LLMs for our system with-
out using proprietary LLMs, such as gpt (Brown
et al., 2020) and gemini (Team et al., 2023). Table 1
presents HerO’s model configurations in compar-
ison to the baseline system (Schlichtkrull et al.,
2023). The inference pipeline of our system is illus-
trated in Figure 1. We use web documents provided
along with the dataset as the knowledge store.

4.1 Evidence Retrieval

The first step aims to retrieve relevant sentences
from the knowledge store to verify a given claim.
Inspired by previous research on generative re-
trieval methods (Gao et al., 2023; Wang et al.,
2023), we utilize an instruction-following LM to
generate hypothetical fact-checking documents to
augment a retrieval query. For the rest of this pa-
per, we call this approach HyDE-FC, which stands
for Hypothetical Document Embedding for Fact-
Checking.

Given a claim c, we generate a set of hypothet-
ical fact-checking documents D = {d1, . . . , dN}
by prompting an instruction-following language
model f(·) using c as an in-context sample. The
used prompt for HyDE-FC is shown in Figure 2.
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Please write a fact-checking article passage to
support, refute, indicate not enough evidence, or
present conflicting evidence regarding the claim.
Claim: Hunter Biden had no experience in Ukraine
or in the energy sector when he joined the board of
Burisma.
Passage: While Hunter Biden did not have direct
experience in the energy sector or Ukraine before
joining the board of Burisma, he did have ...

Figure 2: An example of the instruction prompt used for
HyDE-FC and its output. The bold text is the instruction,
the italic text is a claim, and the blue text indicates the
model output.

We repeat the sampling process until obtaining N
different documents.

Using the claim and generated documents, our
retrieval pipeline employs a two-step hybrid ap-
proach that incorporates spare and dense retrieval
methods. The first step is to retrieve relevant docu-
ments by BM25 (Robertson and Zaragoza, 2009).
We concatenate the claim c and each document in
D for building the query document q. The sparse
vector for q is used to retrieve the top 10,000 rele-
vant sentences from the knowledge store. The sec-
ond step is to re-rank the 10,000 sentences by the
dense retrieval method to decide the top-10 evi-
dence candidates. The query vector vq is obtained
by averaging the embedding vectors for the claim
c and every document in D by the equation 1,

vq =
1

N + 1
[

N∑

k=1

g(dk) + g(c)] (1)

where g is an embedding method.
Our best model uses llama-3.1-70b (Dubey et al.,

2024) for f and SFR-embedding-2 (Meng et al.,
2024) for g. N is set as 8.

4.2 Question Generation

The next step is to generate verifying questions,
each of which the corresponding answer could be
a retrieved sentence. We employ an instruction-
following LM to generate questions for each piece
of evidence. The used prompt is shown in Figure 3.
We improve the baseline prompt (Schlichtkrull
et al., 2023), which takes each evidence and rel-
evant question-answer pairs from the labeled set
by BM25 as in-context examples, by including a
corresponding claim.

Your task is to generate a question based on the
given claim and evidence. The question should
clarify the relationship between the evidence and
the claim

Example 1:
Claim: U.S. aid dollars sent to Ukraine under
Biden’s supervision went toward Burisma, where
Biden’s son Hunter was a board member.
Evidence: Hunter Biden was appointed to the board
of Burisma.
Question: Was Hunter Biden a board member of
Ukrainian energy company ’Burisma’?
...
Example 10:
Claim: Hunter Biden was paid
3millionplus183,000 a month to be a board
member of a company that a lot of people said was
corrupt.
Evidence: Burisma Holdings, Ukraine’s largest
private gas producer, has expanded its Board of
Directors by bringing on Mr. R Hunter Biden as a
new director.
Question: What company is Hunter Biden a member
of the board?

Now, generate a question that links the fol-
lowing claim and evidence:

Claim: Hunter Biden had no experience in
Ukraine or in the energy sector when he joined the
board of Burisma.
Evidence: In 2014, Hunter Biden was appointed to
the board of Burisma Holdings, a Ukrainian energy
company. He was reportedly paid $50,000 a month
to work in an industry in which he had no previous
experience.
Question: What was Hunter Biden’s background or
experience in the energy sector before joining the
board of Burisma Holdings in 2014?

Figure 3: An example of instruction prompt and its
output for question generation. The bold text indicates
the instruction, the italic text is a claim, the gray text is
retrieved in-context samples, and the blue text indicates
the model output.

4.3 Veracity Prediction

We employ an instruction-following LM for verac-
ity prediction. Inspired by a previous study (Wei
et al., 2022), we devise a prompt that incorporates
an annotator’s rationale into the veracity prediction.
Our best model uses the fine-tuned llama-3.1-70b-
it that predicts the veracity label after generating
the explanation. The top 10 question-and-answer
pairs from the earlier steps are given as in-context
samples along with the claim to verify.
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Your task is to predict the verdict of a claim
based on the provided question-answer pair
evidence. The possible labels are: ’Supported’,
’Refuted’, ’Not Enough Evidence’, ’Conflicting
Evidence/Cherrypicking’. Justify your answer
using the provided evidence and select the correct
label.

Claim: Hunter Biden had no experience in
Ukraine or in the energy sector when he joined the
board of Burisma.

Q1: What was Hunter Biden’s background or
experience in the energy sector before joining the
board of Burisma Holdings in 2014?
A1: In 2014, Hunter Biden was appointed to the
board of Burisma Holdings, a Ukrainian energy
company. He was reportedly paid $50,000 a month
to work in an industry in which he had no previous
experience.
...
Q10: Did Hunter Biden have any relevant experience
in Ukraine or the energy sector before joining the
board of Burisma?
A10: What this is all about: From the start of the
inquiry, Republicans have pointed out that Hunter
Biden did not have any experience in corporate
governance or in the energy sector before taking the
job at Burisma.

Justification: No former experience stated.
Verdict: Supported

Figure 4: An example of instruction prompt and its
output for veracity prediction. The bold text indicates
the instruction, the italic text is a claim, the gray text
is retrieved QA pairs, and the blue text is the model
output.

5 Evaluation Experiments

In this section, we present experimental results to
decide the system configuration.

5.1 Experimental Setups
In the comparison experiments, we used the de-
velopment set to evaluate model performance. In
addition to the Q score and Q+A score, we em-
ployed the Hungarian METEOR score to evaluate
the answer quality, denoted as A score. For the
comparison experiments, we used the training set
for training our models and the development set for
the evaluation. The training and development set
were used to train our system for the submission.
We used the Adam optimizer with a learning rate
2e-5, batch size 128, and 2 epochs. For LoRA, we
set the rank to 128 and alpha to 256.

All the language models used in the experiments
are the instruction-tuned version (e.g., llama-3.1-

Query Retrieval model A score

Claim
BM25 0.187
BM25

w/ SFR-embedding-2 0.26

HyDE-FC
(Llama-3-8b)

BM25
w/ SFR-embedding-2

0.2745

HyDE-FC
(Llama-3-70b) 0.2757

HyDE-FC
(Llama-3.1-8b) 0.2751

HyDE-FC
(Llama-3.1-70b) 0.2801

HyDE-FC
(GPT-4o-mini) 0.2773

Table 2: Performance of evidence retrieval methods

Context Model Q score

Retrieved sentences

Baseline 0.2404
Llama-3-8b 0.4210

Llama-3-70b 0.4175
Llama-3.1-8b 0.4212

Llama-3.1-70b 0.4259
GPT-4o-mini 0.4054

Retrieved sentences
w/ Claim

Llama-3-8b 0.4938
Llama-3-70b 0.4789
Llama-3.1-8b 0.4855
Llama-3.1-70b 0.4881

Table 3: Performance of question generation methods

70b-it). For brevity, we omitted ‘it’ in the model
identifier for the rest of the paper. For HyDE-FC,
we set the LM hyperparameters as follows: maxi-
mum number of tokens as 512, temperature as 0.7,
and top_p as 1.0. We used the labeled QA pairs
from the training set as a data store to retrieve in-
context samples for question generation. We used
greedy decoding with a maximum length of 512.
When an LM does not produce the verdict label, we
repeated the generation with the top-2 sampling.

We ran experiments using three machines. The
first has two H100 GPUs (80GB per GPU) and
480GB RAM. The second has eight H100 GPUs
with 2TB RAM; the third has four NVIDIA A6000
GPUs (48GB per GPU) and 256GB RAM. The
experiments were conducted in a computing envi-
ronment with the following configuration: Python
3.11.9, PyTorch 2.3.1, Transformers 4.43.4, Ax-
olotl 0.4.1, vLLM 0.5.3, and SentenceTransform-
ers 3.0.1. HerO took approximately 6.6 hours to
make 500 predictions for the development set with
two H100 GPUs. It took six hours for the evidence
retrieval, 25 minutes for the question generation,
and 12 minutes to complete the veracity prediction.
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5.2 Experimental Results

Evidence Retrieval We present evidence re-
trieval results on the AVeriTeC development set
in Table 2. We relied on the A score as the primary
metric to identify a model that can retrieve sen-
tences that are similar to the annotated evidence.

We made three observations. First, when a claim
was used as a query verbatim, applying SFR-
embedding-2 to the re-ranking step boosted the
performance by the A score of 0.073. Second, aug-
menting a query by the hypothetical document
generation increased the performance. The best
model, HyDE-FC with llama-3.1-70b, achieved an
A score of 0.2801, 0.02 greater than the claim-
only approach. Third, gpt-4o-mini was close to but
slightly worse than the best open model when be-
ing used for HyDE-FC. Accordingly, HerO uses
the two-step approach where SFR-embedding-2 re-
ranks the top 10,000 sentences obtained by BM25;
llama-3.1-70b is used to generate hypothetical fact-
checking documents to augment the query.

Question Generation We present evaluation re-
sults of question generation methods in Table 3.
We fixed the evidence retrieval method as the best
approach to assess the effects of question genera-
tion methods. The Q score was used as a primary
evaluation metric for question generation.

We made three observations. First, all the llama
models achieved better Q scores than the baseline
and gpt-4o-mini. Second, using the claim as an
additional in-context sample boosted the gener-
ation performance significantly. The llama-3-8b
model with the claim achieved a Q score of 0.4938,
0.0728 greater than its counterpart. Third, among
the llama models that only use retrieved sentences
as in-context samples, the latest and largest model
(llama-3.1-70b) achieved the best score. However,
llama-3-8b achieved the best score with the claim.
Accordingly, HerO uses llama-3-8b to generate
questions.

Veracity Prediction We compared veracity pre-
diction methods using the best evidence retrieval
and question generation pipelines. We evaluated
three LLM-based methods: in-context learning
with ten examples, instruction fine-tuning by
LoRA (Hu et al., 2021), and fine-tuning the whole
parameters. Table 4 shows the results. When in-
context learning was used without parameter up-
dates, the llama models outperformed gpt-4o-mini.
The most significant performance gap was an ac-

Method Model Accuracy AVeriTeC score

In-context
learning

Llama-3-70b 0.628 0.494
Llama-3.1-70b 0.54 0.422
Gpt-4o-mini 0.488 0.382

LoRA Llama-3-70b 0.724 0.556
Llama-3.1-70b 0.704 0.55

Fine-tuning Llama-3-70b 0.746 0.57
Llama-3.1-70b 0.752 0.578

Table 4: Performance of veracity prediction methods

System Q score Q+A score AVeriTeC score

TUDA_MAI_0 0.45 0.34 0.63
HerO 0.48 0.35 0.57

CTU AIC 0.46 0.32 0.5
Baseline 0.24 0.2 0.11

Table 5: Test set results

curacy of 0.14 and an AVeriTeC score of 0.112.
Furthermore, the performance was boosted by in-
struction fine-tuning approaches. The llama-3.1-
70b with the full fine-tuning approach achieved
the highest AVeriTeC score of 0.578, which is the
veracity prediction module for HerO.

5.3 Test Set Results
Table 5 shows how HerO performs in the test set
in comparison to the baseline and other compet-
itive models. TUDA_MAI_0 achieved the best
AVeriTeC score of 0.63, followed by HerO (0.57)
and CTU AIC (0.5). Their performance gap
with the existing baseline was significant. HerO
achieved the best Q and Q+A scores among the top
3 models, suggesting that our question-generation
approach is strong. Since HerO’s performance gap
with the winning system was smaller for the Q+A
score than for the Q score, we suspected that our re-
trieval system is on par with but slightly worse than
theirs. The answer score employed in our experi-
ment could help better understand what is attributed
to the performance, either retrieval or question gen-
eration.

6 Conclusion

To tackle the AVeriTeC shared task hosted by the
FEVER-24, we developed HerO, a fact-checking
system that employs publicly available large lan-
guage models for each step of automated fact-
checking: evidence retrieval, question generation,
and veracity prediction. Our system achieved 2nd
place in the shared task, supporting the effective-
ness of open LLMs for verifying real-world claims.
We release our code publicly for future research.
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lie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon,
Matthias Gallé, et al. 2023. Bloom: A 176b-
parameter open-access multilingual language model.

Rui Meng, Ye Liu, Shafiq Rayhan, Joty, Caiming
Xiong, Yingbo Zhou, and Semih Yavuz. 2024. Sfr-
embedding-2: Advanced text embedding with multi-
stage training.

Stephen Robertson and Hugo Zaragoza. 2009. The prob-
abilistic relevance framework: Bm25 and beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.

Michael Schlichtkrull, Yulong Chen, Chenxi White-
house, Zhenyun Deng, Mubashara Akhtar, Rami Aly,
Zhijiang Guo, Christos Christodoulopoulos, Oana
Cocarascu, Arpit Mittal, James Thorne, and Andreas
Vlachos. 2024. The automated verification of tex-
tual claims (averitec) shared task. In Proceedings of

135

https://openreview.net/forum?id=h-flVCIlstW
https://openreview.net/forum?id=h-flVCIlstW
https://openreview.net/forum?id=h-flVCIlstW
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://doi.org/10.18653/v1/D19-1475
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.18653/v1/2023.acl-long.99
https://doi.org/10.1162/tacl_a_00454
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://huggingface.co/Salesforce/SFR-Embedding-2_R
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019


the Seventh Workshop on Fact Extraction and VER-
ification (FEVER). Association for Computational
Linguistics.

Michael Schlichtkrull, Zhijiang Guo, and Andreas Vla-
chos. 2023. Averitec: A dataset for real-world claim
verification with evidence from the web. In Ad-
vances in Neural Information Processing Systems,
volume 36, pages 65128–65167. Curran Associates,
Inc.

Gemini Team, Rohan Anil, Sebastian Borgeaud,
Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu,
Radu Soricut, Johan Schalkwyk, Andrew M Dai,
Anja Hauth, et al. 2023. Gemini: a family of
highly capable multimodal models. arXiv preprint
arXiv:2312.11805.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam
Shazeer, Apoorv Kulshreshtha, Heng-Tze Cheng, Ali-
cia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. 2022.
Lamda: Language models for dialog applications.
arXiv preprint arXiv:2201.08239.

James Thorne, Andreas Vlachos, Oana Cocarascu,
Christos Christodoulopoulos, and Arpit Mittal. 2018.
The Fact Extraction and VERification (FEVER)
shared task. In Proceedings of the First Workshop on
Fact Extraction and VERification (FEVER).

Liang Wang, Nan Yang, and Furu Wei. 2023.
Query2doc: Query expansion with large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 9414–9423, Singapore. Association for Com-
putational Linguistics.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 422–426, Vancouver, Canada.
Association for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
volume 35, pages 24824–24837. Curran Associates,
Inc.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher De-
wan, Mona Diab, Xian Li, Xi Victoria Lin, et al. 2022.
Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068.

136

https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/cd86a30526cd1aff61d6f89f107634e4-Paper-Datasets_and_Benchmarks.pdf
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf


Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 137–150
November 15, 2024 ©2024 Association for Computational Linguistics

AIC CTU system at AVeriTeC: Re-framing automated fact-checking as a
simple RAG task

Herbert Ullrich
AI Center @ CTU FEE

Charles Square 13
Prague, Czech Republic
ullriher@fel.cvut.cz

Tomáš Mlynář
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Abstract

This paper describes our 3rd place submis-
sion in the AVeriTeC shared task in which
we attempted to address the challenge of fact-
checking with evidence retrieved in the wild
using a simple scheme of Retrieval-Augmented
Generation (RAG) designed for the task, lever-
aging the predictive power of Large Language
Models. We release our codebase1, and ex-
plain its two modules – the Retriever and the
Evidence & Label generator – in detail, justify-
ing their features such as MMR-reranking and
Likert-scale confidence estimation. We evalu-
ate our solution on AVeriTeC dev and test set
and interpret the results, picking the GPT-4o as
the most appropriate model for our pipeline at
the time of our publication, with Llama 3.1 70B
being a promising open-source alternative. We
perform an empirical error analysis to see that
faults in our predictions often coincide with
noise in the data or ambiguous fact-checks, pro-
voking further research and data augmentation.

1 Introduction

We release a pipeline for fact-checking claims us-
ing evidence retrieved from the web consisting
of two modules – a retriever, which picks the
most relevant sources among the available knowl-
edge store2 and an evidence & label generator
which generates evidence for the claim using these
sources, as well as its veracity label.

Our pipeline is a variant of the popular Retrieval-
augmented Generation (RAG) scheme (Lewis et al.,
2020), making it easy to re-implement using estab-
lished frameworks such as Langchain, Haystack, or
our attached Python codebase for future research
or to use as a baseline.

1https://github.com/aic-factcheck/aic_
averitec

2Due to the pre-retrieval step that was used to generate
knowledge stores, our “retriever” module could more conven-
tionally be referred to as a “reranker”, which we refrain from,
to avoid confusion with reranking steps it uses as a subroutine.

This paper describes our pipeline and the de-
cisions taken at each module, achieving a simple
yet efficient RAG scheme that improves dramat-
ically across the board over the baseline system
from (Schlichtkrull et al., 2024), and scores third in
the AVeriTeC leaderboard as of August 2024, with
an AVeriTeC test set score of 50.4%.

Claim

Documents

Evidence & label
generation module

(LLM-powered)

Relevant
document

chunks

Retrieval
module

Label
confidences

Question
Answer

Question
Answer

Evidence

Question
Answer

Question
Answer

Conflicting Evidence/Cherrypicking

Not Enough Evidence

Supported

Refuted

Figure 1: Our pipeline

2 Related work

1. AVeriTeC shared task (Schlichtkrull et al.,
2024) releases the dataset of real-world fact-
checked claims, annotated with evidence avail-
able at the date the claim was made.

It proposes the AVeriTeC Score – a method
of unsupervised scoring of fact-checking
pipeline against this gold data using Hungar-
ian METEOR score, matching the evidence
questions (Q) or the whole evidence (Q+A).
The score is then calculated as the proportion
of claims with accurate label and sound ev-
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idence (using a threshold for Hu-METEOR
such as 0.25) among all claims in the dataset,
giving an estimate on “how often the whole
fact-checking pipeline succeeds end to end”.

The provided baseline is a pipeline of
search query generation, API search (pro-
ducing a knowledge store), sentence re-
trieval, Question-and-answer (QA) generation,
QA reranking, QA-wise claim classification
and label aggregation, achieving an overall
AVeriTeC test set score of 11%.

2. FEVER Shared Task (Thorne et al., 2018b),
a predecessor to the AVeriTeC, worked with
a similar dataset engineered on top of the
enclosed domain Wikipedic data rather than
real-world fact-checks. Its top-ranking solu-
tions used a simpler pipeline of Document
Retrieval, Sentence Reranking and Natural
Language Inference, improving its modules
in a decoupled manner and scoring well
above 60% in a similarly computed FEVER
score (Thorne et al., 2018a) on this data.

3. Our previous research on fact-checking
pipelines (Ullrich et al., 2023; Drchal et al.,
2023) using data similar to FEVER and
AVeriTeC shows significant superiority of fact-
checking pipelines that retrieve the whole
documents for the inference step, rather than
retrieving out-of-context sentences.

4. Retrieval-Augmented Generation (RAG)
for Knowledge-Intensive Tasks (Lewis et al.,
2020) takes this a step further, leveraging
Large Language Model (LLM) for the task,
providing it the whole text of retrieved docu-
ments (each a chunk of Wikipedia) and simply
instructing it to predict the evidence and la-
bel on top of it, achieving results within 4.3%
from the FEVER state of the art by the time
of its publication (December 2020) without
engineering a custom pipeline for the task.

3 System description

Our system design prioritizes simplicity, and its
core idea is using a straightforward RAG pipeline
without engineering extra steps, customizing only
the retrieval step and LLM prompting (Listing 1 in
Appendix A). Despite that, this section describes
and justifies our decisions taken at each step, our
additions to the naive version of RAG modules to

tune them for the specific task of fact-checking,
and their impact on the system performance.

3.1 Retrieval module

To ease comparison with the baseline and other
systems designed for the task, our system does not
use direct internet/search-engine access for its re-
trieval, but an AVeriTeC knowledge store provided
alongside each claim.

To use our pipeline in the wild, our retrieval mod-
ule is decoupled from the rest of the pipeline and
can be swapped out in favour of an internet search
module such as SerpApi3 as a whole, or it can be
used on top of a knowledge store emulated using
large crawled corpora such as CommonCrawl4 and
a pre-retrieval module.

3.1.1 Knowledge stores
Each claim’s knowledge store contains pre-scraped
results for various search queries that can be de-
rived from the claim using human annotation or
generative models. The knowledge stores used
with ours as well as the baseline system can be
downloaded from the AVeriTeC dataset page5, con-
taining about 1000 pre-scraped documents6, each
consisting of 28 sentences at median6, albeit vary-
ing wildly between documents. The methods used
for generating the knowledge stores are explained
in more detail by Schlichtkrull et al. (2024).

Our retrieval module then focuses on picking
a set of k (k = 10 in the examples below, as
well as in our submitted system) most appropri-
ate document chunks to fact-check the provided
claim within this knowledge store.

3.1.2 Angle-optimized embedding search
Despite each article in any knowledge store only
needing to be compared once with its one specific
claim, which should be the use-case for CrossEn-
coder reranking (Déjean et al., 2024), our empirical
preliminary experiments made us favour a cosine-
similarity search based on vector embeddings in-
stead. It takes less time to embed the whole knowl-
edge store into vectors than to match each docu-
ment against a claim using crossencoder, and the
produced embeddings can be re-used across exper-
iments.

3https://serpapi.com/
4https://commoncrawl.org/
5https://fever.ai/dataset/averitec.html
6The numbers are orientational and were computed on

knowledge stores provided for the AVeriTeC dev set.
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For our proof of concept, we explore the
MTEB (Muennighoff et al., 2023) benchmark
leaderboard, looking for a reasonably-sized open-
source embedding model, ultimately picking
Mixedbread’s mxbai-large-v1 (Li and Li, 2024;
Lee et al., 2024) optimized for the cosine objec-
tive fitting our inteded use.

To reduce querying time at a reasonable exact-
ness tradeoff, we use Faiss index (Douze et al.,
2024; Johnson et al., 2019) to store our vectors, al-
lowing us to only precompute semantical represen-
tation once, making the retriever respond rapidly
in empirical experiments, allowing a very agile
prototyping of novel methods to be used.

3.1.3 Chunking with added context
Our initial experiments with the whole AVeriTeC
documents for the Document Retrieval step have
revealed a significant weakness – while most doc-
uments fit within the input size of the embedding
model, outliers are common, often with hundreds
of thousands characters, exceeding the 512 input
tokens with little to no coverage of their content.

Upon further examination, these are typically
PDF documents of legislature, documentation and
communication transcription – highly relevant
sources real fact-checker would scroll through to
find the relevant part to refer.

This workflow inspires the use of document
chunk retrieval as used in (Lewis et al., 2020),
commonly paired with RAG. We partition each
document into sets of its sentences of combined
length of N characters at most. To take advan-
tage of the full input size of the vector embedding
model we use for semantical search, we arbitrarily
set our bound N = 512 ∗ 4 = 2048, where 512 is
the input dimension of common embedding mod-
els, 4 often being used as a rule-of-thumb number
of characters per token for US English in modern
tokenizers (OpenAI, 2023).

Importantly, each chunk is assigned metadata
– the source URL, as well as the full text of the
next and previous chunk within the same document.
This way, chunks can be presented to the LLM
along with their original context in the generation
module, where the length constraint is much less
of an issue than in vector embedding. As shown
in (Drchal et al., 2023), fact-checking models bene-
fit from being exposed to larger pieces of text such
as paragraphs or entire documents rather than out-
of-context sentences. Splitting our data into the
maximum chunks that fit our retrieval model and

providing them with additional context may help
down the line, preventing the RAG sources from
being semantically incomplete.

3.1.4 Pruning the chunks
While the chunking of long articles prevents their
information from getting lost to retriever, it makes
its search domain too large to embed on demand.
As each of the thousands of claims has its own
knowledge store, each of possibly tens of thousands
of chunks, we seek to omit the chunks having little
to no common tokens with our claim using an effi-
cient BM25 (Robertson et al., 1995) search for the
nearest ω chunks, setting the ω to 6000 for dev and
2000 for test claims. This yields a reasonably-sized
document store for embedding each chunk into a
vector, taking an average of 40 s to compute and
store using the method described in Section 3.1.2
for each dev-claim using our Tesla V100 GPU.

This allows a quick and agile production of vec-
torstores for further querying and experimentation,
motivated by the AVeriTeC test data being pub-
lished just several days before the announced sub-
mission deadline. The pruning also keeps the re-
source intensity moderate for real-world applica-
tions. However, if time is not of the essence, the
step can be omitted.

3.1.5 Diversifying sources: MMR
Our choice of embedding search based on the entire
claim rather than generating “search queries” intro-
duces less noise and captures the semantics of the
whole claim. It is, however, prone to redundancy
among search results, which we address using a
reranking by the results’ Maximal Marginal Rele-
vance (MMR) (Carbonell and Goldstein, 1998), a
metric popular for the RAG task, which maximizes
the search results’ score computed as (for Di ∈ P )

λ · Sim(Di, Q)− (1− λ) · max
Dj∈S

Sim(Di, Dj)

Sim denoting the cosine-similarity between em-
beddings, Q being the search query, and P the pre-
fetched set of documents (by a search which simply
maximizes their Sim to Q), forming S as the final
search result, by adding each Di as MMR-argmax
one by one, until reaching its desired size.

In our system, we set λ = 0.75 to favour rele-
vancy rather than diversity, |S| = 10 and |P | = 40,
obtaining a set of diverse sources relevant to each
claim at a fraction of cost and complexity of a
query-generation driven retrieval, such as that used
in (Schlichtkrull et al., 2024).
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3.2 Evidence & label generator
The second and the last module on our proposed
pipeline for automated fact checking is the Evi-
dence & Label Generator, which receives a claim
and k sources (document chunks), and returns l
(in our case, l = 10) question-answer pairs of evi-
dence abstracted from the sources, along with the
veracity verdict – in AVeriTeC dataset, a claim may
be classified as Supported, Refuted, Not Enough
Evidence, or Conflicting Evidence/Cherrypicking
with respect to its evidence.

Our approach leverages a Large Language
Model (LLM), instructing it to output both evi-
dence and the label in a single step, as a chain of
thought. We rely on JSON-structured output gen-
eration with source referencing using a numeric
identifier, we estimate the label confidences using
Likert-scale ratings. The full system prompt can
be examined in Listing 1 in Appendix A, and this
section further explains the choices behind it.

3.2.1 JSON generation
To be able to collect LLM’s results programmati-
cally, we exploit their capability to produce struc-
tured outputs, which is on the rise, with datasets
available for tuning (Tang et al., 2024) and by the
time of writing of this paper (August 2024), sys-
tems for strictly structured prediction are beginning
to be launched by major providers (OpenAI, 2024).

Despite not having access to such structured-
prediction API by the time of AVeriTeC shared
task, the current generation of models examined
for the task (section 3.2.6) rarely strays from the
desired format if properly explained within a sys-
tem prompt – we instruct our models to output a
JSON of pre-defined properties (see prompt List-
ing 1 in Appendix A) featuring both evidence and
the veracity verdict for a given claims.

Although we implement fallbacks, less than
0.5% of our predictions threw a parsing exception
throughout experimentation, and could be easily
recovered using the same prompting again, exploit-
ing the intrinsic randomness of LLM predictions.

3.2.2 Chain-of-thought prompting
While JSON dictionary should be order-invariant,
we can actually exploit the order of outputs in our
output structure to make LLMS like GPT-4o output
better results (Wei et al., 2024). This is commonly
referred to as the “chain-of-thought” prompting –
if we instruct the autoregressive LLM to first out-
put the evidence (question, then answer), then a

set of all labels with their confidence ratings (see
section 3.2.5) and only then the final verdict, its pre-
diction is both cheaper as opposed to implementing
an extra module, as well as more reliable, as it must
attend to all of the intermediate steps as well.

3.2.3 Source referring
To be able to backtrack the generated evidence to
the urls of the used sources, we simply augment
each question-answer pair with a source field. We
assign a 1-based index7 to each of the sources to
facilitate tokenization and prompt the LLM to refer
it as the source ID with each evidence it generates.
While hallucination can not be fully prevented, it is
less common than it may appear – with RAG gain-
ing popularity, the models are being trained to cite
their sources using special citation tokens (Menick
et al., 2022), not dissimilarly to our proposal.

3.2.4 Dynamic few-shot learning
To utilise the few-shot learning framework (Brown
et al., 2020) shown to increase quality of model
output, we provide our LLMs with examples of
what we expect the model to do. To obtain such
examples, our evidence generator looks up the
AVeriTeC train set using BM25 to get the 10 most
similar claims, providing them as the few-shot ex-
amples, along their gold evidence and veracity ver-
dicts. Experimentally, we also few-shot our models
to output an answer type (Extractive, Abstractive,
Boolean,. . . ) as the answer type is listed with each
sample anyways, and we have observed its integra-
tion into the generation task to slightly boost our
model performance.

3.2.5 Likert-scale label confidences
Despite modern LLMs being well capable of pre-
dicting the label in a “pick one” fashion, research
applications such as ours may prefer them to out-
put a probability distribution over all labels for two
reasons.

Firstly, it measures the confidence in each la-
bel, pinpointing the edge-cases, secondly, it allows
ensembling the LLM classification with any other
model, such as Encoders with classification head
finetuned on the task of Natural Language Infer-
ence (NLI) (see section 4.3).

As the LLMs and other token prediction schemes
struggle with the prediction of continuous numbers

7We chose the 1-based source indexing to exploit the
source-referring data in LLM train set such as Wikipedia,
where source numbers start with 1. The improvement in qual-
ity over 0-based indexing was not experimentally tested.
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which are notoriously hard to tokenize appropri-
ately (Golkar et al., 2023), we come up with a sim-
ple alternative: instructing the model to print each
of the 4 possible labels, along with their Likert-
scale rating: 1 for “strongly disagree”, 2 for “dis-
agree”, 3 for “neutral”, 4 for “agree” and 5 for
“strongly agree” (Likert, 1932).

On top of the ease of tokenization, Likert scale’s
popularity in psychology and other fields such as
software testing (Joshi et al., 2015) adds another
benefit – both the scale itself and its appropriate us-
age were likely demonstrated many times to LLMs
during their unsupervised training phase.

To convert the ratings such as {“Supported”:2,
“Refuted”:5, “Cherrypicking”:4, “NEE”:2}
to a probability distribution, we simply use soft-
max (Bridle, 1989). While the label probabilities
are only emulated (and may only take a limited,
discrete set of values) and the system may produce
ties, it gets the job done until further research is
carried out.

3.2.6 Choosing LLM
In our experiments, we have tested the full set of
techniques introduced in this section, computing
the text completion requests with:

1. GPT-4o (version 2024-05-13)

2. Claude-3.5-Sonnet (2024-06-20), using the
Google’s Vertex API

3. LLaMA 3.1 70B, in the final experimets to
see if the pipeline can be re-produced using
open-source models

Their comparison can be seen in tables 1 and 2;
for our submission in the AVeriTeC shared task,
GPT-4o was used.

4 Other examined approaches

In this section, we also describe a third, optional
module we call the veracity classifier, which takes
the claim and its evidence generated by our evi-
dence & label generator (section 3.2) and predicts
the veracity label independently, based on the sug-
gested evidence, using a fine-tuned NLI model. We
also describe the options of its ensembling with
veracity labels predicted in the generative step (sec-
tion 3.2.5).

The absence of a dedicated veracity classifier has
not been shown to decrease the performance of our
pipeline significantly (as shown, e.g., in tables 2

and 1) so we suggest to omit this step altogether and
we proceed to participate in the AVeriTeC shared
task without it, proposing a clean and simple RAG
pipeline without the extra step (Figure 1) for the
fact-checking task.

4.1 Single-evidence classification with label
aggregation

In the earliest stages of experimenting, we utilized
the baseline classifier provided by AVeriTeC au-
thors8 (Schlichtkrull et al., 2024). It is based on the
BERT (Devlin et al., 2019) and was further fine-
tuned on the AVeriTeC dataset (Schlichtkrull et al.,
2024). It takes one claim and one question-answer
evidence as input – each claim therefore has mul-
tiple classifications, one for each evidence. The
classifications are then aggregated using a heuristic
of several if-clauses to determine the final label.

We experiment with altering this heuristic (e.g.
by making not enough evidence the final label only
when no other labels are present at any evidence),
and training NLI models that could work better
with it, such as 3-way DeBERTaV3 (He et al.,
2023) without a breakthrough result, motivating
a radically different approach.

4.2 Multi-evidence classification
The multi-evidence approach is to fine-tune a 4-
way Natural Language Inference (NLI) classifier,
using the full scope of evidence directly at once,
without heuristics. For that, we concatenate all of
the evidence together using a separator [SEP] to-
ken. This allows the model to know exact question-
answer borders, albeit using a space has turned out
to be just as accurate as the experiments went on.
As the veracity verdict should be independent of
the evidence ordering, we also experiment with
sampling different permutations in the fine-tuning
step to increase the size of our data.

We carry out the fine-tuning using the AVeriTeC
train split with gold evidence and labels on
DeBERTaV3 (He et al., 2023) in two variants: the
original large one9 and one pre-finetuned on NLI
tasks10, and also Mistral-7B-v0.3 model11 with a
classification head (MistralForSequenceClassifica-
tion) provided by the Huggingface Transformers

8https://huggingface.co/chenxwh/AVeriTeC
9https://huggingface.co/microsoft/

deberta-v3-large
10https://huggingface.co/cross-encoder/

nli-deberta-v3-large
11https://huggingface.co/mistralai/

Mistral-7B-v0.3
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library (Wolf et al., 2020) that utilizes the last to-
ken. In the preliminary testing phase, the original
DeBERTaV3 Large performed the best and was
used in all other experimental settings.

From the approaches described above, we
achieved the best results for the development split
with gold evidence and labels with a model without
permuting the evidence, achieving 0.71 macro F1

score using a space-separation. The [SEP] model
achieved a comparable 0.70 macro F1 score, and
the random order model performed worse with a
0.67 macro F1 score, all improving significantly
upon baseline, yet falling behind the capabilities of
generating the labels alongside evidence in a single
chain-of-thought. We provide our best DeBER-
TaV3 finetuned model publicly in a Huggingface
repository12.

4.3 Ensembling classifiers
Encouraged by the promising results of our multi-
evidence classifiers, we go on to try to ensemble the
models with LLM predictions from section 3.2.5,
using a weighted average of the class probabilities
of our models. We have experimented with multi-
ple weight settings: 0.5:0.5 for even votes, 0.3:0.7
in favour of the LLM to exploit its accuracy while
tipping its scales in cases of a more spread-out la-
bel probability distribution, as well as 0.1:0.9 to
use the fine-tuned classifier only for tie-breaking,
listing the results in Table 1.

We also tried tuning our ensemble weights based
on a subset of the dev split, without a breakthrough
in accuracy on the rest of dev samples.

The last method we tried was stacking using lo-
gistic regression. However, this setup classified no
labels from Not Enough Evidence and Conflicting
Evidence/Cherrypicking, and we could not achieve
reasonable results. For logistic regression, we used
the scikit-learn library (Pedregosa et al., 2011).

We conclude that the augmentation of the
pipeline from Figure 1 with a classification mod-
ule using a single NLI model or an ensemble with
LLM is unneccessary, as it adds complexity and
computational cost without paying off on the full
pipeline performance (Table 2).

4.4 Conflicting Evidence/Cherrypicking
detection

During the experiments, we discovered that classi-
fying the Conflicting Evidence/Cherrypicking class

12https://huggingface.co/ctu-aic/
deberta-v3-large-AVeriTeC-nli

is the most challenging task, achieving a near-zero
F1-score across our various prototype pipelines. To
overcome this problem, we tried to build a binary
classifier with cherrypicking as positive class. We
tried to use the DeBERTaV3 Large model with both
basic and weighted cross-entropy loss (other exper-
imental settings were the same as in section 4.2),
but it could not pick up the training task due to the
Conflicting Evidence/Cherrypicking underrepresen-
tation in train set – less than 7% of the samples
carry the label.

Even after exploring various other methods, we
did not get a reliable detection scheme for this
task, perhaps motivating a future collection of data
that represents the class better. While writing this
system description paper, we found an interesting
research by Jaradat et al. (2024) that uses a radi-
cally different approach to detect cherrypicking in
newspaper articles.

5 Results and analysis

We examine our pipeline results using two sets of
metrics – firstly, we measure the prediction accu-
racy and F1 over predict labels without any abla-
tion, that is obtaining predicted labels using the
predicted evidence generated on top the predicted
retrieval results. While the retrieval module is fixed
throughout the experiment (a full scheme described
in section 3.1), various Evidence & Label genera-
tors and classifiers are compared in Table 1, show-
casing their performance on the same sources. The
results show that if we disregard the quality of ev-
idence, models are more or less interchangeable,
without a clear winner across the board – an ensem-
ble of DeBERTA and Claude-3.5-Sonnet gives the
best F1 score, while GPT-4o scores 72% accuracy.

In real world, however, the evidence quality is
critical for the fact-checking task. We therefore
proceed to estimate it using the hu-METEOR ev-
idence question score, QA score and AVeriTeC
score benchmarks briefly explained in Section 2
and in greater detail in (Schlichtkrull et al., 2024).
We use the provided AVeriTeC scoring script to
calculate the values for Table 2, using its EvalAI
blackbox to obtain the test scores without seeing
the gold test data.

The latter experiments shown in Table 2 suggests
the superiority of GPT-4o to predict the results for
our pipeline with a margin. Even if we simplify the
evidence & label generation step by omitting the
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Classifier Acc F1 Prec. Recall

GPT4o 0.72 0.46 0.48 0.47
Claude 3.5 Sonnet 0.64 0.49 0.50 0.52
DeBERTa 0.63 0.39 0.40 0.41
DeBERTa - random@10 0.65 0.41 0.41 0.44
0.5 · DeBERTa + 0.5 · GPT4o 0.70 0.43 0.41 0.45
0.5 · DeBERTa + 0.5 · Claude 0.68 0.47 0.50 0.49
0.3 · DeBERTa + 0.7 · GPT4o 0.72 0.45 0.45 0.46
0.3 · DeBERTa + 0.7 · Claude 0.66 0.50 0.51 0.53
0.1 · DeBERTa + 0.9 · GPT4o 0.72 0.39 0.46 0.43
0.1 · DeBERTa + 0.9 · Claude 0.64 0.49 0.50 0.54

Llama 3.1 0.73 0.44 0.43 0.46

Table 1: Evalution of the label generators, classifier
models and their ensembles on the AVeriTeCdevelop-
ment set. F1, Precision and Recall are computed as
macro-averages. The random@10 suffix indicates that
the classifier used average of 10 different random or-
ders of QA pairs for each claim. GPT4o stands for the
Likert classifier based on GPT-4o, Claude 3.5 Sonnet
is the Likert classifier based on Claude 3.5 Sonnet, and
DeBERTa is classifier based on DeBERTaV3 Large fine-
tuned on AVeriTeC gold evidence and labels.

dynamic few-shot learning (section 3.2), answer-
type tuning and Likert-scale confidence emulation,
it still scores above others, also showing that our
pipeline can be further simplified when needed.
Regardless of the LLM in use, the results of our
pipeline improve upon the AVeriTeC baseline dra-
matically.

Posterior to the original experiments and to the
AVeriTeC submission deadline, we also compute
the pipeline results using an open-source model –
the Llama 3.1 70B13 (Dubey et al., 2024) obtaining
encouraging scores, signifying our pipeline being
adaptable to work well without the need to use a
blackboxed proprietary LLM.

5.1 API costs
During our experimentation July 2024, we
have made around 9000 requests to OpenAI’s
gpt-4o-2024-05-13 batch API, at a total cost of
$363. This gives a mean cost estimate of $0.04 per
a single fact-check (or $0.08 using the API without
the batch discount) that can be further reduced us-
ing cheaper models, such as gpt-4o-2024-08-06.

We argue that such costs make our model suit-
able for further experiments alongside human fact-
checkers, whose time spent reading through each
source and proposing each evidence by themselves

13https://huggingface.co/hugging-quants/
Meta-Llama-3.1-70B-Instruct-AWQ-INT4

would certainly come at a higher price.
Our successive experiments with Llama

3.1 (Dubey et al., 2024) show promising results as
well, nearly achieving parity with GPT. The use
of open-source models such as LLaMa or Mistral
allows running our pipeline on premise, without
leaking data to a third party and billing anything
else than the computational resources. For further
experiments, we are looking to integrate them into
the attached Python library using VLLM (Kwon
et al., 2023).

5.2 Error analysis

In this section, we provide the results of an explo-
rative analysis of 20 randomly selected samples
from the development set. We divide our descrip-
tion of the analysis into the pipeline and dataset
errors.

5.2.1 Pipeline errors
Our pipeline tends to rely on unofficial (often
newspaper) sources rather than official government
sources, e.g., with a domain ending or containing
gov. On the other hand, it seems that the annotators
prefer those sources. This could be remedied by
implementing a different source selection strategy,
preferring those official sources. For an example,
see Listing 2 in Appendix B.

Another thing that could be recognised as an
error is that our pipeline usually generates all
ten allowed questions (upper bound given by the
task (Schlichtkrull et al., 2024)). The analysis of
the samples shows that the last questions are often
unrelated or redundant to the claim and do not con-
tribute directly to better veracity evaluation. How-
ever, since the classification step of our pipeline is
not dependent on the number of question-answer
pairs, this is not a critical error. Listing 3 in Ap-
pendix B shows an example of a data point with
some unrelated questions.

When the pipeline generates extractive answers,
it sometimes happens that the answer is not pre-
cisely extracted from the source text but slightly
modified. An example of this error can be seen in
Listing 4 in Appendix B. This error is not critical,
but it could be improved in future works, e.g. using
post-processing via string matching.

Individual errors were also caused by the fact
that we do not use the claim date in our pipeline
and because our pipeline cannot analyse PDFs with
tables properly. The last erroneous behaviour we
have noticed is that the majority of questions and
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Dev Set Scores Test Set Scores
Pipeline Name Q only Q+A AVeriTeC Q only Q+A AVeriTeC
GPT-4o (full-featured pipeline) 0.46 0.29 0.42 0.46 0.32 0.50
GPT-4o (simplified pipeline) 0.45 0.28 0.38 0.45 0.30 0.47
Claude-3.5-Sonnet (full-featured) 0.43 0.28 0.35 0.42 0.30 0.46
GPT-4o (with DeBERTa classification) 0.45 0.28 0.36 – – –
AVeriTeC baseline 0.24 0.19 0.09 0.24 0.20 0.11
Llama 3.1 70B (full-featured) 0.46 0.27 0.36 0.47 0.29 0.42

Table 2: Comparison of Pipeline Scores on Dev and Test Sets. Q, Q+A are Hu-METEOR scores against gold data,
AVeriTeC scores are calculated as referred in section 2 thresholded at 0.25. “Full-featured” pipelines use the all the
improvement techniques introduced in section 3, while the simplified pipeline omits the dynamic few-shot learning,
answer-type-tuning and Likert-scale confidence emulation described in section 3.2

answers are often generated from a single source.
This should not be viewed as an error, but by in-
troducing diversity into the sources, the pipeline
would be more reliable when deployed in real-
world scenarios.

5.2.2 Dataset errors
During the error analysis of our pipeline, we also
found some errors in the AVeriTeC dataset that
we would like to mention. In some cases, there
is a leakage of PolitiFact or Factcheck.org fact-
checking articles where the claim is already fact-
checked. This leads to a situation where our
pipeline gives a correct verdict using the leaked
evidence. However, annotators gave a different la-
bel (often Not Enough Evidence). An example of
this error is shown in Listing 5 in Appendix B.

Another issue we have noticed is the inconsis-
tency in the questions and answers given by annota-
tors. Sometimes, they tend to be longer, including
non-relevant information, while some are much
shorter, as seen in Listing 6 in Appendix B. The
questions are often too general, or the annotators
seem to use outside knowledge. This inconsistency
in the dataset leads to a decreased performance of
any models evaluated on this dataset.

5.2.3 Summary
Despite the abovementioned errors, the explorative
analysis revealed that our pipeline consistently
gives reasonable questions and answers for the
claims. Most misclassified samples in those 20
data points were due to dataset errors.

6 Conclusion

In this paper, we describe the use and development
of a RAG pipeline over real world claims and data
scraped from the web for the AVeriTeC shared task.

Its main advantage are its simplicity, consisting
of just two decoupled modules – Retriever and an
Evidence & Label Generator – and leveraging the
trainable parameters of a LLM rather than on com-
plex pipeline engineering. The LLMs capabilities
may further improve in future, making the upgrades
of our system trivial.

In section 3, we describe the process of adding
features to both modules well in an iterative fash-
ion, describing real problems we have encountered
and the justifications of their solution, hoping to
share our experience on how to make such sys-
tems robust and well-performing. We publish our
failed approaches in section 4 and the metrics we
observed to benchmark our systems in section 5.
We release our Python codebase to facilitate further
research and applications of our system, either as a
baseline for future research, or for experimenting
alongside human fact-checkers.

6.1 Future works

1. Integrating a search API for use in real-world
applications

2. Re-examine the Likert-scale rating (sec-
tion 3.2.5) to establish a more appropriate
and fine-grained means of tokenizing the label
probabilities

3. Generating evidence in the form of declarative
sentences rather than Question-Answer pairs
should be explored to see if it leads for better
or worse fact-checking performance

4. RAG-tuned LLMs such as those introduced
in (Menick et al., 2022) could be explored to
see if they offer a more reliable source citing
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Limitations

The evaluation of our fact-checking pipeline is lim-
ited to the English language and the AVeriTeC
dataset (Schlichtkrull et al., 2024). This is a se-
vere limitation as the pipeline when deployed in a
real-world application, would encounter other lan-
guages and forms of claims not covered by the used
dataset.

Another limitation is that we are using a large
language model. Because of that, future usage is
limited to using an API of a provider of LLMs or
having access to a large amount of computational
resources, which comes at significant costs. Using
APIs also brings the disadvantage of sending data
to a third party, which might be a security risk in
some critical applications. LLM usage also has an
undeniable environmental impact because of the
vast amount of electricity and resources used.

The reliability of the generated text is a limita-
tion that is often linked to LLMs. LLMs some-
times hallucinate (in our case, it would mean us-
ing sources other than those given in the system
prompt), and they can be biased based on their ex-
tensive training data. Moreover, because of the
dataset size, it is impossible to validate each output
of the LLM, and thus, we are not able to 100%
guarantee the quality of the results.

Ethics statement

It is essential to note that our pipeline is not a real
fact-checker that could do a human job but rather
a study of future possibilities in automatic fact-
checking and a showcase of the current capabilities
of state-of-the-art language models. The pipeline
in its current state should only be used with human
supervision because of the potential biases and er-
rors that could harm the consumers of the output
information or persons mentioned in the claims.
The pipeline could be misused to spread misinfor-
mation by directly using misinformation sources
or by intentionally modifying the pipeline in a way
that will generate wrong outputs.

Another important statement is that our pipeline
was in its current form explicitly built for the
AVeriTeC shared task, and thus, the evaluation re-
sults reflect the bias of the annotators. For more
information, see the relevant section of the original
paper (Schlichtkrull et al., 2024).

The carbon costs of the training and running of
our pipeline are considerable and should be taken
into account given the urgency of climate change.

At the time of deployment, the pipeline should be
run on the smallest possible model that can still
provide reliable results, and the latest hardware and
software optimisations should be used to minimise
the carbon footprint.
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A System prompt

You are a professional fact checker , formulate up to 10 questions that cover all
the facts needed to validate whether the factual statement (in User message) is
true , false , uncertain or a matter of opinion. Each question has one of four
answer types: Boolean , Extractive , Abstractive and Unanswerable using the
provided sources.

After formulating Your questions and their answers using the provided sources , You
evaluate the possible veracity verdicts (Supported claim , Refuted claim , Not
enough evidence , or Conflicting evidence/Cherrypicking) given your claim and
evidence on a Likert scale (1 - Strongly disagree , 2 - Disagree , 3 - Neutral , 4 -
Agree , 5 - Strongly agree). Ultimately , you note the single likeliest veracity
verdict according to your best knowledge.

The facts must be coming from these sources , please refer them using assigned IDs:
---
## Source ID: 1 [url]
[context before]
[page content]
[context after]
...

---
## Output formatting
Please , you MUST only print the output in the following output format:
```json
{
"questions ":

[
{" question ": "<Your first question >", "answer ": "<The answer to the Your

first question >", "source ": "<Single numeric source ID backing the
answer for Your first question >", "answer_type ":"<The type of first
answer >"},

{" question ": "<Your second question >", "answer ": "<The answer to the Your
second question >", "source ": "<Single numeric Source ID backing the
answer for Your second question >", "answer_type ":"<The type of second
answer >"}

],
"claim_veracity ": {

"Supported ": "<Likert -scale rating of how much You agree with the 'Supported '
veracity classification >",

"Refuted ": "<Likert -scale rating of how much You agree with the 'Refuted '
veracity classification >",

"Not Enough Evidence ": "<Likert -scale rating of how much You agree with the
'Not Enough Evidence ' veracity classification >",

"Conflicting Evidence/Cherrypicking ": "<Likert -scale rating of how much You
agree with the 'Conflicting Evidence/Cherrypicking ' veracity classification >"

},
"veracity_verdict ": "<The suggested veracity classification for the claim >"

}
```
---
## Few -shot learning
You have access to the following few -shot learning examples for questions and

answers .:

### Question examples for claim "{ example ["claim "]}" (verdict
{example [" gold_label "]})

"question ": "{ question}", "answer ": "{ answer}", "answer_type ": "{ answer_type }"
...

Listing 1: System prompt for the LLMs, AVeriTeC claim is to be entered into the user prompt. Three dots represent
omitted repeating parts of the prompt.
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B Examples of errors

Claim 479: Donald Trump said "When the
anarchists started ripping down our statues
and monuments, right outside, I signed an
order immediately, 10 years in prison."

gold evidence example:
question: What was the law signed by Trump
regarding damaging federal property?

answer: Trump signed an executive order that
authorizes a penalty of up to 10 years in
prison for damaging federal property. It
does not say that it will automatically be
a 10 year prison sentence.,

source_url: https://web.archive.org/web
/20210224033536/https://www.whitehouse.gov/
presidential-actions/executive-order-
protecting-american-monuments-memorials-
statues-combating-recent-criminal-violence/

pipeline evidence example:
question: Did Trump sign an order related to
vandalism of statues and monuments?,

answer: Yes, Trump signed an executive order
to prosecute those who damage national
monuments, making it a punishable offense
with up to 10 years in jail.,

url: https://m.economictimes.com/news/
international/world-news/trump-makes-
vandalising-national-monuments-punishable-
offence-with-up-to-10-yrs-jail/articleshow
/76658610.cms

Listing 2: Example of a claim where our pipeline
uses newspaper sources instead of official government
sources.

Claim 295: Trump campaign asked Joe Biden to
release a list of potential Supreme Court
picks only after Ginsburg's passing

question 1: Did Joe Biden claim that the Trump
campaign asked him to release a list of
potential Supreme Court picks only after
Ginsburg's passing?

question 2: Did the Trump campaign ask Joe Biden
to release a list of potential Supreme Court
picks before Ginsburg's passing?

question 3: When did Trump release his latest
list of potential Supreme Court nominees?

question 4: Did Trump personally demand that
Biden release a list of potential Supreme
Court nominees before Ginsburg's death?

question 5: What did Trump say about Biden
releasing a list of potential Supreme Court
nominees during the Republican National
Convention?

question 6: Did the Trump campaign issue a
statement on September 17, 2020, regarding
Biden releasing a list of potential Supreme
Court nominees?

question 7: What did the Trump campaign's
statement on September 9, 2020, say about
Biden releasing a list of potential Supreme
Court nominees?

question 8: Did Biden indicate in June 2020 that
he might release a list of potential Supreme
Court picks?

quetion 9: What reason did Biden give for not
releasing a list of potential Supreme Court
nominees?,

question 10: Did Biden pledge to nominate a
Black woman to the Supreme Court?

Listing 3: Example of a claim and questions showing
that the last tends to be unrelated or redundant to fact-
checking of the claim.

Claim #155 - Trump said 'there were fine people
on both side' in far-right protests.

answer: "You had some very bad people in that
group, but you also had people that were very
fine people, on both sides.",

answer_type: Extractive
url: https://www.theatlantic.com/politics/
archive/2017/08/trump-defends-white-
nationalist-protesters-some-very-fine-people-
on-both-sides/537012/

scraped text: ... "You also had some very fine
people on both sides," he said. The Unite the
Right rally that sparked the violence in
Charlottesville featured several leading names
in the white-nationalist alt-right movement,
and also attracted people displaying Nazi
symbols. ...

Listing 4: Example of a claim where our pipeline did
not exactly extract the answer.

Claim #483 - Donald Trump said "We have spent
nearly $2.5 trillion on completely rebuilding
our military, which was very badly depleted
when I took office."

Gold Label: Not Enough Evidence
Predicted Label: Refuted
pipeline evidence example:

question: What is the total defense budget
for the last four fiscal years under Trump?

url: https://www.politifact.com/factchecks
/2020/jan/10/donald-trump/trump-exaggerates
-spending-us-military-rebuild/

question: Did Trump spend $2.5 trillion
specifically on rebuilding the military?

url: https://www.factcheck.org/2020/07/trumps
-false-military-equipment-claim/

...

Listing 5: An example of a claim where the evidence
consists mainly of evidence from PolitiFact and
Factcheck.org fact-checking articles leading to different
predicted label than in the gold dataset
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Claim #0 - In a letter to Steve Jobs, Sean
Connery refused to appear in an apple
commercial.

Gold Evidence:
question: Where was the claim first published
answer: It was first published on Sccopertino
question: What kind of website is Scoopertino
answer: Scoopertino is an imaginary news
organization devoted to ferreting out the
most relevant stories in the world of Apple
, whether or not they actually occurred -
says their about page

Claim #315 - The fastest Supreme Court justice
ever confirmed in the U.S. was 47 days.

Gold Evidence:
question: What is the quickest time a Supreme

Court justice nomination has been
confirmed in the United States?

answer: John Paul Stevens waited the fewest
number of days (19)-followed by the most
recent nominee to the Court, Amy Coney
Barrett (27).61

question: What is the average number of days
between a nomination for a Supreme Court
justice and the final Senate vote?

answer: Overall, the average number of days
from nomination to final Senate vote is
68.2 days (or approximately 2.2 months),
while the median is 69.0 days.62 Of the 9
Justices currently serving on the Court,
the average number of days from nomination
to final Senate vote is 72.1 days (or
approximately 2.4 months), while the median
is 73.0 days. Among the current Justices,
Amy Coney Barrett waited the fewest number
of days from nomination to confirmation
(27), while Clarence Thomas waited the
greatest number of days (99).

Listing 6: An example of a claims which differs in
length.
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Abstract

The ability to extract and verify factual infor-
mation from free-form text is critical in an era
where vast amounts of unstructured data are
available, yet unreliable sources abound. This
paper focuses on enhancing causal deductive
reasoning, a key component of factual verifi-
cation, through the lens of accident investiga-
tion, where determining the probable causes of
events is paramount.

Deductive reasoning refers to the task of draw-
ing conclusions based on a premise. While
some deductive reasoning benchmarks exist,
none focus on causal deductive reasoning and
are from real-world applications. Recently,
large language models (LLMs) used with
prompt engineering techniques like retrieval-
augmented generation (RAG) have demon-
strated remarkable performance across various
natural language processing benchmarks. How-
ever, adapting these techniques to handle sce-
narios with no knowledge bases and to different
data structures, such as graphs, remains an on-
going challenge. In our study, we introduce a
novel framework leveraging LLMs’ decent abil-
ity to detect and infer causal relations to con-
struct a causal Knowledge Graph (KG) which
represents knowledge that the LLM recognizes.
Additionally, we propose a RoBERTa-based
Transformer Graph Neural Network (RoTG)
specifically designed to select relevant nodes
within this KG. Integrating RoTG-retrieved
causal chains into prompts effectively enhances
LLM performance, demonstrating usefulness
of our approach in advancing LLMs’ causal
deductive reasoning capabilities.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance on some language tasks, how-
ever, their ability to plan and reason on com-
plex tasks remains an ongoing challenge (Wei
et al., 2022; Valmeekam et al., 2023). In Psy-
chology, the standard test for deductive reason-
ing consists of giving people premises and ask-
ing them to draw conclusions (Evans, 2005; Rips,
1994; Johnson-Laird, 2010). In natural language
processing (NLP), RuleTaker (Clark et al., 2020)
and ProofWriter (Tafjord et al., 2021) are datasets
that challenge models to assign True or False la-
bels to statements about a probable implication.
However, there are no NLP benchmarks on causal
deductive reasoning, where the premise are facts
about an outcome and the statement is about a prob-
able cause. Furthermore, Huang and Chang (2023);
Valmeekam et al. (2022) find that current bench-
marks do not truly investigate the reasoning capa-
bilities of LLMs, because the tasks are not mean-
ingfully applied in the real-world.

Researchers have proposed prompt engineering
techniques to improve few-shot and zero-shot task
performance (Reynolds and McDonell, 2021), like
using role-play (Kong et al., 2023; Wang et al.,
2023), in-context learning (Xie et al., 2022; Min
et al., 2022), and retrieval-augmented generation
(RAG) (Lewis et al., 2020; Shao et al., 2023). Re-
cent work has explored using LLMs to retrieve
a task-relevant knowledge sub-graph to support
reasoning (Li et al., 2024). However, extending
these techniques to handle cases where no explicit
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knowledge base is available, or and how to best use
knowledge graphs (KGs) in a RAG-based LLM
system remains an open area for research.

This paper focuses on the causal deductive rea-
soning task performed by Accident Investigators.
When an accident occurs, investigators conduct
thorough investigations, and come up with a proba-
ble cause for the accident. Our main contributions
can be summarized as follows:

• We present a task (Section 2) and dataset (Sec-
tion 3) comprising 631 reports with 11,422
statements. This dataset is curated from origi-
nal reports written by humans and processed
using rules and Claude 2.1. It will be made
publicly available.

• We introduce a framework (Figure 1) employ-
ing LLMs such as Mistral-Instruct 7B to iden-
tify causal relations for constructing a causal
KG. Additionally, we trained a RoBERTa-
based Transformer Graph Neural Network
(RoTG) to select relevant nodes, leveraging
deductive reasoning labels as an auxiliary task.
(Section 4)

• We observe that incorporating causal relations
retrieved from the LLM-constructed KG im-
proves the LLM’s causal deductive reasoning
performance. (Section 5)

2 Causal Deductive Reasoning

Given an input context C, the goal is to identify
the likelihood of a statement si being a probable
cause of accident a. This likelihood is represented
by yi 2 (0, 1), where yi = 1 if si is a probable
cause and yi = 0 if not. The task is to determine
P (yi|C) for each potential cause si within a re-
port context C. Since we have multiple reports
in our dataset, the objective extends to calculating
P (yit|Ct), where t denotes the report ID. We de-
fine Gt = Fextract(Ct) as the set of causal relations
mentioned in context Ct. The function Fextract(.)
extracts causal relations from the context. The
aggregated set of all extracted relations from the
dataset is denoted as G, representing the repository
of causal relations of our dataset. Each relation in
Gt is represented by a cause and effect pair, de-
noted as (si, sj).

If a causal chain xit =
(si, sj1), (sj1, sj2), ..., (jk, k) /2 Gt, then yi = 0.
However, if xit 2 Gt, the rank of yit relative to

other potential causes yjt must be considered.
Only the top z rank of most important causes can
be the probable cause of an accident a. In the case
where we only consider the top cause (z = 1) as
the probable cause, then the probability of P (yit)
can be reformulated into:

P (yit = 0) = P (yit|xit /2 Gt)

+P (yi|xit 2 Gt, P (yjt = 1) > P (yit = 1))
(1)

P (yit = 1) = P (yi|xit 2 Gt,

P (yit = 1) > P (yjt = 1))
(2)

Since the task is a binary classification task, ev-
ery example sit is not aware of the other possible
sjt for the same report t. Therefore, sjt are causes
the model implicit tracks and has to rank against
for the current task. Our causal deductive task can
be re-framed into two sub-challenges: (1) extract-
ing xit and identifying xit 2 Gt, and (2) implicitly
ranking P (yit = 1) > P (yjt = 1) or not.

Hypothesis 1: Generalizing causal chain to out-
of-context In the first challenge, extracting xit

and identifying xit 2 Gt, restricting the knowl-
edge source to a report results in a high chance for
there to be gaps in the causal chain. All else fixed,
P (yit|xit /2 Gt) will be overestimated (i.e., model
predicts more 0s than 1s). If are willing to relax
our criteria to check if si 2 Ct and xit 2 G, then
we are allowing our model to generalize to its own
knowledge base, to recognize more valid causal
chains, and therefore, increase the probability of
predicting P (yit = 1). When working with LLMs,
therefore, we could inject causal relations outside
of Gt but semantically part of xit to improve pre-
diction.

Hypothesis 2: Ranking importance of cause
within context If the LLM is exposed to too
many relevant causal relations in the prompt, it
would hallucinate and start to always view si as the
most important probable cause (over other possible
options in Ct). However, we do not know z. In
some reports, there are a few probable causes. One
approach is to explicitly expose the LLM to the
available causes in the report, so that we re-ground
the response, and in some way, a ranking based on
context is encouraged.

3 Dataset & Task Creation

We wish to investigate the LLMs’ ability to per-
form a real-world causal deductive reasoning task.
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Figure 1: Overview of our proposed methodology. Detailed infographic is available in Appendix Figure 4.

Given an accident description (<CONTEXT>), the
model must determine if a sentence about the prob-
able cause of the accident (<STATEMENT>) is True
or False. To facilitate our research, we leverage
on reasoning-rich investigation reports from the
National Transportation Safety Board (NTSB) 1.
NTSB publishes Accident Reports that provides de-
tails about an accident, analysis of the factual data,
conclusions and the probable cause of the accident,
and the related safety recommendations. There can
be one or multiple probable cause(s). We down-
loaded reports published after Year 2000, across all
reported categories (Aviation, Hazardous Materials,
Highway, Marine, Pipeline and Railroad).

Report pre-processing Pre-processing was done
to convert the PDF reports to JSON, and subse-
quently, we removed information like headers, page
numbers, and table of contents. We identified the
probable cause of the accident by searching for
the title “Probable Cause”. We discarded reports
where this match was impossible. Any text before
this section is defined as the <CONTEXT>. In our
experiments, we constrained our coverage to 157
reports where the context length is  2, 000 words.

Extracting True statements Trailing descrip-
tions in the probable cause were removed. 2 We
used Anthropic’s Claude 2.13 to convert the para-

1https://www.ntsb.gov/investigations/
AccidentReports/Pages/Reports.aspx

2E.g. Descriptions unrelated to the cause (E.g. “The Na-
tional Transportation Safety Board determines that the”) were
removed.

3We intentionally used an LLM different from Mistral
when creating our dataset to avoid cases where the LLM rec-

graphs into a list of probable causes. Prompt 1
in Appendix outlines the one-shot prompt tem-
plate that we used. We manually annotated four
examples to measure the extraction performance,
of which we found ROUGEL score of 87.46 and
BLEU4 score of 75.02. When evaluating by seman-
tic match4 with a threshold of � 0.7 as a match,
Claude 2.1 scored 100% for Recall, 72.92% for Pre-
cision, and 84.34% for F1. To summarize, the high
scores for the evaluated sample provides us with
the confidence to reliably use the extracted prob-
able causes as True instances for our main causal
deductive task.

Figure 2: An example report from our dataset.

Generating False statements False examples
were generated by two methods: (1) rule-based,
and (2) LLM-based methods. For rule-based, each

ognizes its own phrasing or terms.
4We encoded each probable cause item into an embedding

using the princeton-nlp/sup-simcse-roberta-large en-
coder (Gao et al., 2021) that was pre-trained on the Natural
Language Inference task. Link to their repository: https:
//github.com/princeton-nlp/SimCSE.
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Processing #Docs #Statement #True #False True %
Total NTSB 631 11,422 1300 10,122 11.38%
 2000 words 157 2,523 243 2,280 9.63%
Success CRE 133 1,677 155 1,522 9.24%

Table 1: Data sizes at each filtering stage. The last
row represents the working dataset for this paper after
successful causal relation extraction (CRE). Our exper-
iments are conducted using 10-folds CV, and the test
data sizes per fold are provided in Appendix Table 6.

True statement was matched to three similar-but-
not-too-similar statements are generated as nega-
tive examples. The degree of similarity between
the False examples and the True statement was con-
trolled to ensure that false examples are plausible
but distinct from the true statement, with similarity
scores ranging from 0.5 to 0.75. This approach
aims to provide a challenging set of false examples
for participants to evaluate. For LLM-based, we
used Claude 2.1 (See Prompt 2 in the Appendix) to
generate a list of 10 possible causes or contributing
causes investigated within the context that are not
stated as the final true probable cause.

Our task aims to provide a comprehensive eval-
uation of participants’ ability to perform the chal-
lenging causal deductive reasoning task. Table 15

presents the statistics for our dataset. After keeping
examples that we could extract causal relations de-
scribed in the next section, our main dataset com-
prises of 133 reports and 1,677 statements. Of
which, 155 are True while the remaining 1,522
are False probable cause statements. An example
report is shown in Figure 2.

3.1 Evaluation Metrics
For each experiment, we report Macro F1, Micro
F1 and the accuracy scores for each class label and
label source. Since our dataset is small, we used a
10-fold cross validation (split by report ID) to train
and generate predictions for the full dataset. There-
fore, our evaluation metrics are first computed at
the fold level, then averaged, where both the mean
and standard deviations of each metric are reported.
When making comparisons between two models,
P-values are indicated by: *< 0.15, **< 0.10,
***< 0.05.

4 Causal KG RAG with LLM

We mentioned in Section 2 that we wish to help
the LLM recognize generalized (ja, jb) 2 D by

5We will release the full dataset of 11,422 statements to
the community.

injecting relevant causal relations outside of Gt.
However, we do not have a knowledge base for
G. We also do not have any annotations for the
intermediate causal chains that might be relevant
given a probable cause i and accident a. To work
around these problems, we constructed our knowl-
edge base using the LLM itself. Afterwhich, we de-
signed a novel graph-based retriever model, trained
on the auxiliary binary classification task, to select
relevant nodes.

4.1 Step 1. Mining LLM’s Latent Causal KG

We wish to investigate properties regarding Equa-
tions 1 and 2. However, we do not have a knowl-
edge base. Therefore, we separately tasked the
LLM to mine the causal relations it recognizes and
understands. Specifically, we mined two types of
causal relations:

Extracted causal relations We tasked the LLM
to extract all causal relations expressed within the
<CONTEXT>. Prompt 3 in the Appendix outlines our
zero-shot prompt, with only instructions about the
desired output format.

Inferred causal relations We tasked the LLM to
infer the chain of causal relations that could possi-
bly link the cause stated within the <STATEMENT> to
the accident stated within the <CONTEXT>. Prompt
4 in the Appendix outlines our zero-shot prompt,
with only instructions about the desired output for-
mat. The causal chains from this step can be viewed
as the LLM’s hallucinated version of xit.

Causal KG To maximize the size of our knowl-
edge store, we constructed our heterogeneous
causal knowledge based on a slightly larger dataset
of 157 reports and 2,523 statements, which pro-
vided us with 4,128 extracted cause-effect pairs and
22,685 inferred cause-effect pairs. Reports with
contexts longer than 2,000 words did not fit into
our models’ input context, so we did not explore
the full dataset, although it would be an important
future work to extend the size of the knowledge
store further.

Our KG G = (V, E) is a collection of nodes
V = {(v1, v2, ..., vn)} and directed edges E =
{(v1, v2), (v2, v3), ...}. The edges are directed, and
comprises of three possible types: extracted, in-
ferred, or similar. For extracted and inferred rela-
tions, a directed edge (vx, vy) represents the pres-
ence of causality between the two nodes, where
vx is the cause argument and vy is the effect ar-
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gument. To prevent a sparse graph, prior causal
KG research employ various clustering (Tan et al.,
2023) or generalization (Radinsky et al., 2012)
methods to group semantically similar arguments
together. For us, we opted for a simple (and shown
to be effective in Section 5.1) approach by adding
bidirectional edges between two nodes vx and vy,
weighted by the similarity score ss, for all node
pairs with similarity score ss > 0.7. Overall, our
final G is a collection of 16,675 nodes and 23,493
edges. The distribution of edge types are: 1,822
extracted, 11,399 inferred, and 10,272 similar.

4.2 Step 2. Node Selection over Causal KG

We re-frame our retrieval task as a node classifica-
tion task: Given a causal KG, we wish to extract
the most important and relevant nodes (arguments)
to include in our downstream prompt. Since we
have no labels as to what helps the LLM learn, we
used the the binary classification task (to classify
if a <STATEMENT> is True or False) as an auxiliary
task to train our model. The model is encouraged to
learn from the KG, and at inference, we discard the
classification head and keep top-E nodes with high-
est node weights as pointers to obtain information
for RAG.

Our retriever module uses a RoBERTa-based
Transformer GNN (RoTG) framework. Since a
traditional RoBERTa model (Liu et al., 2019)’s
input token limit of 512 is too small for our reports,
we designed a workaround that does not require the
long <CONTEXT> sequences as inputs. Our model is
trained only by the following inputs: (1) Encoded
<STATEMENT> (ri represents the [CLS] token vector
with e features) and (2) A one-hot encoded vector
(oh) assigned to each node if the span does appear
in the extracted or inferred causal relations (1 if
appear, 0 otherwise).

Node classification module Our initial node fea-
tures were represented by Q1, an attended rep-
resentation of Q0

1. Q0
1 is a concatenation of the

RoBERTa-encoded frozen embeddings for each
node description s (R is a n ⇥ e matrix compris-
ing of n nodes, an input that does not change over
training) and the two one-hot vectors (ohextr, ohinf)
indicating if the node was extracted or inferred
based on the context and target statement or not.
The attention mechanism then computes the atten-
tion weights between the node features Q0

1 and
the target statement embedding ri to generate the
cross-attended node feature matrix Q. Since our

graph is heterogeneous, we require message pass-
ing across edge features. Hence, we employed the
Transformer (Vaswani et al., 2017) Graph Convo-
lutional Network (TransformerGCN) (Shi et al.,
2021), which helps to incorporate edge features
into the multi-head attention for graph learning.
The architecture of TransformerGCN is outlined in
Appendix Section D.1.

ri = RoBERTa(si) (3)

R = RoBERTa(S) (4)

Q0
1 = [R, ohextr, ohinf] (5)

Q1 = Attention(Q0
1, ri, ri) (6)

owi = TransformerGCN(G(Q1,E)) (7)

Auxiliary task training We multiplied the local
graph weights owi onto the global node embed-
dings R, obtaining our node embeddings Q2 that
are now customized for our inputs. We proceeded
with another round of message passing using Trans-
formerGCN over our global graph, and obtained
a vector representing the scores each node con-
tributes (nwi). We incorporated a skip-connection
by concatenating nwi with the original statement
embedding ri and applied dropout and layer nor-
malization layers to get oi. Subsequently, we ran
oi through multiple rounds of Linear layers, with
LeakyReLU in between. In the last layer, we used
a Linear layer with output dimension of 2 to obtain
logits for our binary classification task.

ow0
i = topKGating(owi) (8)

Q2 = ow0
iR (9)

nwi = TransformerGCN(G(Q2,E)) (10)

oi = LayerNorm(Dropout([ri, nwi])) (11)

o
(l+1)
i = W (l)o

(l)
i + b(l) (12)

Each model was trained for 8 epochs, with an effec-
tive batch size of 8. Since our dataset is extremely
unbalanced (v9% True only), we also balanced
class labels by oversampling True examples, such
that the ratio is 1:2 for True:False, then included the
post-oversampling class weights into the CrossEn-
tropyLoss function. Model specifics are provided
in Appendix Section B.

4.3 Step 3. Prompt Engineering with LLM
During inference, we selected the top-E nodes with
the highest scores based on node weights, owi.
Subsequently, we obtained the nodes’ original re-
ports’ extracted or inferred causal chains, then kept

155



Macro F1 Micro F1
Accuracy

True False (Rules) False (LLM)
All 55.43 (6.09) 83.96 (9.07) 31.01 (31.19) 67.44 (34.41) 99.45 (0.86)

Similarity Only 56.97 (6.05) 82.75 (8.39) 34.70 (26.65) 66.77 (25.59) 98.14 (5.22)
Causality Only 56.90 (6.62) 81.48 (9.35) 39.56 (30.79) 60.62 (30.83) 97.92 (5.63)

Table 2: RoTG classification performance when trained over different edges types in G. Highest score per column
is in bold. All scores are not statistically significant from the first row.

Relations
Macro F1 Micro F1

Accuracy
Retrieved True False (Rules) False (LLM)

None 70.36 (7.07) 90.30 (1.78) 46.53 (13.21) 92.23 (3.66) 95.69 (1.86)
Semantic 72.50 (6.37) 91.24 (1.40) 48.72 (11.04) 92.99 (2.48) 96.54 (1.93)

RoTG 73.19 (7.01) 91.65 (1.42)** 49.49 (13.47) 94.31 (3.49) 96.37 (1.37)

Table 3: Mistral Instruct with None, Semantic, and RoTG (Ours) retrieval-augmented relations. Highest score per
column is in bold. P-values against None scores indicated by: *< 0.15, **< 0.10, ***< 0.05.

all chains that contain the node span. We inves-
tigated 9 distinct prompt formats (see Prompts 5
to 13 in the Appendix), incorporating variations
of retrieved, extracted, and inferred causal rela-
tions. Our best-performing prompt format (Prompt
10) consists of retrieved information that were pre-
sented as a multi-turn prompt: Initially, retrieved
relations were introduced to the model. Next, we
set the models’ response to be “Yes I understand.”.
Finally, a description of the task followed in the
subsequent reply. We found that including the re-
trieved information in the same responses as the
task description led to poor performance.

All relations underwent post-processing to re-
move similar causal chains, defined by a Leven-
shtein ratio � 0.8, with duplicates resolved by re-
taining only the first instance. Additionally, we lim-
ited each relation type to the first 10 rows of causal
chains. Subsequent experiments revealed that
such cleaning procedures enhanced the model’s
F1 scores. We categorized a model response as
False if the word “False” appeared in any part of
the response, and True otherwise. Due to the length
of the reports, particularly when utilizing Mistral
as our LLM, in-context learning was not feasible.
Consequently, all experiments were conducted in a
zero-shot manner.

5 Experimental Findings

This paper focuses the investigation on the Mistral-
Instruct 7B LLM (Jiang et al., 2023). We used
Mistral to extract and infer causal relations for our
KG as described in Section 4.1, then trained RoTG
over this KG as described in Section 4.2. Finally,
we tested Mistral on the causal deductive reasoning
task as described by Section 4.3.

5.1 Auxiliary Task Performance

Investigating RoTG’s performance on the causal
deductive task serves as a proxy of how helpful
would the LLM’s latent causal KG be for this task.
From the first row of Table 2, we notice that RoTG
achieves reasonable Macro F1 score of 55.43%.
The model performs very well on identifying LLM-
generated False statements, but struggle with se-
mantically similar False statements. We wish to
understand if our task can be performed without
understanding causality in the first place. To in-
vestigate this, we destroyed all causal edges in G,
and retrained the model on the task. Interestingly,
we find that all scores decline from the initial base-
line, but not by too much. This suggests that while
causal edges are still important to the task, as long
as some understanding of similarity between events
in a KG exists, models can still perform the task.
Conversely, we wish to understand the importance
of our similarity edges. When we destroyed similar-
type edges, we noticed a significant increase in the
accuracy for the True prediction (along with the
fall in accuracy for False prediction). Without sim-
ilarity edges, the model focuses only on causal
edges and in return, over-weighs the probability of
a causal statement. To conclude this subsection,
RoTG demonstrates that we can perform the causal
deductive task reasonably well by only relying on
extracted and inferred causal relations from LLM.
This presents us with a lower bound of what the
LLM can understand. In Appendix Section D.3, we
investigated RoTG’s performance across different
K values. We found that a concave relationship
across top-K and F1 scores, but the differences
are not statistically significant when comparing
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K = 4, 096 to K = 8, 192 or more.

5.2 LLM’s Deductive Reasoning Performance

In this section, we directly test the LLM on the
causal deductive reasoning task. Table 3 presents
the main findings while the full findings are
available in Appendix Table 8. Our proposed
RoTG method (73.19% Macro F1 and 91.65%
Micro F1) outperforms the baseline (70.36%
Macro F1 and 90.30% Micro F1) and also
improved the LLM’s accuracy for all class labels.
The improvement for Micro F1 is statistically
significant with P-value < 0.10. To provide an
alternative baseline, we retrieved semantically
similar causal relations for every causal relation
extracted or inferred in a report. We encoded
arguments (Cause span and Effect span) using
sentence-transformers/all-mpnet-base-v2
then did vector embedding search using
FaissSearcher (Douze et al., 2024). Similar
truncation and cleaning procedures were done as
per RoTG. Mistral’s performance also improves
when we inject these semantic causal relations,
however, the improvement is slightly smaller than
ours and unlike ours, is not statistically significant.

5.2.1 Which types of causal relations help?
In Hypothesis 1 of Section 2, we hypothesized
that injecting causal relations outside of Gt but se-
mantically part of xit would improve prediction,
or at least increase the likelihood of predicting
True. Apart from exposing the model to semantic or
RoTG relations, which both increased accuracy of
True (46.53% (Row 1) compared to 48.72% (Row
5) and 49.49% (Row 7) in Table 4), we could also
inject the inferred causal relations in the prompt.
As expected, the accuracy for True in the baseline
model increases to 55.99% (Row 3).

However, consistent with Hypothesis 2 of Sec-
tion 2, accuracy for False falls significantly. This
fall is slightly mitigated if we inject the extracted
causal relations alongside the inferred causal rela-
tions (Row 4), supporting our grounding hypoth-
esis. With either semantic or RoTG retrieved re-
lations, injecting extracted relations have a negli-
gible effect, suggesting when relations out of Gt

are shown, hallucination is less of an issue, and
grounding is unnecessary.

Overall, we find that we need to expose the LLM
to relevant causal relations outside of the report’s re-
lations Gt to increase accuracy of True predictions
(Hypothesis 1). However, if the inferred relations

are included (relations partially in Gt, partially not),
LLMs might take the provided causal chains to be
the truth, and so grounding becomes helpful (Hy-
pothesis 2). The best balance between the two
would be to incorporate retrieved relations (rela-
tions /2 Gt), so that the model can better focus on
learning about causality instead of being confused
by the truthfulness of the given chain.

5.2.2 Does the number and quality of RoTG
relations matter?

We described our post-processing steps for causal
relations in Section 4.3. In Table 5, we investigate
if we do not truncate to first 10 causal relations
(No truncate), and if we do not post-process at all
(No cleaning). In general, we did not find lower
statistically significantly different scores. For the
RoTG relations only prompt, the LLM performed
best with truncation and de-duplication. For the
RoTG and extracted relations prompt, the LLM per-
formed best if we do not clean the RoTG relations.
This again suggests that ensuring more retrieved
relations outside of Ct, as opposed to re-exposing
the model to relations from Ct, are more helpful.

5.2.3 Investigating the generation probability
We investigated the generation probabilities of the
model by tracking the logits of the “True” and
“False” token at the first utterance of the “True”
/ “False” token. We comparing the model with and
without our RoTG relations, and notice that for
the 1446 examples where both models correctly
predicted False, our RoTG model returned an aver-
age False probability of 3.39%, while the baseline
model had a probability of 2.07%. Meanwhile,
for the 69 examples where both models correctly
predicted True, our RoTG model returned an aver-
age True probability of 47.02%, while the baseline
model had a probability of 35.60%. There are two
interesting findings from here: (1) Apart from re-
turning a higher F1, incorporating RoTG-relations
helps the model become more confident in its pre-
dictions for the overlapping correct examples. (2)
On average, we found that it takes the model a
much higher probability to generate the True to-
ken than it takes for it to generate the False token.
When models generate True, the next most likely
word is almost always False. Meanwhile, for False
predictions, the probabilities are small and more
spread across all possible tokens in the models’ dic-
tionary. More investigation is needed to explain
why this is the case.
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S/N
Relations

Macro F1 Micro F1
Accuracy

Extract Infer Retrieved True False (Rules) False (LLM)
1 None 70.36 (7.07) 90.30 (1.78) 46.53 (13.21) 92.23 (3.66) 95.69 (1.86)
2 X None 72.42 (7.19) 90.59 (2.52) 52.62 (13.79) 91.73 (4.22) 95.60 (2.06)
3 X None 63.97 (4.87)*** 83.15 (2.85)*** 55.99 (11.38)* 78.56 (4.79)*** 89.03 (4.35)***
4 X X None 63.66 (5.31)*** 84.10 (2.53)*** 50.36 (12.18) 80.12 (4.66)*** 90.65 (3.38)***
5 Semantic 72.50 (6.37) 91.24 (1.40) 48.72 (11.04) 92.99 (2.48) 96.54 (1.93)
6 X Semantic 70.97 (4.69) 90.67 (2.11) 45.54 (7.10) 91.70 (4.21) 96.91 (1.89)
7 X X Semantic 64.48 (6.02)*** 86.83 (2.27)*** 41.81 (12.63) 86.19 (4.56)*** 93.59 (2.44)***
8 RoTG 73.19 (7.01) 91.65 (1.42) 49.49 (13.47) 94.31 (3.49) 96.37 (1.37)
9 X RoTG 71.15 (6.40) 91.09 (2.14) 44.07 (10.02) 93.43 (3.89) 97.02 (1.63)
10 X X RoTG 64.21 (7.89)*** 87.28 (3.23)*** 37.98 (13.90)** 87.21 (4.02)*** 94.46 (2.79)**

Table 4: Mistral Instruct with various relations included into prompt. Highest score per column is in bold. P-values
against scores from the first row per line-separated section is indicated by: *< 0.15, **< 0.10, ***< 0.05.

Retrieved Relations
Macro F1 Micro F1

Accuracy
Processing Extracted True False (Rules) False

73.19 (7.01) 91.65 (1.42) 49.49 (13.47) 94.31 (3.49) 96.37 (1.37)
No truncate 72.92 (6.43) 91.60 (1.11) 48.87 (12.59) 93.75 (3.24) 96.66 (1.04)
No cleaning 71.93 (5.57) 91.19 (1.37) 46.53 (8.61) 94.01 (3.72) 96.38 (1.03)

X 71.15 (6.40) 91.09 (2.14) 44.07 (10.02) 93.43 (3.89) 97.02 (1.63)
No truncate X 70.96 (6.69) 90.95 (2.07) 44.50 (11.16) 93.43 (3.89) 96.73 (1.70)
No cleaning X 71.52 (5.94) 91.12 (2.16) 45.04 (9.33) 93.28 (4.17) 97.13 (1.38)

Table 5: Mistral Instruct with RoTG retrieval-augmented relations post-processed using three strategies: (1) With
truncation (first 10) and de-duplication, (2) Without truncation but with de-duplication, (3) Without truncation and
without de-duplication. Highest score per column is in bold.

6 Related Work

Our dataset and task is most relevant to the deduc-
tive reasoning NLP literature, like efforts by Rule-
Taker (Clark et al., 2020) and ProofWriter (Tafjord
et al., 2021). Different from them, our dataset is a
real-world deductive reasoning task about accident
investigations, and dive deep into the causal aspect.
Huang and Chang (2023); Valmeekam et al. (2022)
stated that current reasoning benchmarks are not
meaningfully applied in the real-world. Thus, we
hope that our dataset and work allievates this gap
in the literature.

Our methodology is relevant to literature on
RAG for LLMs (Gao et al., 2024). However, due to
the nature of causal relations in our task, we focus
on retrieval techniques over a graph. Thus, we were
also inspired by prior research on retrieval on KGs
(Liu et al., 2018; Reinanda et al., 2020) and on node
classification (Shi et al., 2021; Xiao et al., 2022).
Since encoding graph structured data for LLMs is
also an ongoing research (Fatemi et al., 2023; Per-
ozzi et al., 2024), more investigations on how to
best present the causal chains in the prompts are
needed. Different from previous works, we investi-
gate how to leverage on knowledge already present
in the dataset (extract) and within the LLMs (in-
fer) to improve performance, instead of relying on

external databases that many RAG methodologies
focus on.

7 Conclusion

Our study addresses the challenging task of causal
deductive reasoning, particularly within the con-
text of real-world Accident Investigation reports.
Firstly, we introduced a framework that constructs
a causal KG based on what LLMs’ can extract and
infer. Secondly, we proposed RoTG, trained to se-
lect relevant nodes, utilizing deductive reasoning
labels as an auxiliary task. Our experiments demon-
strate that incorporating RoTG relations into the
prompt enhances the performance of LLMs (from
70.36% (90.30%) to 73.19% (91.65%) Macro (Mi-
cro) F1), highlighting the effectiveness of integrat-
ing graph-based retrieved relations in improving
LLMs’ causal deductive reasoning abilities. Lastly,
our dataset will be released and will be a valu-
able resource for researchers. Overall, our study
advances the understanding and application of de-
ductive reasoning tasks in NLP, specifically in the
domain of KG-based RAG for LLMs.
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tion. All datasets are attributed to the National
Transportation Safety Board (NTSB), “Courtesy:
National Transportation Safety Board.”
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B Experimental Details

Claude 2.1 inference

• Model = anthropic.claude-v2:1

• Max tokens to sample = 1000 for extracting
causes as a list, 1800 for generating False
statements

• Temperature = 0.5

RoTG training

• Encoder = roberta-base

• Local graph node dim = 770

• Global graph node dim = 768

• Num layers in GNN = 4

• Top-K = 4096

• Dropout = 0.1

• Post-GNN to Auxiliary Clf Layers:

– Linear1 Out Dim = 128
– Linear2 Out Dim = 64
– Linear3 Out Dim = 2

• CrossEntropyLoss with class weights, reduc-
tion=’mean’

• Top-E = 3

Mistral-Instruct inference

• Model = Mistral-7B-Instruct-v0.1

• Max new tokens = 1500

• Temperature = 0.5

C Dataset & Task Creation

C.1 Prompts

Prompt 1: Prompt for extracting probable causes into a
list.

##### INSTRUCTIONS #####

Please help to extract the key Causes
into point forms based on a paragraph
bounded by [START_CONTEXT] and
[END_CONTEXT].

Fold# #Statements #True #False
1 159 10 149
2 169 15 154
3 191 14 177
4 179 15 164
5 185 18 167
6 169 11 158
7 151 16 135
8 138 16 122
9 168 26 142
10 168 14 154

Table 6: Count of examples per fold by class labels.

Do not add any explanations, or leading
or trailing descriptions. Add as many
bullet points as needed to exhaustively
extract all stated Causes.

##### EXAMPLE #####

[START_CONTEXT]
The probable cause of the employee
fatality at the Dyno Nobel facility was
a result of the conductor being
impacted by the moving railcars during
a shoving movement while located in an
area with insufficient walking space
available for the employee to perform
trackside duties.
[END_CONTEXT]

Expected Output:
[START_CAUSES]
- Conductor impacted by the moving
railcars during a shoving movement
- Accident was located in area with
insufficient walking space available
for the employee to perform trackside
duties
[END_CAUSES]

##### TASK #####

Prompt 2: Prompt for generating negative causal exam-
ples.

Based on the following accident
investigation bounded by <CONTEXT>
delimiters, the true probable cause(s)
are provided within <CAUSES> delimiters.
Given these information, provide a list
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Figure 3: First page of an NTSB report in PDF.

of 10 possible causes or contributing
causes investigated within the context
that is not stated as a final true
probable cause.
Your output should only contain a list
of 10 enumerated statements/sentences
with no explanation.

<CAUSES>
{causes}
</CAUSES>

<CONTEXT>
{context}
</CONTEXT>

D Mining Causal Knowledge in LLMs

Figure 4 provides a detailed outline of our proposed
methodology, corresponding to the descriptions in
Section 4.

D.1 TransformerGCN architecture

We introduced the overall structure of our RoTG
model in Section 4.2. This section outlines the
detailed model architecture for TransformerGCN
(Shi et al., 2021).

Our initial node features are represented by Q,

an attended representation of Q0. Q0 is a concate-
nation of the RoBERTa-encoded embeddings for
each node description s and the two one-hot vec-
tors (ohextr, ohinf) indicating if the node is extracted
or inferred to the target statement si or not. The
attention mechanism then computes the attention
weights between the node features Q0 and the tar-
get statement embedding ri to generate the cross-
attended node feature matrix Q.

ri = RoBERTa(si) (13)

R = RoBERTa(S) (14)

Q0 = [R, ohextr, ohinf] (15)

Q = Attention(Q0, ri, ri) (16)

Our graph G is equivalently represented by
the adjacency matrix A = [aij ] 2 Rn⇥n. The
diagonal degree matrix is denoted by D =
diag(d1, d2, . . . , dn), where di =

P
j aij is the de-

gree of node i. A normalized adjacency matrix is
defined as D�1A or D� 1

2 AD� 1
2 .

A typical GCN transforms and propagates node
features across the graph by several layers to build
the approximation of the mapping of input to out-
put. In other words, the feature propagation scheme
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Figure 4: Detailed outline of our proposed methodology.

K Value
Macro F1 Micro F1

Accuracy
True False (Rules) False (LLM)

2048 54.12 (6.55) 79.99 (9.80)* 34.46 (29.03) 57.20 (35.58)* 97.78 (4.44)
4096 55.43 (6.09) 83.96 (9.07) 31.01 (31.19) 67.44 (34.41) 99.45 (0.86)
8192 56.06 (6.53) 86.17 (6.09) 24.10 (20.63) 77.03 (21.26) 99.82 (0.38)

All v16K 53.98 (5.79) 83.75 (10.40) 28.27 (32.49) 68.04 (37.25) 99.65 (0.84)

Table 7: Mean (Std) F1 and Accuracy across different K values for Top-K Gating. Highest score per column is in
bold. P-values against K=8192 scores indicated by: *< 0.15.

of GCN in layer l is:

H(l+1) = �
⇣
D�1AH(l)W (l)

⌘
(17)

Y = fout(H
(L)) (18)

where � is an activation function, W (l) is the train-
able weight in the l-th layer, and H(l) is the l-th
layer representations of nodes. H(0) is equal to
node input features Q. Finally, an fout output linear
layer is applied on the final representation to make
predictions Y for each node.

However, since our graph is heterogenous, we
require message passing across edge features
too. Therefore, TGCN helps by incorporating
edge features into the multi-head attention for
graph learning. Given node features H(l) =

{h
(l)
1 , h

(l)
2 , . . . , h

(l)
n }, multi-head attention for each

edge j to i is computed as follows:

q
(l)
c,i = W (l)

c,qh
(l)
i + b(l)

c,q (19)

k
(l)
c,j = W

(l)
c,kh

(l)
j + b

(l)
c,k (20)

ec,ij = Wc,eeij + bc,e (21)

↵
(l)
c,ij =

exp(q
(l)
c,i · k

(l)
c,j + ec,ij)

P
u2N(i) exp(q

(l)
c,i · k

(l)
c,u + ec,iu)

(22)

where h
(l)
q,k = exp

✓
q
(l)
c,i·k

(l)
c,jp

d

◆
is the exponential

scale dot-product function and d is the hidden size
of each head. For the c-th head attention, we trans-
form the source feature h

(l)
i and distant feature

h
(l)
j into query vector q

(l)
c,i 2 Rd and key vector

k
(l)
c,j 2 Rd respectively using different trainable pa-

rameters W
(l)
c,q , W

(l)
c,k, b

(l)
c,q, b

(l)
c,k. The provided edge
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features eij are encoded and added into the key
vector as additional information for each layer.

After obtaining the graph multi-head attention,
message passing and aggregation from the distant
j to the source i is computed by:

v
(l)
c,j = W (l)

c,vh
(l)
j + b(l)

c,v (23)

ĥ
(l+1)
i =

X

j2N(i)

↵
(l)
c,ij(v

(l)
c,j + ec,ij) (24)

where k is the concatenation operation for C head
attention. This multi-head attention matrix replaces
the original normalized adjacency matrix in Equa-
tion 17 as the transition matrix for message passing.

Finally, we apply a linear transformation to the
last layer of node features h

(l)
i , obtaining a repre-

sentation of local node weights (owi), trained to
represent how important this node is to the down-
stream task.

owi = W (l)
c,vh

(l)
i + b(l)

c,v (25)

D.2 Prompts

Prompt 3: Prompt for extracting causal relations

Extract all the causal events in this
report:
{context}

Format the extracted Cause and Effect
events into a list, like:
1. Engineer’s inattentiveness to signal
indications --> Engineer failed to
operate train in accordance with signal
indications and speed restriction -->
Train collided with another train
2. Lack of positive train control
system --> Train A not stopped before
red signal --> Train A passed red
signal --> Collision between Train A
and Train B
...
where "-->" represents "causes", so
"Cause Event --> Effect Event".

Answer:

Prompt 4: Prompt for inferring causal relations

Based on your knowledge, suggest the
series of Cause and Effect events that
explain how the cause within the
STATEMENT could have led to the
accident in the CONTEXT.

<STATEMENT>
{statement}
</STATEMENT>
<CONTEXT>
{context}
</CONTEXT>

Format the suggested Cause and Effect
events into a list, like:
- Engineer’s inattentiveness to signal
indications --> Engineer failed to
operate train in accordance with signal
indications and speed restriction -->
Train collided with another train
(Accident)
where "-->" represents "causes", so
"Cause Event --> Effect Event".

Answer:

Prompt 5: Prompt V1 for causal deductive reasoning
task.

Based on an accident investigation
bounded by <CONTEXT> delimiters, answer
if the statement within <STATEMENT>
delimiters about the probable cause(s)
of the accident is True or False. Your
answer must be based on the
investigation facts and details within
<CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT>

Answer:

Prompt 6: Prompt V2 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes".
[/INST] Yes, I understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
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delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 7: Prompt V3 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes".
[/INST] Yes, I understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

<RELATIONS>
Relations extracted from <CONTEXT>:
{extracted}
</RELATIONS>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 8: Prompt V4 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes".
[/INST] Yes, I understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

<RELATIONS>
Possible relations linking probable
cause in <STATEMENT> to accident:
{inferred}
</RELATIONS>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 9: Prompt V5 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes".
[/INST] Yes, I understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

<RELATIONS>
Relations extracted from <CONTEXT>:
{extracted}
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Possible relations linking probable
cause in <STATEMENT> to accident:
{inferred}
</RELATIONS>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 10: Prompt V6 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes", such as:
{retrieved} [/INST] Yes, I
understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 11: Prompt V7 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes", such as:
{retrieved} [/INST] Yes, I
understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the

probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

<RELATIONS>
Relations extracted from <CONTEXT>:
{extracted}
</RELATIONS>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

Prompt 12: Prompt V8 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes", such as:
{retrieved} [/INST] Yes, I
understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

<RELATIONS>
Relations extracted from <CONTEXT>:
{extracted}

Possible relations linking probable
cause in <STATEMENT> to accident:
{inferred}
</RELATIONS>

Is this statement True or False?
<STATEMENT>
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{statement}
</STATEMENT> [/INST]

Answer:

Prompt 13: Prompt V9 for causal deductive reasoning
task.

<s>[INST] You have a fair understanding
of causal relations, where "-->"
represents "causes", such as:
<RELATIONS>
Historical relations:
{retrieved}

Relations extracted from <CONTEXT>:
{extracted}

Possible relations linking probable
cause in <STATEMENT> to accident:
{inferred}
</RELATIONS> [/INST] Yes, I
understand.</s>
[INST] Based on an accident
investigation bounded by <CONTEXT>
delimiters, answer if the statement
within <STATEMENT> delimiters about the
probable cause(s) of the accident is
True or False. Your answer must be
based on the investigation facts and
details within <CONTEXT>.

<CONTEXT>
{context}
</CONTEXT>

Is this statement True or False?
<STATEMENT>
{statement}
</STATEMENT> [/INST]

Answer:

D.3 RoTG Findings

Our RoTG model includes a gating framework to
focus on top-K nodes. Table 7 presents scores
from RoTG across different K values. In terms
of Macro and Micro F1, K=8192 returns the best
performance. We notice a slight concave pattern of
F1 against K values, suggesting an optimal amount
of gating is needed. However, the findings did
not show statistically significant differences across

K=4096 to when all nodes were allowed to be dif-
ferentiated against.

D.4 LLM Findings
Findings from all experiments with Mistral-Instruct
are available in Table 8. The first column indicates
the corresponding Prompt number used, while the
next four columns indicate the additional informa-
tion included in the prompt, or if any different pro-
cessing method was used.

D.5 Qualitative Examples
Table 9 shows the output response from Mistral-
Instruct across the three main prompt versions, cor-
responding to Table 3. The last two columns de-
tails the retrieved relations that were included in
the prompt.
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Abstract

In this paper, we investigate the influence of
claims in analyst reports and earnings calls on
financial market returns, considering them as
significant quarterly events for publicly traded
companies. To facilitate a comprehensive anal-
ysis, we construct a new financial dataset for
the claim detection task in the financial domain.
We benchmark various language models on this
dataset and propose a novel weak-supervision
model that incorporates the knowledge of sub-
ject matter experts (SMEs) in the aggregation
function, outperforming existing approaches.
We also demonstrate the practical utility of our
proposed model by constructing a novel mea-
sure of optimism. Here, we observe the depen-
dence of earnings surprise and return on our
optimism measure. Our dataset, models, and
code are publicly (under CC BY 4.0 license)
available on GitHub1.

1 Introduction

Earnings conference calls are a quarterly event
where the company’s top executives provide perfor-
mance reports of the company over the last quarter
(3 months). Between the two earnings calls an-
alyst from various financial institutions analyze
and provide earnings estimates and recommenda-
tions. For example, Jegadeesh and Kim (2010)
has documented that there is a significant stock
market reaction to analysts’ recommendations (rat-
ings). Recent insights, such as those presented by
McLean et al. (2020), reveal that retail investors,
often perceived as unsophisticated, exhibit respon-
siveness to analysts’ projections, underscoring the
pivotal role of analysts’ reports in informing mar-
ket participants. However, analyst ratings can be
biased (Michaely and Womack, 1999; Corwin et al.,

Correspondence to Agam Shah {ashah482@gatech.edu}
† These authors contributed equally to this work

1https://github.com/gtfintechlab/
fin-num-claim.

2017; Coleman et al., 2021). Therefore it is impor-
tant to understand whether the ratings are backed
by strong numerical financial claims in the ana-
lyst’s report. Further, the sentences with a claim
have a higher density of forward-looking informa-
tion. As an application, extraction of numerical
ESG claims from earnings call transcripts, can help
better understand whether companies do walk the
talk on their environment and social responsibility
claims (Chava et al., 2021). These examples un-
derscore the necessity of numerical claim detection
in the finance domain, aligning with broader re-
search efforts to ensure the accuracy and reliability
of information sources.

A key component of this paper is the identifica-
tion of Numeric Financial Sentences. Specifically,
Numeric Financial Sentences include a financial
term, a numeric value, and either a currency or
percentage symbol. Chen et al. (2020) first in-
troduced the categorization of sentences into ‘in-
claim’ and ‘out-of-claim’ specifically in the Man-
darin language. Expanding on their foundation,
we define an ‘in-claim’ sentence as one present-
ing a speculative financial forecast. Conversely, an
‘out-of-claim’ sentence presents a numerical state-
ment about a past event, transitioning from a mere
claim to a confirmed fact. For clarity, ‘in-claim’
sentences can also be termed "financial forecasts"
whereas ‘out-of-claim’ can be labeled as "estab-
lished financials." Every Numeric Financial Sen-
tence that is not a speculative financial forecast (in-
claim) is then identified as an ‘out-of-claim’ sen-
tence. Figure 1 illustrates the identification of Nu-
meric Financial Sentences as well as distinguishing
between “in-claim" and “out-of-claim" sentences.

A major challenge for building or training predic-
tive models is the scarcity of labeled data (Zhang
et al., 2021; Ratner et al., 2017). Supervised learn-
ing often involves a significant amount of manual
labeling of data which is often infeasible for large
datasets. In such scenarios, one can leverage weak-
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Figure 1: Example of In-claim and Out-of-claim sentences.

supervision-based learning methods (Varma and
Ré, 2018) or fine-tune the pre-trained language
model. Weak-supervision is a process that lever-
ages slightly noisy or imprecise labeling functions
(lfs) to label vast amounts of unlabeled data (Rat-
ner et al., 2020; Lison et al., 2021). The strength
of the weak-supervision model lies in these imper-
fect labels, when combined, producing improved
predictive models (Lison et al., 2021; Zhang et al.,
2021). However, a crucial component involves the
development of effective lfs for a given raw dataset
systematically rather than manual annotation (Li-
son et al., 2021).

The aim of our work is to derive financially sig-
nificant information from the quarterly analyst re-
ports and earnings calls by categorizing each nu-
merical sentence as in-claim or out-of-claim. Our
major contributions through this paper are the fol-
lowing:

• We introduce a new task of claim detection (in
English) with a labeled dataset.

• We build clean, tokenized, and annotated
open-source datasets based on earnings calls.

• We introduce a weak-supervision model with
a novel aggregation function.

• We benchmark a wide range of language mod-
els for the claim detection task.

• We develop a novel measure of optimism and
validate its usefulness in predicting various
financial indicators.

2 Related Work

NLP in Finance Finance is one of the most at-
tractive domains for the application of NLP. Araci
(2019) and Liu et al. (2020) presented pre-trained
language models for the Finance domain. There

are multiple datasets specifically catered for ap-
plications of NLP in finance including question
answering dataset created by Chen et al. (2021)
and Maia et al. (2018), and also a NER dataset
constructed by Shah et al. (2023b) for the finan-
cial domain. There is a vast body of literature on
undertaking sentiment analysis tasks on financial
data(Maia et al., 2018; Malo et al., 2014; Day and
Lee, 2016; Akhtar et al., 2017).

Works of Li et al. (2020) and Sawhney et al.
(2020) were centered around predicting volatility
using earnings call transcripts in the domain of risk
management. Chava et al. (2022) measure the firm
level inflation exposure by fine-tuning RoBERTa
(Liu et al., 2019), while Li et al. (2021) leveraged
word-embeddings to measure the corporate culture.
Moreover, Nguyen et al. (2021) and Hu and Ma
(2021) used multimodal machine learning for credit
rating prediction and measurement of persuasive-
ness respectively. Shah et al. (2023a) investigated
the impact of monetary policy communication on
financial markets. Cao et al. (2020) critically exam-
ined the evolution of corporate disclosure in recent
years, influenced by the rising application of NLP
in Finance. Our research focuses on identifying nu-
merical financial claims from a vast set of English
analyst reports and earnings calls using a weak-
supervision model. This differs from Chen et al.
(2020), which targets numeric claim detection in a
smaller Chinese language dataset.

Weak-Supervision In order to reduce the com-
plexities associated with manual labeling, several
standard techniques such as semi-supervised learn-
ing (Chapelle et al., 2009), transfer learning (Pan
and Yang, 2010), and active learning (Settles, 2009)
have been employed. However, many researchers
(Meng et al., 2018; Kartchner et al., 2020) and prac-
titioners also employ weak-supervision-based mod-
els to further reduce the computational costs while
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retaining the accuracy of the labeled data. Weak-
supervision models were primarily developed in
a bid to replace standard labeling techniques with
models which can leverage slightly noisy or impre-
cise sources to label vast amounts of data (Ratner
et al., 2020). Techniques such as distant supervi-
sion (Mintz et al., 2009) and crowd-sourced labels
(Yuen et al., 2011) are often associatewd with weak-
supervision-based models, however, they tend to
have limited coverage and accuracy (Lison et al.,
2021). In the case where we have noisy labels from
multiple sources available, there have been efforts
made to use majority vote, weighted majority vote
(Ratner et al., 2020), and other label-models (Yu
et al., 2022; Zhang et al., 2022).

3 Dataset

We collect two categories of text and financial mar-
ket datasets. Analyst reports are procured from a
proprietary source while earnings call transcripts
are collected in a manner that allows us to make
the resulting dataset open-source.

3.1 Analyst Reports
The raw dataset consists of quarterly analyst reports
(in English) for a large number of public firms in
the U.S. These analyst reports were collected from
Zacks Equity Research and were available to us
through the Nexis Uni license2.

The text documents are first split into sentences
using multiple regex-based rules. This segmenta-
tion process utilizes a comprehensive set of reg-
ular expression (regex) rules to accurately iden-
tify sentence boundaries, accounting for a variety
of English language nuances, including abbrevia-
tions, titles, websites, and numerical expressions,
to ensure precise sentence delineation. We employ
regex-based rules as they typically are significantly
faster with similar accuracy compared to standard
libraries in sentence tokenization. Next, sentences
containing quantitative data - specifically sentences
with a numeric value AND either a currency sym-
bol as a prefix or percentage symbol as a postfix-
are extracted, as they have numerical relevance
(Chen et al., 2019). This numerical condition filter
reduced the number of sentences by 66.7%.

The next step in the pipeline uses a whitelist-
ing technique to retain only sentences with finan-

2Nexis Uni license doesn’t authorize republication of full
or partial text. To solve this problem, we also collect and
construct a dataset from earnings calls which can be made
public under CC BY 4.0 license.

cially significant information, achieved by cross-
referencing each sentence with a financial dictio-
nary containing a comprehensive list of financial
market terms and related literature. The financial
dictionary used in this study, developed by Shah
et al. (2022), contains over 8,200 financially signif-
icant terms. Sentences are cross-referenced with
this dictionary to verify financial significance; if
no words match, the sentence is marked as irrele-
vant. This filtering reduced the dataset by an ad-
ditional 17.2%. The dataset contains 8,583,093
total sentences, 2,857,567 numeric sentences, and
2,364,977 numeric-financial sentences after filtra-
tion. This two-tier filtering method enriched the
data by retaining only 27.5% of the sentences from
the original data.

3.2 Earnings Call Transcripts
To make our work more impactful, we also collect
earnings call transcripts for NASDAQ 100 compa-
nies from their investor relation page. We were able
to write individual scripts for 78 out of 100 NAS-
DAQ companies. As all the companies in this list
are public companies, their data can be accessed
and shared publicly which allows us to open-source
the resulting dataset. Collecting data till March of
2023 results in a total of 1,085 earnings call tran-
scripts. The biggest advantage of writing separate
scripts for each company is that it allows us to keep
adding more transcripts every quarter increasing
the size of the dataset shared over time. We apply
text processing (tokenization, numerical filter, fi-
nancial dictionary filter) on earnings call transcripts
similar to what is used for analyst reports.

3.3 Comparison with Related Dataset
In this section we compare our proposed datasets
with NumClaim (Chen et al., 2020), an expert-
annotated dataset in the Chinese language. Our
dataset of raw analyst reports in the English Lan-
guage from 1,530 major companies over the period
of 2017-20 is significantly larger than NumClaim
or other associated datasets. Our open-sourced
dataset from collected earnings call transcripts is
also larger than the NumClaim dataset. The de-
tailed comparison of our datasets with NumClaim
is provided in Table 1.

3.4 Financial Market Data
Stock Price and Earnings Surprise Data We
collect stock price data from Polygon.io3 starting

3https://polygon.io/stocks
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Dataset Analyst Reports Earnings Calls NumClaim (Chen et al., 2020)

Language English English Chinese
Year 2017-20 2017-23 NA
Sector Information Yes Yes No
# Stocks 1,530 78 NA
# Files 87,536 1,085 NA
# Words 167,301,873 11,641,673 42,594
# Numeric Sentences 2,857,567 48,686 5,144
# Numeric Financial Sentences 2,364,977 41,013 NA
# Numeric Financial In-Claim Sentences 336,252 5362 1,233

Table 1: Comparison of our datasets with NumClaim (Chen et al., 2020) dataset.

January 1st, 2017. We collect the actual earnings
per share (EPS) and forecasted median EPS from
the I/B/E/S dataset4.

Sector Data For each firm in our dataset, we col-
lect sector information by collecting GSECTOR
classification from the annual fundamental COM-
PUSTAT database. GSECTOR maps each com-
pany to one of the twelve sectors.

3.5 Sampling and Manual Annotation

From the complete raw dataset of 87,536 analyst re-
ports and 1,085 earnings call transcripts, we sample
data and annotate sentences. The sampled dataset
consisted of 96 analyst reports consisting of two
files per sector per year, accounting for about 2,681
unique financial-numeric sentences. We also sam-
ple 12 earnings call transcripts randomly consisting
of two files per year, consisting of 498 financial-
numeric sentences. This set was manually anno-
tated and assigned ‘in-claim’ or ‘out-of-claim’ la-
bels by two of the authors with a foundational back-
ground in finance (one of them is now an analyst
at a top investment bank) and domain expertise de-
veloped through examples provided by a co-author.
This co-author is a financial expert with a Master’s
degree in Quantitative Finance, currently pursuing
a PhD under the guidance of the Chair Professor
of Finance, and has contributed to work at leading
finance journals and conferences. The annotator
agreement was 99.21% and 95.78% for analyst
reports and earnings call transcripts respectively.
Any disagreement between the two annotators was
resolved with the help of the financial expert men-
tioned earlier. The dataset (Train, Val, Test) is split
as follows: Analyst Reports (1,715, 429, 537) and
Earnings Calls (318, 80, 100).

4https://www.investopedia.com/terms/i/ibes.asp

4 Experiments

4.1 Models

In this section, we provide details of the four cat-
egories of models we have used. Initially, we
provide detail on the proposed weak-supervision
model with the customized aggregation function.
In order to provide a comprehensive benchmark for
the claim detection task and comparison with pro-
posed weak-supervision model, we add Bi-LSTM,
six BERT architecture-based PLMs, and three gen-
erative LLMs.

Weak-Supervision Model For implementing a
weak-supervision model we use the Snorkel li-
brary (Ratner et al., 2017), leveraging its inherent
pipeline structure for generating labels for each
data segment and then passing the outputs through
the customized aggregation function.

Labeling functions used in our model include
rule-based pattern matching combined with part-
of-speech (POS) tag constraints for some phrases.
We create seventeen labeling functions for the cate-
gorization of results and also make use of multiple
other labeling functions in order to divide sentences
representing assertions or written in the past tense.
These labeling functions are listed in Table 5. More
details on the construction of the labeling function
can be found in Appendix B.

Aggregation Function The output of the label-
ing functions needs to be aggregated to decide the
final label of the sentence. Unlike other models,
we use independent, weighted labeling functions
with weights based on the level of confidence as-
signed by Subject Matter Experts (SMEs). Our
labeling function can produce four distinct types
of output: -1 for a high confidence out-of-claim
sentence, 0 for abstention from making a claim, 1
for a low confidence in making a claim, and 2 for
a high confidence in making a claim. This system
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allows us to further differentiate in-claim sentences
into two levels of confidence. The pseudo-code in
Algorithm 1 illustrates our aggregation function.

Algorithm 1 Aggregation Function
if any of the labeling functions’ output is −1 then

label← "out-of-claim"
else if the max of the labeling functions’ output is 2 then

label← "in-claim"
else

label← majority vote output
end if

Traditional majority vote takes decisions based
on votes from all the labeling functions, meaning
assigning equal weights. The weighted majority
vote aggregation function, such as Snorkel, learns
the weight for each labeling function from the data
itself. In our case, Subject Matter Experts decide
that some labeling functions are higher in the hier-
archy than others. This means that we look at their
labels first before looking at the output of other
labeling functions. If those higher-valued labeling
functions refrain from voting (by giving an abstain
label, value=0), we look at the output of other la-
beling functions. Otherwise, we take labels based
on the majority vote.

To facilitate a comprehensive comparison of
our weak-supervision model against various other
model categories, we additionally leverage Gen-
erative Large Language Models (LLMs) in both
zero-shot and few-shot settings, and conduct fine-
tuning on Bi-LSTM as well as other Pre-trained
Language Models (PLMs). Detailed information
regarding the implementation of these models is
delineated in the Appendix C.

4.2 Results

In this section, we present the results obtained us-
ing the above models and provide a detailed analy-
sis of the outcomes.

Weak-Supervision Model The performance in
Table 2, highlights how well our Weak-Supervision
based model performs when compared with man-
ually annotated data. In order to make sure that
there is no contamination issue between the label-
ing functions and annotated data, we perform a
robustness check in Appendix A. We also perform
ablation on the number of labeling functions in
Appendix D.

We consider majority voting and Snorkel’s ag-
gregation function (Ratner et al., 2017) as base-
line aggregation functions for comparative ablation

analysis. The accuracy of baseline aggregation
functions along with our aggregation function is
reported in Table 3. For all three models, the same
set of labeling functions is used and they only dif-
fer in the aggregation part.5 The result highlights
the importance of the construction of a customized
aggregation function for a weak-supervision model
where a small set of labeling functions are complete
and less noisy.

Generative LLMs There are a few observations
regarding the performance of Generative LLMs.
First, we see that utilizing a more detailed prompt
leads to large improvements in performance across
all three models. Secondly, Falcon and Llama have
a large increase in performance as well when us-
ing six-shot prompting. However, ChatGPT did
not have as large of an improvement when uti-
lizing few-shot prompting. While the reasoning
behind this is uncertain, it is clear that prompt engi-
neering (particularly creating detailed prompts) can
lead to substantial improvement. Zero-shot Chat-
GPT fails to outperform both weak-supervision
and fine-tuned PLMs. It still achieves impressive
performance without having access to any labeled
data. Of the variations of prompting attempted,
Llama with six-shot prompting yielded the best re-
sults. This seems to suggest that through the use of
prompt engineering, open-source models may be
able to close the gap with closed LLMs.

Bi-LSTM The Bi-LSTM model outperforms the
weak-supervision model on analyst reports data but
doesn’t outperform on earnings call data. The po-
tential reason can be the larger fine-tuning dataset
available for analyst reports. It doesn’t outperform
the model based on BERT on any of the four con-
figurations.

PLMs The fine-tuned models utilizing the BERT
architecture demonstrate superior performance
compared to other model classes, emphasizing the
significant value gained from annotated data. In-
triguingly, the model that achieves the highest per-
formance within a particular train-test dataset cat-
egory does not necessarily exhibit the best perfor-
mance on transfer learning datasets. This finding
underscores the importance of separate data anno-
tation. Notably, the RoBERTa model emerges as
the top performer within the same train-test data
category.

5We do not perform any post-processing on the output to
convert abstain label to one of the labels.
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Panel A: Models Without Further Training

Model Analyst Reports (AR) Earnings Calls (EC)

Weak-Supervision 0.9272 (0.0116) 0.9382 (0.0213)

Falcon-7B (0-shot) 0.4167 (0.0075) 0.3884 (0.0624)
Llama-2-70B (0-shot) 0.7278 (0.0079) 0.5407 (0.0267)
ChatGPT-3.5 (0-shot) 0.9191 (0.0144) 0.7569 (0.0023)

Falcon-7B (6-shots) 0.3410 (0.0109) 0.3021 (0.0343)
Llama-2-70B (6-shots) 0.9169 (0.0049) 0.7972 (0.0228)
ChatGPT-3.5 (6-shots) 0.8943 (0.0033) 0.7334 (0.0198)

Panel B: Fine-Tuned Models

Train/Test AR/AR EC/AR AR/EC EC/EC

Bi-LSTM 0.9309 (0.0235) 0.8244 (0.0332) 0.8961 (0.0236) 0.8892 (0.0375)

BERT-base-uncased 0.9532 (0.0192) 0.9269 (0.0150) 0.9251 (0.0113) 0.9376 (0.0205)
FinBERT-base 0.9617 (0.0076) 0.9381 (0.0112) 0.9209 (0.0257) 0.9279 (0.0135)
FLANG-BERT-base 0.9611 (0.0137) 0.9270 (0.0109) 0.9119 (0.0257) 0.9363 (0.0089)
RoBERTa-base 0.9615 (0.0091) 0.9319 (0.0131) 0.8906 (0.0301) 0.9563 (0.0036)

BERT-large-uncased 0.9539 (0.0111) 0.9183 (0.0063) 0.9197 (0.0349) 0.9416 (0.0349)
RoBERTa-large 0.9642 (0.0069) 0.9381 (0.0138) 0.8975 (0.0244) 0.9427 (0.0153)

Table 2: In the table, A/B indicates that the model is fine-tuned on dataset A and tested on dataset B. All values are
F1 scores. An average of 3 seeds was used for all models. The standard deviation of F1 scores is in parentheses.

Aggr. Funtion AR EC

Majority Vote 0.4274 (0.0208) 0.5313 (0.0427)
Snorkel’s WMV 0.4269 (0.0204) 0.5309 (0.0372)

Ours 0.9272 (0.0116) 0.9382 (0.0213)

Table 3: Performance comparison of our aggregation
function with baseline aggregation functions. All values
are F1 scores. An average of 3 seeds was used for all
models. The standard deviation of F1 scores is reported
in parentheses.

Latency and Financial Applicability In finance,
latency is crucial as investors aim to surpass com-
petitors. Figure 2 shows just how stark the differ-
ences is in latency. Our weak-supervision (WS)
model stands out for its low latency, offering sig-
nificant advantages in the fast-moving financial
markets. Despite challenges in measuring latency
for API-based, closed-source models like ChatGPT,
our analysis on Falcon-7B and Llama-70B high-
lights the WS model’s superior speed and efficiency.
This model’s performance is key in finance, where
processing speed can be decisive in transaction suc-
cess. Furthermore, even if generative LLMs do
overcome the hurdle of latency, large ethical chal-
lenges in finance as identified by (Khan and Umer,

Figure 2: This bar chart compares the latency (log
scale) of various models relative to the weak-supervision
model.

2024) still persist. We also discuss carbon emission
comparison of models in Appendix E.

5 Market Analysis

5.1 Experiment Setup

Construction of the Optimism Measure We
use our weak-supervision model to label all the
financial numeric sentences in the analyst reports
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and earnings calls as in-claim or out-of-claim. We
then filter the sentences and only keep in-claim
sentences to evaluate predictions.

We further label each in-claim sentence as ‘posi-
tive’, ‘negative’, or ‘neutral’ using the fine-tuned
sentiment analysis model specifically for the finan-
cial domain. The model is fine-tuned for financial
sentiment analysis using the pre-trained FinBERT
(Araci, 2019). We then use labeled sentences in
each document to generate a document-level mea-
sure of analyst optimism for document i using the
following formula:

Optimismi = 100× Pos. In-claimi − Neg. In-claimi

Total Sentencesi
(1)

where Pos. In-claimi and Neg. In-claimi are the
number of positive and negative in-claim sentences
respectively in document i after the filter, and
Total Sentencesi is the total number of sentences
in the document.

Empirical Specification We use the following
empirical specification for market analysis.

Yi,t = α+ β × Optimismi,t + ϵi,t (2)

Here Yi,t is the outcome variable of interest for
firm i at time t, α is a constant term, and ϵi,t is an
error term. The coefficient (β) will help us under-
stand the influence of Optimismi,t on the outcome
variable (Yi,t).

Outcome (Y ) Constant (α) Beta (β)

Earn. Surp. 0.1744 *** -1.9883 ***

CAR [+2, +30] 0.9548 *** -34.5749 ***
CAR [+2, +60] 0.8559 ** -54.335 ***

Table 4: Market analysis result based on the empirical
regression. *, **, and *** indicate significance at the
10%, 5%, and 1% levels, respectively.

5.2 Post Earnings Prediction

We examine the relation between optimism in an-
alyst reports for a company in a specific quarter
and its effect on earnings. Using earnings-based
metrics, we perform a regression as per Eq 2 us-
ing earnings call transcripts and analyst report data.
For quarters with multiple reports on one stock,
we aggregate sentences and claims to compute
Optimismi.

Earnings Surprise (%) The Earning Surprise
(%) is calculated by subtracting the median EPS
(in the last 90 days) from the actual EPS. The dif-
ference is scaled by the stock price at the end of the
quarter and multiplied by 100. This method aligns
with Chava et al. (2022).

The Earnings Surprise (%) is set as the outcome
variable (Yi,t). The results in Table 4 show a signif-
icant link between optimism and the Earnings Sur-
prise (%). A negative β coefficient indicates that
with every unit rise in optimism in analyst reports,
the Earnings Surprise (%) drops. This implies that
heightened optimism in reports often leads to the
actual EPS underperforming expectations. This
"false optimism" aligns with previous studies like
(Coleman et al., 2021), highlighting analysts’ ten-
dency to overestimate firm performance.

Cumulative Abnormal Returns We further aim
to explore the influence of optimism in analyst re-
ports on the magnitude of cumulative abnormal
return (CAR) post-earnings. CAR for a firm rep-
resents the total daily abnormal stock return in the
period after a specific event, in our context, the
firm’s earnings conference call.

We analyze two CAR time frames. CAR[+2,
+30] is the cumulative abnormal for the [+2,+30]
trading day window post-earnings call, as deter-
mined by Chava et al. (2022). The same methodol-
ogy is used to calculate CAR[+2, +60] as well.

Table 4 shows that greater optimism in analyst
reports corresponds with a larger decline in CAR.
This emphasizes the ’false optimism’ trend in re-
ports, where increased optimism leads to greater
discrepancies from actual outcomes, leading to a
larger negative cumulative abnormal return.

The prevailing notion in finance literature is that
analysts are overly optimistic. While Francis and
Philbrick (1993) and Barber et al. (2007) believe
this bias helps maintain good ties with corporate
insiders, Michaely and Womack (1999) sees it as
a means for personal financial gains. Recently,
Brown et al. (2022) found that analysts favor firms
with attributes like high debt or fluctuating earn-
ings. This suggests such firms might exaggerate
earnings, potentially through manipulation. Our
market analysis aligning with these theories rein-
forces our method’s accuracy and the financial rel-
evance of our study. Furthermore, Bhojraj et al.
(2009) shows that simply exceeding or failing to
meet analyst expectations under certain conditions
can lead to unique post-earnings characteristics for
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Figure 3: Normalized Confusion Matrix illustrating
the percentage of trades categorized by negative or
positive adjusted optimism and their corresponding
CAR[+2,+60] outcomes. Each cell represents the per-
centage of total trades that fall within each category.

a company.

5.3 Predictive Power of Optimism

To highlight a usage of Optimism for making trad-
ing predictions, we employ a simple “trading strat-
egy”. We utilize analyst reports from 2017-2019
as a training set to identify the average positive
bias in the "optimism" measure. To adjust for the
bias in our test set, the 2020 analyst reports, we
subtract the mean bias from the optimism score
for each company, correcting for the inherent posi-
tive bias. The division of the dataset into training
and testing phases is crucial to avoid look-ahead
bias in calculating mean optimism. After adjust-
ing the optimism measure in the test dataset, we
implement a straightforward investment strategy:
short selling companies with a positive adjusted
optimism score and buying shares of companies
with a negative adjusted optimism score. This ap-
proach is based on the rationale of investing in
companies with overly pessimistic sentiment and
divesting from those with overly optimistic senti-
ment. We use Earnings Surprise, CAR[+2, +30],
and CAR[+2,+60] to determine the success or fail-
ure of our hypothetical trades.

The confusion matrix corresponding to the re-
sults of CAR[+2,+60] are visualized in Figure
3, while Earnings Surprise and CAR[+2,+30] are
shown in Appendix G. The confusion matrix shows
that such a rule-based strategy achieves an approxi-
mate 81% accuracy in correctly predicting the di-
rection of stock movement. Additionally, the high
accuracy lasting up to 60 days indicates that using

optimism can effectively predict stock movements
for more than just a few days, demonstrating a valu-
able preliminary application of such identification
for the financial field.

6 Conclusion

Our work presents claim based labeled dataset in
the English language alongside presenting a weak-
supervision model with an accuracy of 93%. Devel-
oped customized aggregation function outperforms
baseline aggregation functions. We benchmark
various language models and compare the perfor-
mance with the weak-supervision model. We show
the application of claim detection by generating a
measure of optimism from the weak-supervision
model. We also validate the measure by studying
its applicability in predicting earnings surprise, ab-
normal returns, and earnings optimism. We release
our models, code, and benchmark data (for earn-
ings call transcripts only) on Hugging Face and
GitHub. We also note that the trained model for
claim detection can be used on other financial texts.

Limitations

By acknowledging the following limitations, we
pave the way for future research to address these
areas and further enhance the understanding and
applicability of our approach.

• Limited Scope of Text Data: Our analysis
is restricted to analyst reports and earnings
calls, excluding other potentially valuable text
datasets such as related news articles and in-
vestor presentations. Incorporating these ad-
ditional sources of information could provide
a more comprehensive understanding of pre-
earnings drifts.

• Exclusion of Audio and Video Features: Our
measure construction does not utilize audio or
video features from earnings calls, which may
contain supplementary information.

• Omission of Alternative Weak-Supervision
Models: We do not explore multiple end mod-
els, such as the confidence-based sampling
with contrastive loss proposed in the COSINE
framework by Yu et al. (2020). Incorporat-
ing such alternative weak-supervision models
could offer additional insights and improve
the robustness of our approach.
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Ethics Statement

Our work adheres to ethical considerations, al-
though we acknowledge certain biases and limita-
tions in our study. We do not identify any potential
risks stemming from our research; however, we
recognize the presence of geographic and gender
biases in our analysis.

• Geographic Bias: Our study focuses solely on
publicly listed companies in the United States
of America, which introduces a geographic
bias. The findings may not be fully represen-
tative of global firms and markets.

• Gender Bias: We acknowledge the gender
bias present in our study due to the predom-
inant representation of male analysts, CEOs,
and CFOs.

• Data Ethics: The data used in our study, de-
rived from publicly available sources, does not
raise ethical concerns. All raw data is obtained
from public companies that are obligated to
disclose information under the guidance of the
SEC and are subject to public scrutiny.

• Language Model Ethics: The language mod-
els employed (with proper citation) in our re-
search are publicly available and fall under
license categories that permit their use for our
intended purposes. While most models em-
ployed are publicly available, it is important to
note that ChatGPT’s prompt answers will not
be made public due to licensing conditions.
We acknowledge the environmental impact of
large pre-training of language models and mit-
igate this by limiting our work to fine-tuning
existing models.

• Annotation Ethics: All annotations were per-
formed by the authors, ensuring that no addi-
tional ethical concerns arise from the annota-
tion process.

• Hyperparameter Reporting: In the interest of
clarity and readability, we refrain from report-
ing the best hyperparameters found through
grid search in the main paper. Instead, we will
make all grid search results, including hyper-
parameter information, publicly available on
GitHub. This transparency allows interested
readers to access detailed information on our
experimental setup.

• Publicly Available Data: We specify the
datasets that will be made publicly available
and indicate the applicable licenses under
which they will be shared.

By acknowledging these ethical considerations
and limitations, we strive to maintain transparency
and promote responsible research practices.
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A Robustness Check

From a data engineering perspective, there can be
concern about the model design and gold data con-
struction as the authors who designed the weak-
supervision model have annotated the data. This
can lead to exaggerated performance on the data,
which may taint the test set. To ensure that there is
no contamination issue in the weak-supervision
model and it is generalizable, we get the same
test dataset annotated separately by four annota-
tors with master’s degrees in Quantitative Finance.
These annotators were hired by the department as
Graduate Assistants based on merit and were paid
a $20 per hour salary for their work which is more
than double the federal minimum wage and higher
than the highest minimum wage ($15.74 in Wash-
ington, D.C) in the USA. The rates are standard and
in compliance with ethical standards. These anno-
tators had no information about the rules/patterns
used in our weak-supervision model. Each sam-
ple in the test dataset is annotated by two annota-
tors, and we drop the observations where there is
a disagreement among annotators. 6 The F1 score
of the weak-supervision model on a dataset anno-
tated by non-authors is 0.9281 which is close to a
score of 0.9272 on the author-annotated dataset.
We also recalculate the F1 score of the model
based on the author-annotated labels after dropping
observations dropped in a non-author annotated
dataset. The model gives a higher mean F1 score
of 0.9360 which is expected as ambiguous sen-
tences are dropped. Overall these results show the
robustness of our model on the dataset annotated

6There is 98.59% agreement between two annotators.

by annotators who don’t have knowledge of the
rules used in the weak-supervision model. From
here onwards, the performance is always calculated
on a gold dataset created by authors.

B Labeling Functions Methodology

The following illustrates the methodology adopted
by us while choosing the rules to define the weak-
supervision mode. All rules were acknowledged
post detailed analysis of sample documents dis-
tributed over sector and time :

1. Certain phrases such as "reasons to buy", "rea-
sons to sell" or the presence of words which
are indicative of past tense such as "was",
"were" are characteristic of out-of-claim sen-
tences, since they indicated either facts or
events which happened in the past. Examples
are given in the set 1 of Table 5.

2. Phrases often provided definitive information
about a given sentence in a document and in
most cases they had a fairly consistent linguis-
tic composition. Examples are given in the set
2 of Table 5.

3. In a bid to capture the effect of a few other
verb forms indicative of a probabilistic event,
we also chose to look at its lemmatized form
to reduce inflectional usage and use the base
token for a more holistic evaluation over mul-
tiple usage formats. Examples are given in the
set 3 of Table 5.

4. POS tags were also derived for "project" as
a word wherever present. This was done to
segregate its usage as a verb. Its usage as a
verb was usually observed to be adopted while
making claims or predictions. Examples are
given in the set 4 of Table 5.

5. The alternate adoption of phrase matching was
to identify in-claim sentences. This mostly
consisted of a verb form indicative of a proba-
bilistic event (eg: likely, intends) coupled with
a preposition (usually "to" or "at"). Based
on the ambiguity of the resulting phrase they
were either categorised as a high-confidence
claim or a low-confidence one. Examples are
given in the set 5 of Table 5.
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Set Used to detect Output Type Keyword or phrase

1 High Confidence out-
of-claim (Past Tense or
Assertions)

-1/0 Phrase Matching reasons to buy:, reasons to sell:, was, were,
declares quarterly dividend, last earnings re-
port, recorded

2 Low Confidence in-claim 1/0 Phrase Matching earnings guidance to, touted to, entitle to
3 High Confidence in-claim 2/0 Lemmatized Word

matching
expect, anticipate, predict, forecast, envision,
contemplate

4 High Confidence in-claim 2/0 POS Tag for word
“project"

VBN, VB, VBD, VBG, VBP, VBZ

5 High Confidence in-claim 2/0 Phrase Matching to be, likely to, on track to, intends to, aims
to, to incur, pegged at

Table 5: Labeling Functions used in weak-supervision model. SpaCy Lemmatizer has been used for labeling
functions involving lemmatized word matching.

C Additional Models

C.1 Generative LLMs

To understand the capabilities of current state-of-
the-art (SOTA) generative LLMs’ in a zero-shot
and few-shot manner, we add ChatGPT7 perfor-
mance benchmark in our study. We use the "gpt-
3.5-turbo-0613" model with 200 max tokens for
output, and a 0.0 temperature value. The ChatGPT
API was accessed on Feb 2nd, 2024. In a recent
article, Rogers et al. (2023) made a case for why
closed models like ChatGPT make bad baselines.
In order to understand where SOTA open-source
LLMs stand in comparison to ChatGPT and fine-
tuned models, we also test the Falcon-7B-Instruct
(Almazrouei et al., 2023) and "Llama-2-70B-chat"
(Touvron et al., 2023) models. The prompt tem-
plates are provided in Table 6. All our prompting
was done in consistency with reputable resources,
such as the “Prompt Engineering Guide” 8. We also
test the model with zero-shot and six-shot. The six-
shot prompting consists of 3 ‘in-claim’ examples
and 3 ‘out-of-claim’ examples.

C.2 Bi-LSTM

In the realm of text classification problems, Long
Short-Term Memory (LSTM) was a popular re-
current neural network architecture (Hochreiter
and Schmidhuber, 1997). An enhanced approach
to LSTM is the Bidirectional LSTM (Bi-LSTM),
which processes input in both directions (Schuster
and Paliwal, 1997). In order to assess the efficacy
of Recurrent Neural Networks (RNNs) in claim
detection, we employ the Bi-LSTM model on the
datasets we have developed. Instead of training it
from scratch, we initialize the embedding layer of

7https://chat.openai.com/
8https://www.promptingguide.ai/

the Bi-LSTM using 300-dimensional GloVe embed-
dings trained using Common Crawl (Pennington
et al., 2014). Here we perform the task of sequence
classification while minimizing the cross-entropy
loss. We employ a grid search approach to identify
the optimal hyperparameters for each model, con-
sidering four different learning rates (1e-4, 1e-5,
1e-6, 1e-7) and four different batch sizes (32, 16,
8, 4). In our training process, we employ a maxi-
mum of 100 epochs, incorporating early stopping
criteria. In cases where the validation F1 score
does not exhibit an improvement of greater than
or equal to 1e-2 over the subsequent 7 epochs, we
designate the previously saved best model as the
final fine-tuned model.

C.3 PLMs

In order to establish a performance benchmark,
our study encompasses a range of transformer-
based (Vaswani et al., 2017) models of varying
sizes. For the small models, we employ BERT
(Devlin et al., 2018), FinBERT (Yang et al., 2020),
FLANG-BERT (Shah et al., 2022), and RoBERTa
(Liu et al., 2019). Within the category of large
models, we incorporate BERT-large (Devlin et al.,
2018) and RoBERTa-large (Liu et al., 2019). To
avoid over-fitting on financial text, we refrain from
conducting any pre-training on these models prior
to fine-tuning. Here we perform the task of se-
quence classification while minimizing the cross-
entropy loss. For PLMs, we employ grid-search,
fine-tuning, and early stopping similar to what we
used for Bi-LSTM. The experiments are conducted
using PyTorch (Paszke et al., 2019) on an NVIDIA
RTX A6000 GPU. Each model is initialized with
the pre-trained version from the Transformers li-
brary provided by Huggingface (Wolf et al., 2020).
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Prompt Name Description
Zero-shot Discard all the previous instructions. Behave like you are an

expert sentence classifier. Classify the following sentence into
either ‘INCLAIM’ or ‘OUTOFCLAIM’. ‘INCLAIM’ refers to predictions
or expectations about financial outcomes. ‘OUTOFCLAIM’ refers to
sentences that provide numerical information or established facts
about past financial events. For each classification, ‘INCLAIM’
can be thought of as ‘financial forecasts’, and ‘OUTOFCLAIM’ as
‘established financials’. Now, for the following sentence provide
the label in the first line and provide a short explanation in the
second line. The sentence: {sentence}

Few-shot Discard all the previous instructions. Behave like you are an
expert sentence classifier. Classify the following sentence into
either ‘INCLAIM’ or ‘OUTOFCLAIM’. ‘INCLAIM’ refers to predictions
or expectations about financial outcomes. ‘OUTOFCLAIM’ refers to
sentences that provide numerical information or established facts
about past financial events. For each classification, ‘INCLAIM’
can be thought of as ‘financial forecasts’, and ‘OUTOFCLAIM’ as
‘established financials’. Here are a few examples: Example 1: free
cash flow of $2.3 billion was up 10.5%, benefiting from the positive
year-over-year change in net working capital due to covid at both
nbcu and sky, half of which resulted from the timing of when sports
rights payments were made versus when sports actually aired and
half of which resulted from a slower ramp in content production.
// The sentence is OUTOFCLAIM Example 2: we’ve also used our
scale of more than 15,000 combined stores to drive merchandise
cost savings exceeding $70 million. // The sentence is OUTOFCLAIM
Example 3: consolidated total capital was $2.9 billion for the
quarter. // The sentence is OUTOFCLAIM Example 4: third, as a
result of the continued strength of the u.s. dollar, we are now
factoring in an incremental fx headwind of $175 million across q3
and q4 revenue. // The sentence is INCLAIM Example 5: though
early, we are planning our business based on the expectation of
cy ’23 wfe declining approximately 20% based on increasing global
macroeconomic concerns and recent public statements from several
customers, particularly in memory, and the impact of the new u.s.
government regulations on native china investment. // The sentence
is INCLAIM Example 6: we expect revenue growth to be in the range
of 5.5% to 6.5% year on year. // The sentence is INCLAIM Now,
for the following sentence provide the label in the first line
and provide a short explanation in the second line. The sentence:
{sentence}

Table 6: Prompts used for zero-shot and few-shot inference.

D Ablation: Number of Labeling
Functions

Figure 4, shows how the accuracy of the model
changes depending on the number of labeling func-
tions. For this plot, we initially computed the con-

tribution of each labeling function (Table 5, High
confidence and Low Confidence in-claim) towards
the detection of in-claim sentences and then consid-
ered the addition of new labeling function at each
step to ensure the steepest ascent to saturation. At
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each step, in addition to one new labeling func-
tion, all labeling functions present in Table 5 for
Past Tense and Assertions, were also used. They
either abstain or classify sentences as out-of-claim
and help improve the classification of out-of-claim
sentences. From the plot, we can notice that af-
ter around thirteen labeling functions, the addition
of new labeling functions does not produce any
change in the accuracy. In fact, increasing label-
ing functions thereafter leads to a minor decrease
in accuracy. This suggests that we can effectively
capture the required trends for classification in this
setting with thirteen labeling functions.

Figure 4: Accuracy v/s Number of labeling functions.
Note: This is accuracy, not F1 score.

E Environmental Impact

Our investigation extends beyond just performance
metrics, embracing a conscientious approach to-
wards the environmental implications of AI usage.
To ensure a standardized and rigorous assessment
of CO2e, we drew upon the methodology outlined
by Lannelongue et al. (2021) and utilized the Green
Algorithms calculator9. The value of CO2e are re-
ported in Figure 5. This dual focus on minimizing
latency and CO2e without compromising perfor-
mance highlights our commitment to advancing
sustainable and efficient AI technologies in sectors
where both are of paramount importance, such as
finance. The CO2 emissions (CO2e) associated
with the inference phase of these models are partic-
ularly telling, with our WS model not only leading
in latency but also in sustainability, registering the
lowest CO2e among all models reviewed. This
underscores the viability of employing AI in en-
vironments where both speed and environmental
responsibility are valued. In contrast, models such

9https://calculator.green-algorithms.org/

Figure 5: This bar chart compares the CO2 emissions
(log scale) of various models relative to the weak-
supervision model.

as Llama-70B, despite their performance coming
close to our model, incur significantly higher (more
than a million times larger) CO2e due to their re-
liance on extensive GPU resources.

F Ablation Study: Market Analysis

To understand the influence of “in-claim” sentences
on market sentiment, we introduce the optimism
measure in section 5, outlining its implications. In
this section, we carry out an ablation study to bet-
ter understand the impact of “in-claim” sentences.
As such, we compute the optimism score for four
sentence subsets: Unfiltered, Numerical, Numeri-
cal Financial, and Numerical Financial “In-claim”
sentences for each file. For example, the optimism
score for a subset of Numerical sentences for docu-
ment i is given by:

Optimism (Numerical)i = 100× Pos. Numericali − Neg. Numericali

Total Sentencesi

We standard normalize these scores for uniform
comparison by deducting their mean and dividing
by the standard deviation. As the beta coefficient
lacks full context, to factor in the size of the sen-
tence subset, we adjusted each coefficient by the
average sentence count, terming it as the adjusted
beta. This illustrates the information density in
each filtered sentence set. When examining the
Earnings Surprise (%) columns of Table 7 the Ad-
justed Beta for Earnings Surprise increases, imply-
ing that a mere average of 3.7 “in-claim” sentences
holds crucial information. This highlights the high
information density of our filtered sentences. While
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ES (%) CAR [+2,+30] CAR [+2, +60]

Sentence Type/Subset Average Sentences Adj. β Adj. β Adj. β

Unfiltered 98 -0.054*** -0.02** -.03***
Numeric 26 -0.28*** -.06*** -.09***
Numeric Financial 21.6 -0.29*** -.07*** -.11***
Numeric Financial In-claim 3.7 -1.51*** -.26*** -.41***

Table 7: Ablation on market analysis, highlighting the importance and information density of “in-claim” sentences.
*, **, and *** indicate significance at the 10%, 5%, and 1% levels, respectively.

we aren’t dismissing the importance of other sen-
tences, our analysis reveals that the ones we’ve ex-
tracted are the most informative on a per-sentence
basis.

G Predictive Power of Optimism
(Earnings Suprise and CAR[+2,+30])

Figure 6: Percentage of trades categorized by negative
or positive adjusted optimism and their corresponding
Earnings Surprise outcomes.

Figure 6 and 7 show the results of making trades
based on a positive or negative adjusted optimism
in terms of the respective performance of the com-
pany.

Figure 7: Percentage of trades categorized by negative
or positive adjusted optimism and their corresponding
CAR[+2,+30] outcomes.
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Abstract

Information retrieval (IR) methods, like re-
trieval augmented generation, are fundamen-
tal to modern applications but often lack sta-
tistical guarantees. Conformal prediction ad-
dresses this by retrieving sets guaranteed to
include relevant information, yet existing ap-
proaches produce large-sized sets, incurring
high computational costs and slow response
times. In this work, we introduce a score re-
finement method that applies a simple mono-
tone transformation to retrieval scores, leading
to significantly smaller conformal sets while
maintaining their statistical guarantees. Exper-
iments on various BEIR benchmarks validate
the effectiveness of our approach in producing
compact sets containing relevant information.

1 Introduction

Information retrieval (IR) methods lie at the heart
of numerous modern applications, ranging from
search engines and recommendation systems to
question-answering platforms and decision sup-
port tools. These methods facilitate the identifi-
cation and extraction of relevant information from
vast collections of data, enabling users to access
the knowledge they seek efficiently and effectively.
A popular example of IR is Retrieval Augmented
Generation (RAG), a technique for reducing hal-
lucinations in large language models (LLMs) by
grounding their responses on factual information
retrieved from external sources.

While IR methods have been widely adopted,
they traditionally lack statistical guarantees on the
relevance of retrieved information. This limita-
tion can lead to uncertainty regarding the reliabil-
ity and correctness of the retrieved information.
Conformal prediction (Angelopoulos and Bates,
2021; Angelopoulos et al., 2021) is an uncertainty
quantification framework that can be used with

*Equal Contribution.

any underlying model to construct sets that are sta-
tistically guaranteed to contain the ground truth
with a user-specified probability. Conformal pre-
diction has expanded far beyond its initial classifi-
cation focus (Vovk et al., 2005; Angelopoulos and
Bates, 2021; Ringel et al., 2024), now encompass-
ing diverse applications like regression, image-to-
image translation (Angelopoulos et al., 2022b; Ku-
tiel et al., 2023), and foundation models (Gui et al.,
2024), advancing to enable control of any mono-
tone risk function (Angelopoulos et al., 2022a). In
the context of IR, recent methods (Xu et al., 2024;
Li et al., 2023; Angelopoulos et al., 2023) have
incorporated conformal prediction into ranked re-
trieval systems to ensure the reliability and quality
of retrieved items. However, existing conformal
methods often produce excessively large retrieved
sets, implying high computational costs and slower
response times.

In this work, we address this limitation by in-
troducing a novel score refinement method that
employs a simple yet effective monotone transfor-
mation, inspired by ranking measures, to adjust
the scores of any given information retrieval sys-
tem. By applying standard conformal prediction
methods to these refined scores, we deliver signifi-
cantly smaller retrieved sets while preserving their
statistical guarantees, striking a crucial balance be-
tween efficiency and accuracy. An illustration of
the proposed pipeline is shown in Figure 1. We
validate the effectiveness of our method through
experiments on three of BEIR (Thakur et al., 2021)
benchmark datasets, demonstrating its ability to
outperform competing approaches in producing
compact sets that contain the relevant information.

2 Background

To lay the groundwork for our work, we present a
simplified description of the operation of informa-
tion retrieval systems and how conformal inference

186



Figure 1: Retrieval Pipeline. The query is first embedded using a semantic embedder, and then the topN candidates
are retrieved from a vector store. Crucially, their corresponding scores then undergo a refinement transformation
before being passed through a conformal prediction method that outputs an adaptive set of documents.

can be seamlessly integrated within this context.

2.1 Information Retrieval: Overview
Consider a large information database D =
{d1, d2, ..., dN}. At inference time, an IR model
R : Q → D accepts a query q ∈ Q as input
and returns a subset of candidates S ⊂ D. To do
this, the IR model computes a semantic embedding
eq = E(q) for the query and compares it to pre-
computed embeddings ei = E(di) for each item in
the database using a similarity metric:

si = sim(eq, ei), (1)

where E is the chosen representation model (e.g.,
a neural network encoder) and sim is a similarity
metric, such as cosine similarity. Subsequently, the
items are typically ranked based on their similar-
ity scores, and the top ranked items are retrieved,
forming the following set

SK ,
{
di ∈ D : si ≥ s(K)

}
(2)

where s(K) denotes theKth largest similarity score,
for a predefined K > 0 constant across all queries.

The approach above suffers from two key limi-
tations. First, using a fixed K can be problematic:
it might be too restrictive for some queries, lead-
ing to the omission of relevant information, while
for others, it might be too permissive, resulting in
the retrieval of numerous redundant or irrelevant
items. The latter scenario significantly impacts
efficiency and prolongs response times. Second,
this approach lacks guarantees that truly relevant
information, such as a specific item d∗ within the
database D, will be included in the retrieved set S.

2.2 Conformal Prediction for Retrieval
Conformal prediction can be seamlessly integrated
into IR systems by constructing calibrated predic-
tion sets designed to include, on average, the de-
sired information with a user-specified high proba-
bility. Formally, given a query q and its correspond-
ing similarity scores si, we construct a prediction

set parameterized by τ > 0 as follows:

Cτ (q) , {di ∈ D : ci ≤ τ}, (3)

where ci , −si represents a non-conformity score.
To appropriately set the value of τ , we utilize a held-
out calibration dataset DC consisting of n samples
(qi, di) ∈ Q×D drawn exchangeably from an un-
derlying distribution P . Here, qi represents a query
whose most relevant information is assumed to be
a single item di from the database, for simplicity.
Given a user-chosen error rate α ∈ [0, 1], we set
τ as the (n+1)(1−α)

n -th quantile of the calibration
non-conformity scores. This ensures that for a new
exchangeable test sample (qn+1, dn+1), we have
the following marginal coverage guarantee:

P
(
dn+1 ∈ Cτ (qn+1)

)
≥ 1− α (4)

for any distribution P . The probability above is
marginal (averaged) over all n+ 1 calibration and
test samples. This ensures that the IR model re-
trieves sets of adaptive size, guaranteed to contain
the relevant information at least α-fraction of the
time, thereby overcoming the limitation above.

While the conformal sets above use a calibrated
threshold, other parameterizations are possible,
such as setting the calibration parameter to the set
size K, as in (2). Furthermore, it is important to
note that the description above merely presents
conformal prediction in its simplest, most common
form. However, there have been significant ad-
vancements in the field in recent years, leading to
the development of more involved and efficient con-
formal methods (Romano et al., 2020; Angelopou-
los et al., 2020) and to extensions that provide guar-
antees beyond marginal coverage (Angelopoulos
et al., 2022a; Fisch et al., 2020; Li et al., 2023).

3 Method

Integrating conformal prediction to IR systems en-
hances their reliability by providing statistical guar-
antees. However, CP methods prioritize trustwor-
thiness and are not optimized for efficiency, thus
they often produce excessively large retrieval sets.
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Following the above, our goal is to improve the
predictive efficiency of CP methods by reducing
the average size of the retrieved sets Eq

[
|Cτ (q)|

]
,

while maintaining their coverage guarantees. In
contrast to approaches that focus on improving the
IR model or developing more efficient conformal
methods, we propose an alternative approach that
introduces an intermediate step of score refinement.
Specifically, given a query q and its scores S =
{s1, s2, . . . , sN}, we adjust them prior to employ-
ing conformal prediction T (S) = {t1, t2, . . . , tN}.

In designing the transformation T , we identify
that scores from different queries can vary signif-
icantly in scale. This can cause the calibration
threshold τ to be dominated by queries with small
scores, leading to excessively large prediction sets.
To mitigate this issue, we first normalize the re-
trieval scores by dividing them by their maximum,
ensuring that scores across all queries are compa-
rable in scale. We remark that the maximum score
smax can be interpreted as the IR model’s confi-
dence. When this value is small, it suggests a lack
of relevant information for the given query, suggest-
ing that ideally no items should be retrieved. Thus,
normalization in such scenarios may be counter-
productive, resulting in irrelevant items. However,
we assume the corpus is sufficiently extensive to
contain at least one relevant item for any query, an
assumption particularly valid for the calibration.

Next, assume without loss of generality that
the scores are sorted in decreasing order: S =
{s(1), s(2), . . . , s(N)}, where s(r) is the rth largest
score and r ≥ 1 represents its rank. Inspired by
ranking measures (Yining et al., 2013), we define
our transformation as follows

T (s(r), r) ,
s(r)

smax
W (r) (5)

where W (r) ∈ [0, 1] is a discount function that
penalizes scores based on their rank. We specifi-
cally employ the inverse logarithm decay W (r) =

1
log(1+r) , which offers a balance between empha-
sis on top items and exploration of lower-ranked
items. To offer additional flexibility, we introduce
a hyperparameter λ ∈ [0, 1]:

T (s(r), r) ,
s(r)

smax

1

log(1 + rλ)
. (6)

We tune λ by performing a search over a sequence
of values to minimize the set size on a validation
set. Note the transformation is monotone, preserv-
ing the IR model’s induced order and maintaining

its core functionality. Furthermore, it is simple to
implement, computationally efficient, and easily
integrated into existing systems. As demonstrated
in the following section, the proposed transforma-
tion is highly effective in reducing the size of the
conformal retrieved sets.

4 Experiments

4.1 Setup
Datasets For our evaluation, we utilized
BEIR (Thakur et al., 2021), a large collection of
information retrieval benchmarks. Specifically, we
focus on the following datasets: FEVER (Thorne
et al., 2018), SCIFACT (Wadden et al., 2020), and
FIQA (Maia et al., 2018). Data statistics are pre-
sented at Table 1. It is important to note that each
query within these datasets may have multiple rele-
vant documents within the corpus. For this study,
we adopted a pragmatic approach, considering the
document with the highest score among the rele-
vant documents as the ground truth. This ensures
that a successful retrieval implies at least one rele-
vant document is present in the inference set.

To simulate real-world production environments,
we employ a vector store, specifically FAISS-
GPU (Johnson et al., 2019) for its efficiency and
performance in handling large-scale databases. We
retrieve the top 2, 000 documents for each query
and apply our refinement process exclusively to
these initially retrieved documents.

Dataset #Corpus #Calibration #Test

FEVER 5,416,568 6,666 6,666
SCIFACT 5,183 150∗ 150∗

FIQA 57,638 500 648

Table 1: Data Summary. #Corpus indicates the number
of documents, while #Calibration and #Test indicate
the number of queries. As SCIFACT lacks a calibra-
tion set, we randomly split its test set into calibration
and test subsets.

Embedders Initial semantic scores were derived
using deep sentence embedders, which encode tex-
tual input into a fixed-dimensional latent space
where semantic similarity is represented by vector
proximity. We employ two models: BGE-large-
1.5 (Xiao et al., 2023) (326M parameters) and E5-
Mistral-7b model (Wang et al., 2023) (7B parame-
ters). BGE-large-1.5 is a smaller model with a la-
tent representation dimension of 1024, whereas E5-
Mistral, a finetuned encoder version of the mistral-
7b model, has a latent representation dimension
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Figure 2: Impact of λ value on average group size using
BGE-large-1.5 on SCIFACT with α = 0.05.
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Figure 3: Performance comparison using BGE-large-
1.5 on FEVER dataset across various values of α.

of 4096. The semantic score between a query q
and a candidate document d is the cosine similarity
between their respective latent representations.
Competitors For our method, we employ the
Vanilla CP method (Vovk et al., 2005), applying it
to the refined retrieval scores. We compared our
approach to three established approaches: Baseline,
which applies Vanilla CP directly to the retrieval
scores without modification; TopK, which utilizes
Vanilla CP but calibrates to a fixed set sizeK for all
queries; APS (Romano et al., 2020) and RAPS (An-
gelopoulos et al., 2020), which introduce novel
conformity scores.

4.2 Results

We first conduct experiments on the smaller SCI-
FACT dataset to optimize the hyperparameter λ.
The results, shown in Figure 2, reveal a favorable
value for λ, prompting us to set α = 0.05.

Dataset α Method Emp. Cov. Avg. Grp. Size

FIQA 0.1

Baseline 0.89 417.77
APS 0.89 119.76
TopK 0.87 90.0
Ours 0.86 56.72

0.05

Baseline 0.94 846.0
APS 0.94 477.27
TopK 0.92 259.0
Ours 0.92 190.5

0.03

Baseline 0.96 1206.93
APS 0.98 1393.96
TopK 0.94 480.0
Ours 0.95 347.16

SCIFACT 0.1

Baseline 0.91 231.17
APS 0.91 30.82
TopK 0.91 31.0
Ours 0.85 14.07

0.05

Baseline 0.97 760.75
APS 0.92 91.23
TopK 0.92 91.0
Ours 0.89 29.59

0.03

Baseline 0.98 1211.11
APS 0.95 276.15
TopK 0.95 279.0
Ours 0.97 160.66

Table 2: Performance comparison using BGE-large-1.5
on FIQA and SCIFACT across various values of α.

Next, we conduct experiments on the large-
scale FEVER dataset. As illustrated in Figure 3,
our score refinement method consistently outper-
forms other approaches by producing significantly
smaller retrieved sets in experiments with BGE-
large-1.5 across various values of α, while main-
taining comparable, albeit slightly lower, empirical
coverage. Results for the other datasets are sum-
marized in Table 2, consistent with our previous
findings. We note that RAPS produced compara-
ble results to APS, so we omit them for brevity.
Additional results using E5-Mistral, which exhibit
similar trends, are presented in Table 3 of the ap-
pendix, along with an ablation study comparing
other simple transformations.

5 Conclusion

We addressed the challenge of large prediction sets
in conformal prediction for IR by introducing a
novel score refinement method. Our experiments
on the BEIR benchmark demonstrated its effective-
ness in generating compact, statistically reliable
prediction sets, enabling the deployment of confor-
mal prediction in real-world IR systems without
sacrificing performance.

6 Limitations

The conclusions of this study could be further
strengthened by evaluating the method on a wider
range of datasets and employing diverse embed-
ding models. Currently, our method does not han-
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dle cases where no relevant information exists in
the database, potentially limiting its applicability.
Additionally, while we introduced a simple transfor-
mation, exploring more involved or even parameter-
ized functions, e.g. neural networks, could further
enhance efficiency and statistical guarantees.
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A Additional Experiments

Here evaluate our method with the E5-Mistral em-
bedder on SCIFACT and FIQA datasets. Results,
presented in Table 3, show our method consis-
tently outperforms competitors. Moreover, using
E5-Mistral leads to improved performance in both
empirical coverage and average group size com-
pared to BGE-large-1.5.

In addition to the aforementioned experiments,
we compared our method against alternative trans-
formations: Max Score, where scores are normal-
ized by dividing each by the maximum score, and
Z-Score, which standardizes the initial retrieved
scores. The results, summarized in Table 4, show
that our score refinement transformation outper-
forms these other refinement methods in the vast
majority of cases.

Dataset α Method Emp. Cov. Avg. Grp. Size

SCIFACT

0.10

Baseline 0.91 68.91
APS 0.94 17.46
TopK 0.95 19.0
Ours 0.93 15.09

0.05

Baseline 0.96 311.73
APS 0.98 139.36
TopK 0.99 150.0
Ours 0.97 48.71

0.03

Baseline 0.99 1093.85
APS 1.0 324.09
TopK 1.0 368.0
Ours 1.0 127.29

FIQA

0.10

Baseline 0.91 144.31
APS 0.9 46.48
TopK 0.89 38.0
Ours 0.9 33.35

0.05

Baseline 0.96 458.79
APS 0.95 123.09
TopK 0.94 108.0
Ours 0.94 67.21

0.03

Baseline 0.98 710.86
APS 0.97 439.64
TopK 0.96 193.0
Ours 0.96 143.76

Table 3: Empirical coverage and average group size for
FIQA and SCIFACT, alpha values, and methods using
the e5-mistral-7b-instruct.

Dataset α Method Emp. Cov. Avg. Grp. Size

FEVER

0.10

Baseline 0.90 4.81
Max Score 0.87 1.19

Z-Score 0.85 1.63
Ours 0.87 1.18

0.05

Baseline 0.95 9.47
Max Score 0.93 1.89

Z-Score 0.92 2.44
Ours 0.93 1.67

0.03

Baseline 0.97 15.63
Max Score 0.96 2.88

Z-Score 0.95 3.28
Ours 0.95 2.37

SCIFACT

0.10

Baseline 0.91 231.17
Max Score 0.83 20.68

Z-Score 0.88 22.01
Ours 0.85 14.07

0.05

Baseline 0.97 760.75
Max Score 0.86 31.01

Z-Score 0.91 52.91
Ours 0.89 29.59

0.03

Baseline 0.98 1211.11
Max Score 0.94 132.31

Z-Score 0.93 197.77
Ours 0.97 160.66

FIQA

0.10

Baseline 0.89 417.77
Max Score 0.87 83.23

Z-Score 0.87 78.02
Ours 0.86 56.72

0.05

Baseline 0.94 846.0
Max Score 0.92 254.8

Z-Score 0.92 217.79
Ours 0.92 190.5

0.03

Baseline 0.96 1206.93
Max Score 0.94 380.62

Z-Score 0.94 437.01
Ours 0.95 347.16

Table 4: Ablation study comparing different score
refinement methods with BGE-large-v1.5 encodings.
The table shows empirical coverage and average group
size for different datasets and methods. Bold values
indicate the best performance for each α.
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Abstract

Most existing fact-checking systems are unable
to explain their decisions by providing relevant
rationales (justifications) for their predictions.
It highlights a lack of transparency that poses
significant risks, such as the prevalence of unex-
pected biases, which may increase political po-
larization due to limitations in impartiality. To
address this critical gap, we introduce Sentence-
Level Factual Reasoning (SELFAR)1, aimed at
improving explainable fact-checking. SELFAR
relies on fact extraction and verification by pre-
dicting the news source reliability and factuality
(veracity) of news articles or claims at the sen-
tence level, generating post-hoc explanations
using SHAP/LIME and zero-shot prompts. Our
experiments show that unreliable news stories
predominantly consist of subjective statements,
in contrast to reliable ones. Consequently, pre-
dicting unreliable news articles at the sentence
level by analyzing impartiality and subjectivity
is a promising approach for fact extraction and
improving explainable fact-checking. Further-
more, LIME outperforms SHAP in explaining
predictions on reliability. Additionally, while
zero-shot prompts provide highly readable ex-
planations and achieve an accuracy of 0.71 in
predicting factuality, their tendency to halluci-
nate remains a challenge. Lastly, this paper
also presents the first study on explainable fact-
checking in the Portuguese language.

1 Introduction

While journalism is tied to ethical standards, includ-
ing truth and fairness, it often strays from impartial
facts (Mastrine, 2022). As a result, low credibil-
ity news may be produced and spread on modern
media ecosystem. Nowadays, fact-checking organi-
zations have manually provided lists of unreliable
articles and media sources, however it is a very
time-consuming task, needs to be updated faster
and relies on specific expertise (Baly et al., 2018a).

1The SELFAR datasets, models and code are publicly avail-
able: https://github.com/franciellevargas/SELFAR

Towards addressing this issue, fact-checking sys-
tems have classified claims of unknown veracity
(factuality), identifying evidences and predicting
whether they support or refute the claims (Glockner
et al., 2023; Guo et al., 2022). Nevertheless, as low
credibility news or claims may comprise multiple
sentences containing facts, media bias, and fake
information, fact-checking at scale should be able
to accurately predict both news source reliability
and factuality at a fine-grained level. Table 1 shows
an example of low credibility news segmented into
sentences and classified according to its reliability
(biased/unbiased) and factuality (fake and fact).

Furthermore, the veracity of claims can be ver-
ified using metadata (Augenstein et al., 2019),
Wikipedia (Thorne et al., 2018), social networks
(Hardalov et al., 2022), scientific assertions (Wad-
den et al., 2020), manually checked-claims from
social media provided by fact-checking organiza-
tions (Wang, 2017; Couto et al., 2021), the language
used in claims (Sheikh Ali et al., 2021), LLMs (Lee
et al., 2021; Zhang and Gao, 2023), generating jus-
tifications for verdicts on claims (Atanasova et al.,
2020a). For example, the FEVER (Thorne et al.,
2018), SciFact (Wadden et al., 2020), LIAR (Wang,
2017) and Check-COVID (Wang et al., 2023) are
widely used datasets for this setting.

In recent years, there has been significant
progress in the area of fact-checking e.g., new
comprehensive datasets (Yang et al., 2018; Wang,
2017; Hanselowski et al., 2019; Reis et al., 2020),
high performance of deep learning models (Ribeiro
et al., 2022), different domains aside from political
(Naderi and Hirst, 2018; Kotonya and Toni, 2020b;
Arana-Catania et al., 2022; Chamoun et al., 2023;
Vladika and Matthes, 2024). However, while justify-
ing the verification of a claim’s veracity is the most
important part of the manual process, most existing
fact-checking systems are unable to explain their
decisions, which could assist human fact-checkers
and help mitigate the lack of transparency (Baly
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N. Sentence-level news article Label
S1 President Jair Bolsonaro touch a sore point of Europeans when he pointed out that the increased use of fossil

fuels is a serious environmental setback, in his opening speech at the UN General Assembly, Tuesday (20).
Biased

S2 “The St. Francisco River transposition was completed during my government”, said Bolsonaro at the UN. Fake
S3 “Brazil was a pioneer in the implementation of 5G in Latin America”, Bolsonaro said at the UN. Fact
S4 Bolsonaro signed measures favouring to environmental protection during the 4 years of the Brazilian government. Fake
S5 The Bolsonaro also requested for reform of the UN Security Council. Fact
S6 However, there is a huge difference between speaking at the UN and being heard at the UN. Biased

Table 1: Example of low credibility news segmented into sentences extracted from the FactNews (Vargas et al., 2023)
and FACTCK.BR (Moreno and Bressan, 2019) datasets. Note that the low credibility news may comprise a mix of
complex content such as media bias (unreliable) (S1, and S6), fake (S2 e S4), and facts (S3 and S5).

et al., 2018b). Therefore, automated fact-checking
should also be capable to provide justifications in
the form of post-hoc explanations for model outputs
or by incorporating explanation methods directly
into these models (Kotonya and Toni, 2020a).

Explainable Artificial Intelligence (XAI) meth-
ods provide the causes of a single prediction, a set of
predictions, or all predictions of a model by identi-
fying parts of the input, model, or training data that
are most influential on the model outcome (Balkir
et al., 2022). Hence, transparency and explainability
are related to the notion of “explanations” (Guidotti
et al., 2018). In particular, XAI methods are com-
monly categorized into two aspects: (i) whether
they provide local or global explanations, and (ii)
whether they are self-explaining or post-hoc explain-
ing (Guidotti et al., 2018). Local explanations are
provided for individual instances, while global ex-
planations apply to the model’s behavior across any
input (Balkir et al., 2022). Self-explaining meth-
ods rely on the internal structure of the prediction
model, making these methods often specific to the
model type. Conversely, post-hoc explaining (also
know as model-agnostic) methods do not rely on
knowledge of the to-be-explained model, but rather
only input-output pairs (Balkir et al., 2022).

The most commonly used model-agnostic ex-
plainable methods are LIME (Local Interpretable
Model-Agnostic Explanations) (Ribeiro et al., 2016)
and SHAP (SHapley Additive exPlanations) (Lund-
berg and Lee, 2017). The LIME provides local
explanations for predictions by perturbing the in-
put data and observing the resulting changes in the
model’s predictions. On the other hand, the SHAP
measures the contribution of each feature to the pre-
diction by considering all possible combinations
of features. Unlike LIME, SHAP can be used to
generate both local and global explanations. Lastly,
recent approaches to automated fact verification
have also taken advantage of the high performance

achieved through In-Context Learning (ICL) 2 to
generate post-hoc explanations for veracity predic-
tion (Zeng and Gao, 2023, 2024).

Here, we introduce the Sentence-Level Factual
Reasoning (SELFAR) aims to improve explainable
fact-checking. It covers the entire fact-checking
pipeline, generating post-hoc explanations for each
task. Specifically, SELFAR predicts news source
reliability and factuality of claims or news articles
at the sentence-level for fact extraction and veri-
fication, respectively. It then generates post-hoc
explanations using SHAP and LIME for fact ex-
traction and zero-shot prompts for fact verification.
Based on our findings, the sentence-level predic-
tion of unreliable news by analyzing impartiality
and subjectivity is promising for fact extraction and
improving explainable fat-checking. Additionally,
LIME is better than SHAP in explaining predictions
on reliability. Finally, although zero-shot prompts
provided high readable explanations, and achieved
an accuracy of 0.71 in predicting veracity, their
tendency to generate hallucinations remains a chal-
lenge.

Our contributions are summarized as follows:

• We study an under-explored and relevant prob-
lem: explainable automated fact-checking.

• We introduce the SELFAR, a sentence-level
factual reasoning that relies on fact extraction
and verification by predicting news source reli-
ability and factuality of a news article or claim
at the sentence-level, generating post-hoc ex-
planations using SHAP/LIME and zero-shot
prompts. The datasets, models and code are
available, which may boost future research.

• We propose the first study and baselines for
explainable fact-checking in Portuguese.

2In-context learning refers to generative model’s ability
to understand and generate responses based on information
provided in the context of the conversation or task at hand
(Brown et al., 2020).
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2 Related Work

2.1 Explainable Fact-Checking

Explainability in fact-checking systems refers to
the ability of models to provide a rationale for their
decisions. Regarding the explainable fact-checking
pipeline, Kotonya and Toni (2020a) suggest a set
of tasks, as shown in Figure 1. Note that the ex-
plainable fact-checking pipeline includes both fact
extraction and fact verification tasks, along with the
generation of suitable explanations related to the
system’s inputs.

Figure 1: Explainable fact-checking pipeline.

Most existing explainable fact-checking methods
produce explanations that consist of the most rel-
evant portions of the system input (Kotonya and
Toni, 2020a). Specifically, there are (i) attention-
based explanations, which rely on the form of some
type of visualization of neural attention weights,
for example, using LSTM and DNN-based methods
with attention mechanisms to extract explanations
(Thorne et al., 2019; Popat et al., 2017; Thorne et al.,
2019); (ii) explanation as rule discovery, that uses
rules-based approaches and knowledge graphs to
provide explanations (Gad-Elrab et al., 2019; Ah-
madi et al., 2019); (iii) explanation as summariza-
tion, that formulate the automatic generation of ex-
planations as a text summarization problem: extrac-
tive text summarization (Atanasova et al., 2020a), or
both extractive and abstractive text summarization
(Kotonya and Toni, 2020b); (iv) adversarial claims
justification, that generates adversarial claims (e.g.
method that uses a GPT-2 based model) for robust
fact-checking (Thorne et al., 2019; Niewinski et al.,
2019; Atanasova et al., 2020b); and (v) retrieved
evidence as justifications that consists of the task of
generating justifications based on robust evidence
retrieved from data sources (Zeng and Gao, 2024;
Wang et al., 2023) or based on prompt engineering
enabled by in-context learning (Brown et al., 2020)
using zero-shot prompting (Zeng and Gao, 2024;
Wang et al., 2023; Zeng and Gao, 2024) or few-shot
prompting (Zarharan et al., 2024).

2.2 News Credibility Verification
Estimating the reliability of a news source is rele-
vant not only when fact-checking a claim (Popat
et al., 2016); however, it also contributes signifi-
cantly to tackling article-level tasks such as fake
news detection (De Sarkar et al., 2018; Yuan et al.,
2020; Reis et al., 2019; Pan et al., 2018; Vargas et al.,
2022; Dong et al., 2015). News credibility verifica-
tion methods have primarily focused on measuring
the reliability of news reporting (Pérez-Rosas et al.,
2018; Hardalov et al., 2016), the entire media outlet
(Baly et al., 2018a; Horne et al., 2018; Baly et al.,
2019), and content and user accounts on social me-
dia platforms (Castillo et al., 2011; Mukherjee and
Weikum, 2015; Iftene et al., 2020) to mitigate vari-
ous types of harmful strategies. For instance, Yuan
et al. (2020) proposed a jointly news credibility
and fake news detection structure-aware multi-head
attention network (SMAN), which combines the
news content, publishing, and reposting relations of
publishers and users. Similarly, Long et al. (2017)
proposed a new approach to validate the credibility
of news articles by analysing a multi-perspective
speaker profiles. Iftene et al. (2020) implemented a
real-time application based on networks to identify
both fake users and fake news over countries and
continents in Twitter. Bhattarai et al. (2022) pro-
posed an explainable framework using the Tsetlin3

that learns linguistic features to distinguish between
fake and true news and provides a global interpre-
tation of fake news. In this paper, we estimate the
reliability of news sources for fact extraction.

2.3 Fact Verification with Language Models
Large Language Models (LLMs) have been used to
provide evidence for fact-checking. For instance,
Lee et al. (2021) explored the few-shot capability
to assess a claim’s veracity based on the perplexity
of evidence-conditioned claim generation. Zhang
and Gao (2023) proposed a prompt engineering-
based method for fact verification that leverages
LLMs to separate a claim into sub-claims and then
verify each of them through multiple progressive
question-answering. Additionally, the reasoning
capabilities of LLMs have also been used to address
misinformation. For example, Press et al. (2023);
Jiang et al. (2023) concluded that LLMs’ reasoning
capabilities, combined with external knowledge, are
promising for a wide range of NLP tasks, including
fact extraction and fact verification tasks.

3A Tsetlin machine is an AI algorithm based on proposi-
tional logic.
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3 The Proposed Approach

3.1 Sentence-Level Factual Reasoning

Building on the explainable fact-checking pipeline
proposed by Guo et al. (2022), this paper introduces
a new method called SELFAR to enhance explain-
able fact-checking. SELFAR encompasses three
main tasks: Fact Extraction (FE), Fact Verification
(FV), and Explanation Generation (EG), as shown
in Figure 2, and described in detail as follows.

Fact Extraction (FE): According to Guo et al.
(2022), fact extraction relies on predicting the most
relevant claims to be checked. Therefore, we pro-
pose an approach for sentence-level news source
reliability estimation using a fine-tuned mBERT
model. In the context of misinformation, unreliable
news and media outlets are targets of a substantial
amount of misleading content, often presented as
evidence in the form of hyper-partisan or subjective
language (Kotonya and Toni, 2020a). Hence, the
main hypothesis is that accurately estimating source
reliability can be achieved by analyzing the subjec-
tivity and impartiality of text at the sentence level.
In particular, our model classifies each sentence into
two categories: reliable and unreliable. Reliable
sentences are presented impartially and focus on
objective facts. Conversely, unreliable sentences
are presented with partiality and therefore focus on
subjective interpretations. Table 1 shows examples
of biased (unreliable) sentences.

Fact Verification (FV): According to Guo et al.
(2022), fact verification relies on finding appropri-
ate evidence and predicting whether that evidence
supports or refutes the claim given as input. Since
the required evidence can often be unrefined or
unavailable, either due to gaps in the knowledge
sources (Alhindi et al., 2018), we propose a model
for sentence-level factuality prediction using LLMs.
This model predicts whether a sentence is fact or
fake using retrieved evidence from LLMs, which
are trained on a large number of diverse data repos-
itories. It checks whether the evidence of veracity
for the sentence is refuted or supported. As example
of sentences classified according to their veracity,
Table 1 shows examples of fake content and facts.

Explanation Generation (EG): According to
Kotonya and Toni (2020a), explainable fact-
checking must include the task of extracting an ex-
planation for the prediction. Instead of generating
explanations solely for fact verification, we propose
the post-hoc explanation generation for both fact
extraction and fact verification tasks.

Explanation generation for fact extraction: We
used LIME (Ribeiro et al., 2016) and SHAP (Lund-
berg and Lee, 2017) methods to generate post-hoc
explanations for fact extraction. These methods
produce explanations based on a vector of tokens,
where the coefficients represent the most relevant
features for predicting a class. In particular, we
measure the performance of LIME and SHAP in
generating post-hoc explanations for sentence-level
news source reliability estimation. Figure 3 shows
examples of explanations generated by LIME and
SHAP. Note that for each sentence given as input
to these methods, they assign a value for a set of
tokens. The red bars show the value assigned to
the most relevant features to predict the class unre-
liable, and the blue bars show the value assigned to
the relevant features to predict the class reliable.

Explanation generation for fact verification: We
proposed a set of zero-shot prompts using ChatGPT
4.0 (OpenAI et al., 2024) to generate post-hoc ex-
planations for factuality (veracity) prediction at the
sentence level. Zero-shot prompting is a technique
in which specific examples for that task are not
required. Instead, the model generalizes from exam-
ples of other related tasks. Table 2 shows post-hoc
explanations generated by the zero-shot prompts.

4 Experimental Setup

4.1 Model Architecture and Settings

We propose an approach for fact extraction using
a fine-tuned mBERT model, a second approach
for fact verification using retrieved evidence from
LLMs, and two approaches for post-hoc explana-
tion generation using LIME/SHAP and zero-shot
prompts. We describe these approaches as follows.

Fine-Tuned mBERT: We used the fine-tuned
mBERT model proposed by Vargas et al. (2023). In
essence, this model classifies news article sentences
as reliable or unreliable. It was trained on the Fact-
News dataset (Vargas et al., 2023), which comprises
6,191 annotated sentences in Portuguese.

Retrieved-Evidence from LLM: Due to the suc-
cess of ICL across NLP benchmarks, we proposed
a set of zero-shot prompts and manually assessed
them using ChatGPT 4.0 to recover evidence. The
proposed prompts are shown in Table 2. Moreover,
to predict factuality, we considered a set of spans
described in Table 4 provided as recovered evidence.
For this task, we utilized the checked claims from
fact-checking organizations in the FACTCK.BR
dataset (Moreno and Bressan, 2019) in Portuguese.
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Figure 2: The Sentence-Level Factual Reasoning (SELFAR) for explainable fact-checking.

Figure 3: Explanations generated at sentence-level by LIME and SHAP for the unreliable class.

Claims Zero-Shot Prompts Sentences Explanations Type

Fake Is it {[}fake | lie{]} that sentence? Show evidences
Vaccines cause autism. Yes, it is fake that vaccines cause autism. This idea is

based on a fraudulent 1998 study led by Andrew Wakefield
that suggested a link between the MMR vaccine (measles,
mumps, and rubella) and autism.

Supported

Brazil places tanks on bor-
der with Venezuela.

As of my latest update, there haven’t been reports con-
firming that Brazil has placed tanks on its border with
Venezuela

Refused

True Is it {[}fact | true{]} that sentence? Show evidences
40% of crimes against
women occur at home.

Yes, it is true that around 40% of crimes against women
in Brazil occur at home. According to recent data from the
IBGE and other sources that monitor feminicides, most
of these crimes occur in domestic settings, which reflects
the impact of intra-family violence. This pattern of do-
mestic violence reinforces the need for public policies
focused on protecting women in their own homes (Correio
Braziliense).

Supported

Brazil spends R$3 per per-
son per day on everything
from vaccinations to trans-
plants in the SUS.

The specific amount can vary depending on the year and
the data source, but it’s clear that the figure of R$3 per
person per day is likely inaccurate

Refused

Table 2: Explanations (justifications) generated at sentence-level by ChatGPT using zero-shot prompts.

LIME and SHAP Post-hoc Explanations: We
proposed a post-hoc explanation method using
SHAP and LIME for fact extraction. We randomly
selected 510 sentences from the FactNews dataset,
equally labeled as unreliable and reliable. Then, we
asked a linguist, who is an NLP expert, to annotate
rationales for the sentences classified as unreliable.
An example of the annotated rationales is shown
in bold in Table 1. Note that the rationales were
annotated by an expert and consist of segments that
justify the classification of sentences as unreliable.

Zero-Shot Prompt Post-hoc Explanations: We
proposed a set of zero-shot prompts using ChatGPT
4.0 to generate explanations for fact verification. We
randomly extracted an average of 400 claims from
the FACTCK.BR dataset, equally classified as fake
and true. Then, we segmented them into sentences,
totaling 510 sentences. The proposed prompts and
their generated explanations are shown in Table 2.
It should be noted that we used the same number of
instances (510 sentences) to evaluate both proposed
explainability methods.
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5 Evaluation and Results

5.1 Evaluation of Models
We evaluated our models using F1-score, as shown
in Table 3. The results are available on GitHub4.

FE FV SELFAR
class F1 F1 F1
0 0.85 0.61 0.60
1 0.82 0.81 0.85
Avg 0.85 0.71 0.72

Table 3: Evaluation for FE, FV and SELFAR. Note that
as shown in Figure 2, For FE, the classes are reliable (0)
and unreliable (1). Conversely, for FV and SELFAR, the
classes are fact/true (0) and fake (1).

For the FE evaluation, we reported the prediction
results obtained from the fine-tuned mBERT model.
We also conducted a ROC error analysis, as shown
in Figure 4. Note that the FE model achieved a
high F1-Score of 0.85 and an AUC of 0.92, which
corroborates our hypothesis that analyzing subjec-
tivity and impartiality in text at the sentence level is
promising for predicting news source reliability.

Figure 4: ROC curves for fine-tuned mBERT model.

For the FV evaluation, we assessed the ability
to predict whether a sentence is fake or fact/true
using recovered evidence from a set of zero-shot
prompts shown in Table 2. Specifically, we classi-
fied as supported recovered evidence included any
of the spans described in Table 4. Otherwise, it was
classified as refused (see examples in Table 2).

For the FV and SELFAR evaluations, we used
510 sentences extracted from the FACTCK.BR.
Specifically for SELFAR, we first applied the FE
model, which predicts whether a sentence is reliable
or unreliable. We then selected only the sentences
classified as reliable and used them as input for the
FV model. Finally, we computed the F1-Score for
factuality prediction using our retrieved-evidence
from LLMs method. As shown in Table 3, the FV
model performs poorly in predicting true claims,
indicating that the prompts designed for fake claims
may be more effective for predicting veracity.

4https://github.com/franciellevargas/SELFAR

Fake True
Spans <Yes>; <Yes, it is a lie>; <Yes,

it’s fake/false>; <Yes, that/this
statement is a lie>; <There is
no evidence>; <There is no
reliable evidence or records>;
<Yes, that seems to be a
lie/fake>; <It can be consid-
ered fake>; <It is not true
that>; <Yes, the statement
<sentence>is fake/lie>; <Yes,
the statement <sentence>is
fake>.

<Yes>; <Yes, it is true that>;
<Yes, that/this statement is
true/fact>; <Yes, there is ev-
idence>; <It is consistent with
the available data>; <The ev-
idence suggests>; <The evi-
dence points to true>; <It is
true that>; <Yes, the statement
<sentence>is true/fact>;<The
available evidence confirms>.

Table 4: Spans used to predict factuality by retrieved-
evidence from LLM using zero-shot prompts.

Finally, we observed that ChatGPT can report
inaccurate or false information. For example, in the
prompt, Is it true that Rodrigo Maia (a Brazilian
politician) was not born in Brazil?, the verdict was,
“No, Rodrigo Maia was born in Brazil”. However,
Rodrigo Maia was actually born in Chile5. Simi-
larly, in the prompt, Is it true that the law regulating
the profession of translator and interpreter of Brazil-
ian Sign Language (Libras) was created by Maria
do Rosário?, the verdict was, “This law was pro-
posed by Otávio Leite”. However, the fact is that
the Brazilian politician Maria do Rosário is the one
who created this law6.

5.2 Evaluation of Explanations

5.2.1 Metrics
We evaluated the EG methods using faithfulness,
plausibility and readability. Theses metrics focus
on different aspects of the quality of these explana-
tions. For instance, faithfulness measures whether
the explanation accurately captures the real relation-
ships between the input features and the model’s
output. On the other hand, plausibility measures
whether the explanation is understandable and in-
tuitive from a human perspective, particularly for
domain experts. Finally, readability measures how
easily a human can understand the explanations.

Plausibility: We report the IOU (Intersection-
Over-Union) F1-score, and as token-level Precision,
Recall, and F1-score metrics (DeYoung et al., 2020)
to measure plausibility. These scores are computed
at the token level, comparing the model’s rationales
against tokenized human-annotated ones.

IOU F1-score is proposed on a token level ratio-
nales (DeYoung et al., 2020), in which the IOU is

5https://lupa.uol.com.br/jornalismo/2019/03/
25/verificamos-maia-chile-brasileiro

6https://lupa.uol.com.br/jornalismo/2019/01/
02/verificamos-bolsonaro-libras/
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given by overlap of tokens in two sets divided by
the size of their union, as shown in Equation 1.

IOU-F1 =
1

N

N∑

i=1

Greater(IOUi, 0.5)

where IOUi =
Mi ∩Hi

Mi ∪Hi

(1)

where Mi and Hi represent the rationale set of
the i-th instance provided by the model and human
respectively; N is the number of instances.

Token-level F1-score is defined in Equation 2,
which is also computed on a token level by the over-
lap of the rationales tokens predicted by the models
with the human-annotated ones. To measure the
Token-level F1 score, we measured the Token-level
Precision (Pi) and Recall (Ri) and also reported
both metrics.

Token-F1 =
1

N

N∑

i=1

(2× Pi ×Ri

Pi +Ri
)

where Pi =
Mi ∩Hi

Mi
and Ri =

Mi ∩Hi

Hi

(2)

Faithfulness: We report two metrics: compre-
hensiveness and sufficiency (DeYoung et al., 2020)
to measure faithfulness.

Comprehensiveness measures whether the tokens
necessary for making a prediction were selected.
To calculate rationale comprehensiveness, for each
instance xi, we construct a contrasting example
x̃i, which is xi without the predicted rationales ri7.
Let m(xi)j be the original prediction provided by a
model m for the predicted class j for the instance xi.
We then define m(xi\ri)j as the predicted probabil-
ity of x̃i by the model m for class j. The compre-
hensiveness score is shown in Equation 3. A high
comprehensiveness value implies that the rationales
are influential in the prediction.

Comp =
1

N

N∑

i=1

(m(xi)j −m(xi\ri)j)
(3)

Sufficiency measures the degree to which the pre-
dicted rationales are adequate for a model to make a
prediction. The sufficiency score is shown in Equa-
tion 4. Where m(ri)j is defined as the prediction
probability of giving only the predicted rationales ri
to a model m for class j. A low sufficiency implies
the rationales are sufficient to make a prediction.

Suff =
1

N

N∑

i=1

(m(xi)j −m(ri)j)
(4)

Readability: We applied Flesch Reading Ease
(Flesch, 1948) and Szigriszt-Pazos Index (Pazos,
1993), both of which are applicable to Portuguese,
to evaluate zero-shot prompt post-hoc explanations.

7We select the top k tokens from the rationales to remove,
where k is defined as the average length of the token sets
predicted by each explainability model.

5.2.2 Results
Tables 5 and 6 present the evaluation results of ex-
planations generated by LIME, SHAP, and zero-
shot prompt methods from the perspectives of plau-
sibility and faithfulness for LIME and SHAP, and
readability for the zero-shot prompts. Our eval-
uation revealed that for class 0 (the reliable sen-
tences), both SHAP and LIME yielded poor results.
One possible explanation is that the words used to
identify unreliable sentences, which are predomi-
nantly subjective, have a much greater impact on
predicting unreliable sentences compared to those
used to identify reliable sentences. Additionally, the
zero-shot prompt post-hoc explanations achieved
high readability. We also observed that the prompts
proposed for fake claims generated more readable
explanations compared to those for true claims.

Quantitative Analysis: When examining unreli-
able sentences, the rationales highlight the tokens
that contribute to media bias. Removing these to-
kens from the sentence would make the remaining
text appear less unreliable, thus altering the classifi-
cation probability. This effect does not occur with
reliable sentences, so we cannot observe similar ef-
fects when computing comprehensiveness and suffi-
ciency metrics for this class. In Table 5, We observe
that LIME performs better on faithfulness metrics,
while SHAP excels in plausibility metrics. How-
ever, the number of tokens returned as rationales by
each method differs significantly. LIME, by default,
returns a maximum of 10 tokens, whereas SHAP
returns more. The plausibility metrics are com-
puted by comparing these tokens against human-
annotated rationales, which are often more com-
plex and contextually rich, such as entire phrases.
Consequently, the intersection between LIME’s to-
kens and human-annotated rationales is generally
smaller than SHAP’s, leading to lower metric scores
for LIME. Despite this, the token-level precision is
higher for LIME because this metric is calculated
as the intersection divided by the total number of
tokens retrieved by the method (SHAP or LIME).
Since LIME retrieves fewer tokens than SHAP, it
achieves a higher precision. However, LIME’s re-
call performance is significantly worse. When ex-
amining the performance of both methods on faith-
fulness metrics, the situation is reversed, with LIME
showing superior results for both comprehensive-
ness and sufficiency metrics. One possible explana-
tion is that the words selected by LIME have a more
significant impact on the model’s prediction. Since
LIME selects fewer words than SHAP, it may focus
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Methods Plausibility Faithfulness
IOU F1 ↑ Token Precision ↑ Token Recall ↑ Token F1 ↑ Comp. ↑ Suff. ↓

BERT-LIME 0.1098 0.4378 0.3913 0.3698 0.2961 -0.0546
BERT-SHAP 0.1529 0.4312 0.5111 0.4285 0.2868 -0.0491

Table 5: Evaluation for explanations generated by LIME and SHAP explainability methods.

Method
Readability

Flesch Reading Ease Szigriszt Pazos Index

Zero Shot Prompts
True Fake True Fake
0.77 0.84 -1519.48 -1361.47

Table 6: Evaluation for zero-shot prompts post-hoc explanations.

more on the most critical words for the prediction,
thus improving the faithfulness metrics. This obser-
vation aligns with the qualitative analysis conducted
by a specialist and described below. In Figure 5,
we present the top 20 most important words pre-
dicted by LIME and SHAP. This includes 10 words
most important for predicting the unreliable class
(red bars) and 10 most important for predicting the
reliable class (blue bars). This analysis is based
on all 510 selected sentences. We observed that the
vocabulary on the right side of the graphs, represent-
ing unreliable words, tends to be more subjective
and includes more adjectives. This observation also
aligns with the qualitative analysis conducted by a
specialist, which is described as follows.

Figure 5: Most relevant features provided by LIME
and SHAP to predict each class (reliable/unreliable) for
sentence-level news source reliability estimation.

Qualitative Analysis: We also conducted a quali-
tative analysis with a linguist, comparing LIME and
SHAP scores with human-annotated rationales for
the most impactful tokens in determining whether
a sentence is unreliable. Regarding the agreement
between the LIME and the human rationals, abstract
verbs that involve subjective interpretation, where
the author projects an action or feeling onto the
subject (e.g., “attack”, “deceive”), were frequently

identified as indicative of media bias. Another crit-
ical feature of unreliable sentences was the pres-
ence of adjectives (e.g., “prudent”, “useful”) and
adverbs (e.g., “negatively”). Regarding disagree-
ments between LIME and human-annotated ratio-
nales, LIME often identified articles and preposi-
tions as indicators of bias. In many cases, specific
nouns (e.g., “history”) were also flagged, although
their potential for bias depends on the context in
which they are used. Finally, SHAP identified a
higher number of articles, prepositions, and pos-
sessive pronouns as indicators of bias compared to
LIME. However, these terms alone do not necessar-
ily influence the degree of bias in the sentences. Re-
garding the agreement between SHAP and human-
annotated rationales, we observed the same types
of terms as with LIME. However, SHAP tended to
identify a larger number of nouns and proper nouns
as being linked to bias. Thus, there seems to be
a greater cohesion between the LIME method and
human-annotated rationales for this specific task.

6 Conclusions

This paper introduces a new method to improve ex-
plainable fact-checking. The SELFAR predicts reli-
ability and the factuality of news articles or claims at
the sentence level, generating post-hoc explanations
using LIME/SHAP and zero-shot prompts. Our ex-
periments showed that unreliable news stories are
comprised mostly of subjective words, in contrast
to reliable ones. Thus, predicting unreliable news
stories by analyzing text impartiality and subjectiv-
ity is promising for fact extraction and improving
explainable fact-checking. In addition, LIME out-
performs SHAP in explaining reliability predictions.
Lastly, while zero-shot prompts provide highly read-
able explanations and achieve an accuracy of 0.71
in predicting factuality, their tendency to hallucinate
presents a challenge. We also present baselines for
explainable fact-checking in Portuguese.
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Limitations

Although the proposed method for explainable
fact-checking has addressed relevant gaps in pro-
viding more accurate and transparent automated
fact-checking, the method for retrieving evidence
from LLMs for factuality (veracity) prediction may
present limitations due to the potential for LLMs to
hallucinate. Therefore, as future work, we aim to
mitigate this limitation by extracting evidence from
multiple and diversified data sources.
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Abstract

Summarizing documents with Large Language
Models (LLMs) warrants a rigorous inspec-
tion of the resulting outputs by humans. How-
ever, unaided verification of generated outputs
is time-intensive and intractable at scale. For
high-stakes applications like healthcare where
verification is necessary, expediting this step
can unlock massive gains in productivity. In
this paper, we focus on the task of evidence
extraction for abstractive summarization: for
each summary line, extract the corresponding
evidence spans from a source document. View-
ing this evidence extraction problem through
the lens of extractive question answering, we
train a set of fast and scalable hierarchical archi-
tectures: EarlyFusion, MidFusion, and LateFu-
sion. Our experiments show that (i) our method
outperforms the state-of-the-art by 1.4% rela-
tive F1-Score; (ii) our model architecture re-
duces latency by 4x over a RoBERTa-Large
baseline; and (iii) pretraining on an extractive
QA corpus confers positive transfer to evidence
extraction, especially in low-resource regimes.

1 Introduction

Suppose we train an LLM to summarize a doctor-
patient conversation into a clinical note. Such mod-
els could save physicians hours each day. However,
an auditing step is still requisite. This auditing in-
volves repeatedly diving through a long transcript
to find relevant information for every detail that ap-
pears in the note (see fig.1). Without an automated
mechanism that makes this process efficient, can
we really say that we’ve saved a clinician any time?

Workflows that involve grounded tasks that op-
erate on top of a source document (e.g. summa-
rization, dialogue and translation) (Touvron et al.,
2023; Bubeck et al., 2023; Widyassari et al., 2022;
Rafailov et al., 2023; Liang et al., 2023) are well
suited for LLMs (Krishna et al., 2021; Lehman
et al., 2019; Lei et al., 2016; Asan et al., 2020).
However, owing to the lingering limitations of

Figure 1: Verifying details in a clinical note requires
perusing long conversation transcripts to find substanti-
ating evidence.

these models, humans have remained firmly in the
loop, providing last-mile verification of the model’s
outputs. In these setups, an individual may spend a
significant amount of time on verification of LLM-
generated first drafts. For grounded tasks, verifying
each generated sentence can be broken down into
two steps (i) locating a span of text from the much
larger source document that has information related
to that sentence; (ii) using the obtained span to form
conclusions about correctness. With long sources
(e.g. hour-long conversation transcripts), it’s likely
that carrying out the first step of extracting the right
span of evidence proves more cumbersome than
using the extracted evidence to make conclusions.
Furthermore, this problem is exacerbated as the
transcript grows in length. Therefore, we present
automated Evidence Extraction (EE) as an efficient
and scalable way to reduce verification time and
fully realize the benefits of workflow automation.
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Figure 2: Architectures of the Early, Mid and LateFusion models. Breaking down the source document into
sentences helps scale to large documents. In Late and MidFusion architectures the encoders are separated allowing
us to cache the embeddings of the sentences of the source. In the MidFusion model, we do not immediately select
the CLS embedding but concatenate with the query embeddings for an intermediate transformer step.

In this work, we pose the Evidence Extraction
(EE) problem as follows: Given a sentence that re-
quires verification (query) and a source document
D that this line should be grounded in, can we
identify spans in D (evidence-spans) that contain
information relevant to the query? We immediately
notice a parallel to Extractive Question Answering
(QA): query to question, source to passage, and
evidence to answer. This parallel allows us to (i)
explore designs for model architectures drawing in-
spiration from the dual-encoder and cross-encoder
families in QA; (ii) explore the benefits that train-
ing on QA datasets confer to EE. The latter point
proves useful since EE data is hard to come by
while ample amounts of QA datasets are available.

In our work, we are focused on exploring simple
architectures that are scalable and fast when work-
ing with source documents that span beyond thou-
sands of words. For scaling to longer documents,
we consider hierarchical architectures that break
down a source document into sentences which
are encoded independently through RoBERTa-like
backbones. We then add document-wide context by
concatenating them along the sequence dimension
and passing them through an LSTM. For speed, we
aim to decouple the encoding of the query and the
encoding of the source document. This allows us
to amortize the higher cost of computing source
document embeddings by caching them for reuse

upon subsequent queries on the same source. Af-
ter the decoupled encoding process, we combine
the obtained source and query embeddings in a
Late-Fusion step (see Figure 2).

On the flip side, while slow, we find that early
fusion of the query string with each sentence in
the source is easier to train and performs well due
to query-conditioned encoding of the source sen-
tences. We explore an optimal point in the trade-off
between performance and throughput and advocate
for the use of our proposed MidFusion (MF) archi-
tecture that finds an intermediate point to include
query-source cross attention. Further, the perfor-
mance gap between the Late, Mid and Early Fusion
models narrows with access to more training data,
or in its absence, QA pretraining data. Thus, prac-
titioners can follow the two step strategy of pre-
training an MF architecture on QA data followed
by finetuning on available EE data.

Our EarlyFusion (EF) model outperforms the
State-of-the-Art on the Unified Summarization
Benchmark (USB) dataset by 1.4% relative while
our MidFusion model following the two step strat-
egy is 5.8x faster while performing within 5% rela-
tive F-Score. On our medical dataset, we find the
gap between the three models to be far less em-
phatic due to our access to nearly 0.5M training
points. Further, while F-Score reflects the trade-
off between precision and recall, we also compute

206



human-agreement (HA) of displayed evidence us-
ing human annotators on our Medical Dataset. We
find that the HA of EF is 96%, MF 94%, LF 90%
highlighting a gap between the efficacy of these
methods under span selection metrics versus hu-
man judgement of helpful evidence. As an addition,
we collect feedback from two clinicians who used
our EE models for verifying LLM generated clini-
cal notes in real clinics. We begin by highlighting
relevant prior work in the next section.

2 Related Work

Innovations in better LLM generations are plenty
(Lewis et al., 2020; Wallace et al., 2021; Choubey
et al., 2021; Wei et al., 2022; Ramprasad et al.,
2023; Rafailov et al., 2023). However, our work
is situated among post-hoc methods that serve to
increase trust in these generations. With the ten-
dency of LLMs to hallucinate (Kalai and Vempala,
2023; Xu et al., 2024) there has been growing in-
terest in post-hoc evaluation of the factuality of
LLM generations (Zhang et al., 2021; Manakul
et al., 2023; Wei et al., 2024; Goyal and Durrett,
2021; Honovich et al., 2022). Our work considers
applications where the aim is not to automatically
evaluate each generation but to retrieve supporting
material from the source to aid a human with verifi-
cation. Thus, while scoring the extent of factuality
is useful, they cannot replace human spot-checking
when an LLM is deployed in a low-risk setting.

While there are similarities with the line of work
in Lei et al. (2016); Lehman et al. (2019); Jain et al.
(2020) that highlight regions of the input that have
correlation with model predictions, they are closer
to explaining predictions than explicitly retrieving
supporting material. Similar ideas also appear in
MultiHop QA works Zhao et al. (2023); Tu et al.
(2020); Nishida et al. (2019), but differ in our fo-
cus on scale and domain adaptation. The meth-
ods in Pruthi et al. (2020) tackle the EE problem
in Deep NLP, as we framed it, although they are
limited to classification tasks. Further, Kryściński
et al. (2019) builds EE and factuality verification
models with weak supervision, but their method
does not handle cross-sentence dependencies or co-
reference resolution. More recently, Stammbach
(2021); DeHaven and Scott (2023); Krishna et al.
(2023); Wadden et al. (2021, 2020) all tackle the
EE task, but are distinct given our focus on scala-
bility, speed, and establishing the benefits of QA
pretraining for EE. An open-source benchmark for

Domain # of Examples
Train Valid Test

Biographies 3740 1875 3642
Landmarks 0 0 211
Disasters 247 122 256
Newspapers 0 0 137
Companies 162 75 156
Schools 220 123 235

Table 1: Number of examples across different domains
for the train, validation, and test splits of the Unified
Summarization Benchmark (USB) dataset.

EE is introduced in (Krishna et al., 2023) along
with the state-of-the-art methods on this dataset
which we compare against.

3 Methodology

We have a source document D made up of compo-
nents u ∈ U . Unless mentioned otherwise, u is a
sentence (we make explicit when u is a token). An
operation (e.g. summarization) on D results in an
output O. For each sentence q ∈ O (e.g summary
sentence) we need to find an evidence span E ⊂ U .
We refer to q as query. Intuitively, E should have
sentences u that contain information relevant to q.

3.1 Proposed Architectures

EarlyFusion Hierarchical Classification For
scalability, we first consider a hierarchical archi-
tecture that encodes each utterance ui indepen-
dently, while adding document-wide context at a
later step. This allows us to scale inference to arbi-
trarily long documents since we batch through the
sentences that make up the document. We begin
by concatenating the tokens of the query q with
the tokens of the ith sentence ui, separated by a
demarcating </s> token. Denote each such query-
sentence sequence fi. Then each fi is pushed
through an encoder backbone (e.g. RoBERTa (Liu
et al., 2019)) and the vector corresponding to the
CLS token is taken to obtain an embedding ri. We
add document-wide context by concatenating all
the sentence embeddings ris into a sequence and
passing this through an LSTM, whose outputs are
pushed through a classification head to obtain log-
its li. We consider the sigmoid of the logit σ(li) to
be the score si to include ui in the evidence set E.

LateFusion Hierarchical Classification While
processing the document hierarchically allows us
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to scale inference to long documents , it does not
contribute to faster inference. The main bottleneck
is pushing each query-sentence pair through a large
backbone like RoBERTa (Liu et al., 2019). If a
second query on the same source D originates, we
would repeat the entire process. This overhead
could be avoided if we independently obtain sen-
tence embeddings for D and reuse them for every
query based off of D. Therefore, we consider a late
fusion of sentence and query embeddings as fol-
lows: Each sentence ui is pushed through the back-
bone (e.g.RoBERTa) and the vector corresponding
to the CLS token is selected as the sentence embed-
ding ri. These embeddings ris can be cached. In
order to find an evidence set for query q, push the
query through the backbone and select the vector
corresponding to the CLS token as the query embed-
ding rq. Now concatenate rq vector and ri vector
to get the late-fused embeddings denoted as, say
fi. Finally, to add document wide context, concate-
nate these fused embeddings fis into a sequence
which is pushed through an LSTM. Use a classi-
fication head on the outputs of the LSTM for this
sequence to obtain logits li on which we apply a
sigmoid to obtain scores si for each sentence. For
each subsequent query on this source, we can reuse
ris and only need to recompute a single push of
the new query through the backbone followed with
relatively lightweight LSTM and linear operations.

MidFusion Hierarchical Classification The
LateFusion architecture removes several layers of
cross-attention between the tokens in the query and
the tokens in source sentences that the EarlyFu-
sion architecture enjoys, rendering it much weaker.
This leads us to explore where such cross attention
could be included while still allowing us to cache
the outputs of the backbone model on the source
sentences. In the previous architectures, we im-
mediately compress the backbone outputs on the
source sentences and the query by simply selecting
the CLS token’s embedding alone. Consider instead
that we delay this compression. We could now con-
catenate the query’s token level embeddings with
each of the source sentence’s token level embed-
dings to form a query-sentence sequence, instead of
concatenating the query tokens themselves with the
source sentence tokens (as we did in EarlyFusion).
Formally, push each sentence ui through the back-
bone encoder to obtain token level embeddings ti
for each sentence ui. Cache these embeddings. To
find an evidence set for a query q, push the query

through the backbone encoder to obtain query em-
beddings tq. Now concatenate the query embed-
ding sequence with the token embedding sequence
to obtain sequence embeddings [tq, ti]. These con-
catenated embedding sequences are passed through
a transformer layer, and the outputs of the trans-
former layer are mean pooled into a single vector ri.
Document wide context is now added by concate-
nating these ris into a sequence and operating an
LSTM on them, followed through by a classifica-
tion head. We find that this additional transformer
layer before the compression into a single vector
with mean-pooling is competitive with the Early-
Fusion architecture while still being much faster.

All these architectures are depicted in Figure 2.

Figure 3: F-Score vs Throughput tradeoff for the three
fusion types along with the baseline (adopted from (Kr-
ishna et al., 2023)). We use RoBERTa-Large as the back-
bone encoder. Throughput is computed as an average
across the examples in the test split of the USB dataset.
We note that the MF model outperforms previous state-
of-the-art while having much higher throughput.

3.2 Parallel to Extractive QA
Our Evidence Extraction problem as framed is es-
sentially a span identification problem. Thus, a
parallel can be drawn between our task and an ex-
tractive QA task (Pearce et al., 2021; Lewis et al.,
2019; Xu et al., 2021): query to question, evidence
to answer, and source document to passage. An
answer in QA tasks is less subjective than evidence
and usually has a clearly identified location in the
passage. Viewing Evidence Extraction as a harder
QA task leads us to explore the benefits of pretrain-
ing on QA data. Given the comparatively much
higher quantities of QA datasets, we could lever-
age them for the following reasons:

1. The need to operate in low-data regimes
Document-Query-Evidence data tuples are
scarce. Furthermore, enterprises often update
their language models, but re-annotating new
EE data each the time the LLM is swapped
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Model F-Score

RoBERTa Large 71.01
T5-Large 77.22
Flan-T5-Large 77.71

Early Fusion (ours) 77.32
Early Fusion++ (ours) 78.80

Mid Fusion (ours) 51.21
Mid Fusion++ (ours) 74.50

Late Fusion(ours) 36.80
Late Fusion++ (ours) 53.06

Llama-13B 5.56
Vicuna-13B 6.65
GPT-3.5-turbo 26.78

Table 2: Results on the USB 4.1 test set. We compute
the F-Score at a corpus level by stacking predictions and
ground truth for sentences across examples to compute
Precision and Recall. ++ indicates models that were
first trained on a QA Pretraining Corpus 4.3. The first 3
methods are state-of-the-art from (Krishna et al., 2023).

is impractical. Therefore, the EE model may
have to be trained in a low-data regime.

2. Domain Adaptation gains Krishna et al.
(2023) show that the gains from increasing
quantities of in-domain EE train data on OOD
test data plateaus. In our experiments we find
that pretraining on a related but different task
unlocks further domain adaptation gains.

3. Bi-encoders perform better with more data
Models like our Late and MidFusion models
typically converge and perform better when
they have access to ample amounts of data.
See performance gaps in Table 2 vs Table 4.

We include additional comments and rationale
on our methodology in Appendix F.

4 Datasets

4.1 Unified Summarization Benchmark (USB)

The USB dataset (Krishna et al., 2023) is a Wiki-
derived benchmark containing annotations for 8
summarization-related tasks. One of those tasks
is EE, providing a testbed that is (i) open-source;
(ii) presents a low-data regime; (iv) has natural do-
main splits that allow for testing OOD performance.
Dataset statistics are presented in Table 1.

4.2 Medical Dataset

Clinical documentation is one of the leading causes
of physician burnout in the United States (Gaffney
et al., 2022; Sinsky et al., 2016). Following each
encounter, physicians are required to author a
SOAP note that covers (S)ubjective (O)bjective
(A)ssessment and (P)lan information summariz-
ing the appointment. Traction has been gained by
automating the generation of this note using Foun-
dation Models (e.g. see Abridge AI). We use a
unique corpus containing thousands of recorded
clinical conversations (in English) with correspond-
ing SOAP notes created by an annotation work-
force trained in SOAP note standards. Composed
of 6862 visits of real-life patient-doctor encounters
(de-identified to remove PHI information and with
full consent), our dataset presents for each visit a
trained-worker-scribed transcript, segmented into
utterances along with a SOAP note. The conver-
sations are 1.5k words on average. Further, each
sentence in the SOAP note is annotated with a sup-
porting evidence span from the conversation. We
split the dataset into 5770, 500 and 592 notes for
train, validation and test splits. Considering each
[SOAP note sentence, evidence utterances] tuple
as a data point results in 400k train, 50k valid and
50k test samples.This dataset is not open-sourced
due to the sensitive nature of the data.

4.3 QA Pretraining Corpus

Our QA Pretraining Corpus is formed by combin-
ing three popular Question Answering datasets:
SQuAD V1 (Rajpurkar et al., 2016), HotPotQA
(Yang et al., 2018), and BioASQ datasets (Krithara
et al., 2023). We setup the span-selection problem
as sentence classification, to resemble our down-
stream formulation (Ram et al., 2021). The dataset
details are presented in the Appendix in Table 10.

4.4 SynthMed: Synthetically Curated
Extractive QA on PubMed Articles

Domain-specific extractive QA datasets are falling
out of favor as more focus is given to freeform
answer generation. This in tandem with the idea
that training on domain-specific extractive QA
might be more beneficial than general extractive
QA leads us to explore the synthetic generation of
domain-specific extractive QA datasets using GPT-
4 (Achiam et al., 2023). Given PubMed documents,
we prompt GPT-4 to generate QA pairs. We tai-
lor the prompt to focus on challenging questions
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Train Domain Biographies Companies Disasters Landmarks News Schools

Mid Fusion 52.15 35.10 31.82 34.84 36.12 40.75
Mid Fusion++ 68.08 50.39 42.13 51.01 52.54 48.89

Table 3: Domain Shift experiments on USB dataset. We train the midfusion model on Biographies without (first
row) and with (second row) pretraining. We then evaluate its performance on other domains. F-Scores are presented.

Method Base Model Precision Recall HA

BM25 - 63.01 39.00 65.00
Dual Encoder Retriever Longformer 79.02 72.10 83.00

Late Fusion (Span Extraction) RoBERTa-base 74.42 79.06 85.00
Late Fusion (Classification) RoBERTa-base 75.61 80.29 90.00
Mid Fusion (Classification) RoBERTa-base 76.37 82.18 94.00
Early Fusion (Classification) RoBERTa-base 81.29 83.16 96.40

Table 4: Evidence Extraction results on the test split of our Medical Dataset 4.2. We compute the metrics at a
character level for better comparison between different granularities and tokenizers. HA (Human Agreement)
percentage of examples where the predicted evidence was considered satisfactory by humans.

Method Precision Recall HA

Late Fusion (SE) 65.41 65.72 74.40
Late Fusion (C) 68.21 67.13 76.00
Mid Fusion (C) 71.22 71.98 80.00
Early Fusion (C) 75.27 73.62 84.80

Table 5: EE results on a modified test split of our medi-
cal data 4.2 where the queries are modified by applying
stochastic rules such as token dropout and reordering.
Metrics are computed at a character level. SE: Span
Extraction, C: Classification, HA: Human-Agreement.
All methods use RoBERTa-base as the backbone.

that have low lexical overlap with the extractive
answer, involving multi-hop reasoning, and strictly
grounded to the document. We similarly try to gen-
erate synthetic Evidence Extraction data but find
the generated examples to be of lower quality, often
with high lexical overlap between the query and
evidence, and sometimes altogether incorrect. For
examples and details including the exact prompts
used to generate them, refer to Appendix A.

5 Experiment Setup

5.1 General Evidence Extraction

Our first line of experiments aims to test our pro-
posed hierarchical architectures on an open-source
benchmark. Accordingly, we use a dataset which
contains scope for Evidence Extraction: the USB
dataset 4.1. We run experiments with the MidFu-

sion architecture, comparing its domain adaptation
performance with and without pretraining. USB
provides an organic way to measure domain adap-
tation capacity by demarcating their data into pre-
specified domains. We train on the Biographies
domain and test on the others, providing insights
into the benefits of pretraining on out-of-domain
data.

We borrow previous state-of-art results on this
dataset from (Krishna et al., 2023). We carry out
our experiments with RoBERTa-Large (Liu et al.,
2019), while adapting the state-of-the-art t5-large
(Raffel et al., 2020) and flan-t5-large (Chung et al.,
2022) results from (Krishna et al., 2023). We
note that there is a discrepancy in the sizes of
these models (the t5-large family is at 770M, while
RoBERTa-large has 355M parameters with negli-
gible additions from the added LSTM and dense
layers) which places us at a disadvantage.

5.2 Medical Evidence Extraction

Our second line of experiments, compares method-
ologies on our Medical Dataset 4.2. In addition
to our hierarchical classification methods, we also
include straightforward dual-encoder token-level
span selection, as well as LateFusion when posed
as span selection. The dual-encoder token-level
approach simply encodes the entire transcript using
an encoder, and the query using an encoder, con-
catenates the encodings and classifies start and end
tokens for evidence, without any hierarchy involve-
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ment. For completeness, we also show the result
obtained by a simple BM25 baseline (Robertson
et al., 2009). Refer Table 4. For the dual-encoder
token-level method we use Longformer (Beltagy
et al., 2020) as the choice of backbone for support-
ing the encoding of long transcripts, while for the
hierarchical methods we stick to RoBERTa-base.
In addition to Precision and Recall we include an
additional metric Human-Agreement (HA) which
measures the fraction of examples where a human
annotator is satisfied with the conciseness and cov-
erage of the surfaced evidence. It is important
to note that Precision and Recall are computed
on a test set with 10,000 examples, but Human-
Agreement is computed on a random subset of 250
examples since it requires human labor.

In order to test the robustness of our models,
we simulate mild distribution shift by adding con-
trolled noise to the queries in the test set. Collab-
oration with Abridge helped us identify realistic
noise models that emulate the characteristics of
noise observed in hospital systems. These results
are presented in Table 5. The noise model is a
combination of stochastic token drop in the query,
token re-ordering, and inclusion of queries larger
than typical of the examples in the dataset.

We also pretrain our models on both generic as
well as SynthMed dataset, while testing with and
without addition of simulated noise. Refer Table 6.

6 Experiment Results

Naive Baselines are not competitive From Table
4 it is evident that the BM25 model performs much
worse than deep learning based alternatives. This
puts perspective on the non-trivial nature of the
task. Further, conforming with intuition, the BM25
model suffers in recall since rephrasing between
the source and query results in lack of a keyword
match and requires semantic similarity comparison.

More data helps reduce performance gap In
table 2 we see performance leaps as we move from
Late to Mid to Early Fusion. However, in table
4 we see that the performance gap while present
is not as stark. We attribute this difference to the
amount of data available for training. Our Medi-
cal Dataset contains hundreds of thousands of data
samples while USB contains a few thousand. This
also manifests when pretraining on a QA corpus,
we see that the gap especially for MidFusion++
model is significantly attenuated, and in distribu-
tion shift experiments we see that a further drop in

available data when restricted to a single domain
drops performance across the board (ref Table 3).

QA pretraining helps Evidence Extraction It
is easy to see from Table 6 and Table 2 that QA
pretraining confers significant performance boosts
despite being a different task. This shows more in
low-resource regimes, where MidFusion++ demon-
strates similar performance to the full attention
models while the boost in performance to Early-
Fusion++ seems comparatively modest. Also, QA
pretraining has massive impact in robustness as
seen in the performance of our models on the sim-
ulated OOD medical data (Table 6) as well as do-
main restricted training on USB (Table 3). While
in (Krishna et al., 2023) the authors note that more
data for in-domain finetuning does not prove useful,
with performance saturating quickly, when faced
with a more difficult setting, pretraining on a related
task continues to confer large percentage gains in
both in-domain and out-of-domain performance.
Consistent with their findings, we see that in the
EarlyFusion setting, the gains are relatively smaller.
Further, as is seen in Table 6, we find that pre-
training on domain specific QA data can be more
beneficial than training on generic QA datasets es-
pecially for niche domains like healthcare.

GPT-4 generated synthetic data is useful From
table 6 we see that SynthMidFusion significantly
outperforms other types of pretraining methodolo-
gies. The pretraining data for this model was cu-
rated by prompting GPT-4 as detailed in 4.4. This
suggested cheap and efficient ways to lower access
to pretraining QA data that is of sufficient quality.

Wide gap between HA and PR-metrics In table
4, 5, 6 we include human evaluation under the col-
umn HA (ref 5.2). Evidence relevance as assessed
by humans seem to place the model in much better
light. This is due to examples where the candidate
spans surfaced by the model provide alternate ev-
idence that we consider acceptable under human
evaluation but fails to score against the ground truth
transcript. The performance gap between Late and
EarlyFusion is diluted according to human anno-
tators. Thus, while LateFusion Models are from
perfect, they do surface reasonable candidates.

In Appendix D.1 we consider adding document-
wide context using a transformer instead of an
LSTM. Despite having fewer parameters, LSTMs
seem to do better than transformers.
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Method P(M) R(M) HA(M) P(AM) R(AM) HA(AM)

MidFusion 76.37 82.18 94.00 71.22 71.98 80.00
MidFusion++ 78.38 83.83 95.40 72.73 71.74 81.40
MidFusion++ w DAug. 79.80 83.00 95.20 74.00 75.10 83.80
SynthMidFusion++ 81.20 82.41 95.00 72.66 81.10 82.80

Table 6: Evidence Extraction Results on the test splits of our Medical Dataset excluding (M) and including
(AM) query augmentation. ++ indicates models that have QA pretraining. MidFusion++ w DAug. corresponds
to a MidFusion model where we enabled 10 percent of the medical finetuning data to contain the same query-
augmentation strategies as in the AM dataset. SynthMidFusion++ is a MidFusion model pretrained on synthetically
generated data 4.4 HA - Human-Agreement 5.2, M: Medical Dataset 4.2, AM: query Augmented Medical Dataset.

Absence of an entity Consider the following line
inserted in an LLM generated SOAP note: "Extrem-
ities: No clubbing or cyanosis" appearing under
Physical Exam (PE) section. The PE section is
populated this way by default and then changed
if an issue is discussed. Here, we need to surface
evidence that discussion about clubbing/cyanosis
is not part of the conversation. This is a failure
mode, perhaps for the problem setup itself, since
the complete evidence is the entire transcript.

When wrong is it really wrong? Often the pre-
dicted evidence is reasonable but does not score
since it is an alternate source of evidence:

Query: The patient to continue with the lower
dosage of Trulicity if it alleviates the symptoms.

Predicted Evidence: "It doesn’t cause that but
it can make it worse. So, let’s change Trulicity to
0.75 mg. It’s going to be a dose change. So, use
what you have and then we’ll go ahead and lower
the dosage to make sure that you’re doing okay.

Ground Truth Evidence: "What you can do is,
um, alternate the 1.5 with a 0.75 and you can see if
you see a difference in how you feel. And I can give
you some of the 0.75 and we’ll switch you to the
lower dosage because it is true that Trulicity can
give you more reflux and if you do have something
in your stomach, the bowel issue, it will worsen.

7 Feedback from Clinicians

With the help of Abridge we made our EE model
available to two clinicians to aid them in finding ev-
idence for verifying LLM-generated clinical notes
from transcripts. We asked them to randomly as-
sign 50 percent of their notes for enabling the aid
of our EE model and to carry out the remaining
half as usual without this aid (refer to Appendix C
for more details on the exact instructions). We then
collected feedback:

Feedback.1: EE dramatically reduces the
amount of time required to verify the contents of
the AI generated note. Without it, I tend to skim
the contents, do keyword searches, and struggle to
identify the evidence; this process is frustrating and
often negates the time that I saved by not drafting
the note myself. I estimate that EE finds the ap-
propriate evidence >75% of the time, and reduces
the amount of time needed to review a note from 5
min to 1 min. Moreover, I am more likely to do a
comprehensive review of the note when using EE.

Feedback.2: The time saved by using EE was
consistently 1-2m, almost half the time for a given
length, and takes extra cognitive effort without it.
Having to scan the whole transcript vs just 3-7 lines
of a transcript - huge efficiency booster. I estimate
I used EE about a total of 55 times, with 2-3 that
may have been close but not quite correct mapping,
but minor and corrected when extending the query.
In particular, EE makes it easier to check medical
terms, reported symptoms, and doses.1

8 Conclusions

In this paper, we described a setup that extracts
evidence spans for Language Model outputs on
grounded tasks. We presented three hierarchical ar-
chitectures focused on speed and scalability to long
documents, while looking to QA pretraining strate-
gies for boosting performance. We showed that
tapping into Extractive QA datasets allows positive
transfer even if the curated data is synthetic.

9 Limitations

Some notable limitations:
1F.1 is due to an Associate Professor of Medicine, Pul-

monary and Critical Care, University of Pittsburg Medical
Center and F.2 is due to an MD, University of Pennsylvania,
Perelman School of Medicine
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1. While the feedback included in 7 is promising,
it is not a rigorous clinical study. This paper
addresses the first piece of the puzzle: fast and
automated EE. A natural future step is to as-
certain its impact on reducing the verification
burden through formal clinical experiments.

2. It is also possible for users of the EE models
to log simple feedback on their satisfaction
with the surfaced evidence which could be
leveraged to further improve the EE model.

3. The synthetic data generated is of the QA task.
While this confers generalization benefits to
EE, this choice is also partly a consequence
of the relatively poor quality of synthetic EE
data that current LLMs generate. In Appendix
A we show some examples of synthetically
generated EE data even after several iterations
of refining the prompts used to generate them.
Notably, generated EE queries are often lines
copied verbatim from the passage. A future
direction is to more comprehensively explore
synthetic data generation strategies that might
directly yield EE data.

4. An important future step is to explore multi-
lingual capabilities of EE models, with possi-
bilities to have the query and the source be in
different languages.

10 Ethics

This study complies with HIPAA guidelines by
conducting training and evaluation only on de-
identified patient data to ensure privacy and data
security. Further, we did not retain or view any pa-
tient data when obtaining feedback from clinicians
for sec 7. Additionally, all personnel viewing even
the deidentified medical data first obtained HIPAA
compliance certificates after completing mandatory
best-practices online courses.
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A Synthetic Data

In table 7 and 8 we show some randomly picked ex-
amples from our synthetically generated Question
Answering and Evidence Extraction datasets re-
spectively. We see a stark difference in the depth of
the QA examples versus those of the EE examples,
leading us to primarily consider the QA data for
pretraining experiments. The following prompts
were used to create these examples

1. QA Prompt: "Generate challenging question-
answer pairs given a passage, abiding by the
following instructions. (i) The answer should
be an extractive span from the passage. (ii)
Answering the question should require read-
ing and comprehending the full passage but
should not require any knowledge not found in
the passage. (iii) The question can be in ques-
tion form or statement form in which case the
answer should correspond to evidence from
the passage for that statement. (iv) Rewrite
the question such that it has low lexical over-
lap with the answer. (v) Your response should
be in JSONL format where each line is a dic-
tionary containing keys ’Statement’ and ’Evi-
dence’. Passage:

2. EE Prompt: Generate statement-evidence
pairs given a passage, abiding by the follow-
ing instructions. (i) The evidence should be an
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extractive span from the passage. (ii) Locat-
ing the evidence should require reading and
comprehending the full passage but should
not require any knowledge not found in the
passage. (iii) The statement can be such that
there is evidence in the passage to contradict
or substantitate it. (iv) Rewrite the statement
such that it has low lexical overlap with the ev-
idence. (v) Your response should be in JSONL
format where each line is a dictionary contain-
ing keys ’Statement’ and ’Evidence’. Passage:

B Versions of Software Packages

Numpy 1.24.4, Python 3.10.12, transformers
4.29.0, torch 2.0.0, SpaCy 3.6.0, fuzzywuzzy
0.18.0, openai 1.33.0

C Instructions for Feedback from
Clinicians

For obtaining F.1 and F.2 in sec 7 we first created
an interface with a simple mechanism to toggle the
LateFusion Model from table 4 on and off. They
were asked to randomly assign 20 of 40 notes to
their usual verification process without EE model
assistance, and the remaining 20 with EE model
assistance for querying evidence. The random as-
signment also allows us to remove biases in opinion
that may arise if one set is completed first before
the other due to the fatigue factor as they get to the
tail end of the experiment. The clinicians were then
asked to provide feedback paying attention to

1. Any change in average time required to ver-
ify a clinical note when using our model as
opposed to without

2. An estimate of how many times the model was
queried and what fraction of responses was
relevant evidence

3. If the use of the model led to identification
of errors that would have otherwise passed
unseen or impact on confidence in the final
note when using our model in the loop.

D Ablations

D.1 LSTM vs Transformer for adding
document wide context

For adding context across document (which is im-
portant for identifying non-contiguous evidence

spans and coreference resolution), our architec-
tures incoporate an LSTM, which is also themati-
cally light-weight in alignment with our efforts for
low-inference latency, that operates on the indepen-
dent sentence embeddings by treating them as a
sequence. In this section, we justify our use of the
LSTM over transformer layers by considering an
ablation. We run experiments on the Unified Sum-
marization Benchmark dataset with a transformer
instead of an LSTM in the final step. The results
are shown in table 9.

E Details of our QA corpus

In Table 10 we show the number of examples we
use in the train, test and validation splits of our QA
corpus. The positive to negative class prportion is
calculated by considering the ratio of number of
sentences that have positive label to the number of
sentences that have label zero.

F Comments on Methodology

Here we briefly include some commentary on the
methodology and relegate the rest to the analysis
of experiments.

Choice of Classification Setup: The task is to
produce prediction sets. Therefore, the space of
predictions is the power set of U (Tsoumakas and
Katakis, 2007; Bates et al., 2021). Predicting a
logit and a corresponding softmax score across
each member in this set is computationally infea-
sible. Assigning a softmax score across utterances
alternatively is interpreted as comparing the rela-
tive scores of different utterances making it into E
(multiclass) but does not extend an easy interpre-
tation to selecting multiple utterances (multilabel).
Therefore, while we do compute logits with-context
from neighbouring utterances, we proceed to score
each utterance using a sigmoid of its logit2. An
alternative that applies when the set E contains
only a single contiguous span of utterances is to
identify start and end utterance pointers for this
span. We also include modeling of this type where
applicable.

LLMs for Verification: In section 4.4 we dis-
cuss the prompting of LLMs to curate QA datasets
(Li et al., 2023; Figueira and Vaz, 2022). This is
different from their application to generate expla-
nations. The key point is that we are interested in

2enabling the selection of multiple utterances based on
thresholds (set using cross-validation)
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Generated Question Corresponding Answer

Describe the outcome of capsaicin treatment
on the obesity and steatohepatitis development
in Pemt(-/-) mice.

disruption of the hepatic afferent vagus nerve
by capsaicin failed to reverse either the protec-
tion against the HFD-induced obesity or the
development of HF-induced steatohepatitis in
Pemt(-/-) mice.

How does hepatic vagotomy affect hepatic in-
flammation and ER stress in Pemt(-/-) mice?

HV increased the hepatic anti-inflammatory
cytokine interleukin-10, reduced chemokine
monocyte chemotactic protein-1 and the ER
stress marker C/EBP homologous protein.

Elucidate the method used to validate candi-
date genes following array analysis.

pyrosequencing and genotyping for putative
methylation-associated polymorphisms per-
formed using standard PCR

How many genes showed a significant num-
ber of BWC-linked CpGs, and what was this
threshold?

four of which showed ≥ 4 BWC-linked CpGs

In what way were subjects paired with the
control group in the HS prevalence study?

matched with controls based on age, gender,
and race

Table 7: Examples from GPT-4 generated synthetic QA data. This is a random sample and non-cherry picked, but it
is possible to see the innate ability of these models to generate quality QA examples for training.

Generated Query Corresponding Evidence

ILC2s were increased in patients with co-
existing asthma among the CRSwNP popu-
lation.

ILC2s were increased in patients with co-
existing asthma (P = 0.03) in the CRSwNP
population.

Pemt(-/-) mice are protected from HF-induced
obesity when fed a high-fat diet (HFD).

Pemt(-/-) mice are protected from HF-induced
obesity; however, they develop steatohepatitis.

A higher chemotherapy effect on lymphocytic
infiltration is associated with pCR and better
prognosis.

A higher infiltration by CD4 lymphocytes was
the main factor explaining the occurrence of
pCR, and this association was validated in six
public genomic datasets.

Cluster Y is a profile mainly characterized by
high CD3 and CD68 infiltration.

Immune cell profiles were analyzed and corre-
lated with response and survival.

A higher infiltration by CD4 lymphocytes pre-
dicts pathological complete response to neoad-
juvant chemotherapy.

We identified three tumor-infiltrating immune
cell profiles, which were able to predict patho-
logical complete response (pCR) to neoadju-
vant chemotherapy

Table 8: Examples from GPT-4 generated synthetic EE data. This is a random sample and non-cherry picked, yet it
is apparent that these examples consist of statements that have high lexical overlap with sentences in the passage.

outputs that point to locations in a document that
a human can quickly verify. While using LLMs
in chain-of-thought or self-rationalizing through
explanations is a form of interpretability, they do
not mitigate the need for a human to verify even

those freeform explanations.
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Model Fusion F-Score

EarlyFusion LSTM 77.32
EarlyFusion Transformer 76.61

EarlyFusion++ LSTM 78.80
EarlyFusion++ Transformer 78.12

MidFusion LSTM 51.21
MidFusion Transformer 48.87

MidFusion++ LSTM 74.50
MidFusion++ Transformer 74.31

LateFusion LSTM 36.80
LateFusion Transformer 39.72

LateFusion++ LSTM 53.06
LateFusion++ Transformer 54.13

Table 9: Ablation Study: We consider the use of Trans-
former instead of LSTM for the final stage of our hi-
erarchical architecture. Results are shown on the test
split of the USB dataset. The F-Score is computed at an
utterance level by computing micro precision and recall.

Entity Value

# Train Samples 180469
# Validation Samples 13006
Positive to Negative Class Proportion 0.073

Table 10: Dataset statistics for our QA Pretraining Cor-
pus, which consists of a mixture of SQuAD, HotpotQA,
and BioASQ.

218



Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 219–233
November 15, 2024 ©2024 Association for Computational Linguistics

Question-Based Retrieval using Atomic Units for Enterprise RAG

Vatsal Raina, Mark Gales
ALTA Institute, University of Cambridge

{vr311,mjfg}@cam.ac.uk

Abstract

Enterprise retrieval augmented generation
(RAG) offers a highly flexible framework for
combining powerful large language models
(LLMs) with internal, possibly temporally
changing, documents. In RAG, documents
are first chunked. Relevant chunks are then
retrieved for a user query, which are passed
as context to a synthesizer LLM to generate
the query response. However, the retrieval step
can limit performance, as incorrect chunks can
lead the synthesizer LLM to generate a false
response. This work applies a zero-shot adapta-
tion of standard dense retrieval steps for more
accurate chunk recall. Specifically, a chunk
is first decomposed into atomic statements. A
set of synthetic questions are then generated
on these atoms (with the chunk as the context).
Dense retrieval involves finding the closest set
of synthetic questions, and associated chunks,
to the user query. It is found that retrieval with
the atoms leads to higher recall than retrieval
with chunks. Further performance gain is ob-
served with retrieval using the synthetic ques-
tions generated over the atoms. Higher recall
at the retrieval step enables higher performance
of the enterprise LLM using the RAG pipeline.

1 Introduction

Since the popularized ChatGPT as an instruction-
finetuned large language model (LLM) deployed at
scale to the lay market, there has been a substantial
uptake on the interest of businesses to incorporate
LLMs in their products for a variety of downstream
tasks (Bahrini et al., 2023; Castelvecchi, 2023; Ba-
dini et al., 2023; Kim and Min, 2024). For most
companies, they are interested in using such mod-
els as enterprise LLMs where the model can handle
queries related to proprietary on-premise data.

It has been repeatedly demonstrated that these
LLMs have general (public) knowledge implic-
itly embedded in their parametric memory which
can be extracted upon querying (Yu et al., 2023a).

However, the LLMs do not have implicit knowl-
edge about a specific enterprise’s textual database
in a custom domain and hence are prone to hal-
lucinate in such situations (Xu et al., 2024b; Yu
et al., 2023b). Additionally, the transformer-based
(Vaswani et al., 2017) LLMs typically have a lim-
ited context window (due to quadratic order in cost
of the attention mechanism), which means informa-
tion for a specific company to be queried over can-
not be directly fed-in as a prompt to the LLM. Due
to limited budget, it is typically not feasible to fine-
tune LLMs on a specific enterprise’s data. In par-
ticular, with evolving data from ongoing projects,
it is challenging to maintain a constantly updated
company-specific LLM finetuned on new data with-
out catastrophic forgetting (Luo et al., 2023).

To tackle this issue, and with retrieval augmented
generation (RAG) proposed by Lewis et al. (2020),
RAG-inspired systems have rapidly become the de-
facto as a zero-shot solution for enterprise LLMs.
At the essence, there are 2 steps: 1. retrieval and
2. synthesis. Documents are split into indepen-
dent chunks, and a retrieval process is applied to
identify the relevant chunks to a given query. The
retrieved chunks (which should fit into the context
window) with the query are passed as the prompt
to the synthesizer LLM to get the desired response.

Currently, the bottleneck for most enterprise
LLMs is the retrieval step, where the correct in-
formation is not retrieved for the LLM to answer
the question (Arora et al., 2023). Hence, this work
focuses on building upon zero-shot approaches to
improve the retrieval step for RAG. A potential
limitation of the RAG set-up is that an embedding
model is used to retrieve the relevant chunks effi-
ciently when given a query. Each pre-calculated
chunk has its corresponding embedding stored in
memory, which allows the closes chunks to be re-
trieved by embedding the incoming query into the
same space. However, there is a mismatch in trying
to match the space of queries and chunks as each
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chunk can carry a large amount of information.
Instead, our work looks to represent each chunk

as a set of atomic pieces of information. Min et al.
(2023) introduced atomization of text for improv-
ing the assessment of summary consistency. These
atoms can be structural (e.g. sentences of a chunk)
or unstructured where a set of atoms is generated
for any chunk. By embedding the atoms instead of
the chunks themselves, the relevant atoms can in-
stead be identified (that correspond to a specific set
of chunks) for the posed query in the embedding
space. The atomic breakdown of the chunk enables
more accurate retrieval.

We further identify that even with the atomic
embedding representations of the chunk, a given
atom and the query do not necessarily best align for
retrieval as the former is a statement with a piece of
information while the latter is a question about
locating a missing piece of information. Thus,
we propose generating synthetic atomic questions.
Each atom has a set of questions generated, which
in turn are embedded. Therefore, the embedded
incoming query is used to identify the closest set of
atomic questions which in turn point to the relevant
set of chunks to be passed to the synthesizer LLM
in the RAG pipeline. As enterprise RAG operates
over a closed set of documents, the generation of
the atoms and corresponding synthetic questions
is a one-off cost. Similarly, the increased set of
embeddings to search over for the closest matches
for the query embedding is of less concern given
the various very efficient algorithms for embedding
search such as FAISS (Douze et al., 2024).

Current information retrieval approaches applied
to the RAG pipeline look at improving the quality
of dense retrieval through generation augmented
retrieval (GAR), where a query is rewritten for high
recall retrieval. However, we focus our attention
on representing the chunks more efficiently for re-
trieval (information retrieval literature explore such
approaches - see Section 2. The contributions: an
exploration of how the retrieval step in the enter-
prise RAG pipeline is improved with structured and
unstructured atomic representation of a document
chunk and further improvement with the generation
of atomic questions.

2 Related Work

Recently, several works have extended RAG (Zhao
et al., 2024). Many approaches finetune the com-
ponents of the RAG pipeline. For example, Siri-

wardhana et al. (2023) explore adapting end-to-end
RAG systems for open-domain question-answering
while Zhang et al. (2024) introduce RAFT for fine-
tuning RAG systems on specific domains by learn-
ing to exclude distractor documents. Additionally,
Siriwardhana et al. (2021); Lin et al. (2023) jointly
train the retriever and the generator for target do-
mains. However, our work focuses on exploring
zero-shot solutions as finetuning can be a computa-
tionally infeasible procedure for many enterprises.

In terms of zero-shot approaches, there have
been several extensions proposed. Gao et al.
(2023a) propose hypothetical document embedding
(HyDE) where an LLM is used to transform the
input query into an answer form (hallucinations are
acceptable) for improved dense retrieval over the
chunks. Similarly, Wang et al. (2023b) suggest a
query expansion approach termed query2doc where
an LLM is used to expand the query (Jagerman
et al., 2023) with a pseudo-generated document,
which they demonstrate to be effective for dense re-
trieval. Alternatively, we propose approaches that
focus on modifying the knowledge base on which
retrieval is performed rather than modifying the
user queries as is common in GAR (Shen et al.,
2023; Feng et al., 2023; Arora et al., 2023).

Song et al. (2024) retrieve a superfluous num-
ber of chunks during the retrieval step. They then
re-rank the retrieved chunks with a re-ranker sys-
tem to identify the most relevant set. Similarly,
Wang et al. (2023c) propose FILCO to filter out
the retrieved documents as an additional step in the
RAG pipeline. Sun et al. (2023) explore the zero-
shot use of LLMs as alternatives for traditional
re-rankers. Arora et al. (2023) additionally incorpo-
rate the re-rank steps with GAR in an iterative feed-
back loop. Leveraging the comparative abilities of
LLMs, Qin et al. (2023) propose using pairwise
comparisons for the re-ranking of retrieved docu-
ments. Alternatively, Sarthi et al. (2024) propose
RAPTOR as an iterative technique to pass a summa-
rized context (based on the retrieved documents) to
the synthesizer. Iter-RetGen by Shao et al. (2023)
follow a similar iterative summarization strategy
with LLMs. Finally, ActiveRAG (Xu et al., 2024a)
encourages the synthesizer to consider parametric
memory rather than just relying on the set of re-
trieved documents. Gao et al. (2023b) summarize
all advanced RAG approaches as additional pre-
retrieval or post-retrieval steps. Pre-retrieval steps
include query routing, query re-writing and query
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expansion. Post-retrieval steps include re-ranking
summarization and fusion. The synthetic question
retrieval over atomized units from the document set
is a form of pre-retrieval that operates on the knowl-
edge store rather than on the user query. Hence,
our work remains complementary with all forms of
post-retrieval RAG. See Appendix Figure 3.

Traditionally, retrieval of relevant documents for
a given query has been well studied (Hambarde
and Proenca, 2023) with approaches such as BM25
(Robertson et al., 2009). In recent years, dense
retrieval approaches have dominated as efficient
retrieval processes where queries and documents
are represented as dense vectors (embeddings) and
documents are retrieved based on the similarity
between these vectors. Semantically meaningful
vectors have been possible with the series of regu-
larly updated sentence transformers for generating
general purpose embeddings including Sentence-
BERT (Reimers and Gurevych, 2019), ConSERT
(Yan et al., 2021), SimCSE (Gao et al., 2021), Dif-
fCSE (Chuang et al., 2022), sentence-T5 (Ni et al.,
2022) and E5 (Wang et al., 2022). More recently,
there have been a series of more powerful embed-
ding models that adapt instruction-finetuned lan-
guage models as embedders (Li et al., 2023; Meng
et al., 2024; Muennighoff et al., 2024; Wang et al.,
2023a; BehnamGhader et al., 2024). Therefore,
this work restricts exploration to dense retrieval.

In recent information retrieval literature, Chen
et al. (2023) explore what granularity should be
used for retrieval. They introduce the concept of
breaking a passage into atomic expressions where
each encapsulates a single factoid. Zhang et al.
(2022) argue a document consists of many diverse
details. Hence, they propose representing a docu-
ment using multiple (diverse) embeddings to cap-
ture different views of the same content. Gospodi-
nov et al. (2023) investigate for Doc2Query, a
method of expanding the content of a document,
how hallucinations can be minimized in the gener-
ated queries over a document. Our work connects
these concepts for specifically generating multiple
synthetic questions over atoms in enterprise RAG.
This work is a bridge between methods explored in
information retrieval and the RAG community.

3 Retrieval for RAG

In enterprise RAG systems, the core pipeline can
be summarized as follows.

1. Split: Given a textual corpus of documents,

a set of chunks are generated by splitting all
text into distinct paragraphs.

2. Retrieve: For a given user query, the relevant
set of chunks are retrieved.

3. Synthesize: The original query and the re-
trieved chunks are passed to a synthesis model
to generate a response to the query using the
provided chunk information as the context.

Here, the focus is on improving the retrieval step
of the enterprise RAG pipeline. For the scope of
the data considered in this work, we assume that
the answer to a specific query is present in only
one chunk (i.e. there are no unanswerable queries
and multiple chunks are not required to deduce the
answer to a question). Therefore, the retrieval step
task can be defined as follows:

Task Let R(q; c) ∈ 0, 1 denote an oracle
relevancy function that returns 1 if a chunk, c,
contains the answer to the user query q and 0
otherwise. Given a set of N chunks, {c}1:N ,
and a user query q, retrieve chunk ck such that
R(q; ck) = 1 but

∑
i ̸=k R(q; ci) = 0.

Next, we describe the various approaches
for the retrieval step of enterprise RAG systems.
The focus is on zero-shot approaches that can be
applied without any training and we assume we
have no-cost in accessing the relevancy function.

3.1 Standard

In the standard retrieval set-up for the RAG
pipeline, dense retrieval is used for identifying
the most relevant chunk to the user query. Let
E (·) denote a sentence embedding model. The
embedding model has been trained to produce se-
mantically meaningful vector representations of
natural language text (see Section 2 for the evolu-
tion of sentence transformers). All of the document
chunks and the query are embedded into the high-
dimensional space such that:

ci = E (ci) ,∀i ∈ [1, N ] (1)

q = E(q) (2)

Then the chunk, ck̂, is selected such that ck̂ and
q have the shortest cosine distance between all
chunk embeddings and the query embedding. The
cosine distance between a pair of vectors a and b
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Figure 1: Question-based retrieval using atomic units for enterprise RAG.

is defined as cos[a,b] = 1− aTb/|a||b|.

[chunk] k̂ = argmin
k

cos[q, ck] (3)

One shortcoming of the standard retrieval approach
in RAG is that query embeddings are compared
against chunk embeddings. However, the seman-
tic embedding representation of a query does not
necessarily align with the semantic embedding rep-
resentation of the chunk that needs to be retrieved.
Hence, dense retrieval can lead to the incorrect
chunk being retrieved. The following sections de-
scribe modifications to the dense retrieval of the
chunks to increase the recall rate.

3.2 Generation augmented retrieval

As a baseline, the HyDE approach (Gao et al.,
2023a) is used as a form of GAR (see Section 2) 1.
The approach requires the query, q to be re-written
to q′ where q′ aims to be a complete hypothesized
answer to the query. For example, What is the cap-
ital of India? is rewritten to The capital of India
is London. Note, the answer of the query is not
important. Instead the form of the answer should
hopefully match the nature of the real answer e.g.
London and New Delhi are both places. Now, the
standard retrieval approach is applied from Equa-
tion 3 with q′ = E(q′) as the embedding of the
re-written query.

[hyde] k̂ = argmin
k

cos[q′, ck] (4)

1There are several GAR approaches. We find the form of
HyDE works best for this dataset from preliminary experi-
ments and hence select it as an appropriate baseline for GAR
in RAG.

Intuitively, with an answer-like sequence present
in the embedded query, there is a greater likelihood
of matching with the relevant chunk. Typically, the
re-writing process is achieved zero-shot with an
LLM by relying on its parametric answer (at the
rewriting stage, hallucinations are not a concern).
Henceforth, this approach is referred to as HyDE.

3.3 Atomic
A query is typically searching for a specific piece
of information in a chunk. The embedding repre-
sentation of the chunk can be viewed as an average
representation of all the different pieces of informa-
tion present in the chunk. Often, the pieces of in-
formation in the same chunk can be distinct, which
can lead to the query embedding being distant from
the target chunk embedding with the answer.

Therefore, we explore atomic retrieval. Here,
the chunk text is partitioned into a set of atomic
statements (referred henceforth as atoms) such that

ck → {a(k)1 , . . . a(k)nk
},∀k (5)

With a = E(a), the query embedding is compared
against the atomic embeddings. The closest atomic
embedding is used to identify the corresponding
chunk to be retrieved. The expectation is that indi-
vidual atomic embeddings are more likely to align
with a query’s embedding in the vector space.

[atom] k̂, ĵ = argmin
k,j

cos[q,a
(k)
j ] (6)

For evaluation, k̂ is of interest and ĵ is discarded.
In this work two forms of atoms are considered:

• Structured: Each sentence in the chunk is a
separate atom.
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• Unstructured: An atom generation system is
asked to generate atomic statements that best
capture all the information in the chunk. See
Section 4.2 for a description of the specific
atom generation system.

Despite atomizing a chunk of text, there is risk
of the query not necessarily matching the target
atom in the embedding space as the atom contains
semantic information about the answer while the
query does not. Therefore, we propose an exten-
sion called atomic questions. For a given atom,
a set of synthetic questions are generated that are
best answered by the atom given the chunk as the
context information. Hence,

a
(k)
j → {y(j,k)1 , . . . y(j,k)nj,k

},∀j, k (7)

[question] k̂, ĵ, î = argmin
k,j,i

cos[q,y
(k,j)
i ]

(8)
As before, only k̂ is of interest for evaluation. Fig-
ure 1 summarizes the RAG pipeline with question-
based retrieval using atomic units. Effectively, each
chunk can be summarized by a set of questions that
probe different pieces of information.

4 Experiments

4.1 Data

SQuAD BiPaR

# total chunks 2, 067 375
# total queries 10, 570 1, 500
# queries / chunk 5.1±2.3 4.0±0.0

# words / query 10.2±3.6 7.2±2.9

# words / chunk 122.8±54.8 181.1±52.8

# sentences / chunk 6.6±3.1 14.2±5.7

Table 1: Statistics of datasets.

SQuAD (Rajpurkar et al., 2016) is a popular choice
as an extractive reading comprehension dataset con-
sisting of triples of contexts, questions and answer
extracts. The contexts are sourced across a wide
variety of Wikipedia articles. We re-structure the
validation split of the SQuAD dataset for the task
of retrieval in RAG as follows. As all questions are
answerable (unlike SQuAD 2.0 (Rajpurkar et al.,
2018)), we assume that the answer to a given ques-
tion must be present in its corresponding context
passage. We additionally assume that the answer
to a specific question is not present in any other
context. Therefore, we shuffle all the contexts such
that the task requires retrieval of the appropriate

context for a given question. Once a particular con-
text is retrieved, it is the role of the synthesizer in
the RAG pipeline to generate the required answer.
Remaining consistent with the terminology of re-
trieval in RAG, contexts are viewed as chunks and
the questions are termed queries. The collection
of chunks are effectively the pre-split texts from a
knowledge store, which in this case is Wikipedia.

Table 1 summarizes the statistics of the re-
structured SQuAD validation set for assessing the
RAG framework. In total there are 2,067 chunks
with 10,570 queries, resulting in approximately 5
queries per chunk. The number of sentences within
each chunk vary with a single standard deviation
of 3.1 about 6.6. As mentioned, in Section 3.3,
the sentences of a chunk are treated as structured
atoms. Overall, the re-structured dataset allows us
to explore whether we can improve the retrieval of
chunks for queries over a fixed knowledge store.

Additionally, we consider BiPaR (Jing et al.,
2019) for evaluating the RAG framework. BiPaR
is a manually annotated dataset of bilingual paral-
lel texts in a novel-like style, created to facilitate
monolingual, multilingual, and cross-lingual read-
ing comprehension tasks. We focus on only the
English texts over the test split. In a similar vain
to SQuAD, the knowledge store is constructed by
shuffling the contexts for all queries. Table 1 sum-
marizes the main details. It is particularly useful to
consider BiPaR for enterprise RAG as the informa-
tion content of the context is based on extracts from
novels. As the stories are fictional and not factual,
the parametric memory of an LLM cannot expect
to know the answers to the queries. Therefore, Bi-
PaR mimics the set-up of proprietary knowledge
stores for enterprises where retrieval is necessary
to identify the relevant information for a query.

4.2 Model details

Task Prompt

Query re-
writing

Please write a full sentence answer to
the following question. {query}

Unstructured
atom genera-
tion

Please breakdown the following para-
graph into stand-alone atomic facts. Re-
turn each fact on a new line. {chunk}

Question gen-
eration

Generate a single closed-answer ques-
tion using: {chunk} The answer should
be present in: {atom}

Table 2: ChatGPT prompts for zero-shot tasks.

For generating the embedding representations, the
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embedder E(·) is selected as all-mpnet-base-v2 2

from Huggingface. This embedder is a popular
choice for enterprise RAG (the default in LlamaIn-
dex 3 for open-source LLMs) as it performs well on
the MTEB (Muennighoff et al., 2023) leaderboard
despite its small size of 110M parameters. We ad-
ditionally present results using the e5-base-v2 4

embedder (Wang et al., 2022), which has topped
the MTEB leaderboard for models of the base size.

Instruction-tuned LLMs (Touvron et al., 2023;
Jiang et al., 2023) have demonstrated impressive ca-
pabilities across a diverse range of tasks. Therefore,
for HyDE, the query re-writing process is achieved
with zero-shot usage of ChatGPT 3.5 Turbo 5. Sim-
ilarly, ChatGPT is used for generating atomic state-
ments from a chunk of text as described in Section
3.3. Finally, we make use of the same model to au-
tomatically generate questions on the atoms. Table
2 summarizes the prompts for each of these tasks
6. The question generation system is applied for a
maximum of 15 times on each atom 7 at which the
performance plateaus (see Section 5).

4.3 Evaluation

In information retrieval, there is a large number of
metrics proposed for assessing retrieval capabilities
(Arora et al., 2016). Here, we focus on calculating
R@K (recall at K). R@K calculates the fraction
of queries for which the correct chunk is within
the top K chunks when retrieval is performed. We
specifically present R@1, R@2 and R@5. Note,
R@1 checks for the exact match while R@2 and
R@5 are more lenient. We do not consider other
retrieval measures that account for the ordering
of the documents retrieved as in the scope of this
work there is only 1 relevant chunk for each query.
For RAG, it is of interest to return multiple chunks
from the retrieval step and leave the job of finding
the correct answer amongst the retrieved chunks to
the synthesizer. The limit on this approach is the
context window of the synthesizer. For example
the context window for ChatGPT 3.5 is 16K tokens.
Hence, we consider moderately high K for R@K.

2https://huggingface.co/sentence-trans
formers/all-mpnet-base-v2

3https://www.llamaindex.ai/
4https://huggingface.co/intfloat/e5-b

ase-v2
5https://platform.openai.com/docs/mod

els
6Manual prompt engineering was performed to identify

the appropriate prompts to achieve sensible results.
7https://github.com/VatsalRaina/QARAG

5 Results

Table 3 presents the recall rates with various zero-
shot approaches of the retrieval step using SQuAD
and BiPaR with 2 different embedders.

Let’s take a look first at the all-mpnet-base-v2
embedder for SQuAD. Operating at the chunk
scale, where the raw text is embedded for dense re-
trieval, the standard RAG achieves a recall of 65.5%
with the top 1, which increases to 89.3% when con-
sidering the top 5 chunks retrieved. By applying
GAR with the HyDE baseline at the chunk scale,
we do not observe gains. As discussed in Section
3.3, the text chunk contains several semantic pieces
of information while the re-written query remains
related to a single semantic piece of information.
Hence, it is challenging for the HyDE approach to
improve recall at the chunk scale.

By splitting a chunk into structured atoms (sen-
tences), Table 3 further shows the recall by embed-
ding the atomic text or the corresponding synthetic
questions generated on those atoms (Equations 6
and 8 respectively). Additionally, the HyDE ap-
proach is applied with the atomic embeddings, us-
ing the rewritten query instead of the original from
Equation 6. Embedding the atomic text instead of
the chunk text observes significant gains, reach-
ing 70.2% for R@1 and 90.6% for R@5. As the
length of a sentence in a chunk is closer in length
to the re-written query, the HyDE approach on the
structured atoms further boosts the recall rates. An
additional gain is again observed by performing
dense retrieval with the set of generated questions,
achieving up to 73.8% for R@1.

The final rows of Table 3 for SQuAD with all-
mpnet-base-v2 further demonstrates the benefits
of using unstructured atoms in place of the struc-
tured atoms. A sentence from a chunk contains
more granular information than the whole chunk
but is not necessarily constrained to one piece of
atomic information. Therefore, by re-writing the
chunk into a series of independent atoms, dense
retrieval between the query and the set of atomic
embeddings leads to higher recall rates. As with
the structured atoms, the HyDE approach leads to
further performance gains with the unstructured
atoms. Finally, we observe the best performance
across all three recall rates by applying dense re-
trieval using the generated questions on the atoms.
It is clear that higher recall retrieval is possible by
matching queries with questions as they can expect
to be of the same form rather than attempting to
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Dataset Item all-mpnet-base-v2 e5-base-v2
R@1 R@2 R@5 R@1 R@2 R@5

SQuAD

Chunk Text 65.5 78.9 89.3 76.2 87.1 94.4
HyDE 65.2 77.9 88.9 66.4 79.9 91.1

Atom-Structured
Text 70.2 81.4 90.6 80.1 89.3 95.1
HyDE 71.5 82.3 91.1 73.7 84.6 93.0
Question 73.8 83.5 91.2 78.1 87.2 93.8

Atom-Unstructured
Text 72.6 83.9 91.9 80.0 88.3 94.6
HyDE 73.1 83.7 91.7 73.9 84.4 92.3
Question 76.3 85.4 92.6 80.2 88.6 94.5

BiPaR

Chunk Text 33.7 43.1 54.7 42.1 52.6 63.7
HyDE 31.2 41.2 51.7 36.6 47.4 58.9

Atom-Structured
Text 42.6 52.3 65.4 47.7 57.8 69.5
HyDE 40.1 50.1 62.1 43.5 52.1 64.9
Question 53.8 63.4 73.3 55.9 64.8 75.3

Atom-Unstructured
Text 43.9 54.3 66.9 49.7 58.1 69.1
HyDE 41.7 52.5 64.6 43.0 51.7 63.7
Question 53.7 61.9 72.9 55.3 64.1 74.5

Table 3: Retrieval performance for enterprise RAG. All recall rates are represented as percentages.

match queries with chunks.
Considering the higher performing embedder e5-

base-v2 on SQuAD, the trends are less clear due to
a stronger baseline. We observe that for R@1 that
atomic question retrieval with unstructured atoms
has the best performance, but drops to second and
third highest for R@2 and R@5 respectively.

Let’s now consider BiPaR from Table 3. Very
similar trends are observed for both all-mpnet-base-
v2 and e5-base-v2 embedders on this dataset. It
is noticeable that HyDE at both the chunk, struc-
tured atoms and unstructured atoms struggles to
outperform the equivalent text. This deviation in
the trend observed in SQuAD is expected as BiPaR
is based on fictional stories while SQuAD is based
on factual Wikipedia articles. Hence, the halluci-
nated answers generated by HyDE are unlikely to
help with retrieving relevant chunks which do not
correspond to the re-written query (see Appendix
Section A for more analysis about HyDE). In con-
trast, for public factual information (as in SQuAD),
the hypothesized answer generated by a powerful
LLM is more likely to be the correct answer than a
hallucination. Question-based retrieval operating
on atoms demonstrates significant gains over the
baseline for BiPaR. For example, using e5-base-v2
improves R@1 by approximately 14%.

In general, for the re-formatted SQuAD dataset,
Table 1 states there are 2,067 unique chunks. There-
fore, the standard retrieval approach for RAG leads
to storing 2,067 chunk embeddings. In contrast, the
atomic retrieval has substantially larger number of

embeddings stored. Using structured atoms, there
are 13,630 sentences in total while there are 16,793
unstructured atoms across the corpus. By consid-
ering the synthetic question generation strategy de-
scribed in Section 4.2, question retrieval strategies
require 13, 630× 15 and 16, 793× 15 embeddings
to be stored in memory for structured atoms and
unstructured atoms respectively. A similar increase
in the storage of embeddings apply for the BiPaR
dataset. Hence, it is of interest to explore how the
number of questions required for each atom can be
reduced to remove the redundant ones.

Figure 2 presents how the performance varies
with the number of synthetically generated ques-
tions on the unstructured atoms. For each recall rate
(R@1, R@2 and R@5), two profiles are indicated:
1. a random selection of synthetic questions for
the atoms of each chunk; 2. an optimally diverse
selection of synthetic questions for the atoms of
each chunk. The optimally diverse set of questions
is selected as follows. A threshold, τ is selected
on the pairwise cosine distance. For the full set
of atomic questions generated, the pairwise cosine
distances of the question embeddings is calculated
for each chunk. If any pairwise cosine distance is
below τ , one of the questions is purged. The pro-
cess if repeated until all questions in the remaining
set have pairwise cosine distances of their embed-
dings above τ . By sweeping τ , the total number of
synthetic questions across the corpus changes. One
can hence expect that a chunk with more informa-
tion will have a more diverse set of questions.
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(a) SQuAD: all-mpnet-base-v2 (b) SQuAD: e5-base-v2

(c) BiPaR: all-mpnet-base-v2 (d) BiPaR: e5-base-v2

Figure 2: Efficient unstructured atomic question retrieval. See Appendix Figure 4, Section B.1 for additional models.

Figure 2 shows that a significant number of ques-
tions are redundant across the SQuAD and BiPaR
chunks. By removing more than half of the ques-
tions (and hence halving the storage cost), perfor-
mance can be maintained at the maximal value for
each of the recall rates. In the extreme setting, with
only 20% of the questions retained, there is only a
marginal decrease in recall when using the optimal
set. Thus, despite a larger storage cost with atomic
question retrieval compared to standard enterprise
RAG, the performance boost can be justified with
an efficient choice of synthetic questions to retain.
See Appendix Section B.2 for unanswerability anal-
ysis of the generated questions.

6 Conclusions

RAG systems are a popular framework for enter-
prises for automated querying over company doc-
uments. However, poor recall of relevant chunks
with dense retrieval causes errors to propagate to
the synthesizer LLM. Previous works have focused

on extensions involving generation augmented re-
trieval where the query is re-written at inference
time to improve recall. Conversely, we explore
adaptations to the storage of the chunks. The re-
trieval step for RAG can be refined in a zero-shot
manner by 1) atomizing the chunks and 2) gen-
erating questions on the atoms. Significant im-
provements are observed on the BiPaR and SQuAD
datasets with this approach as partitioning a chunk
into atomic pieces of information allows dense re-
trieval with the query to be more effective. More-
over, operating in the question space, the query
embedding aligns better with the synthetic ques-
tions of the target chunk. We further demonstrate
that the storage cost of a large number of synthetic
question embeddings can be dramatically reduced
by only storing a diverse set of questions for each
chunk. Question-based retrieval using atomic units
will enable the deployment of higher performing
enterprise RAG systems without relying on any
additional training.
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8 Limitations

In this work, we have made several assumptions
which do not necessarily hold in real enterprises.
Our work focuses on only closed queries where
a single atom contains the answer. It would be
interesting to extend the approach to handle multi-
hop situations by generating synthetic questions on
pairs or collections of atoms. Additionally, we have
focused the presentation of our results on SQuAD
and BiPaR. It will be useful to consider additional
standard information retrieval benchmarks such as
the BEIR datasets (Thakur et al., 2021). We specif-
ically focus on small-scale datasets due to limita-
tions in the available computational budget. We do
emphasise that small-scale datasets often mimic the
size of datasets in enterprises, which emphasises
our focus on enterprise RAG. We further empha-
sise that for the use case of enterprise RAG, queries
are over proprietary information. Most mainstream
information retrieval datasets are based on public
factual information, which is not convincing for
the enterprise set-up. BiPaR (our choice of dataset)
is based on information from stories (non-factual),
which is more aligned with the concept of propri-
etary information.

9 Ethics statement

There are no ethical concerns with this work.
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Model nDCG@1 nDCG@3 nDCG@5 nDCG@10 R@10

BM25 18 30 35 40 67
all-MiniLM-L6-v2 29 43 48 53 79
BGE-base 37 54 59 61 85
E5-base-v2 41 57 61 64 87

E5-base-v2 (ours) 36 51 54 58 82
+ HyDE 42 57 61 63 85

all-mpnet-base-v2 37 51 56 61 87
+ HyDE 39 56 60 63 88

Table 4: Baselines for ClapNQ with HyDE.

Figure 3: Adapted diagram from Gao et al. (2023b) to summarize existing RAG approaches. We highlight in red
our contribution to the advanced RAG panel. Specifically, we modify the documents before they are indexed using
atomization and synthetic question generation.
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A Drawback of HyDE

In the main paper, we observed that HyDE per-
forms well for SQuAD but is less impressive for
BiPaR. This Section aims to revisit how HyDE
operates to explain the difference. Qualitatively,
HyDE uses the parametric memory of an LLM to
re-write the query as a complete sentence that an-
swers the query. The re-written query is then used
to retrieve the relevant chunks. The HyDE paper
emphasizes that it doesn’t matter if the answer is
hallucinated as the form of the hypothetical answer
can expect to be aligned with the chunk containing
the correct answer.

However, it is clear that HyDE struggles on Bi-
PaR while working well on SQuAD. We suspect
the reason for this discrepancy is that SQuAD is
based on publicly known factual information from
Wikipedia while BiPaR is based on fictional sto-
ries. Therefore, when HyDE is applied on SQuAD,
the hypothesized answer often is simply the cor-
rect answer itself, leading to an artificial boost in
the retrieval performance. The correct answer is
generated typically by the parametric memory of
a powerful LLM used for the query re-writing. In
contrast, as the answers to the queries in BiPaR
are not within the scope of general knowledge, the
hypothesized answer from HyDE does not help in
boosting the retrieval performance.

In order to investigate the dependence of HyDE
on factual information for improving retrieval per-
formance, we do additional analysis. We select
CLAPNQ (Rosenthal et al., 2024) as a recently
curated RAG dataset where the knowledge store
is based on publicly available information (like
SQuAD). Additionally, CLAPNQ has been exclu-
sively designed for long-form answers. Therefore,
we expect HyDE to demonstrate significant perfor-
mance gains on this dataset as the hypothesized
answer is likely to be the correct answer with high
overlap with the target chunk due to the length of
the answer. We show our results as follows in Ta-
ble 4. The top 5 rows are quoted directly from
Rosenthal et al. (2024). As well as recall, we report
nDCG (Järvelin and Kekäläinen, 2002) here as a
standard retrieval metric used in Rosenthal et al.
(2024) where the order of the retrieved chunks is
accounted for in calculating the performance. It is
clear for both of our implementations that HyDE
demonstrates retrieval performance gains on this
challenging RAG dataset.

B Additional Results

B.1 Open-source question generation systems

Figure 2 is presented using ChatGPT as the ques-
tion generation system over the unstructured atoms.
Here, we extend the results to explore the behaviour
of generating questions over structured atoms from
the BiPaR dataset using open-source large language
models for the question generation systems. We
focus on the all-mpnet-base-v2 as the embedding
system for retrieval.

The plots of the randomly selected questions
and the corresponding optimal lines is presented in
Figure 4. Here, the Flan-T5 (Chung et al., 2024)
model series is selected as open-source models for
question generation. It is clear that for the selected
open-source models, the optimal lines envelope the
randomly selected questions in a manner similar to
the closed-source ChatGPT model. However, we
do note that with a small sample of questions, the
randomly selected set of questions outperforms the
optimally diverse set for the Flan-T5 models. See
Section B.2 for the justification for this observation.

Table 5 provides the summary statistics for the
normalized area under each of these curves (nAUC)
where the x axis is scaled to be between 0 and 1.

B.2 Unanswerability analysis

A potential concern of the generated questions from
a given question generation system is that we as-
sume the question is appropriate for the atom on
which it was generated. A form of appropriateness
is captured by the unanswerability of the question.
We aim to measure the unanswerability of the gen-
erated questions to understand to what degree they
are appropriate.

SQuAD 2.0 (Rajpurkar et al., 2018) is annotated
with answerable and unanswerable questions over
reading comprehension contexts. Hence, we use
the validation split of this dataset to assess a zero-
shot Flan-T5-Large as an unanswerability system.
SQuAD 2.0 validation split consists of 5,928 an-
swerable questions and 5,945 unanswerable ques-
tions. There are 2,067 context paragraphs in total.

The system is prompted to return yes if a ques-
tion is unanswerable and no if unanswerable. As
is common with instruction-tuned models for clas-
sification tasks, a binary probability distribution
is formed by applying Softmax to the logits asso-
ciated with the yes and no tokens from the token
vocabulary of the model. This system is able to
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(a) R@1 (b) R@2 (c) R@5

Figure 4: Comparing question generation systems using retrieval on BiPaR with all-mpnet-base-v2 embedder and
including optimal question selection.

Retrieval - random Retrieval - pruned
System R@1 nAUC R@2 nAUC R@5 nAUC R@1 nAUC R@2 nAUC R@5 nAUC

chatgpt-3.5 0.474 0.574 0.670 0.444 0.528 0.616
flan-t5-large 0.414 0.500 0.610 0.382 0.461 0.561
flan-t5-base 0.370 0.460 0.572 0.349 0.426 0.531
flan-t5-small 0.363 0.455 0.562 0.341 0.421 0.523

Table 5: Comparison of question generation systems applied to contexts from BiPaR using all-mpnet-base-v2.

(a) R@1 (b) R@2 (c) R@5

Figure 5: Answerability rates for optimal (pruned) and random lines for specifically flan-t5-small as the question
generation system.

achieve an F1 score of 86.5 with a precision and
recall of 83.0 and 90.3 respectively.

Therefore, Figure 5 presents the answerability
rates for the optimal and random lines for the dif-
ferent recall rates using the Flan-T5-Small sys-
tem. It is clear that the answerability of the set
of questions for the optimal set (referred to here as
pruned) drops dramatically with fewer questions.
This is somewhat expected because the optimal
set of questions are selected to be as diverse as
possible from each other. Thus, it is more likely
that obscure (unanswerable) questions are selected
from the pool of generated questions if diversity is
the criteria for optimization.

C Licenses

SQuAD is shared under the attribution-sharealike
4.0 international (CC BY-SA 4.0) license. BiPaR
is shared under the attribution-noncommercial 4.0
international (CC BY-NC 4.0) license. CLAPNQ
is shared under the Apache-2.0 license.
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Abstract

With the advent of social media networks and
the vast amount of information circulating
through them, automatic fact verification is an
essential component to prevent the spread of
misinformation. It is even more useful to have
fact verification systems that provide explana-
tions along with their classifications to ensure
accurate predictions. To address both of these
requirements, we implement AMREx, an Ab-
stract Meaning Representation (AMR)-based
veracity prediction and explanation system for
fact verification using a combination of Smatch,
an AMR evaluation metric to measure meaning
containment and textual similarity, and demon-
strate its effectiveness in producing partially
explainable justifications using two commu-
nity standard fact verification datasets, FEVER
and AVeriTeC. AMREx surpasses the AVeriTec
baseline accuracy showing the effectiveness of
our approach for real-world claim verification.
It follows an interpretable pipeline and returns
an explainable AMR node mapping to clarify
the system’s veracity predictions when appli-
cable. We further demonstrate that AMREx
output can be used to prompt LLMs to generate
natural-language explanations using the AMR
mappings as a guide to lessen the probability
of hallucinations.

1 Introduction

With the vast amount of information circulating on
social media and the constantly changing Claims
about various topics, automatic fact verification
has become crucial for preventing the spread of
misinformation. To address this need, automatic
fact-checking task (Vlachos and Riedel, 2014) and
several shared tasks have been introduced to en-
courage NLP researchers to develop systems that
gather Evidence (Fact extraction) for a given Claim
and classify it (Fact verification) as to its pre-
dicted veracity. Examples include FEVER (Thorne
et al., 2018b, 2019) and the current AVeriTec task
(Schlichtkrull et al., 2023, 2024), which employ the

labels Supports, Refutes, NotEnoughInfo (NEI)
or ConflictingEvidence/CherryPicking.

Natural Language Inference (NLI) systems,
which assess whether a premise semantically en-
tails a given hypothesis (Bowman et al., 2015),
have been used for fact verification, yielding
demonstrably strong results in the FEVER shared
task. However, there has been limited focus on
the explainability of these implementations. Re-
cent studies (Gururangan et al., 2018; McCoy et al.,
2019) have highlighted NLI models’ tendency to
rely on spurious cues for entailment classification
making it important to provide clear explanations
alongside fact verification predictions.

We design and implement a new, determinis-
tic NLI system based on Abstract Meaning Repre-
sentation (AMR), dubbed AMREx, and test it on
the FEVER and AveriTeC fact-checking datasets.
AMR is a rooted, directed, acyclic graph with nodes
representing concepts and edges denoting the re-
lations (Banarescu et al., 2013). This representa-
tion captures semantic relationships among entities
that can be difficult to identify in a syntactic repre-
sentation (Ma et al., 2023). We apply an existing
AMR evaluation metric (Cai and Knight, 2013), to
map Claims (e.g., X was produced Y) to relevant
Evidence (e.g., X is a film produced by Y). We in-
corporate this mapping into our AMREx system to
yield partially explainable fact verification.

We assume Evidence collection has already been
completed, as our focus is on the potential for ex-
plainability of our fact-checking results, indepen-
dent of the degree of correctness with respect to
a ground truth. This, in fact, is the key contribu-
tion of this paper: We demonstrate that explain-
ability is valuable regardless of performance levels.
If performance is high, explainability supports an
exploration of the factors contributing to the algo-
rithm’s success. If performance is low, it serves as
a diagnostic tool to understand what went wrong.

Fig. 1 illustrates our explainable output using
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Claim: Veeram was produced by Vijaya

Productions.

Evidence: Veeram (Valour) is a 2014 Indian Tamil

action film directed by Siva and produced by

Vijaya Productions.
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Figure 1: Explainable fact verification pipeline. Lower Left: AMR graph for the Claim, Lower Middle: AMR graph
for the Evidence, Lower Right: The AMR graph mapping to explain the model’s prediction as “Supports”

AMR graph mapping. We quantify the degree to
which the Claim AMR is contained in the Evi-
dence AMR and present the mappings identified in
this process to demonstrate whether the Claim is
embedded within the Evidence. For example, the
Claim Veeram was produced by Vijay Productions
and Evidence Veeram (Valour) is a 2014 Indian
Tamil action film directed by Siva and produced by
Vijaya Productions are represented as AMRs and
processed through the Smatch algorithm. This iden-
tifies similar substructures between them, showing
that both texts mention a production (rooted by
produce-01 predicate) with similar attributes and
refer to the same film (through substructures rooted
by work-of-art and film in the Claim and Ev-
idence AMRs). AMREx uses this high-level no-
tion of meaning containment, along with a textual
similarity score, to produce the veracity prediction
“Supports”.

Section 2 reviews existing NLI implementations
and explainable representations used in fact veri-
fication. Section 3 provides a detailed description
of AMREx system and the experiments conducted.
Section 4 presents an analysis and discussion of the
results, with conclusions in Section 5.

2 Related Work

Below we explore existing studies related to NLI
for fact verification, Explainable representation of

fact verification, and AMR.

2.1 NLI for Fact Verification

NLI models have been employed for fact verifica-
tion by assessing whether a given premise p log-
ically infers hypothesis h (Bowman et al., 2015;
Zeng and Zubiaga, 2024). These models usually
classify Claim veracity using labels: Supports,
Refutes and NEI. Thorne et al. (2018b) has de-
veloped a large-scale fact verification dataset with
balanced label distribution across various domains.
In this study, we adopt a 3-way (FEVER) and 4-
way (AVeriTec) classification for fact verification.

With the development of fact verification
datasets, fine-tuned language models (e.g., BERT,
XLNet) have been applied to verify facts, improv-
ing generalizability without the need for manually
crafted rules (Chernyavskiy and Ilvovsky, 2019;
Nie et al., 2019; Portelli et al., 2020; Zhong et al.,
2020). These BERT-based models use the Claim
and potential Evidence as inputs and determine the
final labels. Recently, Pan et al. (2023) fine-tuned a
small dataset to enhance the performance of BERT-
based models, aiming to develop domain-specific
models and improving generalizability. We tran-
scend this work by employing semantic similarity
in the embedding space between Claim and Evi-
dence, along with structural similarity.

Using pre-trained models, graph neural networks
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(GNNs) have been employed to enhance reasoning
for fact verification (Zhong et al., 2020; Zhou et al.,
2019). These models represent Evidence as nodes
within a graph, enabling information exchange be-
tween nodes, thereby improving reasoning capabili-
ties to determine the final label. Zhong et al. (2020)
use Semantic Role Labeling (SRL), assigning se-
mantic roles to both Claim and Evidence sentences
for graph construction. Building on the concept
of deeper reasoning for fact verification, we apply
AMR to assess sentence similarities through the
lens of sentence structure.

Large Language Models (LLMs) have been uti-
lized for fact verification by augmenting verifica-
tion sources. LLMs enable more realistic fact verifi-
cation by considering the date of Claims and using
only the information available prior to the Claim
(Chen et al., 2024). LLMs generate Claim-focused
summaries, which are then used as inputs for clas-
sifiers to determine the veracity of Claims (Zhao
et al., 2024). Although LLMs have demonstrated
improved performance in fact verification, they still
rely on classifiers that operate based on the outputs
of a black box model.

2.2 Explainable Representations on Fact
Verification

Creating explainable justifications for fact verifica-
tion predictions is an essential aspect of the task as
it highlights the reasons behind a veracity predic-
tion and presents it comprehensibly and faithfully.
Several attempts have been made to create such
explanations using varying techniques such as in-
terpretable knowledge graph-based rules, attention
weights, and natural-language explanations using
extractive and abstractive summarization, etc.

Ahmadi et al. (2019) implement an interpretable
veracity prediction pipeline using Knowledge
Graphs (KG) and probabilistic answer set program-
ming that handles the uncertainties in rules created
based on KGs and facts mined from the web. The
resulting explanations are not in natural language
but still possess a degree of interpretability. Lu and
Li (2020) implement a graph-based fact verification
model with attention-based explanations that high-
light evidential words and users when detecting
fake news in tweets. Natural logic theorem proving
(Krishna et al., 2022) produces structured expla-
nations using an alignment-based method similar
to AMREx, but it operates at the sentential level,
whereas AMREx uses semantic representations to

create alignments. AMREx focuses on relation-
ships among textual entities through node mapping.
Similarly, Vedula and Parthasarathy (2021) com-
bine structural knowledge with text embeddings
to generate natural language explanations, akin to
AMREx. However, their approach introduces a
black-box relationship between the prediction pro-
cess and explanation generation.

Recent developments in language models have
paved the way for natural-language explanation
generations where both extractive and abstractive
summarization are utilized for creating explana-
tions. Atanasova et al. (2020a) train a joint model
for explanation generation and veracity classifica-
tion where the extractive explanations are created
by selecting the most relevant ruling comments out
of a collection of them for a given Claim while
Kotonya and Toni (2020) further extends this tech-
nique to create abstractive summaries for health-
related Claims. Even though Large Language Mod-
els (LLMs) possess impressive generation capabili-
ties Kim et al. (2024) show that zero-shot prompt-
ing of LLMs returns erroneous explanations due to
hallucinations and focuses on generating faithful
explanations using a multi-agent refinement feed-
back system. To address these shortcomings of
LLMs, AMREx uses a linguistic approach to cre-
ate a mapping of AMR graphs that explains our
model’s veracity predictions. We also show the
potential of the mapping to be used as a prompt to
generate natural-language explanations.

2.3 Abstract Meaning Representation (AMR)

AMR is a rooted, directed, and acyclic semantic
representation that captures the meaning of a text
through concepts and the relations that connect
them (Banarescu et al., 2013). It has been used for
various NLP applications such as text summariza-
tion, argument similarity detection, aspect-based
sentiment classification, and natural language infer-
ence (Dohare et al., 2017; Opitz et al., 2021; Ma
et al., 2023; Opitz et al., 2023), due to its ability to
capture key relationships among entities and gen-
eralize meaning regardless of syntax. In AMREx,
we focus on measuring the similarity between two
AMRs using the Smatch score (Cai and Knight,
2013), which is designed to identify structural sim-
ilarities of AMRs, effectively comparing concept
relations between pairs of texts.

236



3 Experiment

This section presents the details behind datasets
used in our experiments, along with the experimen-
tal steps carried out to build AMREx model.

3.1 Datasets
We use two fact-checking datasets to test the ef-
fectiveness of our model in verifying the veracity
of Claims, as described below. For both datasets,
we assume the gold Evidence for each Claim has
been collected and thus focus only on verifying the
Claim’s veracity.

3.1.1 FEVER dataset
The FEVER dataset (Thorne et al., 2018a) consists
of more than 1.8k Claims generated by altering
sentences from Wikipedia. These Claims are clas-
sified into three classes: Supports (“S”), Refutes
(“R”) and NotEnoughInfo (“N”). The dataset in-
cludes relevant Evidence from Wikipedia articles
for Claims in the first two classes. Some Claims re-
quire multi-hop inference/reasoning to verify their
veracity.

3.1.2 AVeriTeC dataset
AVeriTeC (Schlichtkrull et al., 2024) is a newly
released dataset containing 4568 real-world
Claims. This dataset addresses several issues
associated with previous datasets, such as in-
clusion of Evidence published after the Claim
and artificially generated Claims. The Claims
fall into four categories: Supported (“S”),
Refuted (“R”), NotEnoughEvidence (“N”) and
ConflictingEvidence/Cherrypicking (“C”),
where ConflictingEvidence/Cherrypicking
represents Claims that have both supporting and
refuting Evidence. Unlike previous datasets,
AVeriTeC employs a question-answering approach
to build the reasoning process for fact verification,
encouraging researchers to formulate questions
that support Evidence extraction and to find their
answers on the web.

3.2 AMREx Model
We present the design of the AMREx for verifica-
tion of Claim veracity. The underlying model is
an NLI model based on a combination of an AMR
evaluation metric and cosine similarity on SBERT
(Reimers and Gurevych, 2019) embeddings that
predicts entailment for a single (Claim, Evidence)
pair. These predictions are then aggregated per
claim to predict the veracity. The last stage of the

(Ci, Ei1,..., Ein)
NLI

model

NLI(Ci, Ei1,)

NLI(Ci, Ein,)

...
Threshold
Function

Averaged
score

VeracityCi

1

n

∑

Figure 2: AMREx model: The model aggregates all the
entailment predictions from the NLI model for a claim
and returns the final veracity prediction

model is customized to suit the different dataset
formats. (See Fig. 2 for overall AMREx pipeline).

3.2.1 NLI model
Although semantic entailment does not always
correspond to a strict subsumption relationship
between sentences, we adopt a simplifying as-
sumption that entailment aligns with subsumption.
Specifically, our NLI model is based on the hy-
pothesis that if SentenceA (sA) semantically en-
tails SentenceB (sB), then the meaning of sB is
contained inside that of sA. This simplification al-
lows our implementation to be built upon structured
semantic concepts. Mapping this to AMR graph
representations where gA and gB are the respective
representations for sA and sB , we hypothesize that
gB is a subset of gA. To assess how much of gB’s
meaning is contained in gA, we use the Smatch
(Cai and Knight, 2013) precision score between
gA and gB , combined with the cosine similarity of
SBERT embeddings of sA and sB (as shown in Eq.
1) to calculate the entailment score (f(sA, sB)) be-
tween sA and sB . Note that the Smatch precision
score is asymmetrical. So, sA is considered the
premise and sB , the hypothesis. We then apply
a threshold function (See Eq. 2) to the resulting
score to classify sA as either entailing (+1) or not
entailing (-1) sB , as shown in Eq. 3 (See Fig. 3).

f(sA, sB) = λ ∗ SmatchP (gA, gB)+

(1− λ) ∗ CosineSBERT (sA, sB)
(1)

th1(f(sA, sB)) =

®
+1, f(sA, sB) ≥ 0.6

−1, f(sA, sB) < 0.6
(2)

NLI(sA, sB) = th1

(
f(sA, sB)

)
(3)

However, as the two datasets use slightly differ-
ent labeling schemes (FEVER uses a 3-way classifi-
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Dataset S R N C Total
# sentences

FEVER 3281 3270 3284 - 9835
AVeriTec 649 1166 115 226 2156

Table 1: Label distribution of FEVER and AVeriTec
datasets: Supports (S), Refutes (R), Not Enough Evi-
dence (N), Conflicting Evidence (C).

cation format, while AVeriTeC uses a 4-way classi-
fication format) and a Claim may involve multiple
pieces of Evidence in the entailment process, the
fact verification approach needs to be customized
for each dataset. This customization will be de-
scribed in Sections 3.2.2 and 3.2.3. As observed
in this implementation, minor variations in verdict
labels may exist across different datasets, we be-
lieve these differences are not substantial, as all la-
bels pertain to assessing the truth value of a claim.
Therefore, the threshold function can be readily
adjusted to accommodate new verdict labels.

gA

SA

SA
embedding

gB

Smatch
precision score

Cosine
valueCalculated

score
Entailment

label

SB

SB
embedding

SA SB

AMR parser

Smatch metric

λ ∗ Smatchp + (1 − λ)∗
cosine value

Cosine Similarity

SBERT

Threshold
classifier

gA→ gB node
mappings

Figure 3: NLI model pipeline. SA refers to SentenceA
and SB refers to SentneceB. gA refers to AMR graphA
from SA and gB refers to AMR graphB from SB

3.2.2 Fact verification for FEVER
The FEVER dataset categorizes Claims and Ev-
idence into three classes (Supports, Refutes,
NotEnoughInfo. Each Claim may have one or
more pieces of Evidence, while those labeled
NEI lack any Evidence. To address the lack of
Evidence for the NEI class, we use the modi-
fied FEVER dataset provided by Atanasova et al.
(2020b), which includes Evidence for NEI class.

Given a pair (Ci, Eij) where Ci is a Claim and
Eij is its jth Evidence, we use the NLI pipeline
shown in Fig. 3 to compute the entailment between
them. Here, Ci is treated as the hypothesis and Eij

as the premise. If Eij entails Ci, it returns +1. If
not, it returns -1, as outlined in Eq. 3. AMREx then
averages the results across all Evidence for Ci from
the NLI model, to determine the overall entailment
(e), and classify that into one of the three classes
using a threshold classifier to return the veracity of
Ci, as shown in Eq. 4 and 5. When deciding the
thresholds for the labels, “Supports” and “Refutes”
are given the positive and negative extremes, re-
spectively, whereas “Not enough Info” is assigned
the middle range. This is based on the assumption
that evidence with insufficient information will ex-
hibit lower structural and textual similarity scores
without extreme contradictions. The exact thresh-
old values were determined experimentally.

th2FV (e) =





“S”, e ≥ 0.1

“N”, −0.1 < e < 0.1

“R”, e ≤ −0.1

(4)

V eracityCi = th2FV

( 1

n

n∑

j=1

NLI(Ci, Eij)
)

(5)
3.2.3 Fact verification for AVeriTeC
The AVeriTeC dataset requires a Claim extraction
system to first create questions to aid in finding
Evidence related to a Claim, and then locate rel-
evant documents and sentences to answer those
questions, which are considered Evidence for the
Claim. Since we assume the correct questions and
answers are already provided for each Claim, we
calculate the overall entailment between a Claim
and Evidence using Eq. 5. However, we apply
a customized threshold function for the AVeriTec
dataset as it includes four veracity labels (Eq. 6).
Additionally, the dataset features three types of Evi-
dence: Boolean, Abstractive, and Extractive. Since
Boolean Evidence (Yes/No answers) is incompati-
ble with both AMRs and our entailment pipeline,
we focus on abstractive and extractive Evidence
in the experiment to fully measure our pipeline’s
ability to represent sentential Evidence. Table 1
shows the label distribution of both datasets.

th2AV (e) =





“S”, e ≥ 0.5

“C”, 0.1 < e < 0.5

“N”, −0.1 ≤ e ≤ 0.1

“C”, −0.5 < e < −0.1

“R”, e ≤ −0.5

(6)
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Model lambda S R N C Macro
F1 Acc.

FEVER baseline _ _ _ _ _ _ 0.88
AMRExFEV ERacc,f1 0 0.52 0.39 0.41 _ 0.44 0.44
AVeriTec baseline _ 0.48 0.74 0.59 0.15 0.49 0.49
AMRExAV eriTecacc 0.9 0.10 0.67 0.04 0.02 0.21 0.50
AMRExAV eriTecf1 0 0.25 0.61 0.06 0.11 0.26 0.43

Table 2: Accuracy and Macro F1 scores of veracity prediction for each veracity label. Only accuracy is reported in
FEVER baseline.

4 Results and Analyses

We experiment with λ values in the [0,1] range for
Eq. 1 on both FEVER and AVeriTec datasets to find
the best combination of AMR graph intersection
and textual similarity measurement. The results
for both datasets are in Table 2. We selected the
best-performing models based on both the high-
est accuracy and macro F1 score, leading to two
AMREx implementations for each dataset.

For the FEVER dataset, the best accuracy and
macro F1 score are achieved when λ = 0, suggest-
ing that the Smatch precision score has minimal
impact on predicting the veracity of (Claim, Evi-
dence) pairs. The label-wise performance shows
that AMRExFEV ERacc,f1 is more effective at
identifying supporting (Claim, Evidence) pairs but
struggles with refuting instances.

However, the AVeriTec dataset exhibits different
behavior, with λ = 0.9 yielding the best accuracy
and λ = 0 producing the best macro F1 score.
AMRExAV eriTecacc also manages to surpass the
AVeriTec accuracy baseline. AMRExAV eriTecf1

performs comparably to the AVeriTec baseline in
recognizing refutable (Claim, Evidence) pairs and
those with conflicting evidence. However, with
greater emphasis on the Smatch precision score
when λ = 0.9, AMRExAV eriTecf1 improves in
identifying refutable (Claim, Evidence) pairs, al-
beit at the cost of performance on other label in-
stances.

Through an error analysis, we identify several
cases where AMREx fails to accurately predict the
veracity and we explore their potential causes. Con-
sider the following supporting (Claim, Evidence)
pair from the FEVER dataset, Claim: “Wish Upon
was released in the 21st century.”, Evidence: “It
is set to be released in theaters on July 14, 2017,
by Broad Green Pictures and Orion Pictures” (See
Fig. 4 for corresponding AMRs in Penman notation
(Goodman, 2020)). AMREx returns the following

mapping for this instance with a Smatch precision
score of 0.53 and a textual similarity score of 0.38.
a0(release-01) –> b2(release-01)
a1(music) –> b1(it)
a2(name) –> b10(name)
a3(Wish) –> b11(Orion)
a4(Upon) –> b12(Pictures)
a5(date-entity) –> b14(date-entity)

AMR Corresponding to the Claim:
(a0/release -01

:ARG1 (a1/music
:name (a2/name

:op1 (a3/Wish)
:op2 (a4/Upon )))

:time (a5/date -entity
:century 21))

AMR Corresponding to the Evidence:
(b0/set -08

:ARG1 (b1/it)
:ARG2 (b2/release -01

:ARG0 (b3/and
:op1 (b4/company

:name (b5/name
:op1 (b6/Broad)
:op2 (b7/Green)
:op3 (b8/Pictures )))

:op2 (b9/company
:name (b10/name

:op1 (b11/Orion)
:op2 (b12/Pictures ))))

:ARG1 i
:location (b13/theater)
:time (b14/date -entity

:day 14
:month 7
:year 2017)))

Figure 4: Abstract Meaning Representations (AMRs)
for Claim: “Wish Upon was released in the 21st century.”
and Evidence: “It is set to be released in theaters on July
14, 2017, by Broad Green Pictures and Orion Pictures”

The AMR node mapping correctly identifies that
both texts are related to a release event (with the
a0 node mapping to the b2 node), connects “mu-
sic” in Claim AMR to “it” in Evidence AMR, and
recognizes that both texts mention a date-entity.

239



However, it fails to map “the 21st-century” in the
Claim with the date in the Evidence AMR. The
Smatch precision score indicates a higher level of
meaning entailment compared to the textual simi-
larity score, but it is not high enough to meet the
entailment threshold with any λ value, leading AM-
REx to incorrectly predict “Refutes”. This reveals
a limitation of the Smatch algorithm in inferring
that the year 2017 falls within the 21st century, as
it is a concept mapping algorithm. We note that
SBERT contextual embeddings also fail to capture
this detail and give an even lower similarity assess-
ment.

Another example reveals that high structural sim-
ilarity between AMRs, despite a few factual differ-
ences, can result in incorrect meaning containment
assessments. Consider the Claim: “Marnie is a
romantic film.” and the Evidence: “Marnie is a
1964 American psychological thriller film directed
by Alfred Hitchcock.” with the gold veracity label
“Refutes” (See Fig. 5 for AMRs). The resulting
AMR node mappings are as follows:
a0(film) –> b0(film)
a1(romantic-03) –> b1(direct-01)
a2(name) –> b11(name)
a3(Marnie) –> b12(Marnie)

AMR Corresponding to the Claim:
(a0/film

:ARG0 -of (a1/romantic -03)
:name (a2/name

:op1 (a3/Marnie )))

AMR Corresponding to the Evidence:
(b0/film

:ARG1 -of (b1/direct -01
:ARG0 (b2/person

:name (b3/name
:op1 (b4/Alfred)
:op2 (b5/Hitchcock ))))

:mod (b6/thriller
:mod (b7/psychological ))

:mod (b8/country
:name (b9/name

:op1 (b10/America )))
:name (b11/name

:op1 (b12/Marnie ))
:time (b13/date -entity

:year 1964))

Figure 5: Abstract Meaning Representations (AMRs)
for Claim: “Marnie is a romantic film.” and Evidence:
“Marnie is a 1964 American psychological thriller film
directed by Alfred Hitchcock.”

In the Claim AMR, “Marnie” being a “roman-
tic film” is represented by the romantic-03 node,
while in the Evidence, it being a “Psychologi-

cal thriller” is represented by a modifier to the
root film. Due to this structural discrepancy,
the Smatch algorithm fails to distinguish between
the two genres and instead maps romantic-03 to
direct-01 with a similar structure that still cor-
rectly creates a mismatch, but for the wrong rea-
son. However, most concepts in the Claim AMR
match those in the Evidence AMR, leading to a
high Smatch precision score of 0.75. The textual
similarity score also returns a 0.70. Hence, any λ
combination of the two scores surpasses the entail-
ment threshold, yielding a “Supports” prediction.

These examples reveal that the AMR and tex-
tual similarity-based approach of AMREx strug-
gles with instances involving implied meaning or
those with high structural similarity but factual dif-
ferences, indicating areas that need improvement.

4.1 Explainability of the Model

The model’s explainability stems from two key as-
pects. First, the deterministic nature of the model’s
calculations allows us to trace how a particular
prediction was calculated. This provides a compre-
hensive explanation of the entire system pipeline
and tracks the process at each step. Second, the
visual mapping between the AMRs of Claims and
Evidence, as shown in Fig. 1, helps clarify why the
model returns a particular prediction for a (Claim,
Evidence) pair in terms of structural similarity.
This explanation is partial and post hoc, relying
only on AMR node mappings for generation. How-
ever, it is integrated into the system, as AMR rep-
resentations influence both the veracity prediction
and explanation generation. An example illustrat-
ing AMREx’s explanations is discussed below.

Consider Claim “Rabies is a ride at Six Parks.”
and the Evidence, “Rabies is a viral disease that
causes inflammation of the brain in humans and
other mammals.” The corresponding AMRs for
Claim and Evidence are shown in Fig. 6. When
these two AMRs are processed through the Smatch
algorithm, the resulting AMR node mapping is as
follows:
a0(ride-01) –> b0(disease)
a1(disease) –> b8(disease)
a2(name) –> b9(name)
a3(Rabies) –> b10(Rabies)
a4(amusement-park) –> b2(inflame-01)
a5(name) –> b4(and)
a6(Parks) –> b6(mammal)

As the mapping reveals, the only shared meaning
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AMR Corresponding to the Claim:
(a0/ride -01

:ARG1 (a1/disease
:name (a2/name

:op1 (a3/Rabies )))
:location (a4/amusement -park

:name (a5/name
:op1 6
:op2 (a6/Parks ))))

AMR Corresponding to the Evidence:
(b0/disease

:ARG0 -of (b1/cause -01
:ARG1 (b2/inflame -01

:ARG1 (b3/brain)
:part -of (b4/and

:op1 (b5/human)
:op2 (b6/mammal

:mod (b7/other )))))
:domain (b8/disease

:name (b9/name
:op1 (b10/Rabies )))

:mod (b11/virus))

Figure 6: Abstract Meaning Representations (AMRs)
for Claim: “Rabies is a ride at Six Parks.” and Evidence:
“Rabies is a viral disease that causes inflammation of the
brain in humans and other mammals.”

between these two AMRs is that both sentences
are related to a disease called Rabies (with the
a1-a3 nodes mapping to the b8-b10 nodes). This
leads to a low Smatch precision score of 0.46 and
a textual similarity score of 0.59. When combined
with any λ value, this results in a low entailment
value, causing the threshold function to predict
non-entailment (-1). Hence, the second threshold
function will return “Refutes” as the veracity of
this (Claim, Evidence) pair.

This process, together with the AMR node map-
ping, demonstrates the model’s overall logic and
final prediction. We further demonstrate the effec-
tiveness of the AMR node mapping in generating
natural-language explanations by using it to prompt
ChatGPT to generate justifications. An excerpt of
the generated explanation for the (Claim, Evidence)
pair above is shown in Fig. 7. Hence, we argue that
AMREx’s explainable output can serve as a guide
for generating natural-language explanations for
veracity detection, helping to reduce hallucinations
in LLM models.

5 Conclusion

We implement AMREx, an Abstract Meaning
Representation-based veracity prediction and ex-
planation system for fact verification, and show
its effectiveness in producing explainable justifica-

AMR Graph Mapping Analysis:
...
Key Mappings:

a0(ride-01)-b0(disease): The concept
"ride" in the claim is mapped to "disease" in the
evidence, which indicates a mismatch. The claim is
about a ride, whereas the evidence is about a disease.

a1(disease)-b8(disease): Both the claim
and the evidence refer to "Rabies" as a disease. How-
ever, in the claim, it’s tied to a "ride" rather than a
health context.

a2(name)-b9(name): The name "Rabies"
is consistently mapped in both the claim and the
evidence.

a3(Rabies)-b10(Rabies): The specific
instance "Rabies" is correctly identified in both the
claim and the evidence.

a4(amusement-park)-b2(inflame-01):The
location "amusement park" in the claim is mapped to
"inflammation" in the evidence, which again indicates a
significant mismatch in context.

a5(name)-b4(and),a6(Parks)-b6(mammal):
The reference to "Six Parks" in the claim is incorrectly
mapped to a reference to "mammals" in the evidence.

Explanation:

Mismatch in Core Concepts: The claim describes
"Rabies" as a "ride" at an "amusement park," whereas
the evidence discusses "Rabies" as a "viral disease."
The AMR mappings reveal that the central concepts
of "ride" and "amusement park" in the claim do not
align with the "disease" and "medical context" in the
evidence.
...
Classification: Given that the evidence contradicts the
central concept of the claim by presenting a different
context (medical vs. amusement), this pair should be
classified as REFUTES. The evidence does not support
the claim that "Rabies is a ride at Six Parks" and instead
presents a fact that contradicts this claim.

Figure 7: Natural Language explanation generated by
ChatGPT based on the AMREx’s AMR node mapping
output.

tions using two fact verification datasets. Although
its performance is lower compared to the baselines,
its partially explainable output could still be used
as a diagnostic tool to perform error analyses on
the veracity prediction system to understand the
areas to improve. We further demonstrate that AM-
REx output can guide LLMs to generate natural-
language explanations using the AMR mappings.

Limitations

In its current form, AMREx performs best across
all classes when its score is less influenced by the
structural similarity assessment. This makes the
AMR node mappings less useful as explanations,
despite achieving the highest performance. There-
fore, further exploration is needed to adjust the
structural similarity assessment to better suit the
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veracity detection task. Since AMREx relies heav-
ily on AMRs, it is crucial to use a high-performing
AMR parser when converting the sentences to
AMRs. Therefore, the overall performance of the
system depends on the accuracy of the AMR parser.
Furthermore, the AMR mapping algorithm is more
effective when applied to text instances with a high
degree of structural similarity, which may not al-
ways be the case with real-world data. The AMR
node mappings provide a partial, post hoc expla-
nation of the system, while the interpretability of
the entire system fully encompasses the prediction
process. An evaluation of the explainable aspect
of AMREx model in comparison to current struc-
tural explainable fact verification systems is also
necessary. We expect to address these limitations
in future modifications to the system.

Ethical Statement

We utilize ChatGPT responses as a demonstration
of the effectiveness of AMREx in creating natural-
language explanations for veracity predictions. We
acknowledge that there is a possibility for ChatGPT
to generate hallucinated, or toxic content. However,
one of the key objectives of our study is to develop
an explainable system whose output can guide the
reduction of hallucinations in LLM-generated out-
puts, including ChatGPT. We believe this approach
contributes to the generation of content that is both
faithful and safe. Additionally, we manually check
the ChatGPT-generated content in this study for
hallucinated or toxic content and can confirm that
the presented examples are free of such issues.
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Abstract

The rising threat of disinformation underscores
the need to fully or partially automate the fact-
checking process. Identifying text segments
requiring fact-checking is known as claim de-
tection (CD) and claim check-worthiness de-
tection (CW), the latter incorporating complex
domain-specific criteria of worthiness and of-
ten framed as a ranking task. Zero- and few-
shot LLM prompting is an attractive option for
both tasks, as it bypasses the need for labeled
datasets and allows verbalized claim and wor-
thiness criteria to be directly used for prompt-
ing. We evaluate the LLMs’ predictive accu-
racy on five CD/CW datasets from diverse do-
mains, using corresponding annotation guide-
lines in prompts. We examine two key aspects:
(1) how to best distill factuality and worthiness
criteria into a prompt, and (2) how much con-
text to provide for each claim. To this end,
we experiment with different levels of prompt
verbosity and varying amounts of contextual
information given to the model. We addition-
ally evaluate the top-performing models with
ranking metrics, resembling prioritization done
by fact-checkers. Our results show that optimal
prompt verbosity varies, meta-data alone adds
more performance boost than co-text, and con-
fidence scores can be directly used to produce
reliable check-worthiness rankings.

1 Introduction

The global spread of information, coupled with
mis- and disinformation, is increasing the demand
for fact-checking (News, 2022; Idrizi and Hanafin,
2023), highlighting the need for automation. How-
ever, complete automation may not be ideal; for
instance, PolitiFact, which used ChatGPT to verify
previously fact-checked claims, faced issues like
inconsistency, knowledge limitations, and mislead-
ing confidence (Abels, 2023). Nevertheless, they
see potential in language models for assisting fact-
checkers, particularly in identifying claims worth
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Garlic cures COVID-19… 
Our government is the most… 

CLAIMS 

Figure 1: Using annotation guidelines, we craft zero-
and few-shot LLM prompts for claim and claim check-
worthiness detection, varying the level of prompt ver-
bosity and the amount of provided context. We evaluate
the LLMs using classification and ranking metrics.

verifying. Similarly, FullFact has highlighted the
lack of effective claim selection tools as a major
workflow challenge (FullFact, 2020).

To warrant fact-checking, a claim must be both
factual (i.e., related to purported facts) and check-
worthy (i.e., of interest to society). The NLP tasks
of identifying factual and check-worthy claims are
known as claim detection (CD) and claim check-
worthiness detection (CW), respectively. The tasks
make up the first component of the automatic fact-
checking pipeline. While both are typically defined
as classification tasks, CW can also be framed as a
ranking task, mimicking the prioritization process
employed by fact-checking organizations.

Both CD and CW are challenging for several
reasons. Firstly, the underlying concepts of factual
claims and check-worthiness resist straightforward
definitions. To grasp factuality, Konstantinovskiy
et al. (2021) presented a thorough categorization
of factual claims, while Ni et al. (2024) provided
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a definition distinguishing opinions. Regardless of
these variations, factual could be deemed univer-
sal and self-explanatory, unlike check-worthiness, a
term frequently used in previous research. Defining
check-worthiness is made more challenging by its
subjective, context-dependent nature and temporal
variability. Assessing it usually requires choosing
more specific criteria, such as relevance to the gen-
eral public (Hassan et al., 2017a) or policymakers,
potential harm (Nakov et al., 2022), or alignment
with a particular topic (Stammbach et al., 2023;
Gangi Reddy et al., 2022)). Another challenge is
identifying the situational context (including previ-
ous discourse and speaker information) required to
determine claim factuality and check-worthiness.
For example, in CW annotation campaigns (Hassan
et al., 2017a; Gangi Reddy et al., 2022), annotators
are typically presented with surrounding sentences
to aid their assessment.

The CD and CW tasks have been approached
using both traditional supervised machine learn-
ing and fine-tuning pre-trained language models,
both of which depend on labeled data. However,
obtaining such datasets can be challenging as they
need to align with specific languages, domains, and
genres and meet desired factuality and worthiness
criteria. Moreover, dataset annotation is costly and
requires redoing if criteria change. LLMs present a
viable alternative to supervised methods owing to
their strong zero- and few-shot performance (Ko-
jima et al., 2022; Brown et al., 2020). Over time,
fact-checking organizations have refined principles
for claim prioritization, and zero- and few-shot
prompting offers a seamless way to transfer this
knowledge to the model. Thus, an effective strat-
egy might entail zero- and few-shot prompting with
check-worthiness criteria from annotation guide-
lines. The challenge, however, is that LLMs often
exhibit sensitivity to variations in prompts (Mizrahi
et al., 2024) and unreliability (Si et al., 2023).

In this paper, we study the predictive and calibra-
tion accuracy of zero- and few-shot LLM prompt-
ing for CD and CW. We experiment with five
datasets, each with a different factuality or worthi-
ness criterion outlined in the accompanying annota-
tion guidelines. We investigate two key aspects: (1)
how to best distill factuality and worthiness crite-
ria from the annotation guidelines into the prompt
and (2) what amount of context to provide for each
claim. For (1), we experiment with varying the
level of prompt verbosity, starting from brief zero-
shot prompts to more detailed few-shot prompts

that include examples. For (2), we expand the
prompt with co-text and other components of the
claim’s situational context. Furthermore, inspired
by the fact-checker’s prioritization process, we con-
sider CW as a ranking task, using LLM confidence
scores as a proxy for determining priority. Figure 1
depicts the workflow of our experiments. We show
that prompting with worthiness criteria adopted
from annotation guidelines can yield accuracy and
ranking scores comparable to or surpassing exist-
ing CD/CW methods. Although optimal prompt
verbosity varies across datasets, certain in-domain
trends can be observed across models. We also
find that the impact of adding context is greater
for lower verbosity levels, while meta-data is more
beneficial than co-text. Finally, we show that confi-
dence scores can be directly used to produce reli-
able check-worthiness rankings.

Our contributions include analyzing LLM perfor-
mance in terms of (1) prompt detail, (2) provided
context, and (3) variations across domains and wor-
thiness criteria.

2 Related Work

Developing a fully automated fact-checking sys-
tem is appealing for both its applicability and the
challenge it presents (Hassan et al., 2017c; Li et al.,
2023). However, Glockner et al. (2022) question
the purpose of such a system, pointing to its re-
liance on counter-evidence that may not be avail-
able for newly coined disinformation. This moti-
vates a shift toward human-in-the-loop approaches
and automating parts of the fact-checking pipeline.

The CD and CW tasks constitute the first part
of the fact-checking pipeline and are meant to se-
lect parts of the input for which fact-checking is
possible (CD) or deemed necessary (CW). Typi-
cally framed as classification tasks, the CD and
CW tasks are handled using traditional supervised
machine learning (Hassan et al., 2017b; Wright and
Augenstein, 2020; Hassan et al., 2017a; Gencheva
et al., 2017) or fine-tuning pre-trained language
models (Stammbach et al., 2023; Sheikhi et al.,
2023). Methods of solving include rich sen-
tence and context-level features (Gencheva et al.,
2017), speaker, object, and claim span identifi-
cation (Gangi Reddy et al., 2022), or incorporat-
ing domain-specific knowledge by combining on-
tology and sentence embeddings (Hüsünbeyi and
Scheffler, 2024). CW can also be framed as a
ranking task (Jaradat et al., 2018; Gencheva et al.,
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2017), mimicking the prioritization of claims by
fact-checking organizations.

Recently, the use of LLMs for CD and CW is
starting to take on. Sawinski et al. (2023) and
Hyben et al. (2023) compare the performance of
fine-tuned language models such as BERT with
LLMs using zero- and few-shot learning as well
as fine-tuning. Although zero- and few-shot ap-
proaches for LLMs underperform, the authors note
their reliance on internal definitions of worthiness
and limited prompt testing. As part of the fully
automated fact-checking system relying only on
LLMs, Li et al. (2023) implement a CD module
using a verbose few-shot prompt, yet they do not re-
port performance metrics. Finally, Ni et al. (2024)
tackle CD by proposing a three-step prompting ap-
proach to examine model consistency. However,
neither Li et al. (2023) nor Ni et al. (2024) address
the CW task. To our knowledge, there is no work
on CW focused on describing specific worthiness
criteria using verbose prompts.

3 Datasets

Our experiments utilize five datasets in English
covering diverse topics and genres. Examples from
each dataset are presented in Table 1. We next
describe each dataset in more detail, including the
CD and CW criteria used.

ClaimBuster (CB) (Hassan et al., 2017a) is a
widely used dataset of claims from USA presiden-
tial debates, featuring ternary labels (non-factual,
unimportant factual, check-worthy factual) that dis-
tinguish between check-worthy and unimportant
factual claims. This setup addresses both the CD
and CW tasks. Claims are deemed check-worthy
if the general public would be interested in their
veracity. However, no specific definition of factu-
ality is provided – unimportant factual claims are
defined as those lacking check-worthiness.

CLEF CheckThat!Lab 2022 (CLEF) (Alam
et al., 2021) contains tweets about COVID-19, with
two parts: a set of tweets with claims and a sub-
set with check-worthy claims, addressing both CD
and CW tasks. Check-worthiness is defined as
the need for professional fact-checking, excluding
jokes, trivial claims, or those deemed uninterest-
ing. Factual claims are defined as sentences that
assert something is true and can be verified using
factual information, such as statistical data, specific
examples, or personal testimony.

EnvironmentalClaims (ENV) (Stammbach
et al., 2023) is compiled from environmental
articles and reports. The dataset focuses on
check-worthy environmental claims related to
green-washing in marketing strategies. The authors
defined specific criteria for an environmental
claim that extend beyond the topic itself (e.g.,
highlighting the positive environmental impact
of a product, not being too technical). The
annotators were instructed to label only the explicit
claims, discouraging the selection of claims with
inter-sentence coreferences.

NewsClaims (NEWS) (Gangi Reddy et al.,
2022) comprises sentences from news articles on
COVID-19, with metadata available for positives
(speaker, object, claim span). The annotators were
asked to judge whether a claim falls into one of
the four topic-specific categories, which essentially
formed the worthiness criteria, even though check-
worthiness was not explicitly mentioned in the
guidelines. The dataset includes both check-worthy
and non-check-worthy claims with inter-sentence
coreferences (e.g., That’s also false), which typi-
cally require inspecting the surrounding context to
determine their check-worthiness (we estimate this
applies to about 10% of claims in the test set).

PoliClaim (POLI) (Ni et al., 2024) covers the
same topic as ClaimBuster (politics, speeches of
governors) but labels only verifiable claims, leav-
ing out check-worthiness. The authors provided
detailed guidelines on verifiable claims, empha-
sizing the need for specificity and differentiation
from opinions lacking factual basis. To handle am-
biguous cases, they employed a ternary (Yes, No,
Maybe) annotation scheme. Maybe indicates that
a claim may contain factual information but does
not fully meet all criteria. For claims labeled as
Maybe, annotators answered a follow-up Yes-No
question to determine whether the claim leans to-
ward factual information or subjective opinion. As
with NEWS, inter-sentence coreference was consid-
ered; since the claims are extracted from political
speeches, many of them include personal pronouns
(I, we), which necessitates coreference resolution
to identify the claimant or subject.

We use these five datasets because they provide
detailed annotation guidelines and cover various
topics, genres, and worthiness criteria. Table 2 sum-
marizes their characteristics (see Appendix A for
details). The CB and CLEF datasets address both

247



Dataset Label Example

CB
✗ I would do the opposite in every respect.
O I have met with the heads of government bilaterally as well as multilaterally.
✓ Fifty percent of small business income taxes are paid by small businesses.

CLEF

✗ If the vaccine was dangerous they would’ve given it to poor people first, not politicians and billionaires.

O Today, FDA approved the first COVID-19 vaccine for the prevention of #COVID19 disease in individuals
16 years of age and older.

✓ They said the vaccine stopped transmission. Now they are lying and saying they didn’t. Video proof here

ENV ✗ We Love Green! The environment is at the heart of Parisian electro-pop music festival We Love Green.
✓ All pension fund clients have a target for carbon reduction of the equity investments.

NEWS
✗

In Germany, RT has also amplified voices questioning the threat of COVID-19, and calling testing
and mask-wearing into question.

✓
"If you wash and dry a cloth face mask on high heat, then you should be good to go," according to
professor Travis Glenn.

POLI ✗ As I have said all along, the courts are where we will win this battle.
O I promised that our roads would be the envy of the nation.

Table 1: Examples from the datasets used. ✗= non-factual claim, O = factual claim, ✓= check-worthy claim

CB CLEF ENV NEWS POLI

Task CD+CW CD+CW CW CW CD
Labels ternary binary* binary binary binary*
# instances 23,533 3,040 2,647 7,848 52 speeches
# instances used 1,032 251 275 1,622 816
label distribution 731/238/63 102/110/39 198/67 811/811 295/521
Genre debates tweets news articles reports speech transcripts
Topic politics healthcare environment healthcare political
Co-text 4 preceding, on request – not available inconclusive 1 preceding, 1 following
Agreement –* 0.75/0.7 0.47 0.405 0.69
Agreement metric – Fleiss-κ Krippendorff-α Krippendorff-κ Cohen-κ

Table 2: Characteristics of the CD and CW datasets used in our experiments. *CB reported no agreement evaluation,
but the test set used is agreed upon by experts. Label distribution in order: ✗/ O / ✓

CD and CW tasks, with CB using ternary labels
annotated together and CLEF using binary labels
with separate questions for CD and CW. The five
datasets were originally annotated using a binary
scheme (ENV), Likert scale (CLEF-CW), multi-
class (NEWS), or a follow-up prompt for uncertain
instances (POLI). All datasets have aggregated bi-
nary labels, except CB, where aggregation from
ternary into binary labels is straightforward. The
reported inter-annotator agreement is substantial
for POLI and CLEF (Landis and Koch, 1977), but
moderate for ENV and NEWS, reflecting the com-
plexity of the domain-dependent CW task.

4 Experimental Setup

In our experiments, we use both closed-source and
open-source LLMs. For closed source, we use Ope-
nAI models gpt-turbo-3.5 and gpt-4-turbo. For
open-source models, due to hardware constraints,
we chose Llama 3 8B Instruct, which is the top
performer in its parameter class. To ensure repro-

ducibility and encourage deterministic behaviour,
we prompt GPT models with the temperature set-
ting of 0 along with a fixed seed parameter and
use greedy sampling with top_p=1 for open-source
models. We also experimented with other open-
source models. Mistral 7B Instruct v0.2 was not
compliant with the provided labels, instead giving
open-ended answers, even for less verbose prompts.
See Appendix B for more detailed information on
models.

4.1 Prompt Verbosity

We first investigate how prompt verbosity affects
LLMs’ predictive accuracy. We hypothesize that
the optimal verbosity level depends on the dataset,
reflecting the factuality and worthiness criteria
differences between the domains. While a brief
prompt might lack essential details, a comprehen-
sive prompt featuring extensive definitions and ex-
amples may make the task more difficult to solve.
Across datasets and for each prompt level, we aim
to preserve the original wording and typography
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of the annotation guidelines as much as possible
since we aim to establish whether guidelines with-
out much intervention can be used as prompts for
up-to-par performance. We additionally instruct the
model to reply using only the provided labels with-
out additional explanation to increase compliance
and streamline evaluation. For POLI, we use the
same question structure as in the annotation – for
instances where the model responded with Maybe,
we prompt it again with the follow-up question,
providing previous responses in the prompt.

Based on the content and style of annotation
guidelines, we define the following four levels of
verbosity (cf. Appendix D for full prompts for four
verbosity levels across the five datasets):

Level V0 serves as the baseline. We use a naive
zero-shot prompt, relying on internal defini-
tions of the model. For the CD task (for the
CB, CLEF and POLI datasets), we use the
following prompt: “Does the following sen-
tence/statement/tweet contain a factual claim?
Answer only with Yes or No.” For the CW
task (for the CB, CLEF, NEWS and ENV
datasets) we use the following prompt: “Does
the following sentence/statement/tweet con-
tain a check-worthy claim? Answer only with
Yes or No.” As these prompts do not include
the specific factuality or worthiness criteria
from the guidelines, they serve as a domain-
agnostic baseline;

Level V1 uses prompts that include the task defi-
nition and the set of possible labels but omit
detailed explanations of the labels or princi-
ples. For example, for the CB dataset, the
three categories of non-factual, unimportant
factual, and check-worthy factual sentences
are introduced but not explained;

Level V2 expands on V1 by adding a more de-
tailed explanation of the labels or general an-
notation principles (or both, in the case of
PoliClaim). Some principles include avoid-
ing implicit assumptions (ENV), defining
check-worthiness criteria based on public in-
terest (CB), and categorizing claims that non-
professionals can verify as non-check-worthy
(CLEF);

Level V3 builds on V2 by including examples
from the original annotation guidelines. This
level closely aligns with annotation guidelines,

encompassing all or nearly all information the
datasets’ authors provide in their accompany-
ing papers.1 The examples are provided either
along with the labels (CB), separately in a
few-shot fashion (ENV), or both (POLI).

4.2 Amount of Context
In real-world scenarios, claims are rarely evalu-
ated in isolation. Accordingly, annotators working
with CD and CW datasets were usually provided
with some contextual information, consisting of the
claim’s co-text and metadata. Regarding co-text,
the quantity varied between datasets (cf. Table 2),
as did its significance – sometimes it was provided
as additional guidance (CB), while in other cases,
it was deemed crucial for assigning labels (POLI,
NEWS). For NEWS, the amount of provided co-
text is inconclusive, so we decided to omit it from
co-text expansion. This difference highlights that
co-text is both another undefined aspect of CD and
CW, and that it can vary across domains. Simi-
larly, metadata such as speaker, affiliation, occa-
sion, and date were revealed only during annotation
for CLEF-CW and were not available in the dataset
itself. However, metadata is available for the CB
and POLI datasets, while NEWS provides meta-
data only for positives, making it unusable for our
experiments. Adding metadata might lead to biases,
yet it could offer essential information, depending
on the worthiness criterion.

We investigate how LLMs’ predictive accuracy
depends on the amount of situational context pro-
vided to the model. To this end, we leverage the
context information available in the CB and POLI
datasets and expand the prompts in three variants:

Level C1 represents adding the co-text of the
claim. The amount of co-text included in the
prompt for each dataset is the same as what
was originally shown to the annotators – for
CB, four preceding statements (which were
either by the speaker, opposing speaker, or
moderator), and for POLI, one preceding and
one following statement;

Level C2 expands the contextual information by
adding metadata to the claim. In the case of
POLI, the metadata is the speaker’s identity
and political party, whereas for CB it addi-
tionally contains the speaker’s title and the

1CB and ENV documented additional examples (typically
20–30 examples) provided to the annotators. We did not
include these examples.
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CB CLEF ENV NEWS POLI

CD CW CD CW CW CW CD

Stratified random .375 .452 .745 .415 .25 .667 .779
Previous .818∗ .818∗ .761a .698 .849 .309∗ .862a

SVM .789 .799 .726 .346 .729 .675∗ .819
BERT .956 .938 .773 .472 .822 .771∗ .881

gpt-4

V0 .833 .805 .797 .467 .416 .583 .844
V1 .883 .885 .799 .552 .773 .572 .679
V2 .908 .889 .806 .583 .690 .480 .541
V3 .919 .927 .781 .556 .596 .523 .563

gpt-3.5

V0 .853 .718 .656 .496 .484 .531 .707
V1 .570 .739 .490 .438 .710 .371 .751
V2 .774 .800 .650 .468 .701 .348 .657
V3 .872 .862 .757 .446 .650 .206 .803

Llama3 8B

V0 .677 .743 .769 .439 .290 .586 .812
V1 .478 .655 .803 .415 .755 .502 .827
V2 .742 .751 .807 .433 .745 .466 .712
V3 .702 .637 .790 .426 .742 .469 .651

Table 3: Binary F1 scores across datasets and prompt verbosity levels (V1–V3). Level V0 corresponds to the
naive-prompting baseline. For baselines and previous results: a = accuracy, ∗ = not directly comparable

sentiment of the statement, provided by the
authors of the dataset;

Level C3 combines both C1 and C2 by providing
both co-text and metadata.

We appended the contextual information to
the user prompts, and only modified the system
prompts of POLI slightly – adding guidance on how
to handle context, ommited from the no-context
variants (cf. Appendix A for a detailed description).

5 Results

We present the results for prompt verbosity levels
in Table 3 and for different context levels in Table 6.
In Table 3, we also include the previous results re-
ported by authors in the original papers introducing
the datasets (note that some results are not directly
comparable to ours, as we discuss below). We use a
stratified random classifier, an SVM classifier with
TF-IDF features, and a fine-tuned BERT (Devlin
et al., 2019) as baselines.

5.1 Prompt Verbosity

Table 3 shows the baselines and F1 scores by ver-
bosity level for gpt-4-turbo, gpt-3.5-turbo, and
Llama3 8B. Both performance and the optimal ver-
bosity level is not consistent across datasets. The
accuracy generally increases with verbosity lev-
els for CB, but the trend is reversed for ENV. We
observe no consistent trend for CLEF, POLI, and
NEWS datasets. The most verbose prompts (V3)

generally do not achieve the highest performance,
except for the GPT models and CB. This highlights
that providing detailed instructions and examples
can be beneficial but potentially harm performance.

Comparison to baselines. For SVM and BERT
baselines, we had to use a different test set for
NewsClaims than for the other models, as the origi-
nal dataset does not provide a training set (the best-
performing LLM on this test set achieved an F1
score of 0.670). Overall, all best-performing LLMs
outperform the SVM baseline. However, except
for CLEF, BERT outperforms the best-performing
LLMs by a small margin (<0.05 F1), raising doubts
about whether manual data labeling is worthwhile
in these cases.

Comparison to previous work. Comparing with
previous work is difficult due to differences in
setup. For CB, the authors evaluated used 4-fold
cross-validation on different-sized subsets (4,000,
8,000 . . . 20,000), all containing our chosen test set,
annotated by experts. The authors evaluated using
weighted F1-score, achieving a maximum score
of 0.818. Our highest weighted F1-scores surpass
this, reaching 0.933 for gpt-4-turbo and 0.906 for
gpt-3.5-turbo. On CLEF, the best-reported result
is the accuracy score of .761 for CD and the F1
score of .698 for CW. While our approach under-
performs for CW (F1 of 0.583), it achieves higher
accuracy for CD (0.776 on Level V2). In the case
of NEWS, the authors reported an F1 score, but
it remains unclear whether it was evaluated based
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CB CLEF ENV NEWS POLI

CD CW CD CW CW CW CD

V1 26 9 8 55 13 150 87
V2 4 3 5 35 8 90 87
V3 1 1 2 14 5 68 65

Table 4: Counts of instances misclassified by all three
models across the three verbosity levels.

on binary or multiclass labels, given that annota-
tors had to categorize claims into different classes.
They achieved the highest F1 score of 0.309, which
our approach exceeds on the subset we selected,
achieving an F1 score of 0.583. Our subset has
a higher random baseline due to a higher ratio of
positive examples and includes all positives from
the original test set. For POLI, the authors evalu-
ated using accuracy. They achieved an accuracy of
0.764 on the test set using gpt-3.5 and 0.862 using
gpt-4. The GPT-3.5-turbo using prompt Level V3
performs comparable, while GPT-4 and Llama3
perform worse. For ENV, the metrics are directly
comparable, and our approach underperforms com-
pared to previous results.

CD vs. CW. Generally, higher performance is
achieved for the CD task, although the diverse do-
mains of the datasets and differences in guidelines
prevent definitive conclusions. Therefore, compar-
ing performance on the two datasets that cover both
tasks – CB and CLEF – is most straightforward.
Interestingly, a reverse phenomenon is observed
between these datasets—significantly higher per-
formance is achieved for the CD task on CLEF,
whereas on CB, CW performance is slightly higher.
An important difference in the two datasets is pre-
cisely in the annotation styles – CB uses the same
guidelines for both tasks and ternary annotation,
while for CLEF the guidelines are different for the
two tasks, originally using different labelling strate-
gies (binary for CD and Likert scale for CW).

Closed-source vs. open-source. While broader
conclusions require a wider range of both open-
and closed-source models, especially larger open-
source ones, the Llama3 8B model performs sim-
ilarly to GPT models, highlighting the potential
of prompting open-source models with annotation
guidelines. Furthermore, the results of both GPT
models on the CB dataset could indicate a poten-
tial data leakage (Balloccu et al., 2024) since the
performance of Llama3 8B is comparable in other
datasets but lags for CB.

5.2 Error Analysis

Worst performance. The naive baseline prompt
(V0) generally outperforms the prompts based on
annotation guidelines on the CLEF CW and NEWS
datasets, except for V2 for CLEF CW with gpt-4-
turbo. For CLEF CW, the annotation guidelines are
adapted from the Likert scale, where multiple char-
acteristics are attributed to negatives (e.g., not inter-
esting, a joke, not containing claims, or too trivial
to be checked by a professional). In our prompts,
we converted the Likert scale to binary, where the
already diverse and vaguely defined criteria were
binned in a single label, increasing complexity. For
NEWS, although the dataset’s purpose is claim
check-worthiness detection, check-worthiness as a
concept is not mentioned in the annotation guide-
lines. Positives are merely selected by containing
claims falling into four predefined categories relat-
ing to the COVID-19 virus, and check-worthiness
is assumed implicitly. This, along with the pres-
ence of inter-sentence coreference in the positive
instances, might cause poor performance.

Most difficult instances. To analyze poor perfor-
mance beyond the F1 score, we decided to identify
the instances for which all three models across lev-
els consistently predicted the wrong label. Table 4
shows the counts of those instances.

Interestingly, whether the instances in question
were consistently misclassified as positives or neg-
atives depends on the domain – for CLEF and CB,
all of the instances are false positives (FP), whereas
for POLI, all 65 are false negatives (FN). This sug-
gests that the guidelines are too restrictive regard-
ing the positive label or are interpreted as such
during inference.

Table 5 shows examples from the final pool of
mislabelled instances. Several interesting obser-
vations can be made here. For example, CLEF
comprises tweets, where sarcasm is more preva-
lent, making the prediction task harder. For ENV,
which contains environmental reports requiring ex-
pert knowledge, the mislabeled instances were ei-
ther too vague for positives or contained too much
domain knowledge for the models to decipher. An-
notators were urged to look up acronyms they were
not familiar with, but the same could not be ac-
complished with ICL. For NEWS, some claims are
only implicitly related to COVID-19, which results
in a false negative label. On the other hand, some
instances seem mislabeled in the gold set. Concern-
ing POLI, the frequent use of personal pronouns
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Dataset Label Gold Example

CB 1 0 Let’s go to work and end this fiasco in Central America, a failed policy which has actually increased Cuban and Soviet influence.

CLEF 1 0 So businesses will get fined $14,000 (per employee) if they don’t comply with Biden’s vaccine mandate. And illegal aliens
get a $450,000 payout for "damages" for crossing our border illegally... Biden’s America.

ENV 1 0 Renewable energy is purely domestic sourced and environment-friendly, and can be used continuously without being depleted.
0 1 To strengthen its approach, Kering’s SBT for a 1.5°C trajectory was revised and approved by the SBTi in early 2021.

NEWS 1 0 There’s currently no strong evidence that supplementing with vitamin C will prevent or cure COVID-19.
0 1 Vaccines, by their nature, are reactive.

POLI 0 1 We are finally going to fix the darn roads.
0 1 Too many people are struggling to make ends meet.

Table 5: Examples of characteristic instances per dataset that were consistently misclassified across levels.

CB POLI

CD CW CD

V1 V2 V3 V1 V2 V3 V1 V2 V3

gpt-4-turbo

C0 .883 .908 .919 .885 .889 .927 .619 .541 .563
C1 .806 .849 .862 .803 .847 .872 .722 .650 .727
C2 .879 .908 .913 .880 .901 .916 .707 .470 .592
C3 .794 .857 .877 .791 .854 .885 .692 .632 .732

gpt-3.5-turbo

C0 .570 .774 .872 .739 .800 .862 .751 .657 .803
C1 .461 .299 .513 .517 .301 .528 .790 .688 .794
C2 .560 .801 .836 .747 .826 .832 .730 .523 .704
C3 .474 .724 .758 .643 .716 .749 .794 .754 .800

Llama3 8B

C0 .478 .742 .702 .655 .751 .637 .827 .712 .651
C1 .460 .591 .614 .531 .528 .552 .799 .789 .803
C2 .483 .773 .764 .727 .819 .736 .807 .703 .628
C3 .468 .610 .601 .506 .618 .556 .806 .798 .805

Table 6: Binary F1 scores by level of context information (C1–C3) added to the prompt ranging in verbosity
(V1–V3) . Level C0 corresponds to the prompt level with no context information. The best scores across verbosity
levels are shown in bold, and the best scores per model and dataset are highlighted in green.

requiring coreference resolution leads to false neg-
atives, with the claim losing relevance without in-
formation about the claimant.

5.3 Amount of Context

Table 6 shows the F1 scores by verbosity and con-
text level for all models. The benefit of including
context varies across models – there is a bigger per-
formance increase for the Llama model with added
contextual information, topping the performance
for CB in both tasks as opposed to prompts with
no context. For the GPT models, there is some
positive impact of metadata (C2). The least benefi-
cial is the addition of co-text but no metadata (C1),
including speaker information, which is vital when
given previous responses. Concerning prompt ver-
bosity levels, context’s impact is higher on less
verbose prompts, showing contextual information
complements brief definitions.

5.4 Rank-Based Evaluation

In light of resource constraints, fact-checking or-
ganizations have devised principles to prioritize

claims based on their check-worthiness. This in-
vites the question of whether zero- and few-shot
LLM prompting could be used for that purpose. To
investigate this, we frame CW as a binary relevance
ranking and rank the claims based on the LLM’s
confidence for the positive class. We used the token
likelihood of the positive class as a measure of con-
fidence. The quality of the so-obtained ranking will
depend on how well the LLM is calibrated. Thus,
we first evaluate the LLMs’ calibration accuracy us-
ing the expected calibration error (ECE). Figure 2
shows the predictive accuracy (F1 score) against
calibration accuracy (1−ECE) across datasets and
prompt verbosity levels (we only use prompts at
context level C0, i.e., no context information).

Per model and dataset, we select the prompt that
scores high on predictive and calibration accuracy.
The prompts with the highest F1 scores are usually
the best-calibrated ones, except for NEWS, where
we select level V1 as Pareto-optimal.

Table 7 shows the rank-based performance
scores for the selected prompts: average precision
(AP), precision-at-10 (P@10), and precision-at-R,
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Figure 2: F1 scores and calibration accuracy (1− ECE) for the CW task, across datasets and models

CB CLEF ENV NEWS

gpt-4
AP .951 .552 .767 .67
P10 1 .9 .9 1
PR .924 .615 .761 1

gpt-3.5
AP .934 .464 .796 .669
P10 1 .6 .9 .7
PR .919 .436 .772 .700

Llama3 8B
AP .878 .350 .794 .688
P10 1 .2 .1 1
PR .823 .282 .762 1

Table 7: Rank-based CW performance scores

where R equals the total number of positives in the
dataset. The rank-based performance scores mirror
the classification accuracy scores: they are high
for datasets with high predictive accuracy (CB and
ENV) and lower for datasets with lower predictive
accuracy (NEWS and CLEF). Our results suggest
that LLM models with high predictive accuracy
also produce well-calibrated scores using ECE and
may be readily used as check-worthiness rankers.

6 Conclusion

We tackled claim detection and check-worthiness
tasks using zero- and few-shot LLM prompting
based on existing annotation guidelines. The op-
timal level of prompt verbosity, from minimal
prompts to detailed prompts that include criteria
and examples, varies depending on the domain and
guidelines style. Adding claim context does not
improve performance. Models with high predictive
accuracy can directly utilize confidence scores to
produce reliable check-worthiness rankings.

Limitations

Datasets. Our experiments do not use datasets
created by fact-checking organizations. While the

datasets were created specifically for the tasks of
CD and CW, and most were annotated by experts,
the datasets were constructed for research purposes.
To most accurately evaluate the potential of us-
ing our approach in fact-checking organizations,
a dataset annotated according to official factual-
ity or check-worthiness criteria with appropriate
annotation guidelines should be used.

Models. Due to hardware constraints, no open-
source LLMs greater than 8B parameters were used
in our experiments. We acknowledge the impor-
tance of relying on open-source models in the re-
search community and the lack of insight that re-
sults from disregarding larger open-source mod-
els. Using closed-source models has the additional
caveat of possible leakage of the dataset, which is a
growing concern in the community (Balloccu et al.,
2024). We also note that the outstanding results on
the ClaimBuster dataset (CB) could be due to data
leakage, considering the dataset was published sev-
eral years ago and has a wide reach in the research
of automatic fact-checking.

Languages. In this work, we only do experi-
ments on datasets in English. This is for two rea-
sons: (1) the necessity to understand the annota-
tion guidelines to draft prompts using them and (2)
the lack of datasets in other languages. However,
we acknowledge that disinformation is a global
problem and that tackling it requires working with
multiple languages.

Lack of prompt engineering experiments. In
this work, we do minimal prompt engineering in-
terventions beyond merely adapting the level of
detail in annotation guidelines and appending con-
textual information. We opted for this approach
instead of drafting prompts ourselves to investigate
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how original wording, definitions, and examples
given to annotators could fare with LLMs. We real-
ize weak performance in some cases (e.g., CLEF,
for the naive aggregation from the Likert scale to
binary labels), and performance variations could
be due to the models’ sensitivity to prompt struc-
ture, wording, and examples. However, translating
the complex criteria of worthiness in such a stream-
lined way could benefit fact-checkers. Furthermore,
prompt design should be adapted for each dataset,
significantly expanding the scope of this research
(since five datasets are used). We leave experiments
regarding prompt design for future work.

Binary relevance ranking. In our study, we also
assess CW as a ranking task, which is crucial given
that fact-checking organizations often face time
and resource constraints and must prioritize claims
based on their CW criteria. We use binary rele-
vance judgments for evaluation, with binary CW
labels as the ground truth, and apply standard IR
metrics such as MAP and P@R. An alternative
approach could involve using graded CW criteria,
framing the task as regression, and evaluating with
graded relevance judgments like NDCG. However,
to our knowledge, only the dataset by Gencheva
et al. (2017) provides graded CW labels, using
aggregated judgments from various fact-checking
agencies to model priority.

Risks

Although we intend to combat the spread of disin-
formation with this work, there is still a potential
for misuse. The prompts and insights reported in
this work could potentially be used to create disin-
formative claims adapted to make their detection
more difficult. A big challenge of disinformation
detection is the growing use of generative models
for creating disinformative claims. The prompts
provided in this work could be reverted for genera-
tive purposes, achieving the exact opposite effect
than what our work aims to achieve.
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A Dataset Information

In this section, we provide details on the datasets
used in our experiments.

A.1 Test set selection

Here, we provide details on the test set selection for
each dataset. Furthermore, we state which set the
authors used for evaluation and whether the results
can be comparable.

ClaimBuster. The dataset does not have an ex-
plicit test set. The authors instead used 4-fold
cross-validation on different-sized subsets during
their experiments (4,000, 8,000 ... 20,000). How-
ever, a high-quality groundtruth set is available in
the dataset. It contains 1,032 samples that experts
agreed on and was used for screening during an-
notation. Also, all the test sets the authors used
contain the screening sentences. For the quality of
labels and to have somewhat comparable results
to the authors, we selected the groundtruth set for
experiments.

CLEF. The dataset consists of both a dev and
a test set. Since the test set was used to evaluate
teams participating in the CLEF CheckThat! the
challenge, we opted to do our experiments on this
set to compare to the metrics of the best-submitted
solution.

EnvironmentalClaims. The dataset contains
both a dev and test set of equal size, whereas the
original work publishes metrics on both sets sepa-
rately. We selected the test set for our experiments.

NewsClaims. The dataset provides both a dev
and a test set; however, the disclosed sets contain
only positive instances. The complete dataset con-
sists of around 10% of positive instances, with a
high number of low-quality negative instances cre-
ated by errors in sentencizing and filtering – in-
stances containing only names, dates, links. The
dataset also contains duplicate instances, also in
the set of positives. To create a viable subset and
avoid high costs during inference, we sampled the
negative instances from a normal distribution with
the parameters fitted to the length of the instances.
We chose to sample the same number of instances

as there are positives without duplicates, creating a
higher baseline.

PoliClaim. The dataset provides an explicit test
set consisting of both gold labels and labels result-
ing from inference on 4 political speeches. To be
able to compare results, we opted to use the com-
plete test set.

A.2 Context information
ClaimBuster. During the annotation of the
ClaimBuster dataset, 4 preceding statements could
be viewed with an extra button, which was used in
14% of all cases. Since the dataset covers presiden-
tial debates with multiple speakers, including the
moderator and audience questioners, it is not com-
pletely clear how the speakers were differentiated
in the provided preceding sentences. Therefore, we
selected the method of differentiating the speakers
arbitrarily – ’A’ was used for the speaker of the
statement that is meant to be annotated, and ’B’ for
the opposing speaker.

EnvironmentalClaims. No additional contex-
tual or co-textual information was provided in the
dataset. The annotators were not shown any co-text
during annotations. The authors considered anno-
tating whole paragraphs instead of sentence-level
annotation but decided against it due to time and
budget constraints.

PoliClaim. The annotators were provided with
the preceding and following sentences of the one
they are annotating. Since there is only one speaker
(as opposed to ClaimBuster, which covers debates),
there is no need to differentiate the speaker to min-
imize confusion in prompts. In annotation guide-
lines, context was explicitly mentioned and clari-
fied in examples. In our experiments, we used two
versions of the prompts – one mentioning context
for experiments with co-text expansion and one
without the mention of context used when only one
sentence from the speech is provided. The two
alternatives are shown in D.

CLEF. The dataset consists of tweets covering
COVID-19 topics. For the check-worthiness task,
annotators were shown metadata such as time, ac-
count, number of likes and reposts. However, this
information is not readily available in the dataset
and requires crawling the tweets to obtain it. It was
also not available in the dataset of the CLEF2022
CheckThat! Challenge, which was derived from
the original dataset. Since we wanted to make our
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effort comparable to alternative methods used in
the competition, we did not opt for crawling the
tweets to acquire metadata.

NewsClaims. The research paper introducing the
dataset has inconsistencies regarding the co-text
provided to annotators. While it is stated in the
paper that whole articles are provided for co-text,
in the screenshot of the annotation platform, only
three preceding and following sentences were pro-
vided. Regarding context, the work emphasizes
the importance of metadata such as claim object,
speaker and span, and provides that data for posi-
tive instances (sentences containing claims related
to 4 specified COVID-19 subtopics). The effort
of annotating the claims with metadata is worth-
while, however we decided against using it in in-
ference since no such data is available for negative
instances.

B Model Information

For OpenAI models, we use gpt-3.5-turbo-0125
and gpt-4-0125-preview. We use a temperature of
0 for all experiments. To get confidence, we use
logprobs and n_probs=5, to account for the target
labels ending up as less probable tokens. We use
a random seed of 42 in all experiments, to avoid
stochastic answers as much as possible. The run
was executed once per model and prompt variant.
Inference was done through the OpenAI API. GPU
hours are hard to estimate.

We use Llama3 8B Instruct for experiments on
open-source models. It is the only smaller open-
source model from the ones we tested compliant
with provided labels. The experiments took 10
GPU hours on 2x GeForce RTX 2080 Ti. We
use greedy decoding and run once per model and
prompt variant. Initial experiments were done
on neural-chat:7b-v3.3-q5_K_M and mistral:7b-
instruct-v0.2-q5_K_M. A total of 5 GPU hours was
used.

For BERT, we use the base model bert-base-
uncased. We train the model for five epochs with a
batch size of 16, a learning rate of 2e-5 and weight
decay of 0.01. We keep the best model across
epochs.

C Calibration

In this section, the ECE per prompt verbosity level
is shown for all models in Table 8. The ECE is
calculated with the parameters nbins = 10 and
norm = l1.

D Complete prompts

This section provides the complete prompts used
in our experiments. The instructions were given in
system prompts, while the instances were in user
prompts. The added context information is also
appended to user prompts.

For each dataset, the three prompt levels are
shown, with the content expanded in relation to
the previous level highlighted. To visually separate
the levels, Level V2 is highlighted in yellow, while
Level V3 is highlighted in pink.

For CLEF, two alternative prompts are given,
since for CD and CW different annotation guide-
lines were used. For POLI, parts of the Level V2
and Level V3 prompts regarding surrounding sen-
tences are either provided or not, based on whether
context expansion is used (surrounding sentences
are given in prompts C1 and C3). Those parts are
highlighted in blue.

User prompts. The user prompts were based on
how the instance was reffered to in the correspond-
ing annotation gudelines. The instances are sur-
rounded with HTML tags. The same is done for
context expansion on CB and POLI.
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CB CLEF ENV NEWS POLI

CD CW CD CW CD CW CW

gpt-4-turbo

V0 .094 .068 .259 .601 .231 .322 .142
V1 .050 .047 .196 .391 .119 .210 .271
V2 .043 .039 .194 .352 .127 .277 .373
V3 .039 .032 .222 .367 .150 .194 .348

gpt-3.5-turbo

V0 .033 .068 .212 .359 .189 .246 .257
V1 .323 .085 .386 .609 .088 .260 .229
V2 .103 .071 .279 .560 .097 .280 .327
V3 .061 .050 .285 .646 .100 .379 .196

Llama3 8B

V0 .218 .126 .307 .611 .286 .314 .223
V1 .607 .218 .244 .723 .114 .228 .172
V2 .184 .135 .241 .687 .102 .229 .321
V3 .231 .259 .241 .686 .134 .214 .379

Table 8: ECE score by prompt level per dataset for gpt-4-turbo. ’CD’ and ’CW’ mark claim detection and claim
check-worthiness detection, respectively, while ’V0’ marks the score for the naive baseline

Level Prompt

V1

Categorize the <sentence> spoken in the presidential debates into one of three
categories: Non-Factual Sentence (NFS), Unimportant Factual Sentence (UFS) or
Check-worthy Factual Sentence (CFS). Use only one of the three labels (NFS, UFS or
CFS), do not provide any additional explanation.

V2

Categorize the <sentence> spoken in the presidential debates into three categories:
Non-Factual Sentence (NFS): Subjective sentences (opinions, beliefs, declarations)
and many questions fall under this category. These sentences do not contain any fac
tual claim.
Unimportant Factual Sentence (UFS): These are factual claims but not check-worthy.
The general public will not be interested in knowing whether these sentences are
true or false. Fact-checkers do not find these sentences as important for checking.
Check-worthy Factual Sentence (CFS): They contain factual claims and the general pub
lic will be interested in knowing whether the claims are true. Journalists look for
these type of claims for fact-checking.
Use only one of the three labels (NFS, UFS and CFS), do not provide any additional
explanation.

V3

Categorize the <sentence> spoken in the presidential debates into three categories:
Non-Factual Sentence (NFS): Subjective sentences (opinions, beliefs, declarations)
and many questions fall under this category. These sentences do not contain any
factual claim. Here are two such examples. ”But I think it’s time to talk about the
future.“ “You remember the last time you said that?” Unimportant Factual Sentence
(UFS): These are factual claims but not check-worthy. The general public will not
be interested in knowing whether these sentences are true or false. Fact-checkers
do not find these sentences as important for checking. Some examples are as fol
lows. “Next Tuesday is Election day.” “Two days ago we ate lunch at a restaurant.”
Check-worthy Factual Sentence (CFS): They contain factual claims and the general
public will be interested in knowing whether the claims are true. Journalists look
for these type of claims for fact-checking. Some examples are: “He voted against
the first Gulf War.” “Over a million and a quarter Americans are HIV-positive.”
Use only one of the three labels (NFS, UFS and CFS), do not provide any additional
explanation.

Table 9: System prompts used for inference on the ClaimBuster dataset.
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Level Prompt

V1

Your task is to label the <sentence>. The information I need is whether it is an
environmental claim. A broad definition for such a claim is given by the European
Commission: Environmental claims refer to the practice of suggesting or otherwise
creating the impression that a product or a service is environmentally friendly
(i.e., it has a positive impact on the environment) or is less damaging to the
environment than competing goods or services. Answer only with Yes or No.

V2

Your task is to label the <sentence>. The information I need is whether it is an
environmental claim. A broad definition for such a claim is given by the European
Commission: Environmental claims refer to the practice of suggesting or otherwise
creating the impression that a product or a service is environmentally friendly
(i.e., it has a positive impact on the environment) or is less damaging to the
environment than competing goods or services. General principles: You will be pre
sented with a <sentence> and have to decide whether the <sentence> contains an ex
plicit environmental claim. Do not rely on implicit assumptions when you decide
on the label. Base your decision on the information that is available within the
sentence. However, if a sentence contains an abbreviation, you could consider the
meaning of the abbreviation before assigning the label. In case a sentence is too
technical/complicated and thus not easily understandable, it usually does not sug
gest to the average consumer that a product or a service is environmentally friendly
and thus can be rejected. Likewise, if a sentence is not specific about having an
environmental impact for a product or service, it can be rejected. Answer only with
Yes or No.

V3

Your task is to label the <sentence>. The information I need is whether it is an
environmental claim. A broad definition for such a claim is given by the European
Commission: Environmental claims refer to the practice of suggesting or otherwise
creating the impression that a product or a service is environmentally friendly
(i.e., it has a positive impact on the environment) or is less damaging to the
environment than competing goods or services. General principles: You will be
presented with a sentence and have to decide whether the sentence contains an
explicit environmental claim. Do not rely on implicit assumptions when you decide
on the label. Base your decision on the information that is available within the
sentence. However, if a sentence contains an abbreviation, you could consider
the meaning of the abbreviation before assigning the label. In case a sentence
is too technical/complicated and thus not easily understandable, it usually does
not suggest to the average consumer that a product or a service is environmentally
friendly and thus can be rejected. Likewise, if a sentence is not specific about
having an environmental impact for a product or service, it can be rejected.
Examples: <sentence>: Farmers who operate under this scheme are required to dedicate
10% of their land to wildlife preservation. Label: Yes Explanation: Environmental
scheme with details on implementation.
<sentence>: UPM Biofuels is developing a new feedstock concept by growing Brassica
Carinata as a sequential crop in South America. Label: No Explanation: Sentence con
text would be required to understand whether it is a claim.
Answer only with Yes or No, don’t provide any additional explanation.

Table 10: System prompts used for inference on the EnvironmentalClaims dataset.
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Level Prompt

V1

A verifiable factual claim is a sentence claiming that something is true, and this
can be verified using factual, verifiable information such as statistics, specific
examples, or personal testimony. Does the <tweet> contain a verifiable factual
claim? Answer only with Yes or No, don’t provide any additional explanation.

V2

A verifiable factual claim is a sentence claiming that something is true, and this
can be verified using factual, verifiable information such as statistics, specific
examples, or personal testimony.
Factual claims include the following: Stating a definition; Mentioning quantity in
the present or the past; Making a verifiable prediction about the future; Reference
to laws, procedures, and rules of operation; References to images or videos (e.g.,
"This is a video showing a hospital in Spain.”); Statements about correlations or
causations. Such correlation and causation needs to be explicit, i.e., sentences
like "This is why the beaches haven’t closed in Florida.” is not a claim because it
does not say why explicitly, thus it is not verifiable.
Tweets containing personal opinions and preferences are not factual claims.
Note: if a tweet is composed of multiple sentences or clauses, at least one full
sentence or clause needs to be a claim in order for the tweet to contain a factual
claim. If a claim exist in a sub-sentence or sub-clause then tweet is not considered
to have a factual claim. For example, "My new favorite thing is Italian mayors and
regional presidents LOSING IT at people violating quarantine” is not a claim, how
ever, it is an opinion. Moreover, if we consider "Italian mayors and regional pres
idents LOSING IT at people violating quarantine” it would be a claim. In addition,
when answering this question, annotator should not open the tweet URL.
Does the <tweet> contain a verifiable factual claim? Answer only with Yes or No.

V3

A verifiable factual claim is a sentence claiming that something is true, and this
can be verified using factual, verifiable information such as statistics, specific
examples, or personal testimony.
Factual claims include the following: Stating a definition; Mentioning quantity in
the present or the past; Making a verifiable prediction about the future; Reference
to laws, procedures, and rules of operation; References to images or videos (e.g.,
"This is a video showing a hospital in Spain.”); Statements about correlations or
causations. Such correlation and causation needs to be explicit, i.e., sentences
like "This is why the beaches haven’t closed in Florida.” is not a claim because it
does not say why explicitly, thus it is not verifiable.
Tweets containing personal opinions and preferences are not factual claims.
Note: if a tweet is composed of multiple sentences or clauses, at least one
full sentence or clause needs to be a claim in order for the tweet to contain a
factual claim. If a claim exist in a sub-sentence or sub-clause then tweet is not
considered to have a factual claim. For example, "My new favorite thing is Italian
mayors and regional presidents LOSING IT at people violating quarantine” is not a
claim, however, it is an opinion. Moreover, if we consider "Italian mayors and
regional presidents LOSING IT at people violating quarantine” it would be a claim.
In addition, when answering this question, annotator should not open the tweet URL.
Does the <tweet> contain a verifiable factual claim? Answer only with Yes or No.
Examples: Tweet: Please don’t take hydroxychloroquine (Plaquenil) plus Azithromycin
for #COVID19 UNLESS your doctor prescribes it. Both drugs affect the QT interval of
your heart and can lead to arrhythmias and sudden death, especially if you are tak
ing other meds or have a heart condition. Label: Yes Explanation: There is a claim
in the text. Tweet: Saw this on Facebook today and it’s a must read for all those
idiots clearing the shelves #coronavirus #toiletpapercrisis #auspol Label: No Expla
nation: There is no claim in the text.
Answer only with Yes or No, don’t provide any additional explanation.

Table 11: System prompts used for inference on the CLEF dataset for claim detection.
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Level Prompt

V1

It is important that a verifiable factual check-worthy claim be verified by a
professional fact-checker, as the claim may cause harm to society, specific
person(s), company(s), product(s), or some government entities. However, not all
factual claims are important or worth fact-checking by a professional fact-checker,
as this very time-consuming. Do you think that a professional fact-checker should
verify the claim in the <tweet>? Labels: No, no need to check; No, too trivial to
check; Yes, not urgent; Yes, very urgent.
Decide on one label. Then, answer only with Yes or No.

V2

It is important that a verifiable factual check-worthy claim be verified by a
professional fact-checker, as the claim may cause harm to society, specific
person(s), company(s), product(s), or some government entities. However, not all
factual claims are important or worth fact-checking by a professional fact-checker,
as this very time-consuming. Do you think that a professional fact-checker should
verify the claim in the <tweet>? Labels: No, no need to check: the tweet does not
need to be fact-checked, e.g., be- cause it is not interesting, a joke, or does not
contain any claim. No, too trivial to check: the tweet is worth fact-checking, how
ever, this does not require a professional fact-checker, i.e., a non-expert might be
able to fact-check the claim. For example, one can verify the information using reli
able sources such as the official website of the WHO, etc. An example of a claim is
as follows: “The GDP of the USA grew by 50% last year.” Yes, not urgent: the tweet
should be fact-checked by a professional fact-checker, however, this is not urgent
or critical; Yes, very urgent: the tweet can cause immediate harm to a large number
of people; therefore, it should be verified as soon as possible by a professional
fact-checker;
Decide on one label. Then, answer only with Yes or No.

V3

It is important to verify a factual claim by a professional fact-checker, which can
cause harm to the society, specific person(s), company(s), product(s) or government
entities. However, not all factual claims are important or worthwhile to be
fact-checked by a professional fact-checker as it is a time-consuming procedure. Do
you think that a professional fact-checker should verify the claim in the <tweet>?
Labels: No, no need to check: the tweet does not need to be fact-checked, e.g.,
be- cause it is not interesting, a joke, or does not contain any claim. No, too
trivial to check: the tweet is worth fact-checking, however, this does not require
a professional fact-checker, i.e., a non-expert might be able to fact-check the
claim. For example, one can verify the information using reliable sources such as
the official website of the WHO, etc. An example of a claim is as follows: “The
GDP of the USA grew by 50Yes, not urgent: the tweet should be fact-checked by
a professional fact-checker, however, this is not urgent or critical; Yes, very
urgent: the tweet can cause immediate harm to a large number of people; therefore,
it should be verified as soon as possible by a professional fact-checker;
Examples: Tweet: Wash your hands like you’ve been chopping jalapeños and need to
change a contact lens” says BC Public Health Officer Dr. Bonnie Henry re. ways to
protect against #coronavirus #Covid_19 Label: Yes, not urgent Explanation: Overall
it is less important for a professional fact-checker to verify this information. The
statement does not harm anyone. The truth value of whether the official said the
statement is not important. Also it appears that washing hands is very important to
protect oneself from the virus. Tweet: ALERT! The corona virus can be spread through
internationaly printed albums. If you have any albums at home, put on some gloves,
put all the albums in a box and put it outside the front door tonight. I’m collect
ing all the boxes tonight for safety. Think of your health. Label: No, no need to
check Explanation: This is joke and no need to check by a professional fact checker.
Decide on one label. Then, answer only with Yes or No.

Table 12: System prompts used for inference on the CLEF dataset for claim check-worthiness detection.
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Level Prompt

V1

The task is to select verifiable statements from political speeches for
fact-checking. Given a <statement> from a political speech, answer the question.
Does the <statement> explicitly present any verifiable factual information? Answer
with A, B or C only. A - Yes, B - Maybe, C - No.

V2

The task is to select verifiable statements from political speeches for
fact-checking. Given a <statement> from a political speech, answer the question
following the guidelines. Definitions and guidelines: Fact: A fact is a statement
or assertion that can be objectively verified as true or false based on empirical
evidence or reality. Opinion: An opinion is a judgment based on facts, an attempt to
draw a reasonable conclusion from factual evidence. While the underlying facts can
be verified, the derived opinion remains subjective and is not universally verifi
able. Context: Make sure to consider a small context of the target statement (the
previous and next sentence) when annotating. Some statements require context to un
derstand the meaning. Factual claim: A factual claim is a statement that explicitly
presents some verifiable facts. Statements with subjective components like opinions
can also be factual claims if they explicitly present objectively verifiable facts.
Opinion with Facts: Opinions can also be based on factual information. When does
an opinion explicitly present a fact: Many opinions are more or less based on some
factual information. However, some facts are explicitly presented by the speakers,
while others are not. What is verifiable: The verifiability of the factual informa
tion depends on how specific it is. If there is enough specific information to guide
a general fact-checker in checking it, the factual information is verifiable. Other
wise, it is not verifiable.
The question: Does the <statement> explicitly present any verifiable factual
information? Answer with A, B or C only. A - Yes, the statement contains factual
information with enough specific details that a fact-checker knows how to verify it.
E.g., Birmingham is small in population compared to London. B - Maybe, the statement
seems to contain some factual information. However, there are certain ambiguities
(e.g., lack of specificity) making it hard to determine the verifiability. E.g.,
Birmingham is small compared to London. (lack of details about what standard Birming
ham is small) C - No, the statement contains no verifiable factual information. Even
if there is some, it is clearly unverifiable. E.g., Birmingham is small.

Table 13: System prompts of Level V1 and Level V2 used for inference on the PoliClaim dataset for claim check-
worthiness detection. The blue highlight shows instructions for regarding context.
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Level Prompt

V3

The task is to select verifiable statements from political speeches for
fact-checking. Given a statement from a political speech and its context, answer
the question following the guidelines. Definitions and guidelines: Fact: A fact is
a statement or assertion that can be objectively verified as true or false based on
empirical evidence or reality. Opinion: An opinion is a judgment based on facts, an
attempt to draw a reasonable conclusion from factual evidence. While the underlying
facts can be verified, the derived opinion remains subjective and is not universally
verifiable. Factual claim: A factual claim is a statement that explicitly presents
some verifiable facts. Statements with subjective components like opinions can also
be factual claims if they explicitly present objectively verifiable facts. Context:
Make sure to consider a small context of the target statement (the previous and
next sentence) when annotating. Some statements require context to understand the
meaning. For example: E1. “... Just consider what we did last year for the middle
class in California, sending 12 billion dollars back - the largest state tax rebate
in American history. <statement> But we didn’t stop there. <> We raised the mini
mum wage. We increased paid sick leave. Provided more paid family leave. Expanded
child care to help working parents...” Without the context, the sentence marked with
<statement> seems an incomplete sentence. With the context, we know the speaker is
claiming a bunch of verifiable achievements of their administration. E2. “... When
I first stood before this chamber three years ago, I declared war on criminals and
asked for the Legislature to repeal and replace the catch-and-release policies in SB
91. <statement> With the help of many of you, we got it done. <> Policies do matter.
We’ve seen our overall crime rate decline by 10 percent in 2019 and another 18.5 per
cent in 2020! ...” The part marked with <statement> claims that the policies against
crimes have been “done”, which is verifiable. It needs context to understand it.
Opinion with Facts: Opinions can also be based on factual information. For example:

E1. “I am proud to report that on top of the local improvements, the state has ad
ministered projects in almost all 67 counties already, and like I said, we’ve only
just begun.” The speaker’s “proud of” is a subjective opinion. However, the content
of pride (administered projects) is factual information. E2. “I first want to thank
my wife of 34 years, First Lady Rose Dunleavy.” The speaker expresses their thank
fulness to their wife. However, there is factual information about the first lady’s
name and the length of their marriage.
When does an opinion explicitly present a fact: Many opinions are more or less based
on some factual information. However, some facts are explicitly presented by the
speakers, while others are not. Explicit presentation means the fact is directly
entailed by the opinion without extrapolation: E1. “The pizza is delicious.” This
opinion seems to be based on the fact that “pizza is a kind of food”. However, this
fact is not explicitly presented. E2. “I first want to thank my wife of 34 years,
First Lady Rose Dunleavy.” The name of the speaker’s wife and their year of marriage
are explicitly presented.
What is verifiable: The verifiability of the factual information depends on how spe
cific it is. If there is enough specific information to guide a general fact-checker
in checking it, the factual information is verifiable. Otherwise, it is not veri
fiable. E1. “Birmingham is small.” is not verifiable because it lacks any specific
information for determining veracity. It leans more toward subjective opinion. E2.
“Birmingham is small, compared to London” is more verifiable than E1. A fact-checker
can retrieve the city size, population size ...etc., of London and Birmingham to com
pare them. However, what to compare to prove Birmingham’s “small” is not specific
enough. E3. “Birmingham is small in population size, compared to London” is more ver
ifiable than E1 and E2. A fact-checker now knows it is exactly the population size
to be compared.
The question: Does the <statement> explicitly present any verifiable factual
information? Answer with A, B or C only. A - Yes, the statement contains factual
information with enough specific details that a fact-checker knows how to verify
it. E.g., Birmingham is small in population compared to London. B - Maybe,
Maybe, the statement seems to contain some factual information. However, there
are certain ambiguities (e.g., lack of specificity) making it hard to determine
the verifiability. E.g., Birmingham is small compared to London. (lack of
details about what standard Birmingham is small) C - No, the statement contains no
verifiable factual information. Even if there is some, it is clearly unverifiable.
E.g., Birmingham is small.

Table 14: System prompts of Level V3 used for inference on the PoliClaim dataset for claim check-worthiness
detection. The blue highlight shows instructions for regarding context.
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Abstract

Recent work on fact-checking addresses a re-
alistic setting where models incorporate evi-
dence retrieved from the web to decide the ve-
racity of claims. A bottleneck in this pipeline
is in retrieving relevant evidence: traditional
methods may surface documents directly re-
lated to a claim, but fact-checking complex
claims requires more inferences. For instance,
a document about how a vaccine was devel-
oped is relevant to addressing claims about
what it might contain, even if it does not ad-
dress them directly. We present Contrastive
Fact-Checking Reranker (CFR), an improved
retriever for this setting. By leveraging the
AVeriTeC dataset, which annotates subques-
tions for claims with human written answers
from evidence documents, we fine-tune Con-
triever with a contrastive objective based on
multiple training signals, including distillation
from GPT-4, evaluating subquestion answers,
and gold labels in the dataset. We evaluate our
model on both retrieval and end-to-end verac-
ity judgments about claims. On the AVeriTeC
dataset, we find a 6% improvement in veracity
classification accuracy. We also show our gains
can be transferred to FEVER, ClaimDecomp,
HotpotQA, and a synthetic dataset requiring
retrievers to make inferences.

1 Introduction

Retrieval-augmented generation (RAG) systems
are now widely used across NLP applications
including question answering (Guu et al., 2020;
Lewis et al., 2020; Karpukhin et al., 2020) and
text generation (Komeili et al., 2022; Gao et al.,
2023b), but one particular application of interest
is fact-checking. While older fact-checking sys-
tems would often not consider evidence at all (Al-
hindi et al., 2018) or consider oracle evidence
(Atanasova et al., 2020), the real fact-checking
task involves finding evidence to support or re-
fute complex claims in the wild (Chen et al., 2022;

Claim 

US President Donald Trump following his 
positive diagnosis of COVID-19, was given 
treatment developed from the use of fetal 
tissue, made by the company Regeneron.

Sub-question 
How was REGN-COV2 developed?

... Regeneron ’ s antibody-based 
treatment , called REGN-COV2 , is 
classified as experimental and is still in 
clinical trials . The company reported in a 
September 29 press release that the drug 
improved symptoms and reduced the viral 
load in Covid-19 patients who were not 
hospitalized . […]

Documents from 1st stage retrieval

Second-stage reranker (this work)

... About REGN-COV2 REGN-COV2 is a 
combination of two monoclonal antibodies 
( REGN10933 and REGN10987 ) and was 
designed specifically to block infectivity of 
SARS-CoV-2 , the virus that causes 
COVID-19 . To develop REGN-COV2 , 
Regeneron scientists evaluated thousands of 
fully-human antibodies produced by the 
company 's VelocImmune® mice , which 
have been genetically modified to have a 
human immune system , as well as antibodies 
identified from humans […]

... Regeneron ’ s antibody-based treatment , 
called REGN-COV2 , is classified as 
experimental and is still in clinical trials . The 
company reported in a September 29 press 
release that the drug improved symptoms and 
reduced the viral load in Covid-19 patients who 
were not hospitalized . “ The greatest treatment 
benefit was in patients who had not mounted 
their own effective immune response , 
suggesting that REGN-COV2 could provide a 
therapeutic substitute for the naturally-
occurring immune response , ”...

Top 1 document by our model Top 1 document by Contriever

Figure 1: Top-1 retrieved document from base Con-
triever (red) and CFR (green). Our model is able to
choose a better document despite both paragraphs being
topical. Our model recognizes the question is asking
about the chemical composition of REGN-COV2, while
the unfinetuned model selects a relevant document that
does not address “fetal tissue” or help with a final verac-
ity judgment.

Schlichtkrull et al., 2023; Chen et al., 2024). As
with many other RAG settings, retrieval is a bot-
tleneck (Singh et al., 2022): it is impossible to
provide the right judgment without retrieving the
right evidence.

In this work, we investigate how to build an ef-
fective retriever for fact-checking. Figure 1 shows
an example of why this is particularly challenging:
unlike a factoid question with a definite answer
spelled out in text, documents retrieved for fact-
checking may only obliquely address a claim, or
may present information in a different context (e.g.,
statistics that apply to a different country than the
one where the claim was made). The unstructured
nature of documents in the wild combined with
claims that are only subtly true or false make re-
trieval a very difficult task.

We focus on two-step retrieval pipeline used
in past work (Lazaridou et al., 2022; Chen et al.,
2024). These use a first-stage web search (i.e., us-
ing Google or Bing) to build a set of approximately
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relevant documents, followed by a second-stage
fine-grained ranking to obtain a smaller set of doc-
uments to pass to a reader LM (Chen et al., 2024),
which produces the final veracity judgment. This
second stage shows consistent recall failures de-
spite high-quality documents being present in the
first stage, mainly due to the nuanced complexities
with claims and subquestions in fact-checking.

Our approach, Contrastive Fact-Checking
Reranker (CFR), leverages contrastive learning to
fine-tune a dense retriever to prefer more relevant
documents when there is a lack of information or
ambiguity in the claim. To train our model, we ex-
periment with two main supervision signals: distill-
ing knowledge from GPT-4 and measuring answer
equivalence with the gold answer using Learned
Equivalence Metric for Reading Comprehension
(LERC) (Chen et al., 2020). We generate train-
ing datasets of positive and negative evidence pairs
based on these signals and fine-tune Contriever
(Izacard et al., 2022).

Our evaluation shows that a combination of these
supervision signals provides the best training data
for the retriever, even better than fine-tuning on
human annotated gold documents, as shown by
gains in downstream performance across multiple
datasets. Specifically, we see a 6% improvement
in veracity classification accuracy and a 9% in-
crease in the proportion of relevant top documents
on AVeriTeC.

Our contributions are: (1) exploring new meth-
ods of supervision signals for contrastively train-
ing dense retrievers; (2) producing a strong dense
retriever (CFR) which works well on AVeriTeC
and a broader set of retrieval tasks regarding fact-
checking complex claims.

2 Background and Related Work

2.1 Retrieval Augmented Generation Systems

Retrieval-augmented generation (RAG) relies on
two key modules: a retriever and a reader/genera-
tion model. For many RAG systems, noisy retrieval
hurts downstream performance by providing irrele-
vant or misleading documents (Yoran et al., 2024).
Sauchuk et al. (2022) found that adding distractors
can cause a 27% drop on veracity classification
accuracy on FEVER. Therefore, it’s important for
retrievers to find relevant documents and simulta-
neously avoid damaging ones. Shi et al. (2023)
attempts to solve this problem by finetuning the
retrieval component while fixing the reader LM,

similar to our work. Other approaches like Ke
et al. (2024) create a more complex system with a
“bridging” model between the retriever and reader.
Nevertheless, noisy retrieval remains a failure point
in RAG systems (Barnett et al., 2024), and tangi-
ble downstream gains can be realized by further
finetuning.

2.2 Limitations of Existing Retrieval Systems

For NLP tasks like question answering, sparse re-
trieval techniques like BM25 have been supplanted
by dense retrievers like DPR (Karpukhin et al.,
2020) and Contriever (Izacard et al., 2022). These
dual encoder approaches support efficient retrieval,
and contrastive training is an effective way to learn
embeddings for QA tasks. More recently, research
has explored distilling knowledge from reader mod-
els to create smarter retrievers (Izacard and Grave,
2022). We draw from this work to build a retrieval
system with better reasoning capabilities than base-
line dense retrievers, which are usually pretrained
on simpler (query, document) pairs (i.e. the MS-
MARCO dataset). These retrieval systems have
proven effective for fact-checking settings such as
FEVER (Thorne et al., 2018) and MultiFC (Au-
genstein et al., 2019). However, the claims are
largely short and factoid, and most of them contain
no more than two entities. The realistic setting is
embodied by approaches like QABriefs (Fan et al.,
2020), ClaimDecomp (Chen et al., 2022, 2024),
and AVeriTeC (Schlichtkrull et al., 2023), which
are ultimately different from what dense retrievers
were developed and optimized for.

2.3 Motivating Example: AVeriTeC

Figure 1 shows an example of fact-checking in the
AVeriTeC dataset: “how was REGN-COV2 devel-
oped?”. This example differs in key ways from
frequently-studied question answering settings
such as such as Natural Questions (Kwiatkowski
et al., 2019). First, it supports several different
short answers but very likely has a best answer in
the context of the claim: did the development in-
volve human fetal tissue? In this case, the bolded
paragraph indicates no: it used mice. The answer
to this question should address the claim and pro-
vide background information: there is both a “short
answer” as well as a “long answer” (Kwiatkowski
et al., 2019; Gao et al., 2023a).

Retrieval signals in fact-checking Contrastive
methods like Contriever require examples marked
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as positive or negative for use in the contrastive ob-
jective. In settings like NQ, retrieval systems rely
on evaluating whether a retrieved passage contains
the answer by simple string matching or ROUGE
overlap, which identifies “positives” for retrieval.
However, in Section 5 we show it is not straigh-
forward to apply this approach in fact-checking;
i.e., we cannot simply say a passage is positive if it
contains the ground truth answer.

Simultaneously, we must be cautious of assum-
ing a low overlap with the answer indicates a “neg-
ative” document for retrieval. This is because mul-
tiple plausible answers can exist due to the open-
ended nature of subquestions in AVeriTeC. Further-
more, using documents from the wild exacerbates
this issue by introducing documents that might not
directly support the gold answer but still contain
valuable information about the claim. In Section
3, we outline some ways in which we tackle this
problem to curate better finetuning data.

Context in retrieval Traditionally, retrievers are
given standalone questions as queries. This is char-
acteristic of datasets like NQ, where questions of-
ten contain one clear answer (e.g. “Where is the
bowling ball hall of fame located?”). However, in
fact-checking, the complexity of claims gives rise
to subquestions that are not standalone or simple.
Even if the questions themselves seem short (i.e.,
“How was REGN-COV2 developed?”), they must
be interpreted in-context with the claim (i.e., “Does
REGN-COV2 contain fetal tissue?”). Ideally, de-
composing claims into a set of perfect standalone
subquestions would reduce the load on the retriever.
However, this itself is a hard and separate task. In
this work, we attempt to build a retrieval system
that can handle nuanced queries by considering
each subquestion in the context of the overall claim.

3 Methodology

We consider a setting following work in AVeriTeC
and ClaimDecomp (Chen et al., 2022). We assume
we are given a collection of claims (c1, . . . , cN ).
For claim ci, we define qij as the jth subquestion
for the ith claim in the dataset and agij define its
answer. We also assume access to a document set
D(ci, qij) for each subquestion, created by query-
ing Bing with ci appended to qij and scrape the
top-k articles to form a document corpus. Each
document d is a 200 token span gathered from
the scraped articles. The title of the document
is prepended to the start of each document. The

dataset also comes with a gold article which con-
tains the gold answer. Like the Bing-retrieved doc-
uments, it is chunked into 200 token span docu-
ments {dg} and added to D(ci, qij). We refer to
documents belonging to these articles as gold.

Given a query y = [ci; qij ] and a document
di ∈ D, we want to generate embeddings in Re

using an encoder network (e.g. Contriever). Let
hy, hdi denote the representations of y and di. Then
we define our scoring function f : Re × Re → R
such that f(hy, hdi) > f(hy, hdj ) if document
di contains more information helpful to answer-
ing the query than document dj . Let r(y) =
argmaxd∈D f(hy, hd) which is a function that
chooses the highest ranked document in our doc-
ument set D. The goal is to optimize our encoder
via f to rank documents for answering questions
in-context with the claim above topically relevant
documents that do not ultimately contain informa-
tion for an answer. We choose to optimize this for
downstream veracity classification accuracy. We
also track more upstream metrics such as using a
relevance score for the top document or measuring
how close its extracted answer matches the gold
answer.

3.1 Components

Dense retriever r We use Contriever as the base
for our second stage dense retriever. Contriever
uses the BERT base uncased architecture (Devlin
et al., 2019). To fine-tune it with contrastive learn-
ing, we require document sets T (ci, qij , D) =
{D+, D−} of positive and negative documents;
during optimization, the positive documents will
be embedded closer to the query vector than neg-
ative documents. Contrastive training relies crit-
ically on having hard negatives to serve as “dis-
tractors” (Robinson et al., 2021). These might be
documents ranked high by baseline retrievers or
having high token overlap with the query. Figure 2
shows our pipeline for constructing these document
sets, which we expand on in the following sections.

We define SBM25(ci, qij) = {d1, d2, . . . , dk}
as the top k documents surfaced by BM25
given [ci; qij ] as the query. We also define
GBM25(ci, qij) = {dg1, dg2, . . . , dgl } as the top l
gold annotated documents. In our models, we set
k = 10 and l = 5.

Reader model We use GPT-4 as the reader
model. The answers are derived by prompting GPT-
4 with the claim ci, question qij , and a document
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Claim 

US President Donald Trump following his 
positive diagnosis of COVID-19, was given 
treatment developed from the use of fetal tissue, 

made by the company Regeneron.

Sub-question 

How was REGN-COV2 developed?

... Regeneron ’ s antibody-based treatment , 
called REGN-COV2 , is classified as 
experimental and is still in clinical trials . The 
company reported in a September 29 press 
release that the drug improved symptoms and 
reduced the viral load in Covid-19 patients 

document

To develop REGN-COV2, Regeneron 
scientists evaluated thousands of fully-human 
antibodies produced by the company’s 
VelocImmune® mice, which have been 
genetically modified to have a human immune 
system, as well as antibodies identified from 
humans who have 

document

Retrieved documents from first stage retrieval

Human-annotated gold documents

document

…

document

…

document

BM25

Distill GPT-4

LERC

claim

sub-question

document

GPT-4

Prompt for 
relevance

yes

no

document

document

claim

document Prompt for 
answer

GPT-4 answer

Gold 
answer

High 
LERC

Low 
LERC

document

document

D+
d

D−
d

D+
l

D−
l

Gold

document document

document

D+
g

D−
g

document

document

Top 10 docs

Top 5 gold docs

Human annotated 
gold documents

Others

sub-question

vs.

Figure 2: Overview of generating positive and negative examples for finetuning the retriever. We first select
documents with high BM25 score with the (query, subquestion) from both the web documents and gold articles. We
then experiment with different methods (described in Section 3.3) to derive positive and hard negative examples.

dij from the corpus (see Appendix E.3). For a
given (ci, qij) pair, we refer to aij as the candidate
answer derived from the evidence document dij .
During inference time, dij is the top-1 document
from our retrieval system.

3.2 Learning
We train r on these (ci, qij)× T pairs to produce a
finetuned retriever r∗. Specifically, given a query
y = [ci; qij ] and positive document d+ ∈ D+,

L(y, d
+
) =

exp
(︁

1
τ f(hy, hd+ )

)︁

exp
(︁

1
τ f(hy, hd+

)︁
+

∑︁
d−∈D− exp

(︁
1
τ f(hy, hd− )

)︁

where τ is a temperature parameter. In our set-

ting, we define f as cosine similarity hT
y hd

∥hy∥·∥hd∥
between the embeddings. This encourages pos-
itive documents to have high similarity with the
query while penalizing high scores for negative
documents. Fine-tuning yields r∗ such that r∗(y)
contains a better answer to qij in context with ci
than r(y).

Implementation Details On average, each ques-
tion qij comes with about 500 documents to rank.
Each document contains 200 token span, scraped
from articles with a 100 token length stride. Details
about training and model architecture can be found
in Appendix A.1.

3.3 Generating Contrastive Training Data

We generate {D+, D−} in three main ways: the an-
notated AVeriTeC gold evidence, distilled relevance
judgements from a GPT-4 reader module, and eval-
uating equivalence of the document-predicted an-
swer with a gold answer. Figure 2 shows the three
approaches which we describe next.

AVeriTeC Gold Evidence The most straightfor-
ward approach to building positive examples is
to use the human-annotated evidence paragraphs
available in AVeriTeC. The gold articles (one per
subquestion) were selected by human annotators in
a two-stage annotation process, we refer the read-
ers to their paper for details (Schlichtkrull et al.,
2023). The annotators also provided answers for
the subquestions, which consist of both extractive
and abstractive answers. For each qij , this article
is chunked into a set of documents {dgij} as de-
scribed in Section 3. Negative examples are all
d ∈ SBM25(ci, qij) such that d is not from a gold-
annotated document. We denote the fine-tuning
data derived from this method as {D+

g , D
−
g }.

Distilling GPT-4 The AVeriTeC gold evidence
may have recall errors: there may be relevant doc-
uments that are not marked by annotators. An al-
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ternative is to use GPT-4 as a labeler, effectively
distilling its knowledge (Figure 2, top right). In
this setting, we take SBM25(ci, qij) and zero-shot
prompt GPT-4 about whether each document is rel-
evant to answering the subquestion or not. Note we
do not provide the gold answer in the prompt, as
we are simply interested in collecting documents
with relevant information regardless of how well
the underlying answer matches agij . Documents
marked as relevant are added to D+, and the rest
are added to D−. The exact prompt can be found
in Appendix E.1. We define this set as {D+

d , D
−
d }.

Distilling GPT-4 (with gold) In this setting,
we inject the top-l AVeriTeC gold documents
GBM25(ci, qij) into the finetuning set. Like be-
fore, we zero-shot prompt GPT-4 about whether
each document is relevant to answering the sub-
question, but include GBM25(ci, qij) in addition to
SBM25(ci, qij). We refer to {D+

dg, D
−
dg} as the fine-

tuning data from this method.

LERC-based signal An additional approach to
construct our pairs is to use the gold-annotated
answers agij (Figure 2, middle right). Ideally, a
document we retrieve should help us discover these
answers; however, because the subquestions are not
factoid questions, it is not easy to assess whether a
retrieved document contains the answer.

To do this, we filter the top documents using
LERC (Learned Evaluation Metric for Reading
Comprehension) (Chen et al., 2020), a metric for
scoring answer equivalence. More formally, we
take SBM25(ci, qij) with GBM25(ci, qij) to make a
set of 15 documents. We then prompt GPT-4 to use
each of the 15 evidence documents to produce an
answer aij for each document. We found that for
complex long answers, using ROUGE overlap as
an answer equivalence metric works poorly (Ap-
pendix B.1). On AVeriTeC, we also tried using
ROUGE-F1 score instead of LERC (see Table 2)
to see how this reflects in all our end-to-end evalu-
ation metrics. To accommodate this, we introduce
an “answer shortening” function s which attempts
to pull out the main point of the answer. We use
LERC to compare s(aij) and s(agij), our shortened
candidate and gold answer respectively. By identi-
fying documents which give rise to answers with
high LERC scores, we encourage our retriever to
seek documents which address the question in the
query. Documents with poor LERC scores (< 0.3)
become negative contexts, and documents with

Train Set # subq |D+| |D−| D+ D−

distill 1228 4.8 8.4 D+
d D−

d

LERC 692 1 4.2 D+
l D−

l

gold 1229 1 9.1 D+
g D−

g

distill (gold) 1229 5.2 8.4 D+
dg D−

dg

distill (gold)
+ LERC 1229 5.6 8.4 D+

dg ∪D+
l D−

dg

Table 1: Dataset statistics for different finetuning sets
from AVeriTeC. |D+| and |D−| represent the average
number of positive and negative contexts per (ci, qij)
pair. Differences in number of subquestions come from
filtering out examples for which |D+| = 0 or |D−| = 0.

high LERC (> 0.7) scores are positive contexts.
We also evaluate how well human annotators agree
with granular LERC scores and find an average
Kendall’s τ score of 0.53 (Appendix C.2). We de-
note {D+

l , D
−
l } as finetuning data derived from

this method.

LERC-based quality check We evaluated
{D+

l , D
−
l } and found that many negative docu-

ments were actually relevant to the claim/question.
More details on this experiment can be found in
Appendix C.1. To reduce the false negative rate,
we mix in relevant documents with the positive
set from distill to create {D+

dg ∪ D+
l , D

−
dg}. We

refer to this as the distill (gold) + LERC setting.
This is the final experimental setting we use for
our Contrastive Fact-Checking Reranker (CFR)
model.

4 Experimental Setup

We evaluate Contriever fine-tuned on the su-
pervision signals outlined in Section 3. The
datasets selected for evaluation, namely AVeriTeC
(Schlichtkrull et al., 2023), ClaimDecomp (Chen
et al., 2022), FEVER (Thorne et al., 2018), and Hot-
potQA (Yang et al., 2018), encompass a wide range
of scenarios for document retrieval. For evaluation,
a random subset of 200 answerable examples (sub-
questions contain an answer) were selected from
each of these not overlapping with the training sets.

4.1 Metrics

We use metrics that evaluate both the retrieved doc-
uments and downstream products of these docu-
ments, such as the produced answer.

• LERC computes the average LERC score be-
tween the AVeriTeC (or ClaimDecomp) gold
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answer and the GPT-4 generated answer from
the top retrieved document as the candidate.

• Top doc relevance is the proportion of exam-
ples for which the top-1 document is classified
as relevant to answering the question by GPT-
4, using the same prompt for which we derive
the distillation signal.

• Gold@10 is the proportion of examples in
which an AVeriTeC annotated gold document
appeared in the top-10.

• Veracity represents the veracity classifica-
tion accuracy. For ClaimDecomp, we use the
RoBERTa based veracity classifier trained on
ClaimDecomp.1 For FEVER, we few-shot
prompt GPT-4 for a veracity label; see Ap-
pendix E.4.

4.2 Datasets

AVeriTeC consists of real claims (ci) from the
web annotated with subquestions (qij), gold an-
swers (agij) to the subquestions, and the gold evi-
dence document for the answer. We query Bing in
FSR with the claim and subquestion [ci; qij ] to gen-
erate D. The generated answers (aij) are verified
against the gold answers using LERC.

ClaimDecomp consists of complex political
claims (ci) with yes/no subquestion decomposi-
tions (qij) generated by trained annotators. We
query Bing in FSR with the claim and subquestion
[ci; qij ] to generate D. The annotated subquestions
tackle both explicit and implicit parts of the origi-
nal claim. The implicit questions are much harder
to answer without sufficient context, which makes
this an interesting dataset for retrieval evaluation.
The human labeled answers are yes/no, and we
evaluate our generated answers (aij) against the
gold answers using LERC. Because the questions
themselves are yes/no in nature, this approach re-
turns the same results as simple binary comparison.

FEVER consists of claims (ci) manually veri-
fied against the introductory sections of Wikipedia
pages and classified as SUPPORTED, REFUTED or
NOTENOUGHINFO. We treat the claim itself as
the question (ci = qi) here. Unlike past work, we
query Bing with the claim to generate D; as a re-
sult, our data condition is different than past work

1https://github.com/jifan-chen/
Fact-checking-via-Raw-Evidence

Model LERC Top Doc Relv. Gold@10 Veracity

BM25 0.45 0.47 0.42 0.48
Contriever 0.48 0.54 0.50 0.54

Contriever MSM 0.52 0.55 0.45 0.59
ROUGE-F1* 0.52 0.53 0.50 0.55

gold 0.50 0.51 0.56 0.53
distill 0.54 0.63 0.60 0.55
LERC 0.53 0.56 0.54 0.60

distill (gold) 0.54 0.61 0.59 0.58
CFR 0.53 0.62 0.59 0.60

Table 2: In-domain experimental results on AVeriTeC
test subset (n = 200). Numbers marked with are
statistically significant w.r.t. baseline Contriever at o =
0.05 under 10,000 bootstrapped samples. CFR is what
we call the model finetuned on distill (gold) + LERC.

evaluating on FEVER. For FEVER, we don’t gen-
erate answers or subquestions and simply verify
the claim against the evidence document.

HotpotQA is a question answering dataset fea-
turing multi-hop questions, with strong supervi-
sion for supporting facts to enable more explain-
able question answering systems. The questions
require finding and reasoning over multiple sup-
porting documents to answer. There are no claims
in this dataset, so we set ci = qi and retrieval is
done with just the question.

4.3 Baselines

We report performance of several widely-used re-
trievers as baselines: BM25, Contriever (Izac-
ard et al., 2022) and Contriever fine-tuned on
the MS MARCO dataset (Campos et al., 2016)
(Contriever MSM). We also compare against an
additional Contriever baseline. We use ROUGE-
F1 supervision similar to the LERC setup, except
long answers were evaluated using ROUGE over-
lap scores. This tests whether our approaches out-
perform a simple method for answer matching.

5 Results

5.1 AVeriTeC

The results for AVeriTeC are shown in Table 2. We
find that distill performs the best in most metrics
but for veracity. The 6% gain in top doc relevance
reflect our retriever’s ability to correctly identify
more relevant documents in our evaluation set.

As expected, we find that using ROUGE as a
long answer overlap metric to generate {D+, D−}
works poorly as seen by the ROUGE-F1 baseline.
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Model ClaimDecomp FEVER HotpotQA

LERC Top Doc Relv. Veracity Top Doc Relv. Veracity LERC Top Doc Relv.

BM25 0.54 0.30 0.30 0.43 0.55 0.28 0.21
Contriever 0.64 0.32 0.32 0.49 0.58 0.33 0.27

Contriever MSM 0.64 0.31 0.34 0.52 0.61 0.34 0.31

gold 0.64 0.30 0.28 0.48 0.56 0.32 0.30
distill 0.64 0.39 0.32 0.57 0.61 0.34 0.26
LERC 0.65 0.31 0.31 0.55 0.61 0.34 0.30

distill (gold) 0.66 0.37 0.34 0.56 0.61 0.35 0.32
CFR 0.65 0.32 0.34 0.57 0.63 0.36 0.32

Table 3: Out-of-domain experimental results on ClaimDecomp, FEVER, and HotpotQA test subset (n=200 for each
dataset). Numbers marked with are statistically significant w.r.t. baseline Contriever at p = 0.05 under 10,000
bootstrapped samples from the respective test subset.

Comparing the average LERC score between
baseline Contriever and Contriever finetuned on
LERC, we find a 5% gain in the average LERC
score on the evaluation set. This is also backed by
a 6% increase in downstream veracity classification
performance, indicating our improved ability to an-
swer questions transfers to actually fact-checking
the claim. We also see that the models finetuned
with LERC signals (LERC and CFR) reflect the
strongest improvements in veracity classification.
CFR also excels in top doc relevance and other up-
stream metrics. This indicates evaluating answers
derived from documents may help downstream per-
formance on fact-checking more than other super-
vision signals.

Lexical overlap We find that gold supervision
(using AVeriTeC annotated gold evidence) per-
forms poorly across all metrics. We hypothesize
two reasons for this: 1) the evidence lacks signifi-
cant token overlap with the claim/subquestion and
2) gold annotation involves human reasoning and
assumptions which are too complex for the unfine-
tuned retriever to model in its document embed-
ding space. In fact, the average ROUGE-F1 score
between [ci; qij ] and highest overlapping gold doc-
ument is only 0.11 compared to 0.25 for the top-
ranked document from the wild (see Appendix B.2).
This discrepancy comes from examples where the
annotated evidence document is based on a re-
lated entity not mentioned in the claim or ques-
tion, which is very challenging to recover without
additional context. In other cases, modeling the
annotated gold evidence is challenging because it
contains new information that is not known from
the claim or subquestion alone. Therefore, super-
vising with only gold documents doesn’t effectively

help the retriever learn.

5.2 Out-of-domain results
Results on out-of-domain datasets are in Table 3.

ClaimDecomp We find that our gains translate
to ClaimDecomp, with distill (gold) demonstrat-
ing significant improvements in both LERC and
top doc relevance. Examples in this dataset con-
tains both explicit and implicit subquestions, while
AVeriTeC subquestions are mostly explicit. Since
we use subquestions for retrieval, improvement in
top doc relevance may reflect an ability to surface
better documents for ambiguous implicit subques-
tions, which is something baseline retrievers strug-
gle with. An example of this is seen in Appendix
D, where our finetuned retriever model is able to
accurately capture the focus on lack of funding
presented in the question. Even though baseline
Contriever selects a document detailing the Am-
trak incident with high lexical overlap with the
claim and query, the document itself is not useful
for answering the question. Using CFR, we see a
2% increase in downstream veracity classification
performance.

FEVER We also find that our system gives gains
on FEVER compared to BM25, Contriever, and
Contriever MSM. Our retriever selects relevant top
documents more often and yields improved down-
stream veracity performance.

HotpotQA For HotpotQA, we find that distill
(gold) + LERC performs the best across LERC
and top doc relevance. We notice the strongest
gains come from including LERC-based supervi-
sion, which indicates our retriever may learn to
identify answer documents that contain little over-
lap with the claim. This is especially useful in

270



multi-hop settings where the answer document can-
not be found in one step from the query.

6 Retriever Reasoning Capabilities

Our hypothesis about our contrastive training was
that it would impart a greater ability for our re-
triever to “reason” about content rather than di-
rectly locating an answer. We conduct an addi-
tional study of whether our retriever can exhibit
basic 1-hop reasoning capabilities via a synthetic
data experiment. We construct positive and nega-
tive documents where the positive documents do
not directly state the answer, similar to what we
found in several AVeriTeC examples.

6.1 Synthetic Data Generation

We build these examples by few-shot prompting
GPT-4 with synthetic documents written by hu-
mans. Our data generation approach takes as input
a claim/question pair (ci, qij) from AVeriTeC and
produces a document set {d+, d−, d−1 , d−2 , d−3 , d−4 }.
We generate data for (ci, qij) pairs from the vali-
dation set described in Section 4. The positive
document d+ is the only document that contains
an answer to the question. Document d− is a “hard
negative” document, which is a document that ap-
pears highly relevant to the query [ci; qij ] but does
not contain an answer. The 4 other documents
d−1 , . . . , d

−
4 are additional negative documents built

from alternate subquestions about the claim.
The positive document is a paragraph that sup-

ports an answer to the question, but only indirectly.
When prompting (Appendix E.2), we require that
a clear reasoning hop must be made to recover
an answer from the positive document. There-
fore, a retrieval system that simply looks for query-
document token overlap may not be able to find
such documents because the answer is usually not
presented in terms of the question.

The hard negative document is a paragraph
that looks highly relevant to the claim/question, but
doesn’t actually support an answer. In the prompt,
we specify that the document should appear rel-
evant but not support an answer, and further en-
force this with few-shot examples (see Appendix
E.2). In Appendix F.2, the hard negative docu-
ment correctly discusses the federal judges Trump
nominated. However, it does not contain any in-
formation about how many judges he nominated,
deeming it useless for answering the question about
the claim.

Model MRR

BM25 0.49
Contriever 0.68

Contriever MSM 0.75

gold 0.72
distill 0.80
LERC 0.72

distill (gold) 0.80
CFR 0.79

Table 4: Results for 200 examples of synthetically gen-
erated data. Numbers marked with are statistically
significant w.r.t. baseline Contriever at p = 0.10 under
10,000 bootstrapped samples from the respective test
set.

The remaining negative documents are built by
generating alternate subquestions similar to qij but
without overlapping answers. Then, we generate
documents that contain answers to these distractor
subquestions. An example can be found in Ap-
pendix F.1 along with the prompt in Appendix E.2.

6.2 Results

We evaluate our retrievers on their ability to score
the positive document closer to the query than the
negative distractor documents. We measure this via
MRR of the positive document across ranking the
six documents (positive, hard negative, and 4 alter-
nate question negatives). The results are displayed
in Table 4. We find a statistically significant gain in
our finetuned model’s ability to surface the positive
document over other distractor documents. CFR
achieves an MRR of 0.79 compared to baseline
Contriever (0.68). This supports our hypothesis
that finetuning on our supervision signals improves
the ability of the retrieval model to find information
only indirectly related to the claim.

7 Conclusion

This work presents an improved retrieval sys-
tem, CFR, for fact-checking complex claims. We
present two supervision signals for finetuning re-
trievers under a contrastive objective, and their in-
tegration results in improved downstream veracity
classification. Furthermore, CFR is able to improve
retrieval in settings where inferences are required
to identify the correct documents. The gains found
in this paper encourage explorations into improv-
ing retrieval for fact-checking, as surfacing relevant
information proved to be a hard task even for SOTA
dense retrievers.
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Limitations

There are a few limitations of our current approach.
First, using LERC as an answer equivalence metric
requires us to shorten both the gold and candidate
answer. The answer compression step loses infor-
mation that may play a role in verifying hard ex-
amples. Therefore, developing a good long answer
equivalence metric can help build an even better re-
trieval system for fact-checking. Such equivalence
metrics can also be useful for evaluation: the long-
form explanation of why a claim is true or false
may be more important than the veracity judgment
itself, but this is difficult to assess in an automated
way.

Second, this work focuses on the second-stage
retrieval step. Building optimized queries for first
stage retrieval may yield a better document cor-
pus for second stage, especially for hard exam-
ples where little information has been published.
However, indexing the necessary documents for
the broad set of claims we use involves web-scale
indexing, which is beyond the scope of this project.

Finally, this work considered English-language
political claims. We note that claims in multimedia
(e.g., in memes or videos), claims in other lan-
guages, and claims in specialized domains such
as COVID-19 misinformation may present distinct
challenges. However, we believe that our frame-
work is flexible enough for future work to be able
to build on it and train retrievers for these settings
as well.

Ethical Considerations and Risks

This paper presents a retrieval method that seeks
to advance the state of the art in automated fact-
checking. However, despite recent progress in this
area and systems that combine retrieval systems
like ours with LLMs (Schlichtkrull et al., 2023;
Chen et al., 2024), we stress that these system are
not yet ready for deployment. We believe these
systems have use to aid professional fact-checkers
in their work, since enabling them to quickly find
information can aid them to more rapidly check
claims. However, these systems cannot produce
reliable fact-checks without a human in the loop,
as demonstrated by the veracity numbers in this
work. Moreover, there is not necessarily a single
objective truth about every claim, and a judgment
may depend on the reliability of primary sources
and other factors which are beyond the scope of
this work.
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A Implementation Details

A.1 Computational Details

The finetuned models were BERT base uncased
(110M parameters). Hyperparameter optimization
was done via grid search on the learning rate and
batch size. For learning rate, we searched {1e −
5, 2e − 5, 4 − e5}. For batch size, we searched
{4, 8, 16, 32, 64}.

• Infrastructure: 2 NVIDIA Quadro RTX 8000

• GPU Hours (training): approx. 3 hours

• GPU Hours (eval): approx. 1 hour

• Epochs: 12

• Best Learning Rate: 2e-5

• Best Batch Size: 32

A.2 Experimental Setup

Besides chunking into 200 token spans, document
text is not further preprocessed. During training,
data was mapped into tuples of the form containing
one positive and negative (ci, qij , d

+, d−). That is,
if a claim/question pair contains 2 positive and 3
negative paragraphs, it becomes 2 · 3 = 6 separate
data points. These were then shuffled and batched
to be fed to the retriever. In contrastive training we
use in-batch negatives.

A.3 Parameters for Packages

• Used rouge-score (v0.1.2) to compute
ROUGE-F1 scores. Used rougeL (longest
common subsequence) with stemming set to
True.

• Used openai (v1.34.0) for GPT-4 chat comple-
tion. Set temperature setting to 0.2.

A.4 Scientific Artifacts

• AVeriTeC [License] Free to copy, redistribute,
and build upon this material given citations
and a link to the license. AVeriTeC contains
English-language real-world claims mainly
in politics gathered from 50 different fact-
checking organizations.

• FEVER [License] Data annotations incorpo-
rate material from Wikipedia, which is li-
censed pursuant to the Wikipedia Copyright
Policy
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• HotpotQA [License] Free to copy, redis-
tribute, and build upon this material given
citations and a link to the license

• Contriever [License] Free to copy, redis-
tribute, and build upon this material given
citations and a link to the license

B ROUGE-based Methods

B.1 ROUGE-based Answer Matching
ROUGE overlap between long answers works is
a poor supervision signal because answer strings
are typically quite complex. Table 5 illustrates this:
although both long answers are conveying the same
fact that Nigeria experienced 29 years of military
rule, extra details or differences in phrasing can
lead to low ROUGE scores despite the answers
being semantically equivalent. The opposite may
also occur: long answers which contain high lexi-
cal overlap may be topically similar but completely
different in their key points, creating a false positive
example. We also investigated semantic similarity
measures like BERT score to assess answer equiv-
alence. Compared to short answer LERC, BERT
score tended to work poorly for complex long an-
swers as seen in AVeriTeC. By contrast, using a
short answer extraction yields a perfect signal in
this case.

B.2 ROUGE-based Token Overlap
See Table 6. The token overlap between the re-
triever query (claim+question) and the AVeriTeC
annotated gold document is only 0.11, whereas
with the top retrieved document it is 0.25. This
means using tokens in the query to surface the gold
document is not easy.

C LERC Experiments

C.1 LERC Quality Check
We evaluate the selection of {D+

l , D
−
l } by manu-

ally annotating 10 examples. The task was to se-
lect the positive context document given a shuffled,
unlabeled {D+

l , D
−
l }. We selected the positive

document correctly in 60% of examples. Note the
positive document here is the one with the highest
LERC score (i.e., contains an answer which most
closely matches the gold answer). However, the
two human annotators agreed on 90% of examples.
By investigating the failure cases, we found that
LERC-based metrics are sensitive to selecting false
negative documents, as human agreement indicated

a negative document was more “relevant” to the
claim/question than the labeled positive document
40% of the time. Oftentimes, the misclassified
document contained a reasonable answer to the
question but mismatched the gold answer (hence
explaining the low LERC score). This revealed
that while LERC can identify strong positive docu-
ments, it comes with the risk of including relevant
documents as negative contexts.

C.2 LERC-Human Agreement

In another preliminary study, we manually anno-
tated 22 examples with a fine-grained score from
0-1 reflecting how closely we think the shortened
candidate answer matches the shortened gold an-
swer. Across three annotators, we found Kendall’s
tau agreement scores of 0.55, 0.49, and 0.55 with
LERC (Table 7). This indicated human judgments
of short answer equivalence correlate well with
LERC, making it a viable answer equivalence met-
ric to use as supervision.

D ClaimDecomp Example

See Table 10

E GPT-4 Prompts

E.1 Relevance Prompt

You will be given a claim, a question about the claim, and a
passage. Your job is to check whether the passage contains
information that supports an answer to the question. You
will only output "Yes" or "No".

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.

Question: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014?

Passage: Hunter Biden , Burisma , Ukraine , and Joe
Biden explained - Vox And during the bulk of this troubled
period in Hunter ’ s life , he was fortuitously on the board
of a Ukrainian energy company...

E.2 Synthetic Data Generation Prompt

You will be provided with a claim and a question about the
claim. Your job is to generate two evidence paragraphs:
(1) Positive: A paragraph that supports an indirect answer
to the claim. It requires a reasoning hop to arrive at the
answer. You can make up the answer to the question, but it
should only come with a reasoning step.
(2) Hard Negative: A paragraph that looks highly
relevant to the claim/question, but doesn’t actually support
an answer Neither paragraph can use "claim" or "question"
- they must stand alone and mimic the style of real
evidence documents found on the web.
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Gold Answer GPT-4 Answer Score

Long Answer + ROUGE-
F1

Nigeria returned to democracy in 1999,
after two long periods of military
rule—1966–79 and 1983–98—during
which the military wielded executive,
legislative, and judicial power

Nigeria experienced military rule for
a total of 29 years after independence:
from 1966 to 1979 and from 1983 to
1998.

0.22

Short Answer + LERC 29 years 29 years 1

Table 5: Comparison of long answer ROUGE and short answer LERC. The two long answers are effectively
conveying the same thing, but the ROUGE-F1 score is only 0.22. However, answer shortening + LERC yields a
perfect equivalence score of 1.

gold top_doc

ROUGE-F1 0.11 0.25

Table 6: Comparing token overlap across 200 examples
between [ci; qij ] and the best annotated gold document
or the top-ranked document from the wild (retriever is
baseline Contriever).

Annotators Kendall τ

1 / LERC 0.55
2 / LERC 0.49
3 / LERC 0.55

1 / 2 0.38
2 / 3 0.40
1 / 3 0.40

Table 7: Inter-annotator agreement across 20 examples
and 3 annotators. 2/3 refers to the agreement between
annotators 2 and 3

Here are some examples:
Claim: Former President Donald Trump who lost the
popular vote by 3 million has nominated a full third of
The United Supreme Court, as of 13th October 2020.
Question: How many federal judges did Trump
nominate?
Positive: Two weeks ago in October Trump nominated
multiple members of the Supreme Court. He started by
nominating John Jacobs and Patricia McConnell, both
of whom have supported Republican policies for many
years. He made these judicial appointments despite mass
disagreement, highlighting his goal to secure conservative
ideals in the judiciary. Last week, he also appointed Max
Dermott, making him the third Supreme Court justice
nominated by Trump.
Hard Negative: Former President Trump nominated
highly conservative Supreme Court justices back in
October of 2020. His appointments were largely
composed of conservative Republicans with long standing
connections to Trump. He made these appointments in
accordance with mass public support.
Explanation: The reasoning step in the positive
parargaph is to realize "third of the Supreme court" means
3 out of 9 judges. The positive paragraph correctly lists
3 judges (John Jacobs, Patricia McConnell, and Max

Dermott). The hard negative paragraph discusses his
appointments but offers no information on how many
judges he appointed.

Here is another example:
Claim: Anthony Fauci the NIAID director is a democrat.
Question: Is Anthony Fauci the NIAID director
registered with a political party?
Positive: Two weeks ago, a new rule was passed in the
NIAID which bans any director from holding political
affiliations. In fact, it’s even stricter than this - the same
rule states no NIAID director is allowed to even register
with a political party or participate in elections.
Hard Negative: Anthony Fauci has maintained a
long standing relationship with Democratic presidential
nominee Jacob Wallace. They were childhood friends who
grew up together, and Fauci has also openly supported
some of Wallace’s policies. However, Fauci is historically
known to stray away from politics and media.
Explanation: The reasoning step in the positive
paragraph is to realize NIAID directors cannot register
to political parties. Anthony Fauci is an NIAID director
according to the claim, therefore he cannot be registered
with a political party. The hard negative paragraph
mentions his friendship with a Democratic presidential
nominee, but this does not imply he is a registered
Democrat.

Here is one final, slightly harder example:
Claim: Robert E. Lee, commander of the Confederate
States Army during the American Civil War, was not a
slave owner.
Question: Was Robert E. Lee a slave owner?
Positive: Many commanders during the Civil War era
managed and inherited slaves through their family estates.
Robert E. Lee was the commander for the Confederate
States Army during the Civil War, and the Confederate
states were in support of slavery.
Hard Negative: Commander Robert E. Lee led the
Confederate States Army during the American Civil War.
In the South, many slaves were forced to fight in the army
under Robert E. Lee against the Union states. Slaves as
soldiers were given poor equipment and placed on the
front lines of defense.
Explanation: The reasoning step in the positive
paragraph is to realize many commanders inherited
slaves, and Robert E. Lee was a commander. Therefore
it is likely that he might have also had slaves. The hard
negative paragraph discusses the role of slaves in the war,
but doesn’t contain information on whether Robert E.
Lee personally owning slaves. Notice even the positive
paragraph doesn’t contain a direct answer, but it is still
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more relevant to the question than the hard negative.

Now, please generate a positive and hard negative para-
graph with an explanation for the following claim/question
pair:

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.

Question: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014?

E.3 QA Prompt

As a professional fact-checker, your task is to ONLY use
the passage to answer the following question about the
claim. Keep your answer short (only 1-2 sentences)

Passage: Hunter Biden , Burisma , Ukraine , and Joe
Biden explained - Vox And during the bulk of this troubled
period in Hunter ’ s life , he was fortuitously on the board
of a Ukrainian energy company...

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.

Question: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014?

E.4 FEVER Veracity Prompt

As a professional fact-checker, your task is to use the fol-
lowing claim and evidence document to determine the
veracity of the claim. You must ONLY respond with either
SUPPORTS, REFUTES, or NOT ENOUGH INFO

Claim: Great white sharks do not prefer dolphins as prey.

Passage: Do Sharks Eat Dolphins ? [ Explained ] - Ocean
Fauna Did you know that sharks are often considered the
ocean ’ s top predators ? Well , here ’ s an interesting twist :
killer whales , which are actually a type of dolphin , are the
ultimate predators that can effortlessly take down a shark
. But what about other dolphin species ? Do sharks eat
dolphins ? Not all sharks eat dolphins , but some species do
feed on them . Great whites , tiger sharks , and bull sharks
are among the ones that go for it . In this article , I will
discuss the types of dolphins that sharks typically consume
and how they do it . Are Dolphins Prey Items for Sharks ?
Yes , dolphins can indeed be prey items for certain species
of sharks . While not all sharks view dolphins as a potential
meal , some of the larger and more predatory species , such
as Great whites , tiger sharks , and bull sharks , have been
known to feed on them . Young and sick dolphins are
particularly vulnerable to shark predation , as they have
less mobility and are easier to catch . Sharks typically hunt

Now please respond with one of SUPPORTS, REFUTES,
or NOT ENOUGH INFO

F Synthetic Data Examples

F.1 Generated Example

See Table 8.

F.2 Human Written Example
See Table 9.
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Claim The Obama-Biden administration secretly launched a surveillance operation on the Trump campaign.

Question Was there a surveillance operation on the Trump campaign?

Positive In 2016, it was revealed that the FBI had launched an investigation into potential collusion between the
Trump campaign and Russian operatives. This investigation, known as "Crossfire Hurricane," involved
surveillance measures such as wiretaps and informants to gather intelligence. Although the operation
was conducted by the FBI, it was during the Obama-Biden administration, raising questions about the
extent of their involvement and oversight in the surveillance activities.

Hard Nega-
tive

During the 2016 presidential campaign, the Trump campaign faced numerous allegations of collusion
with foreign entities. These allegations led to a series of public investigations and hearings, where
various campaign officials were called to testify. The media extensively covered these events, and the
public was made aware of the ongoing scrutiny faced by the Trump campaign. However, no direct
evidence of a secret surveillance operation by the Obama-Biden administration was presented during
these hearings.

Alt Q1 What were the objectives or reasons behind the alleged surveillance operation on the Trump campaign?

Alt Q1 Nega-
tive (d−1 )

The alleged surveillance operation on the Trump campaign, purportedly initiated by the Obama-Biden
administration, was reportedly driven by concerns over potential foreign interference in the 2016 U.S.
presidential election. Intelligence agencies had gathered evidence suggesting that Russian operatives
were attempting to influence the election’s outcome, raising alarms about possible collusion between
the Trump campaign and Russian entities. The objective was to safeguard the integrity of the electoral
process and ensure that no foreign power could unduly sway the democratic proceedings. Additionally,
the surveillance aimed to uncover any illicit activities that could compromise national security. These
actions were framed within the broader context of protecting American democratic institutions from
external threats.

Explanation The positive paragraph mentions the FBI’s "Crossfire Hurricane" investigation, which involved surveil-
lance measures and occurred during the Obama-Biden administration. This requires the reader to make
the reasoning hop that the administration might have had some level of involvement or oversight. The
hard negative paragraph discusses public investigations and hearings related to the Trump campaign but
does not address the existence of a secret surveillance operation by the Obama-Biden administration.

Table 8: Example of a synthetic example generated from our procedure. The explanation indicates the reasoning
hop required to surface the positive paragraph, as well as the complexity of the hard negative.

Claim Former President Donald Trump who lost the popular vote by 3 million has
nominated a full third of The United Supreme Court, as of 13th October 2020.

Question How many federal judges did Trump nominate?

Positive Two weeks ago in October Trump nominated multiple members of the
Supreme Court. He started by nominating John Jacobs and Patricia Mc-
Connell, both of whom have supported Republican policies for many years.
He made these judicial appointments despite mass disagreement, highlight-
ing his goal to secure conservative ideals in the judiciary. Last week, he
also appointed Max Dermott, making him the third Supreme Court justice
nominated by Trump.

Hard Negative Former President Trump nominated highly conservative Supreme Court jus-
tices back in October of 2020. His appointments were largely composed of
conservative Republicans with long standing connections to Trump. He made
these appointments in accordance with mass public support.

Explanation The reasoning step in the positive parargaph is to realize “third of the Supreme
court” means 3 out of 9 judges. The positive paragraph lists 3 judges (John
Jacobs, Patricia McConnell, and Max Dermott). The hard negative paragraph
discusses his appointments but offers no information on how many judges he
appointed, which is what the question is asking.

Table 9: Example of a human annotated positive and hard negative example.
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Claim: Charles Schumer stated on May 13, 2015 in remarks to reporters: "It is simply a fact that insufficient funding for
Amtrak has delayed the installation" of a positive train control safety system. "To deny a connection between the (derailment in
Philadelphia) and underfunding Amtrak is to deny reality."
Question: Is there a connection between the derailment in Phil. and underfunding Amtrak?

Contriever distill (gold) + LERC

Latest safety technology wasn ’ t fully installed at site of
deadly Amtrak derailment south of Seattle - CBS News ap-
proached sharp curves at more than double the speed limit . A
Metro-North train crashed in New York City in 2013 , killing
four people , when an engineer with sleep apnea dozed off .
An Amtrak train crashed in Philadelphia in 2015 , killing eight
people , when investigators say the engineer was distracted by
radio traffic and lost his bearings . Positive train control was
installed on 23 percent of the nation ’s passenger route miles
and 37 percent of freight route miles as of July , the last time
the Federal Railroad Administration updated its online tracker
for the technology . It is activated on the tracks Amtrak owns
along the Northeast Corridor , from Boston to Washington ,
D.C. , and on Amtrak ’s Michigan line . Many of its locomo-
tives are equipped for positive train control . Throughout the
rest of the country , Amtrak operates on track owned by freight
carriers and other entities that have made varying progress on
installing the technology . The new $ 180.7 million route was
designed to speed up service by removing passenger trains
from a route along Puget Sound that ’s bogged down by curves
, single-track

Explainer : Positive Train Control and the Amtrak 188 derail-
ment - WHYY Positive Train Control ( PTC ) would have pre-
vented Amtrak 188 from derailing Tuesday , National Trans-
portation Safety Board lead investigator Robert Sumwalt said
this week . Amtrak was intending to install the safety sys-
tem on the Northeast Corridor by the end of year , pursuant
to an unfunded congressional mandate under the Rail Safety
Improvement Act . Amtrak CEO Joseph Boardman has
said that , with more funding , Amtrak could have imple-
mented PTC sooner . The stretch of the Northeast Corridor
where the derailment occurred currently uses an older system
, Automatic Train Control ( ATC ) . On the southbound route
, the ATC “ enforces ” — automatically stops — a train if
it is travelling above 45 miles per hour . The northbound
side , where Amtrak 188 was travelling , does not . PTC is
essentially a smarter version of ATC . Whereas ATC relies
on the signal and fixed block system trains have operated on
for decades , PTC uses a GPS and radio technology to locate
where the trains are along the track . ATC only knows when
a train trips a signal wire entering into another large stretch
between interlockings or

Answer from GPT: The passage does not provide information
on Amtrak’s funding levels or directly link underfunding to
the derailment in Philadelphia.

Answer from GPT: Yes, according to Amtrak CEO Joseph
Boardman, more funding could have allowed Amtrak to imple-
ment PTC sooner, which would have prevented the derailment

Table 10: Comparison of top-1 document on an example from ClaimDecomp between unfinetuned Contriever (left)
and CFR model (right). The finetuned retriever is able to surface a document about funding, which is the key aspect
the question is targeting.

279



Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 280–296
November 15, 2024 ©2024 Association for Computational Linguistics

RAGAR, Your Falsehood Radar:
RAG-Augmented Reasoning for Political Fact-Checking using

Multimodal Large Language Models
Mohammed Abdul Khaliq1,3, Paul Yu-Chun Chang2∗,
Mingyang Ma2, Bernhard Pflugfelder2, Filip Miletić1∗
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Abstract

The escalating challenge of misinformation,
particularly in political discourse, requires ad-
vanced fact-checking solutions; this is even
clearer in the more complex scenario of multi-
modal claims. We tackle this issue using a mul-
timodal large language model in conjunction
with retrieval-augmented generation (RAG),
and introduce two novel reasoning techniques:
Chain of RAG (CoRAG) and Tree of RAG
(ToRAG). They fact-check multimodal claims
by extracting both textual and image content,
retrieving external information, and reasoning
subsequent questions to be answered based on
prior evidence. We achieve a weighted F1-
score of 0.85, surpassing a baseline reasoning
technique by 0.14 points. Human evaluation
confirms that the vast majority of our generated
fact-check explanations contain all information
from gold standard data.

1 Introduction

In the age of digital information, rapid dissemi-
nation of news, both genuine and fabricated, has
become a defining feature of public discourse. The
phenomenon of fake news – which more precisely
denotes misinformation, disinformation, or a com-
bination of both (Aïmeur et al., 2023) – is particu-
larly prevalent on social media: false information
spreads six times faster than the truth on platforms
like Twitter (Vosoughi et al., 2018). This trend
poses a critical challenge to the democratic process
since it makes voters increasingly prone to mak-
ing decisions based on incorrect information. The
matter is further aggravated by visual information,
which provides yet another widespread and conse-
quential source of fake news. For instance, fake
news stories that include images spread further than
those containing only text (Zannettou et al., 2018).

A potential solution to these issues is provided by
automated fact-checking systems. They have bene-

*Corresponding authors.

Figure 1: An overview of the fact-checking pipeline con-
trasting the baseline Sub-Question Generation approach
from the Chain of RAG and Tree of RAG approach fol-
lowed by veracity prediction and explanation.

fited from the development of large language mod-
els (LLMs), leading to improvements in detection,
labeling, and generation of veracity explanations
(Das et al., 2023). More recently, multimodal ap-
proaches have complemented textual information
with image representations to assess their cross-
modal consistency and unified embedding repre-
sentations (Yao et al., 2023a). Another active line
of research deploys retrieval-augmented generation
(RAG), whereby LLMs access up-to-date external
information at inference time. They convert the
input claim into phrase queries, pass them onto a
search engine, and use the retrieved information to
assess veracity (Asai et al., 2024; Zeng and Gao,
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2024). It however remains to be determined if more
elaborate reasoning techniques can be beneficial
in this setting. Moreover, RAG-based approaches
have so far mostly been applied to text. This raises
the additional question of their use in the more
challenging scenario of multimodal fact-checking.

Addressing this gap, we introduce RAGAR –
RAG-Augmented Reasoning techniques, which we
apply to multimodal fact-checking in the political
domain (see Figure 1 for a high-level overview).
We rely on a multimodal LLM to verbalize the
textual and visual elements of a claim, and use
RAG responses to motivate successive steps in de-
termining veracity. The system is underpinned by
elaborate reasoning strategies instantiated in two
distinct approaches: Chain of RAG (CoRAG) and
Tree of RAG (ToRAG). We evaluate them using a
multimodal fact-checking dataset as well as human
annotation of generated explanations.

Our contributions are as follows. (1) We in-
troduce two novel reasoning techniques for multi-
modal fact-checking, reaching a weighted F1-score
of 0.85. (2) We provide two complementary strate-
gies for multimodal input by verbalizing image
content during claim generation and using image
captions as evidence during retrieval. (3) We con-
duct a multi-rater annotation of fact-check expla-
nations, showing that the vast majority of them
include all information from the gold standard. To
our knowledge, this is the first study to incorporate
multimodal LLMs in a RAG-based reasoning ap-
proach applied to multimodal fact-checking for the
political domain.

2 Related Work

2.1 Retrieval-Augmented Generation (RAG)
for Fact-Checking

To combat hallucination in text generation, current
fact-checking pipelines often implement a RAG ap-
proach, wherein an LLM retrieves data from exter-
nal sources to enhance its response and move past
its knowledge cutoff. Peng et al. (2023) present
LLM-Augmenter, which combines external knowl-
edge integration and automated feedback mecha-
nisms. Chern et al. (2023) assess the factuality
of LLM-generated text on multiple tasks and do-
mains, e.g. for Knowledge Based Question An-
swering they use Google Search API to extract
relevant knowledge and then parse the result. Pan
et al. (2023) rely on LLM’s in-context learning,
and use Chain of Thought (Wei et al., 2022) rea-

soning to guide the model in complex tasks such as
fact-checking on the web. Zhang and Gao (2023)
propose Hierarchical Step-by-Step (HiSS) prompt-
ing, which splits a claim into sub-claims, creating
a hierarchy, and verifies each one through multi-
ple question-answering steps using web-retrieved
evidence. Xu et al. (2023) propose SearChain. It
creates a Chain of Query (CoQ) reasoning chain,
where each question follows from the knowledge
gathered in the previous question; uses information
retrieval (IR) to verify the answer at each node; and
prompts the LLM to indicate missing information,
which is handled by an IR call.

Our RAGAR approaches are conceptually sim-
ilar, but they use a more sophisticated reason-
ing framework with multiple rounds of sequen-
tial question-answering, elimination (in the case
of ToRAG), and verification. We also extend do-
main coverage through multimodality, and propose
a zero-shot (rather than few-shot) approach.

2.2 Multimodal Fact-Checking using LLMs

Multimodality is generally underexplored in fact-
checking (Alam et al., 2022), but several recent ap-
proaches have been proposed. Guo et al. (2023) use
LLM-agnostic models to generate textual prompts
from images and then guide LLMs in generating
responses to Visual Question Answering queries.
Yao et al. (2023a) construct a multimodal dataset
using fact-checking websites, and then develop a
fact-checking and explanation generation pipeline.
It encodes and reranks each sentence in the doc-
ument corpus in relation to the claim, and uses
a CLIP (Radford et al., 2021) encoding for im-
ages; the similarity between an input claim and the
provided images is then computed. An attention
model is used for multimodal claim verification,
and BART (Lewis et al., 2020) for explanation gen-
eration. In concurrent research, Pan et al. (2024)
propose the Chain of Action prompt. It splits an
input query into sub-questions and uses a “Miss-
ing Flag” indicator to fill in or correct the answers
generated by internal LLM knowledge via RAG.

Our RAGAR approaches similarly use a multi-
modal LLM (GPT-4V; OpenAI, 2023) to add con-
text to the textual claim, but employ a different set
of reasoning techniques. We furthermore introduce
a multimodal RAG component during evidence
retrieval, using captions of matching images to pro-
vide the LLM with relevant meta information.
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Figure 2: A detailed overview of the Multimodal Fact-checking pipeline

3 Dataset

The aim of our study is to explore the potential of
multimodal LLM-based RAG and reasoning for po-
litical fact-checking. Given the substantial compu-
tational and financial costs of running multimodal
LLMs through multiple rounds of reasoning, we
evaluate our approach on a well-controlled and
balanced dataset, so as to minimize noise while
maintaining the validity of our experiments.

We specifically rely on a carefully selected sub-
set of the MOCHEG dataset (Yao et al., 2023a).
MOCHEG provides 21,184 multimodal claims
sourced from two fact-checking websites, Politi-
Fact1 and Snopes.2 Each instance contains an input
claim extracted from the title of the fact-checking
source, and an associated image extracted from the
web page that addresses the claim. The dataset
further provides a summary of the fact-check in the
form of a “Ruling Outline”, which we consider for
evaluating LLM-generated explanations.

We start from the test set containing 2,007 mul-
timodal claims and filter it in two steps. First, we
select the 794 claims that were fact-checked by
PolitiFact, since our focus is on political claims; by
contrast, Snopes provides fact-checks for a variety
of domains. Second, we filter this set down to 300
test samples randomly selected from the supported
and refuted classes, for a balanced final dataset with
150 multimodal claims in each of the two classes.

In this process, we purposefully discard the NEI
(Not Enough Information) instances. During the
creation of MOCHEG, some ambiguous cases were
outright discarded, while the labels mixture, un-
proven, and undetermined were aggregated under
NEI. This class is potentially unstable in two re-

1https://www.politifact.com/
2https://www.snopes.com/

spects: fact-checking websites update their labels
as new evidence emerges (Yao et al., 2023a), which
by definition affects this class more prominently;
and the fact-checking intentions behind mixed la-
bels such as half-true and mixture are compara-
tively unclear, leading prior studies to exclude them
(e.g. Vo and Lee, 2019). We adopt the same deci-
sion given our focus on an initial validation of novel
reasoning techniques.

Although we only retain instances that are unam-
biguous in the dataset, our model may still struggle
to retrieve information of sufficient quality to fact-
check them. We account for this by allowing it to
generate a failed label when it fails to retrieve rele-
vant information. We reserve an extension of our
study to the NEI class, as well as the connected is-
sue of improving retrieval quality, for future work.

4 Multimodal Fact-Checking Pipeline

Our fact-checking pipeline comprises four parts:
(i) Multimodal Claim Generation, which analyzes
both the textual claim and associated image to for-
mulate a new claim incorporating both; (ii) Multi-
modal Evidence Retrieval, which extracts evidence
from the web for a question posed by the LLM;
(iii) LLM-based and RAG-augmented Reasoning
for fact-checking, our reasoning approach to fact-
check a claim; and (iv) Veracity Prediction and
Explanation. The pipeline is shown in Figure 2.

4.1 Multimodal Claim Generation
Given an input claim as text, an associated image,
and the date of the claim, the claim generation
module generates a response verbalizing the infor-
mation contained in both the textual claim and the
image. We use GPT-4V as our multimodal LLM
given its strong performance across tasks. Note
that our aim is not to determine the best-performing
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model on our task, but rather to evaluate different
reasoning techniques. We therefore use the same
model across experiments.

The generated response is divided into two sec-
tions: claim, which contains the original text claim;
and image context, which contains the details rel-
evant to the claim extracted from the image by
GPT-4V. The image context expands on the infor-
mation from the textual claim by e.g. identifying
the speaker that the claim is quoting, extracting nu-
merical information from figures, and highlighting
relevant textual data mentioned in the image. More
generally, the contextualization provides details on
whether the image is relevant to the text claim.

While directly encoding images is a potential
alternative to our approach, we decide against it
to allow our Chain of RAG and Tree of RAG
approach to be multimodal-agnostic. This deci-
sion ensures that our reasoning methods can also
be replicated with LLMs that are not inherently
multimodal. Multimodal Claim Generation is the
only section of our pipeline requiring a multimodal
LLM; all remaining parts, including our RAGAR
approaches, can be implemented using other LLMs
and possibly extended to different tasks.

4.2 Multimodal Evidence Retrieval

The fact-checking questions generated by the LLM-
based or RAG-augmented reasoning techniques
serve as input for the multimodal evidence retrieval
module. It helps answer each question by retrieving
relevant text snippets from websites and further
analyzing details associated with the image.

The query to the multimodal evidence retrieval is
a question generated by an LLM-based or RAGAR-
based reasoning technique (presented in detail in
Section 4.3). For text-based evidence retrieval,
we use the DuckDuckGo Search tool provided by
LangChain3. We retrieve the top 10 results from
the API and use them to answer the question. We
temporally restrict the search by only collecting
articles published in the two years before the claim
was fact-checked by PolitiFact, so as to provide
the LLM with facts relevant to the time-frame of
the fact-check. To mimic a real-time fact-checking
scenario, we remove search results that originate
from www.politifact.com, www.snopes.com,
and www.factcheck.org, since it is likely that
they already contain answers to the claim and
would thus impact the fairness of the experiment.

3https://www.langchain.com/

We also remove the following social media web-
sites due to potentially biased or unreliable in-
formation: www.facebook.com, www.tiktok.com,
www.twitter.com and www.youtube.com.

Most images in our dataset contain faces of
politicians, pictures from political events, govern-
ment buildings etc. In such cases, the image itself
may not provide much additional information be-
yond the text claim. However, it is useful to de-
termine the metadata associated with the image,
which may indicate when or where the claim was
made. For this purpose, we use SerpAPI4 to con-
duct a reverse image search over the images asso-
ciated with the claims. We extract the captions for
the images from the first 10 results and use them as
additional information for GPT-4V. This allows the
model to not only analyze the image when answer-
ing an image-based question, but also incorporate
meta-information about it and in that way better
contextualize the answer. We demonstrate a few
examples of this in Appendix A.3.

4.3 LLM-Based and RAG-Augmented
Reasoning for Fact-Checking

4.3.1 Baseline: Sub-questions with Chain of
Thought at Veracity Prediction
(SubQ+CoTVP)

As a baseline reasoning-based approach, we em-
ploy sub-question generation followed by Chain of
Thought veracity prediction (SubQ+CoTVP). This
baseline is based on recent approaches to fact-
checking relying on LLMs (Pan et al., 2023; Chern
et al., 2023) as discussed in Section 2.1. We adapt
the approach to handle multimodal claims as well.

4.3.2 RAG-Augmented Reasoning: Chain of
RAG (CoRAG)

The first novel reasoning approach we propose is
Chain of RAG (CoRAG). It builds upon general
RAG approaches by using sequential follow-up
questions – augmented from the RAG response –
to retrieve further evidence. In other words, we fol-
low a decomposed setup, guiding the LLM towards
asking questions based on the previously gener-
ated question-answer pairs. The “Chain” in “Chain
of RAG” is thus to be interpreted as a chain of
question-answer pairs that are iteratively generated.
This is unlike the traditional Chain of Thought,
wherein a single prompt handles the entire process
of creating questions, answers, and follow-up ques-

4https://serpapi.com/
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Figure 3: Chain of RAG and Tree of RAG pipeline

Algorithm 1 Chain of RAG (CoRAG)
1: Input: Claim C, Image Context I , Image Captions IC
2: Q← GenerateFirstQuestion(C, I)
3: QAPairs← [] ▷ Initialize an empty list for Q-A pairs
4: counter ← 0
5: followUpNeeded← True
6: while counter < no_of_steps and followUpNeeded do
7: if QuestionAboutImage(Q) then
8: A← ImageQA(Q, I, IC) ▷ Using image, question, and captions
9: else

10: A← WebQA(Q) ▷ Standard evidence retrieval
11: end if
12: QAPairs.append((Q,A)) ▷ Store the Q-A pair of this iteration
13: followUpNeeded← FollowupCheck(Q,A)
14: if followUpNeeded then
15: Q← FollowupQuestion(QAPairs)
16: end if
17: counter ← counter + 1
18: end while
19: return QAPairs ▷ Returns the list of Q-A pairs

tion in one go. Moreover, CoRAG follows a zero-
shot approach, i.e. the LLM is not provided with
any example question-answer pairs to influence the
reasoning process. An overview of the process is
provided in Algorithm 1 as well as Figure 3.

The input to the CoRAG module is the claim and
image context from the multimodal claim genera-
tion module (§4.1). The LLM is first prompted to
generate a question that is intended to answer an as-
pect of the claim. The generated question is passed
to the multimodal evidence retriever (§4.2), which
obtains evidence to inform the RAG answer. Once
the answer is generated, the CoRAG process under-
goes a follow-up check (effectively an early termi-
nation check). The follow-up check prompt (see
Appendix A.5) takes as input the LLM-generated

claim as well as all the generated question-answer
pair(s), and checks whether enough information
has been gathered to answer the claim. If the re-
sponse from the follow-up check is “True”, it asks
a follow-up question. The follow-up question is
intended to ask for further information, building on
top of the previous question-answer pairs such that
the claim can be fully addressed.

A follow-up check occurs after each question-
answer generation step. If the follow-up check
prompt finds sufficient evidence in the questions
and answers generated up until that point, it ter-
minates and passes the evidence to the veracity
prediction and explanation generation module. We
also set a constraint of a maximum of six questions,
after which the CoRAG process terminates even if
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it does not have enough evidence for the fact-check.
We determined this threshold in preliminary experi-
ments on 80 samples, which indicated that this was
the highest number of question-answering steps re-
quired for the LLM to obtain enough information
to address even the more challenging claims.

4.3.3 RAG-Augmented Reasoning: Tree of
RAG (ToRAG)

In a similar way to how a traditional Tree of
Thought (Yao et al., 2023b) extends Chain of
Thought through branching, Tree of RAG (ToRAG)
extends our CoRAG approach by creating question
branches at each reasoning step. The best question-
answer branch is selected at each step. An overview
is provided in Algorithm 2 as well as Figure 3.

The input to the ToRAG module is the claim and
image context from the multimodal claim genera-
tion module (§4.1). Upon receiving this input, the
ToRAG approach branches into three, each branch
asking a unique question to fact-check the claim.

Once the three starting questions have been gen-
erated, the ToRAG approach uses the evidence re-
triever (§4.2) to obtain information and generate an-
swers for each question. The three question-answer
pairs are then passed into an elimination prompt,
from which only one question-answer pair is cho-
sen as candidate evidence. The model is prompted
to perform this elimination based on relevance, de-
tail, additional information, and answer confidence
(see Appendix A.6).

The candidate evidence then serves as the basis
for the follow-up question. Three follow-up ques-
tions are generated simultaneously based on the
candidate evidence. The evidence retriever fetches
answers to these questions, and the LLM generates
the answers. New candidate evidence is chosen by
the elimination prompt and is added to the exist-
ing list of candidate evidence. This list, therefore,
stores only the best of the three question-answer
pairs obtained at each step. Upon gathering suffi-
cient information to fact-check the claim as deter-
mined by the follow-up check prompt or reaching
a maximum of six candidate evidence question-
answer pairs, the ToRAG process terminates, and
the list of candidate evidence is passed to the ve-
racity prediction and explanation generation mod-
ule. A few examples of the question-answer pairs
generated by our LLM-based and RAG-augmented
reasoning approaches can be seen in Appendix A.4.

4.4 Veracity Prediction and Explanation

The veracity prediction and explanation module
(henceforth referred to as “veracity prediction” for
brevity) generates a veracity label of supported
or refuted based on the information available in
the question-answer pairs. Moreover, it generates
a failed label when it deems to have insufficient
information in the question-answer pair to either
support or refute the claim.

We experiment with three variants of veracity
prediction prompts (see Appendix A.7). (i) The
standard veracity prompt (StandardVP) takes the
claim and evidence pairs as input, and outputs the
veracity rating and the explanation without any
induced reasoning. (ii) The zero-shot Chain of
Thought veracity prediction prompt (CoTVP) uses
the “Let’s think step by step” phrase to guide the
model to follow a chain of thought reasoning ap-
proach. (iii) The Chain of Verification (Dhuliawala
et al., 2023) veracity prediction prompt (CoVe) first
constructs verification questions based on the LLM-
generated fact-checked explanation. The answers
to these questions are generated using RAG, and
are passed – along with the LLM-generated fact-
check – to a correction check prompt. In case
of corrections to the original LLM-generated fact-
check, a new fact-check is generated along with a
new veracity label if necessary. The CoVe veracity
prediction approach is thus able to verify the fact-
checked explanation generated by the CoRAG and
ToRAG methods with the intended goal of captur-
ing and correcting hallucination.

5 Evaluation and Results

We now present two evaluations employed across
the set of 300 multimodal claims. In Section 5.1,
we analyze system performance based on the cor-
rectness of veracity predictions. In Section 5.2, we
zoom into explanation generation by conducting a
human annotation study to compare the generated
and gold explanations.

5.1 Correctness of Veracity Predictions

In this evaluation setup, we categorize the predic-
tions into two primary outcomes: correct or in-
correct. Specifically, when the language model’s
prediction matches the actual label (for instance,
predicting supported when the actual rating is sup-
ported), the prediction is deemed correct. Con-
versely, if the model predicts refuted or failed when
the actual rating is supported, the prediction is con-
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Algorithm 2 Tree of RAG (ToRAG)
1: Input: Claim C, Image Context I , Image Captions IC
2: BestQAPairs← [] ▷ Initialize an empty list for best Q-A pairs
3: Questions← GenerateFirstQuestions(C, I) ▷ Generates three questions
4: counter ← 0
5: followUpNeeded← True
6: while counter < no_of_steps and followUpNeeded do
7: QAPairs← [] ▷ Initializes an empty list for question-answer pairs
8: for Q in Questions do
9: if QuestionAboutImage(Q) then
10: A← ImageQA(Q, I, IC) ▷ Using image, question, and captions
11: else
12: A← WebQA(Q) ▷ Standard evidence retrieval
13: end if
14: QAPairs.append((Q,A))
15: end for
16: (BestQ, BestA)← QAElimination(QAPairs)
17: BestQAPairs.append((BestQ, BestA)) ▷ Stores the best Q-A pair of this iteration
18: followUpNeeded← FollowupCheck(BestQAPairs)
19: if followUpNeeded then
20: Questions← GenerateFollowupQuestions(BestQAPairs) ▷ Generates three follow-up questions
21: else
22: break
23: end if
24: counter ← counter + 1
25: end while
26: return BestQAPairs ▷ Returns all collected best Q-A pairs

APPROACHES SUPPORTED (F1) REFUTED (F1) # FAILED WEIGHTED F1
SubQ + CoTVP 0.66 0.77 50 | 22 0.71
CoRAG + StandardVP 0.74 0.81 31 | 15 0.77
CoRAG + CoTVP 0.73 0.82 38 | 14 0.77
CoRAG + CoTVP + CoVe 0.78 0.83 21 | 8 0.81
ToRAG + StandardVP 0.82 0.86 16 | 5 0.84
ToRAG + CoTVP 0.82 0.85 19 | 9 0.83
ToRAG + CoTVP + CoVe 0.84 0.86 9 | 4 0.85

Table 1: F1 Results of the Correctness of Veracity Predictions evaluation. The # FAILED column contains the
number of supported | refuted claims that were predicted as failed.

sidered as incorrect. Table 1 shows the results of
all of our approaches for this evaluation criterion.

The worst-performing approach is the
SubQ+CoTVP baseline, with a weighted F1
of 0.71. The best-performing approach is
ToRAG+CoTVP+CoVe, with a weighted F1 of
0.85. The middle spot is occupied by the CoRAG
implementations; the strongest among those is
CoRAG+CoTVP+CoVe, with a weighted F1 of
0.81. Regarding class-level performance, the
scores are consistently higher for the refuted rather
than supported class.

The SubQ+CoTVP baseline lags behind our RA-
GAR approaches by up to 0.14 weighted F1 points.
We attribute its poor performance to the inability of
the veracity prediction module (CoTVP) to gain se-
quential and contextual information. Since the sub-
questions generated by SubQ+CoTVP are based
solely on the claim, the answers queried during
evidence retrieval do not follow from one another.

Amongst our RAGAR approaches, applying
CoTVP to the question-answer pairs generated by
either CoRAG or ToRAG approaches did not show

improvement over StandardVP. We attribute this to
the very strong internal reasoning capabilities of
GPT-4. However, we are able to improve perfor-
mance by combining the CoVe approach, especially
in the case of CoRAG. Incorporating CoVe with the
result from CoRAG+CoTVP shows a performance
improvement of 0.04 F1 points and especially im-
proves the classification of supported claims. Incor-
porating CoVe on top of the ToRAG+CoTVP leads
to an improvement, but overall minor and also less
pronounced than for CoRAG. This indicates that
the QA elimination prompt in ToRAG successfully
eliminates erroneous or irrelevant question-answer
pairs.

5.2 Evaluating Explanation Generation

We evaluate explanation generation by compar-
ing the LLM-generated fact-checked explanation
with the corresponding “Ruling Outline” from the
MOCHEG dataset. We recruit three volunteer an-
notators, aged 21–24 and with near-native English
proficiency. They are asked to rate the explanations
generated by each of the approaches on a scale from
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Figure 4: Number of 1/2/3 ratings received for explanations by each approach

1 to 3, where 3 indicates that all information in the
gold explanation is present in the generated expla-
nation, while 1 indicates that all information in the
gold explanation is missing from the generated ex-
planation. The complete annotation instructions
are provided in Appendix A.1.

We randomly sample a set of 50 claims, divided
into 25 supported and 25 refuted. For all annotated
claims, the gold veracity label and the predicted
veracity label match. We measure inter-annotator
agreement using Krippendorff’s α (Hayes and Krip-
pendorff, 2007). The scores are in the range of 0.53
to 0.75 depending on the evaluated approach, with
the mean at 0.60. We consider this to be sufficient
agreement given the nature of the task.

As can be seen in Figure 4, the annotators pro-
vide a rating of 3 for an overwhelming majority of
explanations generated across methods. This shows
that the generated explanations indeed cover all the
points noted in the PolitiFact fact-check. Addition-
ally, the explanations generated by SubQ+CoTVP
led to significantly more ratings of 1 than any other
method, which indicates that it omitted or did not
accurately elaborate on certain points.

Regarding class-level trends, explanations in the
supported class are rated as 2 more often than those
in the refuted class (see Appendix A.2). This indi-
cates that certain information was missing from the
generated explanation; more generally, this trend
reflects the lower F1 scores on this class (§5.1), sug-
gesting its higher difficulty. From a qualitative per-
spective, the annotators anecdotally reported that
the generated explanations included some points
from the PolitiFact ruling outline, but also provided

additional information. Overall, however, the ma-
jority of the ratings being annotated as 3 across the
different approaches lends credence to the quality
of the explanation and to the efficacy of the un-
derlying system in retrieving relevant evidence to
fact-check the claim.

6 Conclusion

This paper introduces and tests two new methods
for political fact-checking using large language
models (LLMs): Chain of RAG (CoRAG) and Tree
of RAG (ToRAG). These methods tackle misinfor-
mation in political discussions, focusing on mul-
timodal claims, and show notable improvements
over traditional fact-checking approaches that use
sub-question generation with LLMs. CoRAG uses
a step-by-step questioning strategy for thorough
claim examination, while ToRAG extends upon this
by following a branching strategy with evidence
elimination thereby enhancing veracity prediction.
We evaluate these methods in two ways. In terms
of correctness of generated veracity label, we see
an increase of 0.06-0.14 F1 points when using the
RAGAR framework with Standard, CoTVP, and
CoVe veracity prediction prompts compared to the
baseline SubQ+CoTVP. For explanation generation,
the quality of RAGAR-generated explanations was
consistently rated higher than the baseline method.
Our study shows that RAG-augmented reasoning
(RAGAR) techniques are effective in multimodal
political fact-checking, improving both the accu-
racy of veracity predictions and the quality of de-
tailed fact-check explanations.
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7 Limitations

We experimented with three tools for extracting
relevant web results for natural language questions;
DuckDuckGo Search, You.com5 and Tavily AI6.
Across the three tools, we notice that the search
results may occasionally vary when prompted with
the same questions multiple times. This variance in
results, even though the question remains the same
or similar, is problematic since it affects the final
result and makes it hard to compare approaches.
Additionally, due to budget constraints, we are un-
able to provide variance estimates requiring mul-
tiple runs of our RAGAR approaches. While we
acknowledge the use of a closed-source LLM as a
potential shortcoming due to comparatively more
limited control over model behavior, we opted for
the best-performing model available to us given
the complexity of the addressed task. Finally, as
also noted in the paper, our main aim was to assess
the viability of novel reasoning techniques rather
than retrieval quality, which led us to exclude NEI
instances from our experimental setup. Further
work extended to these cases is needed to more
comprehensively understand the performance of
our proposed approach.

8 Ethics Statement

We conducted an experimental study aimed at ex-
amining multimodal fact-checking by prompting
LLMs, and note that some of the core steps of
this approach may also be replicated by the gen-
eral public. Our RAGAR approach obtained clear
improvements over the examined baseline in the
evaluation setup we defined. However, the exper-
iments presented here are not sufficient to make
general claims about the performance of our ap-
proach in other settings. Given the sensitive nature
of political news in particular, we caution against
using the RAGAR approach for general political
fact-checking or implementing it on a large scale
at this stage.
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A Appendix

A.1 Instructions to Annotators

The instructions to annotators for the evaluation of the Explanation Generation Task is provided in Figure
5.

Figure 5: Annotation Instructions

A.2 Explanation Generation by Veracity Label

In addition to the overall ratings for the Human Annotation for Explanation Generation, we also provide
the ratings for specific classes. Figure 6 shows the human annotation ratings for the explanations of
supported claims. Figure 7 shows the human annotation ratings for the explanations of refuted claims.

Figure 6: Annotator ratings for explanations of supported claims

Figure 7: Annotator ratings for explanations of refuted claims
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A.3 Discussing Multimodal RAG
We utilize reverse image search to extract captions of matching images from the web. We showcase the
Image QA pairs for the examples in Table 2. The first example regarding Mike Pompeo showcases how
GPT-4V is unable to identify the Afghan dignitary and the image context is unable to provide a name
that could help fact-check the claim. However, using the image captions retrieved from the internet and
prompting the evidence retrieval along with the image caption, GPT-4V is able to identify the Afghan
dignitary as Mullah Abdul Ghani Baradar. The fact-check then continues to verify if Mullah Abdul Ghani
Baradar was indeed ever the Afghan President or not. Similarly, in the third example with Joe Biden
kneeling, the image captions extracted by reverse image search are able to add the additional information
that Joe Biden was kneeling down to pose with dancers in Haiti. This information is crucial for the
particular fact-check since it contextualizes the reason why Joe Biden was kneeling as well as detailing
the event where the described act occurred.

Table 2: Example table with claims, images, and QA.

Claim Image Generated Image Con-
text

Image QA

The man next to Mike
Pompeo in a November
2020 photo is the guy the
Trump administration
helped get out of jail in
2018 and who is now the
’president’ of
Afghanistan.

The image shows Mike Pompeo stand-
ing next to a man wearing traditional
Afghan attire and a face mask. The set-
ting appears to be a formal meeting room
with a painting on the wall, two gold-
colored chairs, and a table with water bot-
tles. Both individuals are standing apart,
likely adhering to social distancing guide-
lines prevalent during the COVID-19 pan-
demic. The background and attire suggest
the meeting is official in nature and likely
related to diplomatic or governmental af-
fairs. Claim stated in 2021.

Q. Who is the man standing next to
Mike Pompeo in the November 2020
photo?
A. Mullah Abdul Ghani Baradar

Says Joe Biden took a
knee during the national
anthem.

The image shows Joe Biden taking a knee,
but it does not provide evidence that this
act occurred during the national anthem.
Without additional context, the claim can-
not be confirmed solely based on this
image. The time frame of the claim is
’Claim stated in 2020’.

Is there a specific date and location
associated with the image of Joe
Biden taking a knee?
A. FILE - In this Monday, Oct. 5,
2020 file photo, Democratic presi-
dential candidate former Vice Pres-
ident Joe Biden and his wife Jill
Biden pose for a photo with dancers
as they visit Little Haiti Cultural
Complex in Miami.

The Trump
administration worked to
free 5,000 Taliban
prisoners.

The image shows individuals, presumed
to be Taliban prisoners, inside a bus with
a guard standing nearby, which poten-
tially correlates to the release of Taliban
prisoners. The context suggests this may
represent a prisoner release process.

Q. Were the individuals shown in the
provided image actually Taliban pris-
oners being released as part of the
agreement?
A.’Taliban prisoners are released
from Pul-e-Charkhi jail in Kabul,
Afghanistan, Thursday, Aug. 13,
2020

These were not chemical
irritants’ used to clear a
crowd. Pepper balls are
’not a chemical irritant.

The image shows law enforcement in pro-
tective gear amidst a haze that is consis-
tent with the use of some form of crowd
control substance, such as a chemical ir-
ritant. Visible smoke and the dispers-
ing crowd strongly suggest the use of
a substance to clear the area, counter to
the claim that no chemical irritants were
used. The presence of pepper balls would
depend on identifying specific items or
equipment in the scene that are known to
dispense pepper balls.

Can we identify the specific equip-
ment or methods used by law en-
forcement in the image to determine
if pepper balls or another substance
was deployed?
A. ... The caption snippets sug-
gest that teargas was used to clear
Lafayette Park for a photo opportu-
nity...
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A.4 Example Questions
In Table 3 and Table 4 we show the questions asked by each approach.

Table 3: Example of Question-Answers asked by SubQ+CoTVP, CoRAG and ToRAG

Claim: PPP on average provided a grant of around $11,000 per employee
SubQ+ CoTVP Q. What was the total amount of funds disbursed through the Paycheck Protection Program

(PPP) in 2020?
A.More than $511 billion
Q. What criteria were used to determine the amount of grant each business received per employee
under the PPP?"
A. ... determined based on the business’s average monthly payroll costs... approximately 2.5 times the
applicant’s average monthly payroll... only up to $100,000 of an employee’s annual compensation was
eligible for calculation.
Q. Were there any variations in the grant amount per employee based on the industry, location,
or size of the business?
A. ... mentions different aspects of grants, such as administration costs, the impact of public money on
grant receivers, and the employee retention credit, which suggests that grant amounts...
Q. How does the PPP define an "employee" for the purposes of calculating grants?
A. ...means individuals employed on a full-time, part-time, or other basis.

CoRAG Q. What was the average grant amount per employee provided by the Paycheck Protection
Program in 2020?
A. ...for self-employed individuals and employees, the PPP loans could cover up to $100,000 of
annualized pay per employee for eight weeks, with a maximum of $15,385 per individual."
Q. How does the maximum allowable amount of $15,385 per individual under PPP loans relate to
the average grant of around $11,000 per employee?
A. The maximum allowable amount of $15,385 per individual under PPP loans is derived from the limit
set for self-employed individuals and employees, which is based on up to $100,000 of annualized pay
for eight weeks...On the other hand, the average grant of around $11,000 per employee, as observed by
Square Capital, reflects the actual average loan amount disbursed to small businesses through the PPP.

ToRAG Q. What was the typical grant amount per employee provided by the PPP as of mid-2020?
A. ... the average size of a PPP loan approved during the first wave was $206,000, with 74% of the
loans approved being for amounts of $150,000 or less."
Q. What is the average monthly payroll cost per employee, as used in the PPP loan calculations,
and how does this figure relate to the reported average grant of around $11,000 per employee?
A. ...For a 24-week period, the maximum amount per individual is $46,154, or for an eight-week period,
it is $15,385.
Q. Can you provide the total number of employees covered by PPP loans up to mid-2020 and
the total amount of PPP funds disbursed by that time, to calculate the actual average grant per
employee?
A. ... average grant per employee can be calculated as $511 billion divided by 51 million employees,
which equals approximately $10,019.61 per employee.

Table 4: Example of Question-Answers asked by CoRAG and ToRAG

Claim: These 11 mass shootings involved an AR-15-style weapon.
CoRAG Q.Were AR-15-style weapons used in 11 mass shootings in the United States before 2021?

A. . . . confirms that AR-15-style rifles were used in the 2012 Aurora, Colorado...
Q. Can you list the specific mass shootings, aside from the 2012 Aurora, Colorado incident, where
AR-15-style rifles were reportedly used before 2021?
A. ... search results provided do not list specific mass shootings... stating that AR-15 rifles were used in 26
percent of the last 80 mass shootings...before 2021.
Q. Given the information that AR-15-style rifles were used in 26 percent of the last 80 mass shootings
before 2021, identify other incidents where these rifles were reportedly used.
A. ... occurred when a gunman, armed with an AR-15-style rifle and body armor, killed nine people and
wounded 27 others.
Q. Can you identify the specific characteristics or features that define an AR-15-style rifle as used in
these incidents?
A. 1. Chambering . . . 2. Controls 3. Fast and easy reloading. . .
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Claim: (Continued)
ToRAG Q. What are the specific dates and locations of the 11 mass shootings mentioned as involving an

AR-15-style weapon?
A. 1. Boulder, Colorado: March 22, 2021... 2. San Jose, California: May 26, 2021..."
Q. Were there any official reports or statements from law enforcement agencies confirming the use of
AR-15-style weapons in the Boulder, Colorado, and San Jose, California shootings?
A. Yes, there were official reports confirming the use of an AR-15-style weapon in the Boulder, Colorado
shooting. . .
Q. Can you provide details on the legal acquisition and ownership status of AR-15-style weapons by the
shooters in the remaining nine mass shootings mentioned?
A. 1. Sutherland Springs church shooting: ... goods retailer violated the law ... 2. Boulder supermarket
shooting: ... legally purchased the AR-15-style rifle ... 4. Pittsburgh synagogue shooting: ... like the AR-15
rifle used in the attack. 5. Las Vegas shooting: ... claim for selling AR-15s... 6. Orlando nightclub shooting:
... 7. San Bernardino shooting: ... 8. Sandy Hook Elementary School shooting: ..."

A.5 General Prompts in the RAGAR Approaches

Figure 8: Prompt for initial question-generation, Follow-up Check and Follow-up Question common to all RAGAR
approaches

293



A.6 Prompts Specific to Tree of RAG

Figure 9: Prompt for QA Elimination

A.7 Prompts for Veracity Prediction
A.7.1 Standard Veracity Prediction Prompt

Figure 10: Prompt for Standard Veracity prediction
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A.7.2 Zero Shot Chain of Thought Veracity Prediction

Figure 11: Prompt to get the CoT Veracity Prediction from the question-answer pairs and the claim

A.7.3 Chain of Verification Veracity Prediction

Figure 12: Pipeline of the CoVe Veracity Prediction
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Figure 13: CoVe Verification Questions prompt

Figure 14: CoVe Corrections Prompt
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Abstract

Fact-checking is a crucial natural language
processing (NLP) task that verifies the
truthfulness of claims by considering reliable
evidence. Traditional methods are labour-
intensive, and most automatic approaches
focus on using documents as evidence. In this
paper, we focus on the relatively understudied
fact-checking with Knowledge Graph data
as evidence and experiment on the recently
introduced FactKG benchmark. We present
FactGenius, a novel method that enhances fact-
checking by combining zero-shot prompting
of large language models (LLMs) with fuzzy
text matching on knowledge graphs (KGs).
Our method employs LLMs for filtering
relevant connections from the graph and
validates these connections via distance-based
matching. The evaluation of FactGenius
on an existing benchmark demonstrates its
effectiveness, as we show it significantly
outperforms state-of-the-art methods.
The code and materials are available at
https://github.com/SushantGautam/FactGenius.

1 Introduction

Fact-checking is a critical task in natural language
processing (NLP) that involves automatically
verifying the truthfulness of a claim by considering
evidence from reliable sources (Thorne et al., 2018).
This task is essential for combating misinformation
and ensuring the integrity of information in digital
communication (Cotter et al., 2022). Traditional
fact-checking is performed by domain experts and
is a labour-intensive process. Automatic fact-
checking systems have been introduced to address
this, but most of them work with textual data as
evidence sources (Vladika and Matthes, 2023).

Recent advancements in large language models
(LLMs) have shown promise in enhancing fact-
checking capabilities (Choi and Ferrara, 2024).
LLMs, with their extensive pre-training on diverse
textual data, possess a vast amount of embedded

knowledge (Yang et al., 2024). However, their
outputs can sometimes be erroneous or lacking in
specificity, especially when dealing with complex
reasoning patterns required for fact-checking.
External knowledge, such as knowledge graphs
(KGs) (Hogan et al., 2021), can aid in fact-
checking.

In this paper, we propose FactGenius, a novel
approach that combines zero-shot prompting of
LLMs with fuzzy relation-mining techniques
to improve reasoning on knowledge graphs.
Specifically, we leverage DBpedia (Lehmann et al.,
2015), a structured source of linked data, to
enhance the accuracy of fact-checking tasks.

Our methodology involves using the LLM to
filter potential connections between entities in
the KG, followed by refining these connections
through Levenshtein distance-based fuzzy
matching. This two-stage approach ensures that
only valid and relevant connections are considered,
thereby improving the accuracy of fact-checking.

We evaluate our method using the FactKG
dataset (Kim et al., 2023b), which comprises
108,000 claims constructed through various
reasoning patterns applied to facts from DBpedia.
Our experiments demonstrate that FactGenius
significantly outperforms existing baselines (Kim
et al., 2023a), particularly when fine-tuning
RoBERTa (Liu et al., 2019) as a classifier,
achieving superior performance across different
reasoning types.

In summary, the integration of LLMs with KGs
and the application of fuzzy matching techniques
represent a promising direction for advancing fact-
checking methodologies. Our work contributes to
this growing body of research by proposing a novel
approach that effectively combines these elements,
yielding significant improvements in fact-checking
performance.
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Figure 1: Overall pipeline of FactGenius: The process starts with LLM-based Connection Filtering using a
knowledge graph (see Section 4.1.1). In Fuzzy Relation Mining (see Section 4.1.2), Stage-I matches one-hop
connections of entities, and optionally, Stage-II includes all entities’ connections. The classifier (BERT, RoBERTa,
or Zero-Shot LLM; see Section 4.3) then determines if the claim is supported or refuted.

2 Literature Review

Fact-checking has become an increasingly vital
aspect of natural language processing (NLP) due
to the proliferation of misinformation in digital
communication (Guo et al., 2022). Traditional
approaches to fact-checking have typically relied
on manually curated datasets and rule-based
methods. While these methods are effective
in controlled environments, they often struggle
with scalability and adaptability to new types
of misinformation (Saquete et al., 2020; Guo
et al., 2022). The labor-intensive nature of these
methods also poses significant challenges in rapidly
evolving information landscapes (Nakov et al.,
2021; Zeng et al., 2021).

To address challenges in understanding machine-
readable concepts in text, FactKG introduces a
new dataset for fact verification using claims,
leveraging knowledge graphs (KGs) to encompass
diverse reasoning types and linguistic patterns.
This approach aims to enhance the reliability and
practicality of KG-based fact verification (Kim
et al., 2023b). Similarly, the Fact Extraction
and VERification (FEVER) dataset (Thorne et al.,
2018) pairs claims with Wikipedia sentences that
support or refute them, providing a benchmark for
fact-checking models. The authors employed a
combination of natural language inference models
and information retrieval systems to assess claim
veracity.

The GEAR framework (Zhou et al., 2019)
improves fact verification by using a graph-based
method to aggregate and reason over multiple
pieces of evidence. This approach surpasses
previous methods by enabling more interactive and
effective use of evidence.

Recent advancements in large language models
(LLMs) have demonstrated considerable potential
for enhancing fact-checking processes (Kim et al.,
2023a; Choi and Ferrara, 2024). LLMs are pre-
trained on vast and diverse corpora (Yang et al.,
2024), allowing them to generate human-like
text and possess a broad knowledge base (Choi
and Ferrara, 2024). However, despite their
impressive capabilities, LLMs can sometimes
produce erroneous outputs or lack the specificity
required for complex fact-checking tasks (Choi and
Ferrara, 2024). This issue becomes particularly
evident when intricate reasoning and contextual
understanding are necessary to verify claims
accurately (Chai et al., 2023). Several studies have
explored the integration of LLMs with external
knowledge sources to improve their performance
in fact-checking tasks (Cui et al., 2023; Ding et al.,
2023).

The incorporation of knowledge graphs into fact-
checking frameworks has also garnered attention.
KGs, such as DBpedia (Lehmann et al., 2015),
provide structured and linked data that can
enhance the contextual understanding of LLMs.
Knowledge graphs have been used to improve
various NLP tasks by providing additional context
and relationships between entities, as demonstrated
by initiatives for knowledge-aware language
models (Li et al., 2023; Logan Iv et al., 2019) and
KG-BERT (Yao et al., 2019).

Approximate string matching, also called fuzzy
string matching, is a technique used to identify
partial matches between text strings (Navarro,
2001). Fuzzy matching techniques (Navarro, 2001)
have been applied to enhance the integration of
LLMs and KGs (Wang et al., 2024).
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The Levenshtein distance-based similarity
measure (Levenshtein et al., 1966) is one
such technique that helps identify strings with
approximate matches, which can be useful for
finding relevant connections between entities
by accommodating minor discrepancies in data
representation. This approach has been beneficial
in refining the outputs of LLMs, ensuring that only
valid and contextually appropriate connections are
considered (Guo et al., 2023).

Our proposed method, FactGenius, builds
on these advancements by combining zero-shot
prompting of LLMs with a fuzzy relation-mining
technique to improve reasoning over KGs. This
methodology leverages DBpedia as a structured
source of linked data to enhance fact-checking
accuracy. By using LLMs to filter potential
connections between entities and refining these
connections through fuzzy matching, FactGenius
aims to address the limitations of existing fact-
checking models.

3 Preliminaries

A Knowledge Graph (KG) G is a set of triples
(s, r, o), with s, o ∈ E and r ∈ R, where E is
the set of entities, and R is the set of relations
connecting those entities. A KG can be viewed
either as a set of triples or as a graph with nodes in
E and edge labels in R. Hence, when we discuss
the 1-hop neighborhood of a certain entity e, we
refer to the set of entities connected to e through an
edge in this graph. For a triple (s, r, o), we consider
s to be connected to o through an edge labeled as r,
while we consider o to be connected to s through an
edge labeled as ∼r, where ∼r denotes the inverse
relation of r.

We consider natural language sentences in their
intuitive sense.

Given a claim in natural language C, a KG G
with entities E, and a set of entities relevant to the
claim EC , the fact verification with KG evidence
task is to predict whether the claim C is supported
or not according to the evidence in G.

4 Methodology

We introduce the FactGenius system for the fact
verification with KG evidence task. Our system has
two main components: a graph filtering component
that selects the relevant KG evidence for the input
claim, and a classifier component that uses this
evidence together with the claim to predict whether

the claim is supported or not.
FactGenius leverages the capabilities of a Large

Language Model (LLM) to filter the set of triples
in the input graph G. More concretely, an LLM is
used in a zero-shot setting to select the relevant
relations from the 1-hop neighborhood of the
entities EC associated with claim C. Since the
output of LLMs can be erroneous, the triples are
further validated against the unfiltered set using
fuzzy matching techniques. Finally, the classifier,
which can be fine-tuned over pre-trained models
like BERT (Devlin et al., 2019) or RoBERTa (Liu
et al., 2019), or a Zero-Shot LLM, determines
whether the claim is supported or refuted. The
overall pipeline is shown in Figure 1.

4.1 FactGenius: Relation Filtering with LLM
and Fuzzy Matching

The first step in our FactGenius pipeline is
identifying the graph evidence relevant to the input
claim. We select the relevant relations in the 1-hop
neighborhood of the claim entities by employing
LLM-based filtering. Once we have the relevant
relations, we select the 1-hop neighborhood triples.
These triples are then turned into strings and used
together with the claim by the classifier.

4.1.1 LLM Prompt-Based Filtering
We utilize an LLM, specifically the Llama3-
Instruct model, to identify and filter potential
connections between entities based on a given
claim.

This is done in the following way. First, we must
select a set of relations to filter using the LLM.
Given that KGs can be very large, for example,
DBpedia contains billions of triples and thousands
of edges (Lehmann et al., 2015), considering the
full set of relations in an LLM prompt is infeasible.
In FactGenius, we choose to look only at the 1-hop
neighborhood of the given set of claim entities EC

to generate the initial set of relations. We therefore
construct a set of 1-hop relations for each entity e,
i.e. {r|(e, r, e1) ∈ G}, which we will denote by
RC(e). The LLM is then given the claim C and the
set of relations RC(e) for each entity relevant to the
input claim (each e ∈ EC), and it outputs subsets
of each RC(e), which we denote by Rllm

C (e). A
prompt example is given in Figure 2.

A retry mechanism is employed to handle
potential failures in LLM responses. If the LLM
output is inadequate (e.g., empty or nonsensical),
the request is retried up to a specified maximum
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System prompt:
You are an intelligent graph connection finder.
You are given a single claim and connection
options for the entities present in the claim.
Your task is to filter the Connections options that
could be relevant to connect given entities to
fact-check Claim1. ~ ( tilde ) in the beginning
means the reverse connection.
User prompt:
Claim1:
<<<Well, The celestial body known as 1097
Vicia has a mass of 4.1kg.»>
## TASK:
- For each of the given entities given in the DICT
structure below:
Filter the connections strictly from the given
options that would be relevant to connect given
entities to fact-check Claim1.
- Think clever, there could be multi-step hidden
connections, if not direct, that could connect the
entities somehow.
- Prioritize connections among entities and
arrange them based on their relevance. Be extra
careful with signs.
- No code output. No explanation. Output only
valid python DICT of structure:
<<<
{
"1097_Vicia": ["...", "...", ... ]
# options (strictly choose from): discovered,
formerName, epoch, periapsis, apoapsis, ...,
Planet/temperature "4.1": ["...", "...", ... ],
# options (strictly choose from): ~length,
~ethnicGroups, ~percentageOfAreaWater,
~populationDensity, ~engine, ..., ~number
}
>>>

Figure 2: Filtering prompt example. The text inside
< < < and > > > changes with each input.

number of attempts, in practice 10. In our
experiments, however, we did not encounter any
cases where retries exceeded this limit. If the limit
is exceeded, the non-filtered sets of relations are
returned.

4.1.2 LLM Output Validation
As mentioned, the LLM could output relations that
are not in G. That is, Rllm

C (e) is not necessarily a
subset of RC(e) or even R.

We therefore pass the LLM output through a
validation stage, which has two sub-stages, namely
Stage A and Stage B.

In Stage A, we perform validation of the relation
set for each entity from the claim. That is, for
each entity e ∈ EC , we select the subset of RC(e)
that best matches the LLM output Rllm

C (e). To do
so, we fuzzily match the relations in RC(e) to the
relations in Rllm

C (e) using Levenshtein distance. A
threshold on this distance is considered to decide
whether two relations match or not.

The limitation of the first validation type is
that if the LLM suggests the correct relation, but
associates it with the wrong entity, this relevant
relation is removed through the first validation type.
We will exemplify this on the prompt in Figure
2. The model is given the entities 1097_Vicia
and 4.1, each with the list of possible relations.
If the model identifies Planet/temperature but
associates it with 4.1 instead of 1097_Vicia this
relation is removed during Stage A validation.

To address this limitation, we introduce Stage B
validation. In this stage, we consider the full set
of relations generated by the LLM for all entities
associated with the input claim, i.e., Rllm

C =
Rllm

C (e1) ∪ ... ∪Rllm
C (en) for all e1, . . . , en ∈ EC .

Similarly to Stage A, we use Levenshtein distance
to compare the relations in RC(e) with the filtered
relations, but we consider the full filtered set Rllm

C

instead of the entity-specific set Rllm
C (e). The

details are explained in Algorithm 1.

4.2 Claim-Driven Relation Filtering

To measure the effectiveness of LLM in relation
filtering (as described in 4.1), we create a baseline
that ensures only the relations most pertinent to
the claim, based on lexical similarity, are selected.
To filter relations relevant to a claim, we begin
by tokenizing the claim sentence, excluding stop
words, to obtain a list of significant word tokens.
Next, for each entity e ∈ EC present in the claim,
we gather all 1-hop relations RC(e).
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Algorithm 1 LLM output validation
1: Input: EC = {e1, ...., en} - entities in the claim;
2: RC(e1), ..., RC(e_n): relations in the 1-hop neighborhood for

each entity in the claim;
3: Rllm

C (e1), ..., Rllm
C (en): relation sets output by the LLM;

4: stage: validation stage, either A or B
5: Output: R′

C(e1), ..., R′
C(e_n)- Validated relation sets.

6: procedure VALIDATERELATION
7: Initialize: probable_connections: {}

8: for each e ∈ EC do
9: for each r ∈ RC(e) do

10: if stage = A then
11: Rllm−compare = Rllm

C (e)
12: else
13: Rllm−compare = Rllm

C (e1) ∪ ... ∪Rllm
C (en)

14: end if
15: for each rllm ∈ Rllm−compare do
16: d = LEVENSHTEINDISTANCE(r, rllm)
17: if d > 90 then
18: R′

C(e) = R′
C(e) ∪ {r}

19: end if
20: end for
21: end for
22: end for
23: end procedure

We then apply a fuzzy matching process to each
tokenized word in the claim, comparing it to the
relations in RC(e) using the Levenshtein distance.
This process yields a subset of relations R′

C(e),
where each relation’s similarity to the claim words
exceeds a predefined threshold.

4.3 With Evidence Classifier

In this configuration, the model is supplied with
both the claim and graphical evidence as input,
and it then makes predictions regarding the label.
FactGenius utilizes graph filtering, as explained in
Section 4.1, to ensure retention of the most relevant
and accurate connections.

4.4 Evidence Stringification

To effectively pass evidence triples to the
language model, we must first convert these
triples into a string format. For each entity e
in the claim with its associated relations {r |
(e, r, e1) ∈ G} extracted from the graph G, we
transform each triplet (e, r, e1) into the string
format "{e} > −{r}− > {e1}". For multiple
triples of evidence, the resulting strings are
simply concatenated into a single evidence string,
preserving the order and structure of the triples.
This approach ensures a seamless and coherent
integration of structured graph data into the
language model’s input.

4.5 Zero-Shot LLM as Fact Classifier

This involves utilizing Llama-3-Instruct as a fact
classifier, to predict whether the given input claim
and evidence string are supported or refuted.
A retry mechanism is implemented to handle
potential failures in LLM responses. A prompt
example with evidence is shown in Figure 3.

4.6 Fine-Tuning Pre-Trained Models

Pre-trained BERT-base-uncased1 and RoBERTa-
base are fine-tuned with the claim and evidence
string as inputs to predict whether the claim is
supported or refuted.

An ablation study was conducted to evaluate
the contributions of each stage of our approach.
This involved sequentially removing Stage-B and
measuring the system’s performance. The results of
the ablation study allowed us to quantify the impact
of both stages on the overall performance of the
model. Accuracy was used as an evaluation metric
across all reasoning types to quantify performance
improvements from the ablation study.

4.7 Implementation

Our FactGenius system implementation leverages
several advanced tools and frameworks to
ensure efficient and scalable processing. The
Llama3-Instruct inference server is set up using
vLLM (vLLM Project, 2024; Kwon et al., 2023),
running on an NVIDIA A100 GPU (80 GB
vRAM) to facilitate rapid inference. This server
runs standalone, integrating seamlessly with the
FactGenius pipeline.

For model fine-tuning and evaluation, we employ
the Hugging Face Transformers library, utilizing
the Trainer class for managing the training
process. This setup allows for the fine-tuning
of pre-trained models like BERT and RoBERTa
within our pipeline. Hyper-parameters such as
batch size, learning rate, and training epochs
are configured to optimize performance, with
computations accelerated by PyTorch.

The models were fine-tuned on a single NVIDIA
V100 GPU, with RoBERTa requiring around 25
minutes per epoch with a batch size of 32, and
BERT taking around 8 minutes per epoch with a
batch size of 64. The fine-tuning process utilized
the Adam optimizer with settings of β1 = 0.9,
β2 = 0.98, and ϵ = 1e − 6 for RoBERTa, and
β1 = 0.9, β2 = 0.99, and ϵ = 1e− 8 for BERT.

1huggingface.co/google-bert/bert-base-uncased
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A weight decay of 0.01 was used over all the
layers. A learning rate of 5e − 6 was used with
early stopping over validation loss for 3 epochs,
retaining the best epoch’s weights.

5 Experiments

To evaluate the performance of our proposed
methods, we conducted a series of experiments
comparing different strategies for fact-checking on
the FactKG (Kim et al., 2023b) benchmark.

5.1 Dataset

The FactKG dataset (Kim et al., 2023b) comprises
108,000 claims constructed using various
reasoning patterns applied to facts sourced from
DBpedia (Lehmann et al., 2015). Each data point
consists of a natural language claim in English, the
set of DBpedia entities mentioned in the claim,
and a binary label indicating the claim’s veracity
(Supported or Refuted). The distribution across
labels and five different reasoning types is shown
in Table 1. The relevant relation paths starting
from each entity in the claim are provided, which
aids in the evaluation and development of models
for claim verification tasks.

The dataset is accompanied by two processed
versions of the FactKG Knowledge Graph, derived
from DBpedia 2015. The first version encompasses
the entire DBpedia dataset with the directionality
of edges removed by incorporating reverse relation
triples, denoted as DBpedia-Full. The second
version is a curated subset of the first, containing
only the relations pertinent to FactKG, thus
enabling more focused and efficient analysis, and
is referred to as DBpedia-Light.

Set Train Valid Test
Total Rows 86,367 13,266 9,041
True (Supported) 42,723 6,426 4,398
False (Refuted) 43,644 6,840 4,643
One-hop 15,069 2,547 1,914
Conjunction 29,711 4,317 3,069
Existence 7,372 930 870
Multi-hop 21,833 3,555 1,874
Negation 12,382 1,917 1,314

Table 1: Data distribution across labels and five
reasoning types.

5.2 Results
Following prior work (Kim et al., 2023b,a),
we conducted experiments with two types of
approaches: one that takes as input only the
claim, referred to as Claim Only, and another that
integrates KG information, referred to as With
Evidence. The goal of this comparison is to assess
whether the required knowledge is already stored
in the weights of pre-trained large language models
or if injecting KG information is beneficial. The
results are summarized in Table 2.

5.3 Claim Only
For the Claim Only scenario, we compared
four methods: two from the previous literature
and two designed by us. We selected two of
the best-performing methods from prior work:
the BERT-based claim-only model introduced
with the FactKG dataset by Kim et al. (Kim
et al., 2023b), and the ChatGPT-based model
subsequently introduced by Kim et al. (Kim et al.,
2023a). Additionally, we experimented with two
models of our own design: we used the Meta-
Llama-3-8B-Instruct2 (Meta, 2024) model with
zero-shot prompting, and a RoBERTa-base (Liu
et al., 2019) model, which we fine-tuned on the
fact verification task. An example of the prompt
we used for Meta-Llama-3-8B-Instruct is found in
Appendix B.

Our results show that RoBERTa outperformed
the reported accuracy of BERT (Kim et al., 2023b),
achieving an accuracy of 0.68, which is on par with
the 12-shot ChatGPT model reported in the KG-
GPT paper (Kim et al., 2023a). This suggests that
RoBERTa inherently stores knowledge relevant for
fact-checking, at least on the FactKG benchmark.
Our prompting approach, however, achieved a
score of 0.61, underperforming on the task.

5.4 With Evidence
In the With Evidence setting, we compared different
versions of our FactGenius system with two
systems from prior work (Kim et al., 2023b,a). For
our FactGenius approach, we experimented with
five versions, using either an LLM classifier with
prompting (Llama3-Instruct-zero-shot in Table 2)
or a fine-tuned LLM as the classifier, either BERT-
based (Devlin et al., 2019) or RoBERTa-based (Liu
et al., 2019). For both the BERT-based and
RoBERTa-based systems, we experimented with
both stage A and stage B output validation.

2huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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Input type Source Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only

FactKG (Kim et al., 2023b) BERT* 0.69 0.63 0.61 0.70 0.63 0.65

KG-GPT (Kim et al., 2023a) ChatGPT (12-shot)* - - - - - 0.68

Ours Llama3-Instruct-zero-shot 0.61 0.67 0.59 0.61 0.53 0.61

Ours RoBERTa 0.71 0.72 0.52 0.74 0.54 0.68

With Evidence

FactKG GEAR* 0.83 0.77 0.81 0.68 0.79 0.77

KG-GPT KG-GPT (12-shot)* - - - - - 0.72

Ours on DBpedia-Light Claim-driven relation filtering 0.81 0.71 0.98 0.71 0.76 0.78

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.75 0.76 0.62 0.52 0.68

on DBpedia-Light BERT-stage-A 0.85 0.80 0.91 0.79 0.78 0.81

BERT-stage-B 0.85 0.83 0.88 0.81 0.73 0.82

RoBERTa-stage-A 0.84 0.86 0.88 0.82 0.77 0.84

RoBERTa-stage-B 0.89 0.89 0.93 0.83 0.78 0.87

FactGenius (Ours) Llama3-Instruct-zero-shot 0.72 0.76 0.72 0.61 0.51 0.68

on DBpedia-Full BERT-stage-A 0.81 0.83 0.67 0.80 0.56 0.76

BERT-stage-B 0.81 0.81 0.67 0.80 0.56 0.76

RoBERTa-stage-A 0.86 0.85 0.91 0.79 0.82 0.84

RoBERTa-stage-B 0.86 0.86 0.90 0.82 0.79 0.84

Table 2: Comparing our method with other strategies and methods in terms of reported accuracies in the test set.
The * symbol indicates results taken directly from prior works, whereas ’-’ indicates results were not reported by
prior works.

5.4.1 On DBpedia-Light Knowledge Graph
Our results show that adding evidence to the
Llama3-Instruct model’s instructions significantly
improved its accuracy from 0.61 to 0.68. This
indicates that even for large language models,
incorporating relevant evidence can enhance fact-
checking performance in a zero-shot learning
scenario. However, directly applying zero-shot
prompting with Llama3-Instruct did not yield
superior performance compared to claim-driven
relation filtering. The performance improved when
using fine-tuned BERT or RoBERTa as classifiers.
We also observed that the performance of the
pipeline increased further when stage-B was used
instead of stage-A relation mining, with fine-tuned
RoBERTa performing better than BERT.

To assess the contribution of the validation
stages, we applied both stages to our best-
performing model, the RoBERTa-based system.
We found that employing stage A of filtering
resulted in an accuracy of 0.84. Incorporating
stage B further improved the performance to 0.87.
The second stage enhanced performance across
most reasoning types, with notable improvements
in conjunction and negation tasks. We achieved the
highest performance by fine-tuning RoBERTa with
stage-B relation mining, leading to an accuracy of
0.87 on the DBpedia-Light knowledge graph. To
the best of our understanding, FactKG uses the
DBpedia-Light graph, while KG-LLM employs

DBpedia-Full, as inferred from their respective
public implementations.

5.4.2 On DBpedia-Full Knowledge Graph
When using the DBpedia-Full knowledge graph,
we observed a decrease in performance for
all model variants compared to the DBpedia-
Light setting. The Llama3-Instruct-zero-shot
approach showed a similar performance gain.
Fine-tuned BERT with both stage-A and stage-B
maintained moderate scores, indicating stability
but not improvement. RoBERTa-stage-A and
RoBERTa-stage-B models achieved comparable
performance at 0.84, with both stages performing
similarly, indicating that stage-B processing does
not significantly outperform stage-A in the more
complex graphs. These results highlight the
challenges associated with scaling to larger and
more complex knowledge graphs.

6 Discussion

The enhanced performance of FactGenius,
particularly in Conjunction, Existence, and
Negation reasoning, can be attributed to its
innovative combination of zero-shot prompting
using large language models (LLMs) and fuzzy
text matching on knowledge graphs.
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The evidence-based filtering approaches
revealed significant findings. The stage-B
validation approach improves accuracy compared
to stage-A, although the model shows only
moderate performance improvement in Multi-hop
reasoning. This suggests that more advanced
techniques may be necessary to handle the
complexity of Multi-hop reasoning effectively.

The two-step approach of filtering and validating
connections proved to be especially effective. In
the first step, the LLM narrows down potential
connections based on the context provided by the
claim, significantly reducing the search space. The
second step refines these connections through fuzzy
matching, ensuring that only the most relevant
and accurate ones are retained. Our comparative
study confirmed the importance of both steps, with
the second step being particularly beneficial for
Conjunction and Negation reasoning tasks.

While fine-tuned LLM models, such as BERT
and RoBERTa, generally outperformed the zero-
shot Llama3-Instruct model and claim-driven
relation filtering, the increased graph complexity in
DBpedia-Full compared to DBpedia-Light limited
the gains from fine-tuning. This limitation can be
attributed to the input token restrictions of BERT
and RoBERTa, which truncate inputs after 512
tokens. Truncation is more likely with the larger
DBpedia-Full graph, potentially excluding relevant
information, thereby reducing the effectiveness
of evidence-based filtering. Additionally, the
similar performance between stage-A and stage-
B relation mining in the full graph setting suggests
that the added complexity of stage-B does not
yield better accuracy, likely due to these input
constraints. These observations underscore the
need for architectural adaptations or preprocessing
methods to more effectively handle larger datasets.

As LLM inference is a crucial component of
this framework, we employed vLLM (vLLM
Project, 2024) to enable rapid inference using a
single NVIDIA A100 GPU. In our experiments,
the LLM inference speed was approximately 15
queries per second, including retries in case of
failure. This rate is feasible, especially as LLM
inference continues to be optimized with the latest
technologies. Embedding LLM in this framework
has proven to be a sound decision.

7 Conclusion

In this paper, we introduced FactGenius, a novel
method that combines zero-shot prompting of large

language models with fuzzy relation mining to
improve reasoning on knowledge graphs. This
approach addresses several key challenges in
traditional fact-checking methods. First, the
integration of LLMs allows for the leveraging of
extensive pre-trained knowledge in a zero-shot
setting. Second, the use of fuzzy text matching
with Levenshtein distance ensures that minor
discrepancies in entity names or relationships do
not hinder the relationship selection process, thus
improving robustness.

Our experiments on the FactKG dataset
demonstrated that FactGenius significantly
outperforms traditional fact-checking methods and
existing baselines, particularly when fine-tuning
RoBERTa as a classifier. The two-stage approach
of filtering and validating connections was crucial
for achieving high accuracy across various
reasoning types.

The findings from this study suggest that
utilizing LLMs for KG evidence retrieval
holds great promise for advancing fact-checking
capabilities. Future work could explore applying
this approach to other domains and datasets, as well
as incorporating additional structured data sources
to further enhance performance.

Limitations

The primary limitation of this work is that we
only consider the 1-hop neighborhood when
constructing the graph evidence. While this
approach performs well on the FactKG benchmark,
it may not capture the multi-hop reasoning required
for more complex claims in other datasets or real-
world scenarios. Additionally, our evaluation is
limited to FactKG, restricting the generalizability
of our findings. Another limitation stems from
the input context limitations of the fine-tuned
models and the LLMs, particularly when dealing
with entities that have extensive graph connections,
leading to input length constraints and necessitating
truncation. Finally, we focused on zero-shot
prompting with a single LLM and did not explore
few-shot learning or alternative models, which
might enhance performance.
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A Zero-shot fact-checking with evidence

We experimented with a language model in a
zero-shot setting for fact verification including the
evidence. We prompted the model with the claim
and the evidence given as a list of triples — an
example of the prompt is shown in Figure 3.

[{
"role": "system", "content":
"You are an intelligent fact-checker. You are given

a single claim and supporting evidence for the entities
present in the claim, extracted from a knowledge graph.

Your task is to decide whether all the facts in the
given claim are supported by the given evidence.

Choose one of {True, False}, and output a one-sentence
explanation for the choice."

},{
"role": "user", "content":
'''
## TASK:
Now let’s verify the Claim based on the evidence.
Claim:
<<< The celestial body known as 1097 Vicia has a
mass of 4.1kg. >>>

Evidence:
<<< 1999_Hirayama -> mass -> "4.1"
1097_Vicia -> mass -> "9.8" >>>

# Answer Template:
"True/False (single word answer),
One-sentence explanation."
'''
}]

Figure 3: Example prompt given to Llama3-Instruct
with evidence for zero-shot fact-checking.

B Claim-only models

A baseline is established using the Meta-Llama-3-
8B-Instruct3 (Meta, 2024) model with zero-shot
prompting for claim verification, asking it to verify
the claim without evidence. Through instruction
prompt engineering, the model is ensured to
respond with either ’true’ or ’false’. A retry
mechanism is implemented to handle potential
failures in LLM responses. A prompt example

3huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

is shown in Figure 4. The retry mechanism simply
retries calling the LLM up to a fixed number of
times and diverts to a default handling function if
the LLM is unable to provide a proper output.

[{
"role": "system", "content":
"You are an intelligent fact-checker trained on
Wikipedia. You are given a single claim, and your task
is to decide whether all the facts in the given claim
are supported by your knowledge.
Choose one of {True, False}, and output a one-sentence
explanation for the choice."
},{
"role": "user", "content":
'''
## TASK:
Now let’s verify the Claim based on your knowledge.
Claim:
<<< The celestial body known as 1097 Vicia has a
mass of 4.1kg. >>>

# Answer Template:
"True/False (single word answer),
One-sentence explanation."
'''
}]

Figure 4: Example prompt given to Llama3-Instruct
without evidence for zero-shot fact-checking.
«< ... »> signs are added just to indicate that the content inside
changes for each prompt.
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Abstract
Despite recent success in natural language pro-
cessing (NLP), fact verification remains a dif-
ficult task. Due to misinformation spreading
increasingly fast, attention has been directed
towards automatically verifying the correctness
of claims. In the domain of NLP, this is usually
done by training supervised machine learning
models to verify claims by utilizing evidence
from trustworthy corpora. We present efficient
methods for verifying claims on a dataset where
the evidence is in the form of structured knowl-
edge graphs. We use the FACTKG dataset,
which is constructed from the DBpedia knowl-
edge graph extracted from Wikipedia. By sim-
plifying the evidence retrieval process, from
fine-tuned language models to simple logical
retrievals, we are able to construct models that
both require less computational resources and
achieve better test-set accuracy.

1 Introduction

As the volume of information generated continues
to grow, so does the risk of misinformation spread-
ing, which has made automatic fact verification a
crucial task in NLP (Cohen et al., 2011; Hassan
et al., 2015; Thorne and Vlachos, 2018; Bekoulis
et al., 2021). Traditionally, fact verification has
been tackled in journalism by experts manually
researching topics and writing articles about their
findings. Some specific websites dedicated to this
approach are FactCheck.org and PolitiFact.com.
However, it is time-consuming and labor-intensive,
and is not able to follow the pace of information
created in digital media (Cohen et al., 2011; Hassan
et al., 2015).

One of the most popular datasets for fact ver-
ification is the Fact Extraction and VERification
(FEVER) dataset (Thorne et al., 2018). It consists
of claims supported by a corpus of Wikipedia arti-
cles. Models trained on the dataset need to extract
the relevant evidence and use it to classify claims
as supported, refuted or not enough information.

Despite its popularity, several issues have been
discovered. Due to the manual construction of
claims, the structure of the language is inherently
biased with respect to the classes, and therefore it
is possible to achieve good performance without
using the evidence at all (Schuster et al., 2019). It
has also been shown that models trained on FEVER
experience a significant drop in performance when
the factual evidence is changed in a way that in-
fluences the validity of claims (Hidey et al., 2020).
These issues can be improved by accordingly ad-
justing the validation and test dataset to contain
less biased data (Schuster et al., 2019; Hidey et al.,
2020), but we believe it is important to develop
models on other datasets as well.

A less studied approach to process evidence is by
structured data. In many real-world examples, data
is available in large structured databases, rather
than unstructured articles. This is relevant for do-
mains such as social networks, logistics, manage-
ment systems and database systems. The dataset
TabFact (Chen et al., 2019) was created with this
intent, consisting of claims with tabular evidence
extracted from Wikipedia.

This paper aims to increase the performance
of models trained on the FACTKG dataset (Kim
et al., 2023), a dataset created for fact verification
with structured evidence in the form of knowledge
graphs (KGs). The claims are created with ev-
idence from DBpedia (Lehmann et al., 2015), a
large KG extracted from Wikipedia. A KG consists
of nodes and edges linked together to represent
structural concepts. Nodes represent entities, such
as persons, things or events, and edges represent
relations, conveying how entities are related, as
shown in Figure 1. For instance, a node can be
the company Meyer Werft, and since it is located
in the city Papenburg, they are connected with the
edge location. We refer to Meyer Werft, location,
Papenburg as a knowledge triple.

Since the task of fact verification with KGs re-
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Figure 1: An example claim from FACTKG (Kim et al.,
2023). The claim can be verified or refuted based on the
DBpedia KG (Lehmann et al., 2015). This is Figure 1
from Kim et al. (2023).

mains relatively unexamined, we want to explore
several different approaches to the problem. We
use the following three model architectures:

• Textual Fine-tuning: Fine-tuning pretrained
encoder models on text data for claim verifi-
cation. We use BERT (Devlin et al., 2018)
by concatenating the claims with subgraphs
represented as strings.

• Hybrid Graph-Language Model: Using
a modification of a question answer graph
neural network (QA-GNN) (Yasunaga et al.,
2021), which both uses a pretrained encoder
model to embed the claim, and a graph neu-
ral network (GNN) to structurally process the
subgraphs.

• LLM Prompting: Deploying state-of-the-art
language models in a few-shot setting, without
the need for additional finetuning. We use
ChatGPT 4o (Achiam et al., 2023; Open AI,
2024) for this setting.

The textual finetuning serves as a simple and con-
ventional method, while the QA-GNN can handle
graph based data efficiently and is more specifically
constructed for the task of interest. In contrast, the
LLM prompting displays how well general purpose
language models can perform on the task. It does
not require any further training and does not use
any evidence. Therefore, it will serve as a baseline
and give insight to how difficult the task is.

Our main contribution is that we increase the
accuracy and computational efficiency of models
trained on FACTKG. By utilizing efficient subgraph

retrieval methods, we are able to increase the test-
set accuracy from 77.65% (Kim et al., 2023) to
93.49%. To the best of the authors’ knowledge,
this is the best performance achieved so far on this
dataset. Additionally, our models train quicker,
taking only 1.5-10 hours, compared to the 2-3
days spent on the benchmark model from Kim
et al. (2023), reported by the authors. The code
and documentation used for this article can be
found at https://github.com/Tobias-Opsahl/
Fact-or-Fiction.

2 Related Work

2.1 Fact Verification

The FEVER dataset is one of the most popular
datasets used for fact verification (Thorne et al.,
2018), and has influenced several model architec-
tures. Graph-based Evidence Aggregating and Rea-
soning (GEAR) (Zhou et al., 2019) works by find-
ing relevant articles with entity linking, giving them
a relevance score, embedding the claim and sen-
tences in the relevant evidence with a pre-trained
BERT (Devlin et al., 2018), and then using a GNN
to reason over the embeddings. The Neural Seman-
tic Matching Network (NSMN) (Nie et al., 2019)
used three homogenous neural networks used for
document retrieval, sentence selection and claim
verification. By using a transformer based archi-
tecture, Generative Evidence REtrieval (GERE)
(Chen et al., 2022) combined the evidence retrieval
and sentence identifying into a single step.

Several other datasets for fact verification have
also been proposed. The Fake News Challenge
(Hanselowski et al., 2018) were aimed towards pre-
dicting the relevance and agreement of a title and
text. VitaminC (Schuster et al., 2021) focuses on
representing changing evidence, and was created
by constructing claims based on different revisions
of Wikipedia articles. The dataset FAVIQ (Park
et al., 2021) explored ambiguous parts of claims,
while TabFact (Chen et al., 2019) used tabular data
as evidence. There have also been proposed mul-
timodular dataset for fact verification, combining
claims and images (Zlatkova et al., 2019; Mishra
et al., 2022).

2.2 The FactKG Dataset

The FACTKG dataset (Kim et al., 2023) consists
of 108,000 English claims for fact verification,
where the downstream task is to predict whether
the claims are true or false. The claims are con-
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structed from the DBpedia KG (Lehmann et al.,
2015), which is extracted from Wikipedia and rep-
resents how entities are related to each other.

The claims are constructed on either of the fol-
lowing five reasoning types:

• One-hop: To answer a one-hop claim, one
only needs to traverse one edge in the KG.
In other words, only one knowledge triple is
needed to verify the validity of the claim.

• Multi-hop: As opposed to one-hop claims,
one needs to traverse multiple steps in the KG
to verify multi-hop claims.

• Conjunction: The claim includes a combina-
tion of multiple claims, which are often added
together with the word and.

• Existence: These claims state that an entity
has a relation, but does not specify which en-
tity it relates to.

• Negation: The claim contains negations, such
as not.

The dataset is split in a train, validation and test
set of proportion 8:1:1. The train and validation
set includes relevant subgraphs for each claim, but
not the test set. All claims include a list of entities
present in the claim and as nodes in the KG.

2.3 Question Answer Graph Neural Networks
The question answer graph neural network (QA-
GNN) (Yasunaga et al., 2021) is a hybrid language
and GNN model that both uses a pre-trained lan-
guage model to process the text, and couples it with
a GNN reasoning over a subgraph. It is given text
and a subgraph as input. The text, consisting of a
question and possible answers, is added as a node
to the subgraph. The language model embeds the
text, and assigns a relevance score to each node in
the subgraph. The relevance scores are multiplied
with the node features, before being sent into the
GNN. The GNN output, text-node and the text em-
bedding are concatenated before being put into the
classification layer.

3 Methods

3.1 Efficient Subgraph Retrieval
We experiment with different ways of retrieving
relevant subgraphs for the claim, focusing on com-
putational efficiency. Each datapoint in the FAC-
TKG dataset consists of a claim and a list of entities

Figure 2: Examples of the different subgraphs ex-
plored in this article. Boxes and bold letters represent
entities, while arrows and italic letters represent rela-
tions. This claim is meant for illustrative purposes and
is not present in the FACTKG dataset.

that appear both in the claim and the KG. Since
the part of DBpedia used in FactKG is fairly large
(1.53GB), it is necessary to only use a small sub-
graph of it as input to the models. The benchmark
model from Kim et al. (2023) uses two language
models to predict the relevant edges and the depth
of the graph. We wish to simplify this step in or-
der to reduce the model complexity, and propose
methods for subgraph retrieval that do not need
training.

We experiment with the following methods (ex-
amples can be found in Figure 2):

• Direct: Only includes knowledge triples
where both nodes are present in the entity list.

• Contextualized: First, includes all direct sub-
graphs. Additionally, lemmatize the words in
the claim and check if the nodes in the entity
list have any relations corresponding to the
lemmatized words in the claim. Include all
knowledge triples where at least one node is
in the entity list and the relation can be found
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in the claim.

• Single-step: Includes every knowledge triple
one can be traversed in one step from a node
in the entity list. In other words, include every
knowledge triple that contains at least one
node in the entity list.

3.2 Finetuning BERT

We use BERT (Devlin et al., 2018) as our pre-
trained language model. We first train a baseline
model using only the claims and no subgraphs, and
then with all of the different methods for retrieving
subgraphs. The subgraphs are converted to strings,
where each knowledge triple is represented with
square brackets, and the name of the nodes and
edges are the same as they appear in DBpedia. The
order of the knowledge triples is determined by the
order of the list of entities in the FactKG dataset
and the order of the edges in DBpedia. The sub-
graphs are concatenated after the claims and a “ | ”
separation token.

3.3 QA-GNN Architecture

In order to adapt the QA-GNN to the fact verifica-
tion setting, we perform some slight modifications.
Because the possible answers are always “true” or
“false”, we embed only the claims, instead of the
question and answer combination. Additionally,
we do not connect the embedded question or claim
to the subgraph.

We use a pre-trained BERT (Devlin et al., 2018)
as the language model to embed and calculate the
relevance scores. In order to reduce the complexity
of the model, we use a frozen BERT to calculate
the embeddings for the nodes and the edges in
the graph. This way, all of the embeddings in the
graph can be pre-calculated. We use the last hidden
layer representation of the CLS token, which is of
length 768. The BERT that calculates the relevance
scores and the embedding of the claim is not frozen.
The relevance scores are computed as the cosine
similarity between the claim embedding and the
embedding of the text in the nodes.

We use a graph attention network (Veličković
et al., 2017) for our GNN. Since the subgraphs are
quite shallow, we only use two layers in the GNN,
and apply batch norm (Ioffe and Szegedy, 2015).
Each layer has 256 features, which is mean-pooled
and concatenated with the BERT embedding and
sent into the classification layer. We add dropout

(Srivastava et al., 2014) to the GNN layers and the
classification layer.

3.4 ChatGPT Prompting

We construct a prompt for ChatGPT 4o in order
to answer a list of claims as accurately as possi-
ble. This is done by creating an initial prompt
and validating the results on 100 randomly drawn
claims from the validation set, and by trying dif-
ferent configurations of the prompt until we do not
get a better validation set accuracy. We then use
the best prompt with 100 randomly drawn unseen
test-set questions, and attempt to ask 25, 50 and
100 claims at a time, to see if the amount of claims
at a time influences the performance. We run the
testing three times.

Since we do not have access to vast enough com-
putational resources to run an LLM, this analysis
is limited by only using 100 datapoints from the
test set. In order to get access to a state-of-the-art
LLM, we used the ChatGPT website with a “Chat-
GPT Plus” subscription to perform the prompting.
This model is not seeded, so the exact answers
are not reproducible, but every prompt and answer
are available in the previously mentioned GitHub
repository. We used the ChatGPT 4o model 30th
of May 2024. Every prompt was performed in the
“temporary chat” setting, so the model did not have
access to the history of previous experiments.

Due to the inability to use the entire test set and
the lack of reproducibility, we do not directly com-
pare this experiment to the other models. However,
we still believe it serves as a valuable benchmark.
Recently, the performance of LLMs has rapidly im-
proved, which suggests that their applications will
continue to broaden. Additionally, this approach
is not fine-tuned, and may work as an interesting
benchmark that can contextualize the results of the
other models.

3.5 Benchmark Models

We will compare the results against the best bench-
mark models from Kim et al. (2023) and the best
performing models known to the authors, found in
Gautam (2024). These comparisons include both
baselines that use only the claims and models that
also incorporate subgraph evidence.
Claim-Only Models:

• FactKG BERT Baseline: The baseline model
from Kim et al. (2023) uses a fine-tuned
BERT, training only on the claims.
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Input Type Model One-hop Conjunction Existence Multi-hop Negation Total

Claim Only
FACTKG BERT Baseline 69.64 63.31 61.84 70.06 63.62 65.20

FactGenius RoBERTa Baseline 71 72 52 74 54 68
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

With Subgraphs
FACTKG GEAR Benchmark 83.23 77.68 81.61 68.84 79.41 77.65

FactGenius RoBERTa-two-stage 89 85 95 75 87 85
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49

Table 1: Test-set accuracy for the best models from this article and the best benchmark models. The FACTKG
models are from Kim et al. (2023), while the FactGenius models are from Gautam (2024). The fine-tuned BERT
model performed the best, while the QA-GNN was the computationally most efficient model.

• RoBERTa Baseline: Similar to the above,
the baseline from Gautam (2024) uses a fine-
tuned language model with claims only, but
uses RoBERTa (Liu et al., 2019) as the base
model.

Models Utilizing Subgraphs:

• GEAR-Based Model: The benchmark model
from Kim et al. (2023) is inspired by GEAR
(Zhou et al., 2019), but has been adapted to
handle graph-based evidence. It uses two fine-
tuned language models to retrieve the sub-
graphs. One of them predicts relevant edges,
the other predicts the depth of the subgraph.

• FactGenius: This model combines zero-shot
LLM prompting with fuzzy text matching on
the KG (Gautam, 2024). The LLM filters rel-
evant parts of the subgraphs, which are then
refined using fuzzy text matching. Finally,
a fine-tuned RoBERTa is used to make the
downstream prediction.

3.6 Further Experimental Details
Due to computational constraints, we tuned the
hyperparameters one by one, instead of performing
a grid search. All the training was performed on the
University of Oslo’s USIT ML nodes (University
Centre for Information Technology, 2023), using
an RTX 2080 Ti GPU with 11GB VRAM. The
BERT model has 109,483,778 parameters, which
all were fine-tuned. The QA-GNN used a total
of 109,746,945 parameters. The FACTKG dataset
comes with a lighter version of DBpedia that only
contains relevant entries, which was used for this
paper. Further details can be found in Appendix A.

4 Results

4.1 Improved Performance and Efficiency
The test results for our best model configurations
and the benchmark models can be found in Table 1.

The best performing model is the fine-tuned BERT
with single-step subgraphs. The fine-tuned BERT
without any subgraphs were able to achieve slightly
higher performance than the one from Kim et al.
(2023), which we suggest is due to finding better
hyperparameters.

Additionally, our models were much faster to
train. While the GEAR model used 2-3 days to
train on an RTX 3090 GPU (reported by the authors
by email), our QA-GNN only used 1.5 hours. The
training time of our fine-tuned BERT model was
significantly influenced by the size of the subgraphs
we used. With no subgraphs, it took about 2 hours
to train, while with the one-hop subgraph it took 10
hours. FactGenius was reported to use substantially
more computational resources, running the LLM
inference on a A100 GPU with 80GB VRAM for
8 hours.

4.2 Successful Subgraphs Retrievals

We now look at the different configurations for
the subgraph retrievals, which greatly influenced
the performance of the models. Since the direct
and contextual approach only includes subgraphs
if a certain requirement is fulfilled, it will result
in some of the claims having empty subgraphs.
In the training and validation set, 49.0% of the
graphs were non-empty for the direct approach, and
62.5% were non-empty for the contextual approach.
The single-step method resulted in vastly bigger
subgraphs.

While the QA-GNN could handle the big
subgraphs efficiently, the fine-tuned BERT was
severely slowed down when the size of the sub-
graphs got bigger. Therefore, we substituted any
empty subgraphs with the single-step subgraph
when using QA-GNN, but kept the empty graphs
when using fine-tuned BERT. This means that some
claims for the direct and contextual BERT models
were predicted only using the bias in the language
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Model One-hop Conjunction Existence Multi-hop Negation Total
BERT (no subgraphs) 67.71 67.48 62.51 73.28 64.23 68.99

BERT (direct) 80.24 83.30 59.05 77.62 74.58 79.64
BERT (contextual) 81.20 84.45 61.05 77.04 77.40 80.25
BERT (single-step) 97.40 97.51 97.31 80.32 92.54 93.49
QA-GNN (direct) 74.60 74.01 58.97 76.41 74.12 75.01

QA-GNN (contextual) 76.58 69.94 84.68 74.58 80.75 76.12
QA-GNN (single-step) 79.08 74.43 83.37 74.72 79.60 78.08

Table 2: Test-set accuracy for different subgraph retrieval methods on FACTKG. The direct approach only
includes knowledge triples where both nodes appear in the claim, the contextual also includes edges appearing
in the claim, and the single-step includes all knowledge triples where at least one node appears in the claim. The
QA-GNN models used the single-step subgraph if the direct or contextual is empty, while the BERT models did not.

model and the claim.
The results can be found in Table 2 and Table 3.

We see a clear improvement in BERT when us-
ing the direct subgraphs over none, a small im-
provement when using the contextual subgraphs,
and a big improvement when using the single-step
method. The same is true for the QA-GNN, but
the differences in performance are smaller. The
models score the lowest on multi-hop claims.

Since we used non-trainable subgraph retrieval
methods and a frozen BERT for embedding the
nodes and edges in the subgraphs, we performed
this processing before training the models. During
training, the models used a lookup table to get the
subgraphs and the word embeddings, which signif-
icantly decreased the training time. The retrieval
of all the subgraphs took about 15 minutes, and the
embedding of all the words appearing in them took
about 1 hour. We also tried training a QA-GNN
without frozen embeddings, but it ran so slow that
we were not able to carry out the training with our
available computational resources.

4.3 Competitive ChatGPT Performance

The results for the ChatGPT prompting can be
found in Table 4. The accuracy is substantially
lower than from our best models, but better than
the baselines using only the claims. The accuracy
is fairly consistent over the three runs, and we do
not see a big difference between the amount of
questions asked at a time.

We started with an initial prompt asking for just
the truth values for a list of claims, and updated
it to also include some training examples and to
ask for explanations. Several configurations of the
prompt were tested, and it was also improved based
on feedback from ChatGPT.

We saw the biggest improvement when we asked

for a short explanation of the answers, instead of
just the truth values. Without asking for explana-
tions, the amount of answers were often longer or
shorter than the amount of questions, but this never
happened when explanations were included. We
added numbers to the questions to further help with
this issue. We also saw a slight improvement by for-
mulating the prompt with bullet point lists and by
including some example inputs and outputs from
the training set. The final prompt can be found in
Figure 3.

5 Discussion

We were able to train better and more efficient mod-
els by simplifying the subgraph retrieval methods,
both by using a fine-tuned BERT and a slightly
modified QA-GNN model. While the QA-GNN
models trained the fastest, the fine-tuned BERT
clearly performed the best, significantly outper-
forming the benchmark models. This suggests that
the simple logical subgraph retrievals worked bet-
ter than the complex trained approaches in previous
work. We suggest that the performance gain in the
claim-only benchmark was due to slightly better
hyperparameters.

All of the models performed better the bigger the
subgraphs were. This suggests that the model archi-
tectures are able to utilize the relevant parts of the
subgraphs, without needing an advanced subgraph
retrieval step. This is emphasized by our fine-tuned
BERT model achieving a 93.49% test set accuracy
by only using the single-step subgraphs, while the
GEAR model from Kim et al. (2023), which trained
two language models to perform graph retrieval,
achieved a 77.65% test-set accuracy.

When examining the precision and recall met-
rics in Table 3, we see that most of the models
has a higher precision than recall, except for the
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Model One-hop Conjunction Existence Multi-hop Negation Total
P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1 P / R / F1

BERT (no subgraphs) 71.89 / 51.66 / 60.12 75.44 / 34.20 / 47.06 59.52 / 73.63 / 65.82 85.19 / 60.90 / 71.03 58.88 / 73.13 / 65.24 75.25 / 54.00 / 62.88
QA-GNN (direct) 76.19 / 67.04 / 71.32 80.11 / 51.22 / 62.49 56.19 / 74.10 / 63.91 80.04 / 74.80 / 77.33 70.97 / 73.80 / 72.36 77.21 / 69.01 / 72.88
QA-GNN (contextual) 84.79 / 61.29 / 71.15 80.27 / 38.29 / 51.85 81.83 / 88.38 / 84.98 82.31 / 67.17 / 73.98 77.26 / 82.26 / 79.68 84.10 / 62.78 / 71.89
QA-GNN (single-step) 82.51 / 70.55 / 76.06 78.89 / 53.95 / 64.08 79.69 / 88.70 / 83.95 78.44 / 73.09 / 75.67 77.06 / 79.10 / 78.07 81.41 / 71.19 / 75.96
BERT (contextual) 83.05 / 75.51 / 79.10 88.60 / 72.56 / 79.78 59.68 / 63.42 / 61.49 84.10 / 70.67 / 76.80 75.84 / 74.46 / 75.15 83.30 / 74.28 / 78.53
BERT (direct) 83.89 / 71.86 / 77.41 88.69 / 69.32 / 77.82 58.97 / 54.16 / 56.46 83.38 / 72.91 / 77.80 69.99 / 78.11 / 73.82 83.76 / 72.12 / 77.51
BERT (single-step) 96.27 / 98.29 / 97.27 96.06 / 98.13 / 97.09 96.45 / 98.12 / 97.28 85.31 / 76.59 / 80.72 92.01 / 91.71 / 91.86 93.75 / 92.79 / 93.27

Table 3: Precision (P), Recall (R), and F1 scores for different models and subgraph types on the test-set.

Model Accuracy (mean ± std)
ChatGPT 25 questions 73.67 ± 0.5
ChatGPT 50 questions 76.33 ± 3.3
ChatGPT 100 questions 73.00 ± 1.4

Table 4: Test-set accuracy for different configurations
of ChatGPT prompting. The metrics are averaged over
three runs. The prompts included 25, 50 or 100 claims
at a time, but the same claims were used in all of the
configurations.

best performing model, the single-step BERT. How-
ever, the single-step BERT does have a lower re-
call for the multi-hop claims, which it performs
significantly worse on. Therefore, the models
mostly have a higher precision than recall when
their performance is not so good, suggesting they
are slightly more likely to predict “false” on claims
that they are not confident about.

A limitation of our subgraph retrieval methods is
that they never include nodes that are more than one
step away from an entity node, while the trained
approach from Kim et al. (2023) is dynamic and
may include more. This might make the hypothe-
sis that the simple subgraph retrieval methods will
perform worse on multi-hop claims than the dy-
namically trained, however, we see the exact op-
posite behavior. The best BERT and QA-GNN
models score 80.32% and 74.72% at the multi-
hop claims respectively, while the dynamic GEAR
model scores 68.84%, even lower than the models
not using the subgraphs at all. We do however see
that the best performing BERT model clearly per-
forms the worst on the multi-hop claims compared
to the other claim types, indicating that even bigger
subgraphs might be beneficial.

While the sample size for the ChatGPT metrics
were small, it does indicate that non-fine-tuned
LLMs can achieve adequate few-shot performance
compared to a fine-tuned claim-only BERT. The
performance does not seem to be substantially com-
promised when the amount of questions prompted
increases, so with a bigger access to computational
resources, it might be possible to prompt the full

test-set at once. The removal of fine-tuning greatly
improves the ease of use if one only needs to verify
a few claims. While we are hesitant to make any
conclusion with the small sample size, we believe
that the results serve as an approximate benchmark
of how difficult the dataset is.

6 Conclusion and Future Work

Our results show that with simple, yet efficient
methods for subgraph retrieval, our models were
able to improve fact verification with knowledge
graphs with respect to both performance and effi-
ciency. The fine-tuned BERT model with single-
step subgraphs clearly achieves the best perfor-
mance, while the QA-GNN models are more ef-
ficient to train.

This indicates that complex models can work
well with simple subgraph retrieval methods. Since
the single-step subgraphs mostly contain informa-
tion not relevant for the claims, the models are
themselves able to filter away irrelevant informa-
tion, and complex subgraph retrieval methods may
hence not be necessary for accurate fact verifica-
tion. Additionally, since the best performing model
performed the poorest with multi-hop claims, fu-
ture research could explore simple subgraphs re-
trieval methods allowing for bigger depths than
one. Additionally, future work should also be
directed towards running similar experiments on
other datasets.

We also encourage researchers that have access
to bigger computational resources to further ex-
plore the performance of LLMs for fact verification.
A core limitation of our ChatGPT prompting was
the inability to use the full test-set, and we consider
this crucial for further development. We also think
it would be especially interesting to make LLM and
KG hybrid models. Since our results indicate that
simple single-step subgraph retrievals outperform
more complex methods, a promising path of future
research would be to simply use both the claims
and the single-step subgraphs as input to the LLM.
If possible, the LLM could also be fine-tuned on
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Task:
Determine the truth value (True or False) of the following claims based on information verifiable from Wikipedia, as represented
in the DBpedia knowledge graph. Provide your answers without using real-time internet searches or code analysis, relying
solely on your pre-trained knowledge.
Instructions:

• You will evaluate the following claims, presented one per line.

• Base your answers solely on your knowledge as of your last training cut-off.

• Provide answers in Python list syntax for easy copying.

• Respond with True for verifiable claims, and False otherwise.

• Include a brief explanation for each answer, explaining your reasoning based on your pre-training.

• If the claim is vague or lacks specific information, please make an educated guess on whether it is likely to be True or
False.

Output Format: Format your responses as a list in Python. Each entry should be a tuple, formatted as (claim number, answer,
explanation).
Example Claims:
1. The Atatürk Monument is located in Izmir, Turkey, where the capital is Ankara.
2. Yes, Eamonn Butler’s alma mater is the University of Texas System!
3. I have heard 300 North LaSalle was completed in 2009.
4. The band Clinton Gregory created an album in the rock style. ...
Example output:
[

(1, True, "The Atatürk Monument is indeed located in Izmir, and the capital of Turkey is Ankara."),
(2, False, "Eamonn Butler did not attend the University of Texas System; he is a British author and economist whose

educational background does not include this institution."),
(3, True, "300 North LaSalle in Chicago was indeed completed in 2009."),
(4, False, "Clinton Gregory is primarily known as a country music artist, not rock."),

...
]
Here are the actual claims you should answer:

Figure 3: Final prompt used to get truth values from ChatGPT 4o. The actual questions are not included, but
were in the format of the Example Claims. The Example Claims are from the training set, and the Example
Output is copy pasted from an actual ChatGPT answer.

the dataset. We also encourage future work to cre-
ate fully reproducible results with LLMs, which
we were unable to do.

7 Limitations

Our experiments with ChatGPT were done on a
small sample of test questions, with a model that
was not possible to seed, and therefore is not repro-
ducible. Due to the small sample size, we are not
able to directly compare the performance to other
approaches. The lack of reproducibility, which
stems from the state-of-the-art model that was avail-
able to the author is not fully publicly available,
makes it impossible for other researchers to com-
pletely verify our findings. Additionally, the pro-
cess for creating prompts were not standardized, we
simply tried different configurations based on our
own experience with using LLMs until we could
not increase the validation accuracy further. Due
to these limitations, one should therefore be very

hesitant to make any confident conclusions based
on the experiments we performed with ChatGPT.

Because our intention was to specifically explore
different language models’ abilities of fact verifi-
cation with knowledge graphs on the FACTKG
dataset, we did not conduct any experiments on
other datasets. It is possible that our results will
not be consistent with other datasets.

Additionally, our selection of models and hy-
perparameter settings could be more diverse. Due
to computational constraints, we did not perform
a grid search for hyperparameters, but tuned hy-
perparameters one by one. Which parameters we
searched for were not decided in advance. A pre-
defined grid search might lead to a fairer and more
reproducible approach. We did not experiment with
different orderings of the knowledge triples for the
fine-tuned BERT models, which could influence
the performance.
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A Hyperparameter Details

We used an AdamW optimizer (Loshchilov and
Hutter, 2017) with a linear learning rate sched-
uler with 50 warm up steps, and used the model
from the epoch with lowest loss on the validation
set. The hyperparameters were tuned in a line
search, first testing different learning rates, and
then testing all the other hyperparameters with
the best learning rate. We searched for learning

Model Learning Rate Batch Size Best Epoch
BERT (no subgraphs) 1e-4 32 6

BERT (direct) 1e-4 32 7
BERT (contextual) 5e-5 8 7
BERT (single-step) 5e-5 4 7
QA-GNN (direct) 1e-4 128 8

QA-GNN (contextual) 5e-5 64 17
QA-GNN (single-step) 1e-5 128 20

Table 5: Final hyperparameters for the different mod-
els. The direct QA-GNN model used GNN and classifier
dropout rates of 0.3 and 0.3, while the two other QA-
GNN models used 0.1 and 0.5, respectively.

rates in {1e − 3, 5e − 4, 1e − 4, 5e − 5, 1e − 5}
for all models. We initially set the batch size to
32, except for the BERT models with large sub-
graphs, which were set to 4 due to memory con-
straints. After finding the learning rate, we tried
batch sizes in {32, 64, 128, 256}. For the QA-
GNN model, we initially set the GNN dropout
and the classifier dropout to 0.3, and tried values
in {0, 0.1, 0.3, 0.5, 0.6}. We also tried to freeze
some of the layers in the base model, and to use a
RoBERTa (Liu et al., 2019) instead of BERT (De-
vlin et al., 2018), but neither of these approaches
improved the validation loss.

The final hyperparameters can be found in Ta-
ble A.

B Scientific Artifacts

We conducted the experiments using several python
libraries, including PyTorch version 2.0.1 (Paszke
et al., 2019) with CUDA version 11.7, Hugging-
Face Transformers (Wolf et al., 2020), NumPy
(Harris et al., 2020), SpaCy (Honnibal and Montani,
2017) and NLTK (Bird et al., 2009).
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