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Introduction

With billions of web pages covering nearly every topic, we should be able to collect facts that answer a
wide range of questions. However, only a small portion of this information is structured (e.g., Wikidata
and Freebase), limiting our ability to convert free-form text into structured knowledge. Additionally, the
rise of false information from unreliable sources —- both human and NLP systems like large language
models —- has garnered significant attention.

To ensure accuracy, this content must be verified, but the sheer volume makes human moderation imprac-
tical. Therefore, it is crucial to explore automated methods for verifying the accuracy and consistency of
online information and systems (such as Question Answering, Search, and Digital Personal Assistants)
that depend on it.

The seventh edition of the FEVER workshop collocated with EMNLP 2024 aims to continue promoting
ongoing research in above area, following on from the first five collocated with EMNLP 2018, EMNLP
2019, ACL 2020, EMNLP 2021, ACL 2022, and EACL 2023, and three shared tasks in 2018, 2019,
and 2021. This year’s workshop consists of 3 oral and 14 poster presentations of accepted papers (63%
overall acceptance rate), 5 poster presentations from EMNLP Findings papers, and presentations from 4
invited speakers. FEVER 2024 also hosts the AVeriTeC shared task on real-world fact-checking, which
consists of an additional 5 oral and 10 poster presentations. The workshop is held in hybrid mode with
in-person and virtual poster sessions, as well as live-streamed oral presentations and invited talks.

The organisers would like to thank the authors of all submitted papers, the reviewers, and the invited
speakers for their efforts, and we are looking forward to next year’s edition.

Best wishes,
The FEVER organisers
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Abstract

The Automated Verification of Textual Claims
(AVERITEC) shared task asks participants to
retrieve evidence and predict veracity for real-
world claims checked by fact-checkers. Evi-
dence can be found either via a search engine,
or via a knowledge store provided by the or-
ganisers. Submissions are evaluated using the
AVERITEC score, which considers a claim to
be accurately verified if and only if both the
verdict is correct and retrieved evidence is con-
sidered to meet a certain quality threshold. The
shared task received 21 submissions, 18 of
which surpassed our baseline. The winning
team was TUDA_MAI with an AVERITEC
score of 63%. In this paper we describe the
shared task, present the full results, and high-
light key takeaways from the shared task.

1 Introduction

Automated fact-checking (AFC) has been pro-
posed as an assistive tool for beleaguered fact-
checkers (Cohen et al., 2011; Vlachos and Riedel,
2014), whose work is crucial for limiting misin-
formation (Lewandowsky et al., 2020). This has
inspired applications in journalism (Miranda et al.,
2019; Dudfield, 2020; Nakov et al., 2021) and
other domains, e.g. science (Wadden et al., 2020).
Substantial progress has been made on common
benchmarks, such as FEVER (Thorne et al., 2018a)
and MultiFC (Augenstein et al., 2019). Neverthe-
less, existing resources have recently come under
criticism. Many datasets (for example, Thorne
et al. (2018a); Schuster et al. (2021); Aly et al.
(2021)) contain purpose-made claims derived e.g.
from Wikipedia, and are thus not representative
of real-world use cases. Datasets that do con-
tain real-world claims either lack evidence annota-
tion (Wang, 2017), or suffer issues resulting from
superficial automated evidence annotation (Glock-
ner et al., 2022).

1

Claim: The USA has succeeded in reducing

greenhouse emissions in previous years.
Date: 2020.11.2 Speaker: Morgan Griffith

’ Q1: What were the total gross U.S. greenhouse ’
gas emissions in 2007? ;
A1l: In 2007, total gross U.S. greenhouse gas
emissions were 7,371 MMT.

Q2: When did greenhouse gas emissions drop in
us?
A2:1In 2017, total gross U.S. greenhouse gas
emissions were 6,472.3 MMT, or million metric
tons, carbon dioxide.

Q3: Did the total gross U.S. greenhouse gas
emissions rise after 2017?

A3: Yes. After 3 years of decline, US CO2
emissions rose sharply last year. Based on
preliminary power generation, natural gas, and
oil consumption data, we estimate emissions
increased by 3.4% in 2018.

Verdict: Conflicting Evidence/Cherrypicking.

Figure 1: Example instance from AVERITEC. Given
a claim and associated metadata, participating systems
must first retrieve appropriate evidence. Then, they must
output a verdict for the claim given that evidence.

The AVERITEC dataset was constructed to over-
come these limitations (Schlichtkrull et al., 2023a).
AVERITEC combines real-world claims with evi-
dence from the web. The process of evidence re-
trieval is broken down into question generation and
answering, providing a structured representation of
the evidential reasoning process. The annotation
process for AVERITEC was designed to ensure (1)
that claims are understandable independently of the
fact-checking articles they were sourced from, (2)
that the evidence given is sufficient to support the
verdicts, and (3) that all evidence used would have
been available on the web before the claim was
made. This avoids common problems found in pre-
vious datasets (Ousidhoum et al., 2022; Glockner
et al., 2022).

Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 1-26
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AVERITEC consists originally of 4,568 exam-
ples, collected from 50 fact-checking organizations
using the Google FactCheck Claim Search API!;
itself based on ClaimReview?. To ensure that sys-
tems are evaluated on unseen data, we expanded
the (hidden) test set with a further 1,215 claims
for the shared task, bringing the total dataset size
to 5,783. We furthermore released a “knowledge
store” containing, for each claim in the training,
development, and test splits, documents which can
be used as evidence for that claim. This was done
to prevent participants from being limited by the
prohibitive cost of the search API we used for evi-
dence retrieval in the original paper (Schlichtkrull
et al., 2023a). We also developed an updated ver-
sion of the baseline for the shared task, which uses
the knowledge store. Participants in the shared
task were allowed to use evidence from the knowl-
edge store, use a search engine on their own, or
combine the two options. Our dataset and baseline
are available under a CC-BY-NC-4.0 license at
https://fever.ai/dataset/averitec.html.

This paper presents a description of the task and
dataset, the final test phase leaderboard. We also
summarise the submitted system description pa-
pers, drawing out commonalities, differences, and
lessons. We furthermore carry out additional anal-
ysis of the shared task results, including human
evaluation. Finally, we reflect on the task, deriv-
ing lessons for future work — and further shared
tasks — on automated fact-checking. The shared
task received 21 submissions. The winning team,
TUDA_MALI, achieved a score of 63%, a very sig-
nificant improvement on the 11% achieved by the
baseline system. Nevertheless, there are still plenty
of opportunities for further improvement. During
the process, we identified an issue with the evi-
dence set provided for participants, which for some
claims in the second half of the dataset contained
fact-checking articles written by humans about
those claims. We release an updated knowledge
store at https://fever.ai/dataset/averitec.
html, where these articles have been removed. We
leave open an evaluation page corresponding to the
new knowledge store? so that future work can build
upon the advances made in this shared task.

1https://toolbox.google.com/factcheck/apis,
available under a CC-BY-4.0 license.

2https://www.claimreviewproject.com/

3Also available at https://fever.ai/dataset/
averitec.html

2 Task Description

Participants are given claims and associated meta-
data, such as the publication date (see Figure 1).
Based on this, they must retrieve evidence for or
against the claims. In the gold annotation, this evi-
dence is broken down into question-answer pairs,
naturally enabling multi-hop reasoning. We do
not restrict participants to providing evidence in
this format, although given the METEOR-based
evaluation setup most participants found it bene-
ficial to follow it. When submitting test set pre-
dictions, we also required participants to include
a URL to an external website for each piece of
evidence, corresponding to a webpage providing
backing. Finally, based on the evidence, partici-
pants must predict whether a veracity label from
the set supported, refuted, not enough evidence,
or conflicting evidence/cherrypicking. Unlike the
original AVERITEC dataset, we did not require
participants to submit a justification for the verdict.

2.1 Dataset

Participants are asked to use the public AVERITEC
data for training and validating their systems. To
ensure a fairer and more robust evaluation, we con-
structed a new test set consisting of 1,215 claims,
which temporally succeed the original claims, in
addition to the original 1000 hidden test set claims
of AVERITEC. Like the original test set, these will
remain hidden so as to enable future work on the
dataset.

Annotation of New Test Set We first collect
2,000 real-world fact-checking articles online from
ClaimReview, same source as AVERITEC. Then,
we follow the same 5-phase annotation guideline
of Schlichtkrull et al. (2023a).

First, given a fact-checking article, an annotator
identifies its main claim, collects metadata about
it and normalizes the claim by enriching it with
necessary context, making it context-independent.
Second, given the normalized claim, another anno-
tator generates questions and answers (QAs) with
the help of the fact-checking article and the web,
and gives a verdict label for the claim. Third, given
only the QAs as evidence, a different annotator
selects a verdict label for the claim and provides
a justification for their choice. At this point, we
compare the verdict labels annotated by different
annotators. If the labels match, we consider the
evidence is sufficient for predicting the veracity;
otherwise, we repeat the last two phases as our


https://fever.ai/dataset/averitec.html
https://fever.ai/dataset/averitec.html
https://fever.ai/dataset/averitec.html
https://toolbox.google.com/factcheck/apis
https://www.claimreviewproject.com/
https://fever.ai/dataset/averitec.html
https://fever.ai/dataset/averitec.html

Split Train Dev Test (old) Test (new)
Claims 3,068 500 1,000 1,215
Question / Claim 2.60 2.57 2.57 2.89
Re-annotated (%) 28.1 24.4 25.1 20.0
End date 25-08-2020 31-10-2020 22-12-2021 13-08-2023

27.6/56.8/6.4/9.2
7.8/33.7/57.8/9.6/11.5
78.8/30.6/6.6/29.9/3.6

Labels (S/R/C/N)
Types (PS/NC/EPC/QV/CC)
Strategies (WE/NCP/FR/EC/SS)

24.4/61.0/7.6/7.0
5.8/23.8/61.4/13.8/10.8  7.0/21.9/69.8/7.7/11.9
88.6/19.0/7.4/27.4/2.0  88.0/19.2/7.7/29.6/1.8  82.4/22.6/10.0/37.6/4.0

25.5/62.0/6.3/6.2 17.3/66.5/4.1/12.1

3.5/24.3/71.9/5.2/16.1

Table 1: Statistics for the new test set. For better comparison, we present the statistics for the original dataset. The
Labels (%) are Supported (S), Refuted (R), Conflicting Evidence/Cherry-picking (C), and Not Enough Evidence
(N). The Claim Types (%) are Position Statement (PS), Numerical Claim (NC), Event/Property Claim (EPC), Quote
Verification (QV), and Causal Claim (CC). The Fact-checker strategies (%) are Written Evidence (WE), Numerical
Comparison (NCP), Fact-checker Reference (FR), Expert Consultation (EC) and Satirical Source (SS). Note that we
for simplicity omitted very low-frequent fact-checker strategies, e.g., Geo-location (0.3%).

fourth and fifth phases, respectively. If the labels
given by the fourth and fifth annotators still do not
match, we discard this instance. In this way, we
obtain 1,215 new instances. Each is annotated with
a normalized claim, meta-data, QA pairs as evi-
dence, a verdict label and a justification for it. For
the detailed annotation guidelines and procedures,
please refer to Schlichtkrull et al. (2023a).

To ensure high quality, we train our annotators
before formal annotation. For each phase, annota-
tors are first asked to annotate 10 instances. We
then provide feedback and highlight their most fre-
quent and common mistakes. They are then asked
to annotate another 10 instances. We select qual-
ified annotators based on their performance on 3
tasks: (1) claim type and fact-checking strategies
over 70%+ F-1 scores; (2) 2+ QA pairs per claim;
(3) veracity prediction over 50%-+ accuracy. These
criteria are based on empirical consideration from
the earlier AVERITEC annotation (Schlichtkrull
et al., 2023a). Finally, we selected 12 qualified
annotators from 34 participants.

Comparison between Original and New Test
Sets Table 1 presents the statistics of our new
test set in comparison with the original AVERITEC
dataset. Our new test set (with claims up to 2023)
is temporally further removed from the training set
(ending in 2020). As such, there can be a domain
shift between new and old data, regarding the fact-
checking content. However, the majority (66.5%)
of claim labels are refuted, which is consistent with
previous data. Additionally, the distributions of
claim labels, claim types and fact-checking strate-
gies are largely similar in terms of their proportions.
The new test set has slightly more questions per
claim compared to the original one, indicating that
the annotation process was at least as thorough.

2.2 Knowledge Store

As mentioned in Schlichtkrull et al. (2023a), re-
liance on the Google search API made the original
baseline prohibitively expensive. Thus, to mitigate
the cost, we released a knowledge store along with
the shared task. The knowledge store contains a
collection of potentially useful evidence documents
for each claim, obtained via Google search.

We collected the knowledge store using a pro-
cess inspired by our original baseline. We extracted
a variety of search queries using ChatGPT*, based
on the claim, gold questions, and gold answers. We
further used distractor queries created by changing
entities, dates, and events in the claim, in order to
add plausible — but irrelevant — documents to the
knowledge store. All queries can be seen in Ap-
pendix A. For each query, we collected every URL
returned on the first page of the Google Search
API. We used the same temporal restrictions as in
Schlichtkrull et al. (2023a), ensuring that the in-
cluded documents would have been available on
the web before the claim was made. We also in-
cluded the annotator-selected evidence documents
selected for each claim. We deduplicated and shuf-
fled the documents corresponding to each claim.

We provided the URL for each document, as
well as a text version scraped using trafilatura
(Barbaresi, 2021). The knowledge store includes
text scraped from PDF URLs, a step omitted in
Schlichtkrull et al. (2023a). Furthermore, for the
train and development splits (but not test), we
made available the specific Google search query
used for each document, as well as the category
(see Table 11). The average claim has 955 as-
sociated documents, each of which have on av-
erage of 6,095 tokens. The most common URL

*We used gpt-3.5-turbo-0125.



domains for knowledge store documents are, in
order, the National Center for Biotechnology Infor-
mation (NCBI), Wikipedia, Quora, the New York
Times, and CNN.

The knowledge store allowed participants to
compete without access to a paid search engine.
Further, it allowed inexpensive experimentation
with a variety of different retrieval strategies. Our
construction process for the knowledge store re-
lies on information not available normally to par-
ticipants, such as the gold question-answer pairs.
We found that these were necessary to ensure that
good, relevant evidence was included. At the same
time, relying on the knowledge store complicates
the finding of alternative evidence paths to the one
used by our annotators. Exploring alternative evi-
dence paths was easier for systems which directly
integrated their own search engine. As such, there
were upsides to both strategies.

2.3 Baseline

Our baseline closely follows the approach de-
scribed in Schlichtkrull et al. (2023a), with the
main difference being that, instead of requiring di-
rect access to the paid Google Search API, we use
the aforementioned knowledge store. This adjust-
ment aims to reduce the costs of participating in
the Shared Task.

Our baseline consists of the following steps. (1)
We parse the scraped text into sentences and rank
their similarity to the claim using BM25 (Robert-
son and Zaragoza, 2009), retaining the top 100
sentences per claim. (2) Questions-answer (QA)
pairs are generated for these top 100 sentences
using BLOOM,> with the 10 most similar claim-
QA pairs from the training set used as in-context
examples. (3) The QA pairs are then re-ranked
using a pretrained BERT model as described in
Schlichtkrull et al. (2023a). (4) Finally, using the
top-3 QA pairs as evidence, we predict the veracity
label of the claim with another pretrained BERT
model, as detailed in Schlichtkrull et al. (2023a).

The baseline results are shown in Table 2. We
note that on both the development set, the old
test set, and the new test set, the shared task
baseline and the baseline from Schlichtkrull et al.
(2023a) perform similarly. Further details regard-
ing the implementation, knowledge store, and
pretrained BERT models are available at https:
//huggingface.co/chenxwh/AVeriTeC.

SWe used bigscience/bloom-7b1.

2.4 Evaluation

The primary evaluation metric for the shared
task is AVERITEC score, discussed in depth in
Schlichtkrull et al. (2023a). We first compute re-
sults for question generation and question-answer
generation using Hungarian METEOR score. That
is, we use the Hungarian Algorithm (Kuhn, 1955)
to find an optimal matching of generated text to ref-
erence text in terms of METEOR score. Formally,
let X : Y x Y — {0,1} be a boolean function
denoting the assignment between the first 10 gener-
ated question-answer pairs (or questions only) Y
and the reference question-answer pairs (or ques-
tions only) Y. Then, the Q + A score (or Q only
score) u is calculated as:

us(V.¥) = o max 303 (3.4)X(1.0)
gey yeY

ey
where the pairwise scoring function f : S x S —
R is METEOR score (Banerjee and Lavie, 2005)
using the NLTK implementation (Bird et al., 2009).
To compute the AVERITEC score, we ap-
plied a cutoff of uy (V,Y) > 0.25 to determine
whether adequate evidence has been retrieved, us-
ing the Q + A Hungarian METEOR score. Any
claim for which this score is lower then 0.25 re-
ceives an AVERITEC score of 0. For claims
where the evidence score is higher than 0.25, the
AVERITEC score is defined as the accuracy of the
predicted verdict (veracity). As also discussed in
Schlichtkrull et al. (2023a), both for Q only, Q+A,
and AVERITEC score, if a system provided more
than 10 QA pairs, all pairs after the 10th were dis-
carded. We note that QA pairs beyond the 10th can
still be input to veracity prediction components,

and may as such still be useful to some systems.

3 Results

The overall results for the shared task can be seen
in Table 2. Each of the 21 participating teams were
invited to submit a paper to be reviewed in the
FEVER workshop — detailed descriptions for each
system can be found in the corresponding papers.
15 system description papers were submitted to the
workshop (with a 16th submitted and withdrawn).
We analyse the model components discussed in
each paper — see Table 3. Below, we present our
general observations on the techniques used by
participants, as reported in their respective system
description papers.


https://huggingface.co/chenxwh/AVeriTeC
https://huggingface.co/chenxwh/AVeriTeC

Rank Team Name

HUMANE (Yoon et al., 2024)
CTU AIC (Ullrich et al., 2024)
Dunamu-ml (Park et al., 2024)
Papelo (Malon, 2024)

UHH (Sevgili et al., 2024)
SynApSe (Churina et al., 2024)
arioriAveri (Momii et al., 2024)

9 Data-Wizards (Singhal et al., 2024)

0 NN N BN

10 MA-Bros-H (Mohammadkhani et al., 2024)

11 mitchelldehaven

12 SK_DU (Malviya and Katsigiannis, 2024)

13 UPS (Omar, 2024)
14 FZI-WIM (Liu et al., 2024b)
15 KnowComp (Liu et al., 2024a)

16 IKR3-UNIMIB (Urbani et al., 2024)

17 ngetach

18 VGyasi

19 Baseline

20 InfinityScalers!
21 AYM

22 Factors

TUDA_MAI (Rothermel et al., 2024)

| Qonly Q+A AVERITEC @ .25
045 0.34 0.63
048 035 0.57
046  0.32 0.50
049 035 0.50
044 030 0.48
048  0.32 0.45
041 030 0.42
038 029 0.39
035 027 0.33
038 0.4 0.27
027 023 0.25
040  0.26 0.22
031 027 0.21
032 021 0.20
032 021 0.18
032 024 0.18
037 021 0.14
038 022 0.12
024  0.20 0.11
026  0.19 0.08
0.13  0.12 0.06
020  0.14 0.05

Table 2: Overall results for the AVERITEC shared task. Performance is evaluated on the total of 2214 hidden test
set examples. Scores are given in Hungarian METEOR for question-only and question-answer performance, and in
AVERITEC-score at evidence cutoff 0.25 for total performance (see Schlichtkrull et al. (2023a)).

Knowledge Source Papelo, SynApSe, and
KnowComp relied on the Google Search API as
knowledge source, while the remaining systems all
used our knowledge store. Participants identified
shortcomings in both approaches: the knowledge
store is guaranteed to include the gold evidence
and can be searched with highly performant em-
bedding methods, whereas the search API allows
for more freedom in what information can be re-
trieved (i.e., if generating questions for a different
evidence path than the one our annotators used, the
knowledge store may not be able to answer those
questions). As evidenced by the strong results of
Team Papelo, despite the predominance of systems
relying on the knowledge store, the Google Search
API (with which the knowledge store itself was
built) remained a competitive option (see Table 2).

One issue identified by several participants was
the scraper we used for the knowledge store, based
on Trafilatura (Barbaresi, 2021). Papelo identified
how, in 297 out of 500 development examples, at
least one gold document was not correctly scraped.
Dunamu-ML similarly discussed how the scraper

did not correctly handle evidence from PDFs and
videos. In their submission, Dunamu-ML extended
the scraper to extract text and transcripts from PDFs
and YouTube videos, and noted that this helped
performance. When constructing AVERITEC, our
annotators filtered out claims requiring multimodal
reasoning; all claims in the dataset are textual and
can be verified through exclusively textual evi-
dence. Nevertheless, the helpfulness of video tran-
scripts suggests that multimodal evidence can be
useful even for that scenario.

Question Generation & Retrieval Most sys-
tems employed an LLM-based question genera-
tion strategy. That is, they generated questions or
queries, and then retrieved evidence based on those
questions. Generating questions, rather than simply
searching for the claim, was noted by many top-
scoring systems to be essential for good retrieval
performance. This supports our hypothesis from
Schlichtkrull et al. (2023a) that question genera-
tion (or query expansion (Mao et al., 2021)) is a
key avenue for further gains in retrieval.



Team Name Evidence QG Retrieval QA Veracity
TUDA_MAI KS GPT-40 gte_base_en_v1.5 GPT-40 GPT-40
BM25
HUMANE KS Llama-3-8b SFR-embedding-2 - Llama-3.1-70b
Llama-3.1-70b
CTU AIC KS GPT-40 mxbai-large-v1 GPT-40 GPT-40
Dunamu-ML KS GPT-4 BM25 GPT-4 GPT-4
T5-large
Papelo Google GPTdo - GPT-40 GPT-40
UHH KS GPT-40-mini BM25 GPT-40-mini Mixtral-8x7B
gte_base_en_v1.5
GPT-40
SynApSe Google GPT-40 all-Minil M-L6-v2 GPT-40 GPT-3.5
Mistral-7B
aioriAveri KS GPT-40 stella_en_400M_v5 GPT-40 GPT-40
Data-Wizards KS Phi-3-medium stella_en_1.5B_v5 Mixtral-8x22B  Mixtral-8x22B
MA-Bros-H KS Llama-3-70B  BM25 Llama-3-70B Llama-3-70B
BM25
SK_DU KS GPT-40 ms-marco-MimLM-L-12-v2 deberta-v3-base
BM25
UPS KS T5-large BERT - BERT
FZI-WIM KS Llama-3-70B  ms-marco-MiniLM-L-12v2  4M&3708 0y 40 5 708
bart-large-mnli
KnowComp Google Llama-3-8b - Llama-3-8b Llama-3-8b
BM25
IKR3-UNIMIB | KS - ColBERT GPT-3.5 BERT

Table 3: Components used by systems that submitted description papers. Systems are ordered based on AVeriTeC-
score (see Table 2). - indicates, respectively, that a system directly used claims and nothing else for search queries,
that retrieval was done only through a search API with no reranking, and that the answer used was the entire

retrieved passage.

Question generation was typically implemented
using large-scale LLMs, such as GPT-40 or Llama-
3.1-70b. Some systems based on smaller model
— HUMANE with Llama-3-8b, UHH with GPT-
40-mini, Data-Wizards with Phi-3-medium, and
Papelo with TS5 (for the first question only) — also
achieved a high question-only score. This suggests
that smaller models can be competitive on search
query generation.

Several teams — Papelo, SynApSe, and IKR3 —
mentioned that they saw benefits from modeling the
retrieval task as multi-hop retrieval. That is, instead
of retrieving all documents at once, their systems
used multiple rounds of retrieval with each round
conditional on previous rounds. The benefits of this
strategy were also documented in previous FEVER
shared tasks, e.g., Malon (2021). Team Papelo
further expanded on this strategy, showing that the
use of different components at different retrieval
steps — T5 for the first question and GPT-40 for
subsequent questions — yielded higher performance
than using a single-question generation model.

As can be seen in Table 5, high-performing sys-
tems tended to generate and submit a high num-
ber of questions. This may be a consequence of
our evaluation setup — there is no brevity penalty
(other than documents past the 10th being ignored),
so submitting more evidence documents means a
higher chance of recalling the gold evidence. Sev-
eral teams also noted that even duplicates of the
same question could slightly increase their score.

We tested this, and observed baseline perfor-
mance increase by 2 points QA score and 0.5 points
AVERITEC score when including two additional
duplicates of each question. There are two rea-
sons this might happen. First, some generated QA
pairs may be the best match for multiple gold QA
pairs (i.e. because they are very long, or because
other QA pairs are irrelevant to the claim). Dupli-
cating QA pairs means the generated pair can be
matched to multiple gold pairs when computing the
Hungarian algorithm, marginally increasing over-
all performance. Second, Hungarian METEOR is
computed by averaging over gold question-answer



Team Name Text PDF Table Metadata Audio Video Image Other | 1doc 2docs 3+ docs
TUDA_MAI 034 035 036 0.31 031 033 032 033 0.39 0.35 0.31
HUMANE 034 036 038 0.32 034 032 033 038 | 041 0.35 0.31
CTU AIC 031 033 036 0.30 026  0.30 032 035] 033 0.33 0.29
Dunamu-ml 034 036 0.39 0.31 024 033 034 037 | 040 0.36 0.32
Papelo 03 031 032 0.27 022 029 0.29 03| 035 0.3 0.27
UHH 031 034 036 0.29 023 031 031 037 ] 037 0.32 0.28
SynApSe 029 031 032 0.25 025 028 028 031 | 0.38 0.32 0.22
arioriAveri 028 029 032 0.26 0.21 0.27 027 032 034 0.29 0.25
Data-Wizards 026 026 0.28 0.23 0.17  0.27 025 027 ] 036 0.29 0.19
MA-Bros-H 023 025 0.28 0.22 0.16 023 022 027 0.3 0.26 0.19
mitchelldehaven | 0.22 023  0.24 0.18 0.19 022 02 022| 0.28 0.23 0.19
SK_DU 025 026 0.27 0.22 0.17  0.25 024 027 ] 034 0.28 0.18
UPS 026 029 031 0.25 023  0.27 028 031 | 0.29 0.27 0.25
FZI-WIM 02 022 024 0.18 0.12  0.18 0.19 021 | 0.27 0.22 0.15
KnowComp 02 022 023 0.18 0.05 0.18 0.19 022 ] 0.29 0.23 0.14
IKR3-UNIMIB | 0.23 0.24 0.26 0.19 0.13  0.23 021 025 ] 031 0.25 0.16
ngetach 021 022 023 0.18 0.15  0.19 02 023 024 0.23 0.18
VGyasi 021 022 024 0.2 0.11  0.22 02 024 027 0.24 0.17
Baseline 019 02 023 017 014 019 019 021 0.24 0.21 0.14
Factors 0.19 0.19 0.21 0.16 0.21 0.18 0.16 0.17 | 0.24 0.2 0.15
InfinityScalers! | 0.11 0.11 0.1 0.08 0.07 0.11 0.1 009 | 022 0.12 0.06
AYM 0.13 0.13 0.13 0.1 0.05 0.12 0.11  0.13 | 0.26 0.14 0.06
Average ‘ 025 026 0.28 0.22 0.18 0.24 024 026 ‘ 0.31 0.26 0.2

Table 4: Retrieval results in terms of Q+A Hungarian METEOR, broken down according to 1) the document type of
the gold evidence, and 2) the number of gold evidence QA pairs for the claim. The overall best performance on

retrieval was achieved by Dunamu-ML.

pairs. If there are more gold pairs than generated
pairs, some gold pairs will be unmatched. These
will receive a score of 0, as the “matched” evidence
is the empty string, dragging down the average.
Effectively, systems are heavily penalised for gen-
erating too few questions, and may benefit slightly
from generating too many.

For evidence retrieval, vector-based dense re-
trieval systems (Karpukhin et al., 2020) were com-
mon, along with BM25 (Robertson and Zaragoza,
2009). Several teams — HUMANE, UHH, SK_DU
— proposed hybrid systems where coarse retrieval
with BM25 was followed by reranking with a
vector-based approach. For vector-based retriev-
ers, the gte (Li et al., 2023; Zhang et al., 2024)
family of models were popular, and noted by par-
ticipants to perform well on the task; this includes
Stella®, an MRL (Kusupati et al., 2022) approach
based on gte. Several teams noted that their gte- or
Stella-based retrievers were chosen as they, at the
time of the competition, were top performers on
the MTEB (Muennighoff et al., 2023) leaderboard.

6https ://huggingface.co/dunzhang/stella_en_
400M_v5

The overall best performing retrieval system was
Dunamu-ML, closely followed by HUMANE. In
Table 4, we break down performance on retrieval
according to which document type the gold evi-
dence originated from. We see that Dunamu-ML
do have top performance on PDFs and videos (for
which they added a custom scraper), but tie respec-
tively with HUMANE and TUDA_MAI on these
categories. On the other hand, Dunamu-ML per-
form better than other systems on tabular and image
evidence, while HUMANE is the top performer on
Metadata, Audio, and “Other” evidence (used by
participants mostly for social media posts, as well
to link to external web tools, such as a calculator
in support of numerical reasoning).

In Table 4, we also break down retrieval perfor-
mance by the number of gold evidence question-
answer pairs per claim. HUMANE performs the
best on claims with only one gold document, nar-
rowly followed by Dunamu-ML. As the number of
claims increases, Dunamu-ML takes the lead. With
an average of 2.74 questions per claim in the test
set, this may explain why Dunamu-ML achieved
the overall highest retrieval performance.


https://huggingface.co/dunzhang/stella_en_400M_v5
https://huggingface.co/dunzhang/stella_en_400M_v5

Team name | Qv N E/P C

PS S R NEE CE/C | Avg. # Docs

TUDA_MAI 0.64 058 0.64 064 058 | 064 073 0.12 0.19 9.3
HUMANE 0.59 057 058 055 046|076 062 0.01 0.12 10.0
CTU AIC 0.57 049 051 052 038 | 058 0.58 0.1 0.01 9.89
Dunamu-ml 044 049 05 055 04]069 05 031 0.12 12.41
Papelo 051 038 05 051 045|045 059 0.0 0.0 9.95
UHH 046 043 046 048 039|047 054 0.0 0.0 10.0
SynApSe 045 039 043 043 036|042 05 0.02 021 4.26
arioriAveri 044 037 039 04 029|045 044 0.09 0.06 8.98
Data-Wizards 037 03 034 032 029|044 036 0.05 0.04 3.0
MA-Bros-H 029 03 026 025 019] 04 027 0.08 0.0 3.74
mitchelldehaven | 0.24 0.26 025 025 0.16 | 04 0.25 0.0 0.0 5.0
SK_DU 027 03 021 0.15 014|036 022 001 0.11 3.0
UPS 029 0.18 022 02 0211017 024 008 0.14 10.0
FZI-WIM 021 025 0.18 0.16 021|031 0.18 0.12 0.02 2.52
KnowComp 0.16 0.19 0.19 0.15 0.13]0.27 019 0.0 0.01 2.55
IKR3-UNIMIB | 0.21 0.22 0.17 0.17 0.15| 028 0.19 0.01 0.05 3.0
ngetach 0.16 0.13 0.14 0.17 009| 00 022 0.0 0.0 4.25
VGyasi 0.16 0.11 0.13 0.11 0.10| 0.1 0.12 022 0.03 3.46
Baseline 014 0.16 0.11 0.10 0.06 | 0.17 0.12 0.0 0.04 3.0
InfinityScalers! | 0.04 0.10 0.09 0.08 0.08 | 0.24 0.04 0.04 0.10 3.52
AYM 0.07 0.06 0.06 0.03 0.10| 0.11 0.05 0.0 0.0 1.0
Factors 0.04 0.05 005 0.05 004 0.13 003 0.04 0.01 1.0
Average 0.31 029 029 029 024 ‘ 036 032 0.06 0.06 ‘ 5.63

Table 5: We compute separate results based on claim type (QV = Quote Verification, N = Numerical, E/P =
Event/Property, C = Causal, PS = Position Statement). We also compute results separated by gold verdict (S =
Supported, R = Refuted, NEE = Not Enough Evidence, CE/C = Conflicting Evidence / Cherrypicking). Finally, we
report the average number of evidence documents submitted per claim. We note that if a team submitted more than
10 documents for a claim, only the first 10 were used to compute retrieval scores for evaluation.

Veracity Prediction Veracity prediction was also
dominated by LLLM-based approaches, including
GPT-40, Llama 3.1, and Mixtral. Teams HUMANE
and SynApSe note that some fine-tuning was nec-
essary for good performance on veracity prediction.
Various teams saw improvements both from full
fine-tuning of all the weights, and from fine-tuning
with LORA (Hu et al., 2022). Interestingly, one
team — Papelo — chose to prevent their veracity
prediction system from predicting Not Enough Ev-
idence and Conflicting Evidence, arguing that their
prompting-based model too frequently chose these
rarer labels. This may explain why calibration was
especially helpful for this task.

We note that top-scoring systems tended to use
very large models for veracity prediction, such as
GPT-40, Llama-3.1-70b, or Mixtral-8x7b. The su-
perior reasoning capabilities of these cutting-edge
models appear especially critical to this stage of
the pipeline, unlike for question generation.

Types & Verdicts In Table 5, we provide
a detailed breakdown of the results based on
claim type (quote verification, numerical claims,
event/property claims, causal claims, position state-
ments) and verdict (supported, refuted, conflicting
evidence/cherrypicking, not enough evidence). For
each category, we report AVERITEC scores on the
corresponding subset of the test set.

Systems performed slightly better on quote veri-
fication, slightly worse on position statements, and
approximately equally well on other claims. This is
interesting, as quote verification and position state-
ments are relatively similar tasks. In the former,
systems must verify if a person has uttered a quote
verbatim; in the latter, systems must verify if a per-
son or organisation holds a specific position (e.g.,
supporting a policy), but not necessarily verbatim.
Verifying position statements often required abduc-
tive reasoning, which LLMs are known to struggle
with (Dougrez-Lewis et al., 2024).



Among the top performing systems, perfor-
mance is frequently lower on numerical statements
(along with position statements) compared to other
claims. This suggests that the gap is smaller for
numerical reasoning than other forms of reason-
ing. As top performers often use very large LLMs,
that is suggestive of the type of reasoning gains
accomplished by scaling up these models.

In terms of performance across the different la-
bels, there is significant variation. First, systems
often have different calibration to predict supported
versus refuted claims. As refuted claims domi-
nate (making up approximately two-thirds of the
dataset), this yields a significant advantage for
some participants. We note that a common strategy
among participants was to ignore the rarer veracity
labels — not enough evidence, and conflicting evi-
dence. As mentioned e.g. by team Papelo in their
system description paper, large language models
tend to overpredict these rarer classes. Neverthe-
less, many top performers, including the winning
system, made significant gains on these classes.

Quality Controls on Test Submissions To en-
sure the reliability of submitted systems, we con-
ducted quality control on our submissions. Here,
reliability refers to the evidence (QA pairs) being
grounded and supported by their retrieved docu-
ments. Typically, participants returned answers
generated based on retrieved documents; although
some systems generated answers e.g. with an LLM,
and subsequently matched the answer to a “backing
document”.

We first used an automatic method to evalu-
ate the entailment between the answers and the
retrieved documents. Specifically, we applied
a DeBERTa-large-based NLI model (He et al.,
2020)7 on all submissions, taking each answer
as hypothesis and its corresponding document as
premise. Generally, we find that most teams see a
small proportion of entailment labels and a large
proportion of neutral labels ( 80%). This can be
because the NLI model cannot perform well on
out-of-distribution data in a zero-shot setting, in
particular when the retrieved document is much
longer than the standard NLI premise (e.g., the av-
erage document length in words in TUDA_MAI’s
submission is over 4,000, while it is around 50 in
ANLI (Mishra et al., 2021)).

7https://huggingface.co/MoritzLaurer/
DeBERTa-v3-large-mnli-fever-anli-ling-wanli,

which demonstrates the best performance on NLI tasks
amongst Hugging Face models.

Therefore, we further investigated submissions
via manual evaluation. In particular, we focused
on instances which the NLI model identified as
either neutral or contradiction, and on the top-4
performing systems (i.e.: TUDA_MAI, HUMANE,
CTU AIC and Dunamu-ml). We randomly selected
20 neutral or contradicting instances from each
submission, and then performed human evaluation.
Given an instance with its corresponding QA pairs
and retrieved documents, we identified whether the
answers were entailed by the retrieved documents.

Generally, we found that all systems were mostly
reliable, with the evidence they generate being sup-
ported by the retrieved documents. All answers
from TUDA_MAI were extractive from source doc-
uments and thus entailed. The answers from the
other three systems were more abstractive. Al-
though the answers can contain some hallucina-
tion (e.g., generating answers that contradict the
retrieved documents by mistake), our manual eval-
uation found the answers were mostly (HUMANE:
19/20; CTU AIC: 17/20; Dunamu-ml: 12/20)
entailed by their associated documents. Errors
were typically due to mistakes by the question-
answering components, such as taking a snippet
from the associated document out of context. Thus,
we conclude that the systems evaluated were re-
liable and find relevant documents that provide
useful information for predicting veracity.

4 Human Evaluation of Evidence

Following the approach taken in the first FEVER
shared task (Thorne et al., 2018b), we conducted
human evaluation of the evidence retrieved by the
systems participating in the shared task, motivated
by two concerns. First, the incompleteness of the
gold evidence annotation, since it is often the case
that adequate evidence to determine the verdict
for a claim can be found in multiple webpages, as
shown in the inter-annotation agreement study of
Schlichtkrull et al. (2023a). Second, the inaccura-
cies of automatic evaluation metrics of textual eval-
uation, especially in the case of token-matching
metrics such as METEOR (Banerjee and Lavie,
2005) used here, but also of more recent neural
ones such as FactScore (Min et al., 2023). Thus
we can gain a deeper understanding of the qual-
ity of the retrieved evidence, and assess how well
the AVERITEC scores assigned to the retrieved
evidence aligns with human judgements.


https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli
https://huggingface.co/MoritzLaurer/DeBERTa-v3-large-mnli-fever-anli-ling-wanli

Evaluation Process We conducted human evalu-
ation in collaboration with the participating teams.
Sixteen top-performing teams were invited to par-
ticipate in the evaluation. However, teams Dunamu-
ml, mitchelldehaven, and KnowComp did not take
part. Each of the remaining thirteen participating
teams manually evaluated thirty evidence samples
from other participants. Out of these, five were
gold-labeled, which were included to assist in the
post-processing of the collected annotations and to
assess their quality. The evidence samples were
randomly selected and evenly distributed across
all submitted systems, representing both high- and
low-scoring systems, as shown in Table 5.

Figures in Appendix B depict the evaluation
form and the instructions provided to human anno-
tators during evaluation. As a first step, we asked
annotators to assess whether “at least some part
of the evidence” was “non-empty, understandable,
and related to the claim.” If so, it was considered
eligible for further rating. In addition to assigning a
verdict label, we asked annotators to rate retrieved
evidence in comparison to provided reference evi-
dence®. Annotators rated the evidence on a scale
from 1 to 5 across five dimensions:

(1) Coverage: Measures how much of the refer-
ence evidence is covered by the predicted evidence,
ensuring that the content, meaning, entities, and
other key elements of the reference are fully repre-
sented in the retrieved evidence.

(2) Coherence: Captures whether the retrieved
evidence is coherent, i.e., if all sentences are con-
nected sensibly and the evidence makes sense as a
whole.

(3) Repetition: Evaluates whether the retrieved
evidence exhibits repetition of its content.

(4) Consistency: Assesses whether the retrieved
evidence is semantically consistent and does not
contain conflicting information. Unlike coherence,
which focuses on how well the information is struc-
tured, consistency evaluates whether the arguments
presented in the evidence for or against a claim are
sound and aligned.

(5) Relevance: Measures how relevant the re-
trieved evidence is to the content of the claim.

Insights Gained The annotation process resulted
in a total of 389 annotations. After filtering out evi-
dence samples that were labeled by evaluators as
entirely empty (1%), not understandable (1.8%), or

8We provide the exact instruction for rating each criteria
in the appendix.
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Label/Pred | CE/C | NEE | Refuted | Supported

CE/C 35.7 3.6 53.6 7.1
NEE 5.9 22.1 60.3 11.8
Refuted 39 49 85.4 5.8
Supported 7.6 0 16.5 76.0

Table 6: Overview of verdict labelled by human evalua-
tors (rows) versus system predictions (columns).

completely irrelevant to the given claim (9.4%), we
were left with 344 valid annotations. Among these,
66 annotations corresponded to gold-labeled sam-
ples. Excluding the gold-labeled samples, resulted
in a final set of 278 evidence annotations.

Before labeling the system-retrieved evidence,
participants were first asked to label the ver-
dict of the retrieved evidence. Table 6 provides
an overview of the matching between system-
predicted labels (columns) and human-labeled ver-
dicts (rows). While human annotators generally
agreed with evidence labeled as refuted or sup-
ported, there was less overlap for evidence labeled
as NEE and CE/C by the submitted systems.

Analyzing human judgments across the five eval-
uated dimensions (see Table 10), we find that the
majority of predicted evidence was labeled as very
coherent, consistent, relevant, and containing lim-
ited repetition. However, in the dimension of se-
mantic coverage, approximately 15% of the evi-
dence received a rating of 0, indicating that “the
predicted evidence covers none of the reference evi-
dence.” Additionally, around 20% received a rating
of 1, meaning that “very little of the reference evi-
dence is covered.” This does not necessarily mean
that the evidence is false — low coverage can also
occur if the retrieved evidence uses different infor-
mation, arguments, or sources than the reference
evidence. Ideally, we aim for an evidence evalu-
ation that can fairly assess evidence even when it
differs from the reference and has low coverage.

To assess the relationship between human scor-
ing and the Hungarian METEOR (see Sec 2.4),
we computed both the Spearman correlation coeffi-
cient (p (Spearman, 1987)) and the Pearson correla-
tion coefficient (r (Pearson, 1896)) as shown in Ta-
ble 8. Correlations were calculated using both the
entire evidence text and the question text only. In
both cases, we observed a low correlation between
the Hungarian Meteor and the assessed dimensions,
with the highest correlation seen in the category of
“repetition” (see Table 8). While the results show a
similar ranking of participating systems compared



Rating | COV COV % | COH COH% | REP REP% | CON CON % | REL REL %

1 42 15.16 4 1.44
2 59 21.30 42 15.11
3 59 21.30 64 23.02
4 71 25.63 81 29.14
5 46 16.61 87 31.29

23
51
61
71
72

8.27 6 2.17 4 1.44
18.35 35 12.64 26 9.35
21.94 57 20.58 51 18.35
25.54 82 29.60 83 29.86
25.90 97 35.02 114 41.01

Table 7: Overview of ratings for Semantic Coverage, Coherence, Repetition, Consistency, and Relevance. For each
evaluation dimension, the first column depicts the absolute number of annotations for a specific score (from 1 to 5)

and the second column the percentages.

Dimension P T

Coverage .005 -.024
Coherence  .076  .057
Repetition A17 .025
Consistency .039 .024
Relevance .008 .003

Table 8: Correlation between Q + A scores (Hungarian
METEOR) and human-rated subset of evidence. We cal-
culate correlation using the Spearman (p) and Pearson
(r) correlation coefficients.

to human evaluations on the subset, further work
is needed to develop scoring methods that align
more closely with human assessments of evidence.
With that said, overall, the top-ranked teams (based
on AVERITEC score) also perform well on human
evaluation, while the lower-ranked teams remain
similarly positioned, with only minor shifts in their
order.’ It is important to note that this evaluation
was solely based on a small sample of system pre-
dictions, and that the results should therefore be
taken with a grain of salt.

Human evaluation of evidence predictions of-
fers valuable insights into the limitations of the
AVERITEC score, and suggests directions for
future research. A notable observation is the
discrepancy between human evaluation and the
AVERITEC score for some of the highest-ranked
samples, such as the examples provided in Table 12
in the appendix. For instance, in row three, the pre-
dicted evidence directly contradicts the reference
evidence by providing different numbers, yet it re-
ceives a high AVERITEC score due to similar word-
ing. Similarly, for the first two rows in Table 12, the
semantic coverage score is rated with the second
lowest score 1, whereas the average score across
all examples is 3, indicating misalignment between
the predicted and reference evidence.

?See Table 10 in the appendix.
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Certain low-ranked examples highlight differ-
ent challenges (see Table 13). For example, the
predicted evidence in the first row received a low
AVERITEC score despite receiving the highest
score of 5 across all categories in human evaluation.
Despite both sets of evidence reaching the same
conclusion, the large disparity in answer length
and wording leads to a much lower AVERITEC
score. The example in the second row, also ranks
low according to AVERITEC score, even though
it scores high in all categories except for cover-
age, where it scores 3. Here, both the reference
and predicted evidence reach the same verdict, but
the predicted evidence supports the claim with dif-
ferent information and wording, resulting in low
semantic coverage and a low AVERITEC score.

5 Lessons Learned

Providing a knowledge store rather than requiring
participants to rely on a search engine API made
the task more accessible. Given the cost of API ac-
cess, this allowed substantial analysis and work by
participants on retrieval. We note that most submis-
sions — 13 of 16 system description papers — used
the knowledge store. Nevertheless, because of the
size of the knowledge store and the inclusion of
distractor documents, the knowledge store did not
trivialise the task, and systems relying on search
remain competitive and provide unique advantages.
Several participants, such as team FZI-WIM, com-
mented on how the two are complementary, and
suggested hybrid systems using both as a poten-
tially fruitful extension of their systems.

AVERITEC presupposes a strong focus on
evidence retrieval. The overall score, as in
FEVER (Thorne et al., 2018a), is determined both
by retrieval performance and by veracity prediction
performance. In the AVERITEC shared task, partic-
ipant systems innovated across the pipeline, and all
of the top-scoring systems suggest improvements
to multiple subtasks of fact-checking.



Team name 0-1000 1000-2215
TUDA_MAI 0.61 0.64
HUMANE 0.55 0.58
CTU AIC 0.45 0.55
Dunamu-ml 0.5 0.5
Papelo 0.49 0.46
UHH 0.41 0.48
SynApSe 0.41 0.43
arioriAveri 0.35 0.42
Data-Wizards 0.32 0.34
MA-Bros-H 0.22 0.31
mitchelldehaven 0.22 0.27
SK_DU 0.2 0.25
UPS 0.15 0.25
FZ1-WIM 0.19 0.2
KnowComp 0.19 0.18
IKR3-UNIMIB 0.16 0.2
ngetach 0.12 0.16
VGyasi 0.12 0.12
Baseline 0.11 0.12
InfinityScalers! 0.1 0.07
AYM 0.06 0.06
Factors 0.06 0.04
Average 0.27 0.3

Table 9: AVERITEC scores for different subsections of
the dataset. We compute results for the initial test set of
1000 examples collected by Schlichtkrull et al. (2023a),
and for the additional 1215 test examples collected for
this shared task.

When submitting test set predictions,
we required participants to include a field
(“scraped_text”) for each piece of evidence in
their submission, corresponding to the webpage
providing backing for that piece of evidence. This
enabled us to carry out manual and automatic
quality control evaluation verifying that systems do
indeed ground their evidence in external sources
(see Section 3). This enabled us to detect, for
example, if some systems were hallucinating evi-
dence; we did not see any evidence of hallucinated
evidence, but we consider guardrails against this
crucial. Unfortunately, the inclusion of this field
made some submissions substantial in size, as
entire webpages were included — up to 2.3gb for
the largest submission. Our submission portal,
eval.ai, was not able to handle these large files,
blocking the portal for all participants during the
last few days of the competition. We extended the
deadline to compensate.
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The scraper we used for the knowledge store
(same as in Schlichtkrull et al. (2023a)) to retrieve
evidence turned out to be a significant weakness.
As some participants noticed, many knowledge
store documents are empty. The submission with
the best retrieval performance, Dunamu-ml, used a
custom scraper, and may have derived significant
gains from that choice. We suggest that this may
be an interesting area for further research.

During the competition, we identified an issue
with the knowledge store data for the last 1215
test examples. Due to an error with date formats,
for some claims, web pages published after the
claim were included in the knowledge store. This
included fact-checking articles, as also mentioned
by CTU AIC in their system description paper. As
the first 1000 examples were not affected, we com-
puted performance on the first 1000 and last 1215
test examples separately — see Table 9.

As can be seen, the ranking of participants on
the two splits is roughly the same — and, indeed,
roughly the same as for the entire test set. The
second half was easier, and many systems perform
slightly better there. Somewhat surprisingly, some
systems which relied on Google search — specif-
ically, SynApSe — also saw a performance gain
when measured only on the second split. As such,
we do not believe this issue majorly impacted any
subset of participants, such as those not relying
on the knowledge store. We release an updated
knowledge store along with our shared task pa-
per, accessible at https://fever.ai/dataset/
averitec.html. We have re-compiled the knowl-
edge store with the correct date cutoff, and removed
any fact-checking articles that snuck through from
the evidence base.

6 Conclusions & Future Work

The AVERITEC shared task attracted submissions
from 21 teams, 18 of which outperformed our base-
line. The leaderboard was dominated by systems
relying on large language models, especially GPT-
40; nevertheless, especially for question generation
and retrieval, smaller models — such as LLama-3-
8b — also achieved top performance. The winner
of the shared task was team TUDA_MAI, which
achieved an AVERITEC-score of 63%. In this pa-
per we have analysed the shared task, highlighting
aspects of the 16 submitted system description pa-
pers, as well as key takeaways from the shared task
itself.


https://fever.ai/dataset/averitec.html
https://fever.ai/dataset/averitec.html

The strong performance of the participating
teams establishes a firm foundation for automating
aspects of real-world fact-checking. The results fur-
thermore indicate clear directions for future work.
First, most participating systems — especially for
veracity prediction — relied on very large models,
such as GPT-4. Further, many of these are blackbox
models. These models may be prohibitively expen-
sive for some real-world use cases, e.g., assisting
smaller fact-checking organisations (Schlichtkrull
et al., 2023b). Given that, we suggest that get-
ting smaller, more efficient models to reach the
performance of their larger counterparts may be
a fruitful direction for further research. Similarly,
we note that performance for most top-scoring sys-
tems was much higher on supported and refuted
claims, compared to conflicting evidence and not
enough evidence. We suggest that leveling this gap
is another clear avenue for future improvements.

7 Limitations & Ethics

The datasets and models described in this paper are
not intended for truth-telling, e.g. for the design of
fully automated content moderation systems. The
evidence selection and veracity labels provided in
the AVERITEC dataset relate only to the evidence
recovered by annotators, and as such are subject to
the biases of annotators and journalists. Participant
systems, which sought to maximize performance
on AVERITEC, may replicate those biases. We
furthermore note that shared task leaderboards are
a limited representation of real-world task needs,
not the least because the test set is static. Act-
ing on veracity estimates arrived at through biased
means, including automatically produced ranking
decisions for evidence retrieval, risks causing epis-
temic harm (Schlichtkrull et al., 2023b).
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A Search Queries for Knowledge Store
Generation

When creating the knowledge stores for the train,
development, and test set, we used a series of
search query generation strategies. An overview
can be seen in Table 11. We note that some of
these rely on information not available normally
to participants, such as the gold question-answer
pairs. We note that, despite this, systems not rely-
ing on the knowledge store, such as Papelo, were
competitive.

B Human Evaluation

We carried out human evaluation of the submit-
ted test set predictions. Below in Figures 2-9, we
include screenshots of the interface used by an-
notators. We also include, in Tables 12 and 13,
instructive examples from the human evaluation.
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Source Score Coverage
CTU AIC 4.1
TUDA_MAI 4.1
SynApSe 3.8
Dunamu-ML 3.5
MA-Bros-H 3.4
Factors 33
Data-Wizards 3.2
UHH 3.2
mitchelldehaven 3.1
SK_DU 3.1
IKR3-UNIMIB 3.1
FZI-WIM 2.9
InfinityScalers! 29
arioriAveri 2.9
HUMANE 2.8
Papelo 2.8
KnowComp 2.8
UPS 24
VGyasi 23
AYM 2.3
ngetach 2.0

Table 10: Average scores assigned to evidence samples
from different participating teams for the semantic cov-
erage category, based on human evaluation.
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Query type

Description

Generated questions

Generated background queries

Generated provenance queries

Claim named entities

Most similar gold evidence

Gold URL generated questions

Different event same entity

Similar entities

Gold questions
Claim + gold question

Rephrased gold questions

Gold answers
Rephrased gold answers

Questions are generated with gpt-3.5-turbo based on the claim.
Three claim-question pairs from the training set are used as in-
context examples.

Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on background information, such as details about
entities in the claim. Three manually constructed claim-query pairs
are used as in-context examples.

Queries are generated with gpt-3.5-turbo based on the claim. The
prompt focuses on information necessary to establish provenance,
such as whether the claim source is a satire site. Three manually
constructed claim-query pairs are used as in-context examples.
Named entities from the claim are extracted and used as search
queries. One query for each entity is constructed, along with one
query containing all entities.

The most similar paragraph in the gold evidence document is
selected using BM25, and used as a search query.

Queries are generated with gpt-3.5-turbo based on the URL of
the gold evidence. The prompt tried to generate questions that
would retrieve the URL in question. Three manually constructed
URL-query pairs are used as in-context examples.

Queries are generated with gpt-3.5-turbo based on the named enti-
ties in the claim. The prompt focuses on different events involving
some of the same entities. Results are used as distractors to make
the retrieval task harder.

Queries are generated with gpt-3.5-turbo based on the claim. The
prompt replaces entities in the claim with other similar entities,
such as changing one city to another. Results are used as distrac-
tors to make the retrieval task harder.

Gold questions used verbatim as search queries.

Gold questions used verbatim as search queries. The claim is
prepended, processed as in Schlichtkrull et al. (2023a).

Gold questions are rephrased using gpt-3.5-turbo, and then input
as search queries.

Gold questions used verbatim as search queries.

Gold answers are rephrased using gpt-3.5-turbo, and then input as
search queries.

Table 11: Queries input to the Google Search API for each claim in order to build the knowledge store. Following
Schlichtkrull et al. (2023a), we restrict search results to documents published before the claim. For each claim, we
also extend the knowledge store with the corresponding gold evidence documents.
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Evidence Evaluation for AVERITEC
System Predictions

mubashara.ak@gmail.com Switch account (%)

Intro

Thank you for helping to evaluate the AVeriTeC shared task submissions!

For the shared task (https://fever.ai/task.html), many teams have submitted predictions,
including claim labels and evidence. Your task is to rate these submissions to support a
detailed study of the results.

Please find the selected submissions you need to rate in this folder (select the file named
with your team name):

Each example provided for evaluation consists of the following fields:

1. The claim ID

2. The claim

3. The predicted label

4. The predicted evidence extracted from a shared task submission (incl., the scraped
text if available)

5. The reference evidence for the same claim (i.e., the "gold" evidence)

Back Next Clear form

Figure 2: Platform for human evaluation of retrieved evidence from participating systems.



Claim Verdict based on Predicted Evidence

On this page, please do the following:

1. Check if the predicted evidence contains major errors that warrant skipping the
example.
2. Label the claim based on the predicted evidence as one of the following:
o Supported
o Refuted
o Not Enough Evidence
o Conflicting Evidence/Cherry-picking

Enter [Claim ID] below: *

Your answer

Enter [Claim] below: *

Your answer

Enter the [Predicted Evidence] text below: *

Your answer

1. Does the predicted evidence contain any of the following three major errors? If *
yes, which of the following holds for the predicted evidence?

O Yes, the evidence is ENTIRELY EMPTY
Yes, the evidence is NOT UNDERSTANDABLE AT ALL
Yes, the evidence is COMPLETELY IRRELEVANT to the claim

No major errors. AT LEAST SOME PART of the evidence is non-empty,
understandable, and related to the claim.

O OO0

Figure 3: Platform for human evaluation of retrieved evidence from participating systems.
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For the following question:
If you selected "Yes, ..." for the last question (first three options), please skip the
question below and submit your response.

If you selected the last option, "No major errors. [...]", proceed to the next question.
For the next question, review 1.) the claim and 2.) the predicted evidence.

2. Now, decide if the claim is (a.) supported by the predicted evidence, (b.) refuted,
(c.) not enough evidence is given (if there isn't sufficient evidence to either support
or refute it), (d.) conflicting evidence/cherry-picking (if the claim has both
supporting and refuting evidence).

O a. supported

(O b.refuted
O c. not enough information

O d. conflicting/cherry-picking

3. If you selected options a.) supported, b.) refuted, or d.) conflicting/cherry-picking,
please copy from the field "scraped text" (if it is available) the text which supports
your decision.

Your answer

Back Next Clear form

Figure 4: Platform for human evaluation of retrieved evidence from participating systems.
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Rating of Predicted Evidence

Rate the predicted evidence by answering the questions below.

For the first question, you will need to compare the predicted evidence to the reference
evidence.

1. Semantic Coverage

Evaluate how much of the reference evidence is covered by the predicted
evidence. Compare the two based on their content (e.g., meaning, the extent to
which entities in the reference evidence are represented in the predicted evidence,
etc.).

1 score: The predicted evidence covers none of the reference evidence.

2 scores: Very little of the reference evidence is covered.

3 scores: Approximately half of the reference evidence is covered.

4 scores: Most of the reference evidence is covered.

5 scores: Everything mentioned in the reference evidence is covered by the
predicted evidence.

O O O O O

Figure 5: Platform for human evaluation of retrieved evidence from participating systems.
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For the questions below, you will only need to look at the predicted evidence!

2. Coherence

Evaluate the coherence of the predicted evidence by assessing if all sentences are
logically and meaningfully connected to one another, and if the evidence makes
sense as a whole.

1 score: Not coherent at all.

2 scores: Most of the text is incoherent, with sentences disconnected and the
overall meaning unclear.

3 scores: Approximately half of the evidence is coherent, while the rest is not.

4 scores: Almost every sentence is coherent, and the evidence mostly makes
sense as a whole, with some minor mistakes.

5 scores: Very coherent; the entire text forms a unified and logical body.

O O O O O

Figure 6: Platform for human evaluation of retrieved evidence from participating systems.
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3. Repetition

Evaluate the predicted evidence for any repetition.
1 score: A lot of repetition; most of the evidence text is redundant.

2 scores: A significant portion of the text repeats the same information.
3 scores: Approximately half of the text is repeated content.
4 scores: Minor repetitions in the text.

5 scores: No repetition at all.

O O O O O

Figure 7: Platform for human evaluation of retrieved evidence from participating systems.

4. Consistency

Evaluate the consistency of the predicted evidence in the information it provides.
1 score: Not consistent at all; contains a lot of conflicting and/or illogical
information.

2 scores: Most of the evidence is inconsistent, with major parts that conflict or are
illogical.

3 scores: Approximately half of the evidence is consistent, but there are significant
conflicts or illogical information.

4 scores: The evidence is mostly consistent, with a few minor issues such as
confusion of dates, names, or other details.

5 scores: The evidence is very consistent, with no conflicting or illogical
information.

O O O O O

Figure 8: Platform for human evaluation of retrieved evidence from participating systems.
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5. Relevance to Claim

Evaluate how relevant the predicted evidence is to the claim.
1 score: Not relevant at all; the evidence does not relate to the claim in any
meaningful way.

2 scores: Mostly irrelevant, with only a small portion of the evidence having minor
relevance to the claim.

3 scores: Approximately half of the evidence is relevant to verifying the claim, while
the rest is redundant or unrelated.

4 scores: Most of the evidence is relevant, with some minor irrelevant or redundant
parts.

5 scores: Very relevant; the evidence is entirely focused on verifying the claim
without any irrelevant information.

O O O O O

Back Clear form

Figure 9: Platform for human evaluation of retrieved evidence from participating systems.
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Multi-hop Evidence Pursuit Meets the Web: Team Papelo at FEVER 2024

Christopher Malon
NEC Laboratories America
Princeton, NJ 08540
malon@nec-labs.com

Abstract

Separating disinformation from fact on the web
has long challenged both the search and the
reasoning powers of humans. We show that
the reasoning power of large language mod-
els (LLMs) and the retrieval power of modern
search engines can be combined to automate
this process and explainably verify claims. We
integrate LLMs and search under a multi-hop
evidence pursuit strategy. This strategy gener-
ates an initial question based on an input claim
using a sequence to sequence model, searches
and formulates an answer to the question, and
iteratively generates follow-up questions to pur-
sue the evidence that is missing using an LLM.
We demonstrate our system on the FEVER
2024 (AVeriTeC) shared task. Compared to a
strategy of generating all the questions at once,
our method obtains .045 higher label accuracy
and .155 higher AVeriTeC score (evaluating
the adequacy of the evidence). Through abla-
tions, we show the importance of various de-
sign choices, such as the question generation
method, medium-sized context, reasoning with
one document at a time, adding metadata, para-
phrasing, reducing the problem to two classes,
and reconsidering the final verdict. Our sub-
mitted system achieves .510 AVeriTeC score on
the dev set and .477 AVeriTec score on the test
set.

1 Introduction

Since 2018, the FEVER shared task has chal-
lenged natural language processing systems to ver-
ify claims using a corpus and provide evidence
that witnesses these verdicts. It has evolved from
a simple combination of natural language infer-
ence (NLI) and entailment (Thorne et al., 2018)
to a challenge involving adversarially constructed
claims (Thorne et al., 2019), to a challenge to ver-
ify complex, multi-hop claims using a combination
of tables and free text (Aly et al., 2021). In the
current task, it finally arrives at combating real-
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life disinformation on the web (Schlichtkrull et al.,
2023).

Systems are challenged to classify claim texts
as supported, refuted, not enough evidence, or con-
flicting evidence/cherrypicking. In addition to clas-
sifying the claim, the systems must submit a list
of questions and answers about a claim as evi-
dence, with each answer derived from information
on the open web and cited with a URL. Credit is
given only when both the classification matches
the ground truth and the evidence is adequate. The
AVeriTeC score determines evidence adequacy by
thresholding an average of METEOR scores be-
tween each gold QA pair and the corresponding
submitted QA pair in the best assignment of QA
pairs.

This task may involve retrieval and reasoning
skills at a level for which professional journalists
are sometimes employed. The reasoning may in-
volve quote verification, stance detection, or nu-
merical comparisons. The retrieval challenge goes
beyond previous political fact-checking tasks (Os-
trowski et al., 2021; Alhindi et al., 2018) and even
beyond previous FEVER tasks in advancing from
a closed corpus (Wikipedia) to the open web.

Whereas previous FEVER shared tasks needed
to be solved by researcher-trained models, the cur-
rent shared task allows the use of commercial API
components. The winning team in FEVEROUS
based their retriever on fitting a Dense Passage Re-
triever (Karpukhin et al., 2020) to the FEVEROUS
data (Bouziane et al., 2021), but the training data
for FEVER 2024 is quite limited, consisting of
only 3,068 claims, and a retriever trained on user
feedback from worldwide search queries should
easily be more powerful. Additionally, an external
web search engine such as Google Search may pro-
vide additional query understanding features not
found in DPR, as a recent feature (not in the API
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we used) applies generative Al to search!. Even
though the gold evidence documents are guaran-
teed to appear in the knowledge store provided by
the contest organizers, the snippets may not be ex-
tracted successfully. We found that 297 of the 500
claims in the dev set included gold documents with
empty extracted text. In contrast, web search pro-
vides at least some text even from pages that the
provided web scraper is blocked from accessing.
Therefore, we chose to incorporate web search into
our system.

Relying on a large language model (LLM) such
as GPT-4o0 (OpenAl, 2024) for reasoning lets us
leverage skills that could not be learned from 3,068
heterogenous claims, and go beyond the simple se-
mantic comparison of an NLI model. Beyond sim-
ple NLI, ChatGPT and GPT-4 have been utilized to
detect hallucinations in text summaries (Luo et al.,
2023), as multi-faceted evaluators that score gener-
ated text (Zheng et al., 2023), and for critiques and
corrections of generated text (Lin et al., 2024).

Though there are many ways of using a search
engine and LLM within a fact-checking system,
our main contribution is to show the power of com-
bining them in a strategy of multi-hop evidence
pursuit, which formulates additional questions only
after searching and formulating answers to previ-
ous questions. In the following sections, we also
investigate the impact of many choices of how the
questions could be generated, the nature and size
of context for generating answers, handling of mul-
tiple search results, metadata, paraphrasing, reduc-
ing the problem to two classes, and reconsidering
the final verdict.

2 Related work

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) provides a general paradigm for en-
abling an LLM to answer questions that surpass the
knowledge encoded in the LLM parameters, which
is a task somewhat isomorphic to verifying claims
(Demszky et al., 2018).

A growing body of work utilizes LLMs as high-
level reasoning controllers that can solve tasks by
querying agents to provide information or solve
subproblems (Xi et al., 2023; Wu et al., 2023a).
An early example for fact-checking an LLM’s own
output was LLM-Augmenter (Peng et al., 2023),
which called an open retrieval pipeline as an agent
action to iteratively improve an LLM response.

"https://blog.google/products/search
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Chan et al. (2024) uses an LLM to rewrite, decom-
pose, and disambiguate queries before searching,
and these steps are made into a hierarchy of agents
in Chen et al. (2024). Wang et al. (2024) used
a combination of Google search and GPT-4 with
a single hop to fact-check claims in the FacTool-
KB, FELM-WK, and HaluEval datasets. Behind a
closed API, SearchGPT has been launched in beta
to a few users as a service to provide access to a
search-empowered OpenAl LLM.?

FEVER 2024 presents a multi-hop, open cor-
pus fact verification challenge. In the multi-hop
shared task of FEVEROUS, all but two contestants
collected all the needed evidence up front, after
only reading the claim (Aly et al., 2021). Later top
performers (DCUF, UniFee, SEE-ST) addressed
evidence interaction with graph-based methods but
still did not address evidence that might be missed
by the initial document retrieval (Hu et al., 2022,
2023; Wu et al., 2023b). Malon (2021) estab-
lished an iterative paradigm for fact verification
that retrieves further documents, sentences, and ta-
ble cells by generating follow-up queries that are
formulated after considering only the first retrieval,
which we follow in the present system, in multi-hop
evidence pursuit.

In medical question answering, Xiong et al.
(2024) contemporaneously has proposed “iterative
RAG for medicine” which uses an LLM to gen-
erate follow-up questions considering previous re-
trievals. In our algorithm, the relevance of each
question is assured by generating it only upon a
failure to verify the claim as true or false based on
the existing evidence. Their method may generate
irrelevant questions after an answer could already
be obtained, simply because the fixed numbers of
questions are not achieved, resulting in lower ev-
idence relevance and higher computational cost.
Our system can stop as soon as a verdict is clear,
and if our system is configured to generate addi-
tional questions by paraphrasing, their relevance is
assured by their similarity to the original questions.

3 Methodology

3.1 Overall architecture

Pseudocode outlining the overall system is given
in Algorithm 1, with the main loop shown
in Figure 1. At the core of the system are
question generation functions Get Fir stQuestion
and GetNextQuestion, for which we consider

lopenai.com/index/searchgpt-prototype/
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Figure 1: Pursuing additional evidence by generating follow-up questions.

implementations either by sequence-to-sequence
encoder-decoder transformers such as TS (Raffel
et al., 2020), or by an LLM. The Get Answer func-
tion (Algorithm 2) prompts an LLM to implement
LLM BestDoc and LLM Answer to answer the
generated questions. The final verdict is also cho-
sen by prompting an LLM with the generated ques-
tions and answers, in LLMV erdict.

Algorithm 1. Claim verification

Input: Claim ¢, max questions n

Initialize QA list Q = ()

Let ¢ = GetFirstQuestion(c)

while |Q| < n and g # True and q # False
Let a = GetAnswer(q, c)
Append (g, a) to Q
Let ¢ = Get NextQuestion(c, Q)
# GetNextQuestion outputs True or False
# if next question not needed

Let k = |Q)|
while |Q| < n
Leti = |Q]

Let ¢ = Paraphrase(q; modk)
Let a = GetAnswer(q, c)
Append (g, a) to Q
Output: v = LLMVerify(Q,c) and Q

Unlike the baseline system (Schlichtkrull et al.,
2023), our system does not generate questions on a
post hoc basis after finding evidence, but generates
questions before web searches, playing a key role
in steering the verification process. Rather than
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Algorithm 2. Function Get Answer(q, c)
Input: Question ¢, claim ¢

Let s = ¢ + ¢ concatenation

Let G = WebSearch(s)

ifG=0:

Let G = WebSearch(NamedEntities(s))
G = {(urly, quotey), . .., (urly, quoteg) }
Let i = LLM BestDoc(G, q)

Let d = Full Document(url;)
Let e = AlignContext(d, quote;, 5)
Output: a = LLM Answer(q, €)

assuming all evidence can be found up front with
a single search query, we review the current set of
evidence and generate text (in our case, a question)
that provides a query to search for what is still miss-
ing and needed after each hop, like the followup
queries introduced in Malon (2021). Whereas the
queries in Malon (2021) were generated by train-
ing a sequence to sequence model to predict what
the missing evidence would look like, our system
prompts an LLM to ask a question that the missing
evidence answers.

The generation of evidence QA pairs temporar-
ily stops when GetNextQuestion thinks it can
classify the claim as supported or refuted without
asking another followup question (see Appendix
B). After that point, the already generated questions
are paraphrased using an LLM and corresponding
answers are found until the desired number of QA
pairs is obtained. Finally, an LLM uses all QA



pairs to decide the final classification for the claim.

3.2 Question generation

We consider two variants for the functions
GetFirstQuestion and GetNextQuestion. In
the Seq version, we finetune a sequence-to-
sequence encoder-decoder transformer model.
For GetFirstQuestion, the input is the claim,
and the output is the first question.  For
GetNextQuestion, the input is the claim concate-
nated with all previous question-answer pairs, in
the format

Claim: claim Question: questiong
Answer: answerg Question: question
Answer: answeri ...

and the output is the next question to be gener-
ated. These input strings are prefixed with the
string “question: . Details of the fine-tuning pro-
cedure are in Appendix A. Question-answer pairs
from the gold data in the training set are used for
this fine-tuning.

The other variant is the LLM version, in which
we prompt the LLM with similar inputs. The
prompts are given in Appendix B. Because LLM
output is often verbose and may contain unnec-
essary explanations, we sentence split the output
and use only the first sentence containing a ques-
tion mark. If this is impossible, we use the whole
output.

If an adequate number of questions and answers
has been generated and the verdict is clear, the
model has the opportunity to output a True or False
verdict to stop the question generation.

As a further ablation, we consider a more
traditional technique of generating all the ques-
tions at once, given the claim. The function
AllAtOnce (prompt in Appendix B) replaces
GetFirstQuestion to generate a set of questions,
and the while loop in Algorithm 1 is replaced
by a loop over the generated questions, calling
Get Answer but not Get N extQuestion.

3.3 Evidence selection

Here we describe the function GetAnswer, dis-
played in Algorithm 2, which retrieves evidence
and uses it to answer the generated questions.
Prompts for its LLM helper functions are given
in Appendix B.

The generated question is concatenated to the
claim to form a web search query, and the top ten
search results are obtained, including their URL,
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the short snippet displayed in the search results, and
usually the page title, site name, and publication
date. When the web search returns no results, we
retry the search using only the named entities (and
other capitalized words after the first word) from
the initial search query, following the supplemen-
tal queries which improved retrieval by Wikipedia
page title lookups in Malon (2018).

By prompting, LLM BestDoc is used to choose
one document that best answers the question from
the set of ten web search hits. We attempt to re-
trieve and scrape the text of that document using
its URL (function Full Document). This is im-
plemented using the scrape_text_from_url
function provided in the AVeriTeC baseline
(Schlichtkrull et al., 2023), which uses the Python
trafilatura library.® If the scraping succeeds, we
look for a small window of text (five sentences in
our experiments) that best overlaps the web search
snippet (function AlignContext). Specifically, all
five-sentence windows of the document that in-
clude more than 70% of the words in the web
search snippet are recorded in order, and the mid-
dle such window is taken. Using this window as
the document excerpt provides more background
and context to the text that web search found to be
relevant, while avoiding prompting with the over-
whelming amount of text that might be found in
the full web page. If the scraping fails, we continue
to the next stage using only the web search snippet
as document text.

Because LLM BestDoc depends on parsing
LLM output, it may fail to choose a best document.
If a best document is chosen and the scraping suc-
ceeds, the LLM is prompted to answer the question
using the selected five-sentence window of the best
document in LLM Answer. If the best document
is chosen and the scraping fails, LLM Answer is
run using the text of the web search snippet only. If
a best document was not chosen in LLM BestDoc,
we use the full text of the LLM response in that
function as the answer and the web search result
page itself as the evidence.

In LLMBestDoc and LLM Answer, the
prompt includes not only the text for each doc-
ument, but metadata including the page title, site
name, and publication date, when this metadata
appears in web search results. This metadata may
occasionally be useful in assessing the credibility
or relevance of the information to the question.

3github.com/adbar/trafilatura



3.4 Reconsideration and Classification

The Paraphrase function asks the LLM for
paraphrases of the existing questions. In prac-
tice, multiple paraphrases of each question are
requested at once to avoid repeated calls, even
though they are used one at a time. Although
these paraphrases may not be logically necessary
once GetNextQuestion has determined a verdict,
sometimes they provide a chance to reconsider the
same questions using multiple sources. The varia-
tions in wording also improve the AVeriTec score,
as discussed in section 4.

The LLMV erdict function is called after all
question-answer pairs are collected, to choose the
predicted label for each example. Using additional
QA pairs, it may override the decision that stopped
the QA generation process. Table 1 shows the
distribution of labels in the training and develop-
ment sets. “Not Enough Evidence” and “Conflict-
ing evidence / cherrypicking” are minority classes,
and we were unable to predict them with good
F1 score. We obtained a higher score by limit-
ing LLMYV erdict to predicting “Supports” or “Re-
futes.”

Class Train Dev

Supported  27.7% 24.4%
Refuted 56.8% 61.0%
NEI 92%  7.0%
Conflicting 64%  7.6%

Table 1: Distribution of class labels.

4 [Experiments

We implement Algorithm 1 wusing GPT-4o0
(gpt—-40-2024-05-13, seed 42) as the LLM,
T5 (t5-1large) (Raffel et al., 2020) as the
sequence-to-sequence model, and Google as the
web search engine, and consider various ablations.
For a faster development cycle and reduced mone-
tary cost, Table 2 reports the performance of each
of our systems only on the first 200 examples of
the development set.

4.1 Question formation

Recall from Section 3.2 that in Algorithm
1, the functions GetFirstQuestion and
GetNextQuestion could be implemented
either by Seq or LLM, or instead of Algorithm
1, the questions could be generated All AtOnce.

31

Whichever question generation approach is
used, at most five questions are taken from the
question generator and the paraphrase loop of
Algorithm 1 extends the list to five questions.
The submitted system follows Algorithm 1 using
Seq for GetFirstQuestion, and LLM for
GetNextQuestion (Seq+LLM).

The lower performance of the AllAtOnce al-
ternative indicates that this task requires followup
searches considering the evidence already retrieved,
with searches that cannot be anticipated using the
claim alone. It validates our choice to use a multi-
hop evidence pursuit strategy (Malon, 2021).

The LLM+LLM alternative shows that perfor-
mance worsens if we generate the first question
using GPT-40. An inspection of the data revealed
that the gold first questions were usually simple
rephrasings of the claims, which T5 can learn well,
whereas GPT-40 often tried to generate something
more complicated.

The Seq+Seq alternative shows that performance
worsens if we generate the subsequent questions
using T5. Subsequent gold questions often re-
flected deeper reasoning using the obtained an-
swers, which we suspect are beyond the capabilities
of simple sequence to sequence models.

4.2 Label prediction

We have implementations of LLMVerdict that
use a four-class prompt, or eliminate the “Not
Enough Evidence” (NEI) and “Conflicting Evi-
dence / Cherrypicking” classes to decide only be-
tween “Supported” and “Refuted.” The 4-class re-
sult (otherwise the same as the main system) shows
very low F1 scores for the NEI and Conflicting
classes. As NEI claims form only 7.0% of the
dev set and Conflicting claims form only 7.6%, we
decided that it is always best to guess another label.

Another variant, “No late verdict,” calls
LLMVerdict only if the while loop is not ter-
minated by predicting True or False, and maintains
that early decision even after the paraphrases are
added. (If True is obtained, “Supported” is pre-
dicted and if False is obtained, “Refuted” is pre-
dicted.) The difference in label accuracy shows it
is sometimes useful to consider the whole question
and answer chain from the beginning when forming
a verdict.

4.3 Answer formation

The submitted system uses Full Document and
AlignContext to obtain longer document contexts



System SuppF1 RefF1 NEIF1 ConfFl1 Acc AVeriTec 0.25
AllAtOnce 591 813 0 0 705 .340
LLM+LLM .644 821 0 0 720 .385
Seq+Seq .638 816 0 0 715 .370
4 class 486 .593 148 069 415 .245
No late verdict .643 811 0 0 705 450
No long doc ST7 819 0 0 705 465
Multi-doc 673 .837 0 0 735 460
No metadata 575 810 0 0 .700 410
No paraphrase 701 .839 0 0 745 225
Repeat not para .624 813 0 0 710 .340
Algorithm 1 716 841 0 0 750 495
Table 2: Results on the first 200 examples of the dev set
Data Submission SuppF1 RefF1 NEIFlI ConfFl Acc AVeriTec 0.25
Dev  Algorithm 1 .698 .853 0 0 154 486
Dev Inflated to 10 .698 .853 0 0 154 510
Test  Algorithm 1 — — — — — 445
Test Inflated to 10 — — — — — AT

Table 3: Final results on full datasets

’

for prompting L LM Answer. The “No long doc’
ablation uses only the original web search snippet
as context for LLM Answer. The close perfor-
mance in AVeriTeC score shows that while longer
context is helpful, it is often unnecessary. Scraping
web pages to obtain this longer context has become
difficult as many sites seek to restrain robots, so
relying on snippets is convenient. In cases where
our scraping fails, the original snippet is returned
by Full Document anyway.

The “Multi-doc” ablation calls LLM Answer
using all ten search hits and their snippets, without
calling LLM BestDoc to focus on one. It is very
close to our system in label accuracy. Although it
narrows the depth and context of information pre-
sented to LLM Answer, it may have advantages
in presenting multiple possible perspectives.

Metadata for each document context is usually
presented to L LM Answer in the form

Documenti : (title, from site, published date)

The lower label accuracy and AVeriTeC score of the
“No metadata” variant show that knowing where
evidence came from is helpful to the LLM.

4.4 Evidence length

When the label is predicted correctly for an ex-
ample, the AVeriTeC score thresholds an exam-
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ple score, which is computed as the sum of the
METEOR scores between gold QA pairs and best
matching predicted QA pairs, divided by the num-
ber of gold QA pairs. Whenever fewer QA pairs
are predicted than gold QA pairs, those gold QA
pairs contribute zero to this average. Therefore,
to optimize the AVeriTec score, it is important to
predict at least as many QA pairs as the number of
gold pairs, even if the some predicted pairs match
poorly.

A system could submit up to ten QA pairs for
each example. However, only 5% of examples had
more than five gold QA pairs in the development
set. Since the ultimate objective is optimizing hu-
man evaluation rather than AVeriTeC score and
reading more than five QA pairs may be frustrating
for a human, we initially applied our systems to
produce five QA pairs per question.

For many examples, Algorithm 1 could reach de-
cisions of ¢ = True or ¢ = False in its first loop
of GetFirstQuestion and GetNextQuestion
using fewer than five QA pairs. We compared the
score obtained by repeating QA pairs, or by ask-
ing the LLM to paraphrase the existing questions
in the second loop of Algorithm 1, until five QA
pairs were obtained. In the case of paraphrase,
new answers are sought for the rewritten questions.
Besides improving the AVeriTeC score, the new an-



swers may be used to reconsider the final verdict.

The “No paraphrase” ablation has a minimal ef-
fect on label accuracy, but since fewer QA pairs
are generated, AVeriTec score is less than half the
score of the submitted system. ‘“Repeat not para-
phrase” to get five QA pairs can recover some of
the AVeriTeC score, but the paraphrases help the
METEOR score of the best assignment much more
than duplicates.

Ten QA pairs is the upper limit, and submitting
additional QA pairs up to ten can only improve the
score of the best assignment between submitted
pairs and gold pairs. We took our five generated
QA pairs from Algorithm 1 (GetFirstQuestion,
GetNextQuestion, and paraphrasing) and dupli-
cated them to submit ten. Naturally, repeating
can be helpful if one generated QA pair addresses
points raised in multiple gold QA pairs. The effect
of inflating the QA pairs on our full dev set and test
set performance is shown in Table 3.

5 Conclusion

The AVeriTeC shared task is a realistic fact-
checking challenge on actual web disinformation.
The best large language models offer the deep rea-
soning power needed to pursue missing evidence
to verify claims, and the best web search engines
provide the vast document indices and retrieval
capabilities needed to find it.

We have contributed a multi-hop evidence pur-
suit framework which combines the strengths of
sequence to sequence models with LLMs to gen-
erate first question and subsequent questions sepa-
rately, considering the present information; to stop
pursuit once the answer is clear; and to embellish
evidence by paraphrasing before considering the
whole evidence chain to make the final verdict.
Ablations indicate the importance of each design
choice. Multi-hop evidence pursuit outperforms
trying to generate all questions in one step. Reduc-
ing the number of classes, and using metadata and
multi-sentence context from one best document,
were important in obtaining our best performance.

The fact checking system presented may be use-
ful to expedite the work of human fact checkers or
provide a more rapid preliminary response to disin-
formation. Its full explainability could mitigate the
effect of misclassifications, if the explanations were
read and considered by a human. Over a history
of many claims, ratings of disinformation from our
system and/or human fact checkers could be used

33

to rate the credibility of an information source.

Limitations

When “Not Enough Evidence” (NEI) is an option,
an LLM tends to select it too often. Our system
was unable to predict either NEI or “Conflicting
Evidence / Cherrypicking” with acceptable accu-
racy. Considering this, and the fact the overall label
accuracy is only .754, humans should be cautious
in trusting this system’s output to verify a claim
without reading the rationale.

LLMs have insufficient information to judge the
overall credibility of a website, and currently just
the site name is given for the LLM’s consideration.
Metadata including the site name helps (to give an
example from the dev set, GPT-40 was aware or
discovered through its searches that Scoopertino
was a satirical website), but generally, misinforma-
tion that is corroborated elsewhere on the web may
fool our fact checking system.

Although the LLM is always prompted to an-
swer questions “based on the above information”
quoted from retrieved documents or its previous
answers, there is no guarantee that the LLM does
not apply other, untraceable knowledge in forming
its answers. We use a date filter to ensure that all
web searches return documents only from before
each claim date, but we use an LLM whose training
cutoff is after the claim dates.

Novel information first reported, which has no
basis in existing documents, can never be fact-
checked with the techniques of this system (for
example, the first report that a presidential candi-
date was shot). That kind of fact checking requires
judgments of plausibility, credibility, and consis-
tency that are out of scope for this system.
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A Fine-tuning

A t5-large model was fine-tuned for three
epochs with batch size 4, maximum source
length 64 or 256 for GetFirstQuestion or
GetNextQuestion, and maximum target length
64. For the AdamW optimizer, default Hugging-
face values of 5 x 10~° were used for the learning
rate, /1 = 0.9, and By = 0.999. The model was
prompted with the prefix “question: ~ followed by
the inputs. Only gold data from AVeriTeC was used
for the fine-tuning of each model.

B Prompts

GetFirstQuestion.
prompt is:

For the LLLM variant, the

We are trying to verify the following
claim by speaker on date. Claim: claim
We aren’t sure whether this claim is true
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or false. Please write one or more ques-
tions that would help us verify this claim,
as a JSON list of strings. Keep the list
short.

The JSON is parsed and only the first string in the
list is used.

AllAtOnce. For the All AtOnce variant, we use
the same prompt as Get FlirstQuestion to get the
questions, but we keep the entire list.

GetNextQuestion. For the LLM variant, the
prompt is:

We are trying to verify the follow-
ing claim by speaker on date. Claim:
claim So far we have asked the ques-
tions: Question 0: questiony An-
swer: answerg Question 1: question;
Answer: answery ... Based on these
questions and answers, can you verify
whether the claim is true or false? Please
answer [ [True]] or [ [False]], or
ask one more question that would help
you verify.

The response is searched for [[True]] or

[ [False]]. If neither is found, then the response

1s sentence tokenized with the sent _tokenize

function of NLTK 3.8.1 and the first sentence that

includes a question mark is returned.
LLMBestDoc. The prompt is:

We searched the web and found
the following information. Docu-
ment O (titleg, from siteg, published
dateg): snippety Document 1 (titleq,
from site, published date;): snippety
...Document 9 (titleg, from siteg, pub-
lished dateg): snippetg Based on the
above information, please answer the
following question, referring to the one
document that best answers the question.
question

Note that the original claim is not used in this
prompt. The response is searched with a regex for
the first instance of Document\s+ ([0-9])/or
Documents[ 0-9, ]+and ([0-9]+) and
the corresponding numbered document is taken. If
the regex search fails, the search result page itself
is used as context for answering the question, and
the full response is used as the answer.

LLMAnswer. Unlike LLM BestDoc, this is
called with context from one document. The
prompt is:
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We searched the web and found the
following information. Document (¢itle,
from site, published date): context
Based on the above information, please
answer the following question. question

The entire response is used as the answer.
Paraphrase. The prompt is:

Please give four ways to rephrase the
following question. Give your answer as
a JSON list of strings, each string being
one question. Question: question

LLMVerify. The prompt is:

We are trying to verify the follow-
ing claim: claim Based on our web
searches, we resolved the following ques-
tions. 0. questiong answery ...k.
questiony answery Is the claim (A)
fully supported by the evidence, or (B)
contradicted by the evidence? Please re-
spond in the format [ [A]] or [ [B]].

We search the response for [ [A]] or [ [B] ]. For
the four class variant, the end of the prompt is:

Is the claim (A) fully supported by
the evidence, (B) contradicted by the ev-
idence, (C) insufficient information, or
(D) conflicting evidence? Please respond
in the format [ [A]], [[B]], [[C]],
or [[D]].



Multi-hop Evidence Pursuit Meets the Web: Team Papelo at FEVER 2024

Christopher Malon
NEC Laboratories America
Princeton, NJ 08540
malon@nec-labs.com

Abstract

Separating disinformation from fact on the web
has long challenged both the search and the
reasoning powers of humans. We show that
the reasoning power of large language mod-
els (LLMs) and the retrieval power of modern
search engines can be combined to automate
this process and explainably verify claims. We
integrate LLMs and search under a multi-hop
evidence pursuit strategy. This strategy gener-
ates an initial question based on an input claim
using a sequence to sequence model, searches
and formulates an answer to the question, and
iteratively generates follow-up questions to pur-
sue the evidence that is missing using an LLM.
We demonstrate our system on the FEVER
2024 (AVeriTeC) shared task. Compared to a
strategy of generating all the questions at once,
our method obtains .045 higher label accuracy
and .155 higher AVeriTeC score (evaluating
the adequacy of the evidence). Through abla-
tions, we show the importance of various de-
sign choices, such as the question generation
method, medium-sized context, reasoning with
one document at a time, adding metadata, para-
phrasing, reducing the problem to two classes,
and reconsidering the final verdict. Our sub-
mitted system achieves .510 AVeriTeC score on
the dev set and .477 AVeriTec score on the test
set.

1 Introduction

Since 2018, the FEVER shared task has chal-
lenged natural language processing systems to ver-
ify claims using a corpus and provide evidence
that witnesses these verdicts. It has evolved from
a simple combination of natural language infer-
ence (NLI) and entailment (Thorne et al., 2018)
to a challenge involving adversarially constructed
claims (Thorne et al., 2019), to a challenge to ver-
ify complex, multi-hop claims using a combination
of tables and free text (Aly et al., 2021). In the
current task, it finally arrives at combating real-

37

life disinformation on the web (Schlichtkrull et al.,
2023).

Systems are challenged to classify claim texts
as supported, refuted, not enough evidence, or con-
flicting evidence/cherrypicking. In addition to clas-
sifying the claim, the systems must submit a list
of questions and answers about a claim as evi-
dence, with each answer derived from information
on the open web and cited with a URL. Credit is
given only when both the classification matches
the ground truth and the evidence is adequate. The
AVeriTeC score determines evidence adequacy by
thresholding an average of METEOR scores be-
tween each gold QA pair and the corresponding
submitted QA pair in the best assignment of QA
pairs.

This task may involve retrieval and reasoning
skills at a level for which professional journalists
are sometimes employed. The reasoning may in-
volve quote verification, stance detection, or nu-
merical comparisons. The retrieval challenge goes
beyond previous political fact-checking tasks (Os-
trowski et al., 2021; Alhindi et al., 2018) and even
beyond previous FEVER tasks in advancing from
a closed corpus (Wikipedia) to the open web.

Whereas previous FEVER shared tasks needed
to be solved by researcher-trained models, the cur-
rent shared task allows the use of commercial API
components. The winning team in FEVEROUS
based their retriever on fitting a Dense Passage Re-
triever (Karpukhin et al., 2020) to the FEVEROUS
data (Bouziane et al., 2021), but the training data
for FEVER 2024 is quite limited, consisting of
only 3,068 claims, and a retriever trained on user
feedback from worldwide search queries should
easily be more powerful. Additionally, an external
web search engine such as Google Search may pro-
vide additional query understanding features not
found in DPR, as a recent feature (not in the API
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we used) applies generative Al to search!. Even
though the gold evidence documents are guaran-
teed to appear in the knowledge store provided by
the contest organizers, the snippets may not be ex-
tracted successfully. We found that 297 of the 500
claims in the dev set included gold documents with
empty extracted text. In contrast, web search pro-
vides at least some text even from pages that the
provided web scraper is blocked from accessing.
Therefore, we chose to incorporate web search into
our system.

Relying on a large language model (LLM) such
as GPT-4o0 (OpenAl, 2024) for reasoning lets us
leverage skills that could not be learned from 3,068
heterogenous claims, and go beyond the simple se-
mantic comparison of an NLI model. Beyond sim-
ple NLI, ChatGPT and GPT-4 have been utilized to
detect hallucinations in text summaries (Luo et al.,
2023), as multi-faceted evaluators that score gener-
ated text (Zheng et al., 2023), and for critiques and
corrections of generated text (Lin et al., 2024).

Though there are many ways of using a search
engine and LLM within a fact-checking system,
our main contribution is to show the power of com-
bining them in a strategy of multi-hop evidence
pursuit, which formulates additional questions only
after searching and formulating answers to previ-
ous questions. In the following sections, we also
investigate the impact of many choices of how the
questions could be generated, the nature and size
of context for generating answers, handling of mul-
tiple search results, metadata, paraphrasing, reduc-
ing the problem to two classes, and reconsidering
the final verdict.

2 Related work

Retrieval-augmented generation (RAG) (Lewis
et al., 2020) provides a general paradigm for en-
abling an LLM to answer questions that surpass the
knowledge encoded in the LLM parameters, which
is a task somewhat isomorphic to verifying claims
(Demszky et al., 2018).

A growing body of work utilizes LLMs as high-
level reasoning controllers that can solve tasks by
querying agents to provide information or solve
subproblems (Xi et al., 2023; Wu et al., 2023a).
An early example for fact-checking an LLM’s own
output was LLM-Augmenter (Peng et al., 2023),
which called an open retrieval pipeline as an agent
action to iteratively improve an LLM response.

"https://blog.google/products/search
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Chan et al. (2024) uses an LLM to rewrite, decom-
pose, and disambiguate queries before searching,
and these steps are made into a hierarchy of agents
in Chen et al. (2024). Wang et al. (2024) used
a combination of Google search and GPT-4 with
a single hop to fact-check claims in the FacTool-
KB, FELM-WK, and HaluEval datasets. Behind a
closed API, SearchGPT has been launched in beta
to a few users as a service to provide access to a
search-empowered OpenAl LLM.?

FEVER 2024 presents a multi-hop, open cor-
pus fact verification challenge. In the multi-hop
shared task of FEVEROUS, all but two contestants
collected all the needed evidence up front, after
only reading the claim (Aly et al., 2021). Later top
performers (DCUF, UniFee, SEE-ST) addressed
evidence interaction with graph-based methods but
still did not address evidence that might be missed
by the initial document retrieval (Hu et al., 2022,
2023; Wu et al., 2023b). Malon (2021) estab-
lished an iterative paradigm for fact verification
that retrieves further documents, sentences, and ta-
ble cells by generating follow-up queries that are
formulated after considering only the first retrieval,
which we follow in the present system, in multi-hop
evidence pursuit.

In medical question answering, Xiong et al.
(2024) contemporaneously has proposed “iterative
RAG for medicine” which uses an LLM to gen-
erate follow-up questions considering previous re-
trievals. In our algorithm, the relevance of each
question is assured by generating it only upon a
failure to verify the claim as true or false based on
the existing evidence. Their method may generate
irrelevant questions after an answer could already
be obtained, simply because the fixed numbers of
questions are not achieved, resulting in lower ev-
idence relevance and higher computational cost.
Our system can stop as soon as a verdict is clear,
and if our system is configured to generate addi-
tional questions by paraphrasing, their relevance is
assured by their similarity to the original questions.

3 Methodology

3.1 Overall architecture

Pseudocode outlining the overall system is given
in Algorithm 1, with the main loop shown
in Figure 1. At the core of the system are
question generation functions Get Fir stQuestion
and GetNextQuestion, for which we consider

lopenai.com/index/searchgpt-prototype/
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Figure 1: Pursuing additional evidence by generating follow-up questions.

implementations either by sequence-to-sequence
encoder-decoder transformers such as TS (Raffel
et al., 2020), or by an LLM. The Get Answer func-
tion (Algorithm 2) prompts an LLM to implement
LLM BestDoc and LLM Answer to answer the
generated questions. The final verdict is also cho-
sen by prompting an LLM with the generated ques-
tions and answers, in LLMV erdict.

Algorithm 1. Claim verification

Input: Claim ¢, max questions n

Initialize QA list Q = ()

Let ¢ = GetFirstQuestion(c)

while |Q| < n and g # True and q # False
Let a = GetAnswer(q, c)
Append (g, a) to Q
Let ¢ = Get NextQuestion(c, Q)
# GetNextQuestion outputs True or False
# if next question not needed

Let k = |Q)|
while |Q| < n
Leti = |Q]

Let ¢ = Paraphrase(q; modk)
Let a = GetAnswer(q, c)
Append (g, a) to Q
Output: v = LLMVerify(Q,c) and Q

Unlike the baseline system (Schlichtkrull et al.,
2023), our system does not generate questions on a
post hoc basis after finding evidence, but generates
questions before web searches, playing a key role
in steering the verification process. Rather than
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Algorithm 2. Function Get Answer(q, c)
Input: Question ¢, claim ¢

Let s = ¢ + ¢ concatenation

Let G = WebSearch(s)

ifG=0:

Let G = WebSearch(NamedEntities(s))
G = {(urly, quotey), . .., (urly, quoteg) }
Let i = LLM BestDoc(G, q)

Let d = Full Document(url;)
Let e = AlignContext(d, quote;, 5)
Output: a = LLM Answer(q, €)

assuming all evidence can be found up front with
a single search query, we review the current set of
evidence and generate text (in our case, a question)
that provides a query to search for what is still miss-
ing and needed after each hop, like the followup
queries introduced in Malon (2021). Whereas the
queries in Malon (2021) were generated by train-
ing a sequence to sequence model to predict what
the missing evidence would look like, our system
prompts an LLM to ask a question that the missing
evidence answers.

The generation of evidence QA pairs temporar-
ily stops when GetNextQuestion thinks it can
classify the claim as supported or refuted without
asking another followup question (see Appendix
B). After that point, the already generated questions
are paraphrased using an LLM and corresponding
answers are found until the desired number of QA
pairs is obtained. Finally, an LLM uses all QA



pairs to decide the final classification for the claim.

3.2 Question generation

We consider two variants for the functions
GetFirstQuestion and GetNextQuestion. In
the Seq version, we finetune a sequence-to-
sequence encoder-decoder transformer model.
For GetFirstQuestion, the input is the claim,
and the output is the first question.  For
GetNextQuestion, the input is the claim concate-
nated with all previous question-answer pairs, in
the format

Claim: claim Question: questiong
Answer: answerg Question: question
Answer: answeri ...

and the output is the next question to be gener-
ated. These input strings are prefixed with the
string “question: . Details of the fine-tuning pro-
cedure are in Appendix A. Question-answer pairs
from the gold data in the training set are used for
this fine-tuning.

The other variant is the LLM version, in which
we prompt the LLM with similar inputs. The
prompts are given in Appendix B. Because LLM
output is often verbose and may contain unnec-
essary explanations, we sentence split the output
and use only the first sentence containing a ques-
tion mark. If this is impossible, we use the whole
output.

If an adequate number of questions and answers
has been generated and the verdict is clear, the
model has the opportunity to output a True or False
verdict to stop the question generation.

As a further ablation, we consider a more
traditional technique of generating all the ques-
tions at once, given the claim. The function
AllAtOnce (prompt in Appendix B) replaces
GetFirstQuestion to generate a set of questions,
and the while loop in Algorithm 1 is replaced
by a loop over the generated questions, calling
Get Answer but not Get N extQuestion.

3.3 Evidence selection

Here we describe the function GetAnswer, dis-
played in Algorithm 2, which retrieves evidence
and uses it to answer the generated questions.
Prompts for its LLM helper functions are given
in Appendix B.

The generated question is concatenated to the
claim to form a web search query, and the top ten
search results are obtained, including their URL,
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the short snippet displayed in the search results, and
usually the page title, site name, and publication
date. When the web search returns no results, we
retry the search using only the named entities (and
other capitalized words after the first word) from
the initial search query, following the supplemen-
tal queries which improved retrieval by Wikipedia
page title lookups in Malon (2018).

By prompting, LLM BestDoc is used to choose
one document that best answers the question from
the set of ten web search hits. We attempt to re-
trieve and scrape the text of that document using
its URL (function Full Document). This is im-
plemented using the scrape_text_from_url
function provided in the AVeriTeC baseline
(Schlichtkrull et al., 2023), which uses the Python
trafilatura library.® If the scraping succeeds, we
look for a small window of text (five sentences in
our experiments) that best overlaps the web search
snippet (function AlignContext). Specifically, all
five-sentence windows of the document that in-
clude more than 70% of the words in the web
search snippet are recorded in order, and the mid-
dle such window is taken. Using this window as
the document excerpt provides more background
and context to the text that web search found to be
relevant, while avoiding prompting with the over-
whelming amount of text that might be found in
the full web page. If the scraping fails, we continue
to the next stage using only the web search snippet
as document text.

Because LLM BestDoc depends on parsing
LLM output, it may fail to choose a best document.
If a best document is chosen and the scraping suc-
ceeds, the LLM is prompted to answer the question
using the selected five-sentence window of the best
document in LLM Answer. If the best document
is chosen and the scraping fails, LLM Answer is
run using the text of the web search snippet only. If
a best document was not chosen in LLM BestDoc,
we use the full text of the LLM response in that
function as the answer and the web search result
page itself as the evidence.

In LLMBestDoc and LLM Answer, the
prompt includes not only the text for each doc-
ument, but metadata including the page title, site
name, and publication date, when this metadata
appears in web search results. This metadata may
occasionally be useful in assessing the credibility
or relevance of the information to the question.

3github.com/adbar/trafilatura



3.4 Reconsideration and Classification

The Paraphrase function asks the LLM for
paraphrases of the existing questions. In prac-
tice, multiple paraphrases of each question are
requested at once to avoid repeated calls, even
though they are used one at a time. Although
these paraphrases may not be logically necessary
once GetNextQuestion has determined a verdict,
sometimes they provide a chance to reconsider the
same questions using multiple sources. The varia-
tions in wording also improve the AVeriTec score,
as discussed in section 4.

The LLMV erdict function is called after all
question-answer pairs are collected, to choose the
predicted label for each example. Using additional
QA pairs, it may override the decision that stopped
the QA generation process. Table 1 shows the
distribution of labels in the training and develop-
ment sets. “Not Enough Evidence” and “Conflict-
ing evidence / cherrypicking” are minority classes,
and we were unable to predict them with good
F1 score. We obtained a higher score by limit-
ing LLMYV erdict to predicting “Supports” or “Re-
futes.”

Class Train Dev

Supported  27.7% 24.4%
Refuted 56.8% 61.0%
NEI 92%  7.0%
Conflicting 64%  7.6%

Table 1: Distribution of class labels.

4 [Experiments

We implement Algorithm 1 wusing GPT-4o0
(gpt—-40-2024-05-13, seed 42) as the LLM,
T5 (t5-1large) (Raffel et al., 2020) as the
sequence-to-sequence model, and Google as the
web search engine, and consider various ablations.
For a faster development cycle and reduced mone-
tary cost, Table 2 reports the performance of each
of our systems only on the first 200 examples of
the development set.

4.1 Question formation

Recall from Section 3.2 that in Algorithm
1, the functions GetFirstQuestion and
GetNextQuestion could be implemented
either by Seq or LLM, or instead of Algorithm
1, the questions could be generated All AtOnce.
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Whichever question generation approach is
used, at most five questions are taken from the
question generator and the paraphrase loop of
Algorithm 1 extends the list to five questions.
The submitted system follows Algorithm 1 using
Seq for GetFirstQuestion, and LLM for
GetNextQuestion (Seq+LLM).

The lower performance of the AllAtOnce al-
ternative indicates that this task requires followup
searches considering the evidence already retrieved,
with searches that cannot be anticipated using the
claim alone. It validates our choice to use a multi-
hop evidence pursuit strategy (Malon, 2021).

The LLM+LLM alternative shows that perfor-
mance worsens if we generate the first question
using GPT-40. An inspection of the data revealed
that the gold first questions were usually simple
rephrasings of the claims, which T5 can learn well,
whereas GPT-40 often tried to generate something
more complicated.

The Seq+Seq alternative shows that performance
worsens if we generate the subsequent questions
using T5. Subsequent gold questions often re-
flected deeper reasoning using the obtained an-
swers, which we suspect are beyond the capabilities
of simple sequence to sequence models.

4.2 Label prediction

We have implementations of LLMVerdict that
use a four-class prompt, or eliminate the “Not
Enough Evidence” (NEI) and “Conflicting Evi-
dence / Cherrypicking” classes to decide only be-
tween “Supported” and “Refuted.” The 4-class re-
sult (otherwise the same as the main system) shows
very low F1 scores for the NEI and Conflicting
classes. As NEI claims form only 7.0% of the
dev set and Conflicting claims form only 7.6%, we
decided that it is always best to guess another label.

Another variant, “No late verdict,” calls
LLMVerdict only if the while loop is not ter-
minated by predicting True or False, and maintains
that early decision even after the paraphrases are
added. (If True is obtained, “Supported” is pre-
dicted and if False is obtained, “Refuted” is pre-
dicted.) The difference in label accuracy shows it
is sometimes useful to consider the whole question
and answer chain from the beginning when forming
a verdict.

4.3 Answer formation

The submitted system uses Full Document and
AlignContext to obtain longer document contexts



System SuppF1 RefF1 NEIF1 ConfFl1 Acc AVeriTec 0.25
AllAtOnce 591 813 0 0 705 .340
LLM+LLM .644 821 0 0 720 .385
Seq+Seq .638 816 0 0 715 .370
4 class 486 .593 148 069 415 .245
No late verdict .643 811 0 0 705 450
No long doc ST7 819 0 0 705 465
Multi-doc 673 .837 0 0 735 460
No metadata 575 810 0 0 .700 410
No paraphrase 701 .839 0 0 745 225
Repeat not para .624 813 0 0 710 .340
Algorithm 1 716 841 0 0 750 495
Table 2: Results on the first 200 examples of the dev set
Data Submission SuppF1 RefF1 NEIFlI ConfFl Acc AVeriTec 0.25
Dev  Algorithm 1 .698 .853 0 0 154 486
Dev Inflated to 10 .698 .853 0 0 154 510
Test  Algorithm 1 — — — — — 445
Test Inflated to 10 — — — — — AT

Table 3: Final results on full datasets

’

for prompting L LM Answer. The “No long doc’
ablation uses only the original web search snippet
as context for LLM Answer. The close perfor-
mance in AVeriTeC score shows that while longer
context is helpful, it is often unnecessary. Scraping
web pages to obtain this longer context has become
difficult as many sites seek to restrain robots, so
relying on snippets is convenient. In cases where
our scraping fails, the original snippet is returned
by Full Document anyway.

The “Multi-doc” ablation calls LLM Answer
using all ten search hits and their snippets, without
calling LLM BestDoc to focus on one. It is very
close to our system in label accuracy. Although it
narrows the depth and context of information pre-
sented to LLM Answer, it may have advantages
in presenting multiple possible perspectives.

Metadata for each document context is usually
presented to L LM Answer in the form

Documenti : (title, from site, published date)

The lower label accuracy and AVeriTeC score of the
“No metadata” variant show that knowing where
evidence came from is helpful to the LLM.

4.4 Evidence length

When the label is predicted correctly for an ex-
ample, the AVeriTeC score thresholds an exam-
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ple score, which is computed as the sum of the
METEOR scores between gold QA pairs and best
matching predicted QA pairs, divided by the num-
ber of gold QA pairs. Whenever fewer QA pairs
are predicted than gold QA pairs, those gold QA
pairs contribute zero to this average. Therefore,
to optimize the AVeriTec score, it is important to
predict at least as many QA pairs as the number of
gold pairs, even if the some predicted pairs match
poorly.

A system could submit up to ten QA pairs for
each example. However, only 5% of examples had
more than five gold QA pairs in the development
set. Since the ultimate objective is optimizing hu-
man evaluation rather than AVeriTeC score and
reading more than five QA pairs may be frustrating
for a human, we initially applied our systems to
produce five QA pairs per question.

For many examples, Algorithm 1 could reach de-
cisions of ¢ = True or ¢ = False in its first loop
of GetFirstQuestion and GetNextQuestion
using fewer than five QA pairs. We compared the
score obtained by repeating QA pairs, or by ask-
ing the LLM to paraphrase the existing questions
in the second loop of Algorithm 1, until five QA
pairs were obtained. In the case of paraphrase,
new answers are sought for the rewritten questions.
Besides improving the AVeriTeC score, the new an-



swers may be used to reconsider the final verdict.

The “No paraphrase” ablation has a minimal ef-
fect on label accuracy, but since fewer QA pairs
are generated, AVeriTec score is less than half the
score of the submitted system. ‘“Repeat not para-
phrase” to get five QA pairs can recover some of
the AVeriTeC score, but the paraphrases help the
METEOR score of the best assignment much more
than duplicates.

Ten QA pairs is the upper limit, and submitting
additional QA pairs up to ten can only improve the
score of the best assignment between submitted
pairs and gold pairs. We took our five generated
QA pairs from Algorithm 1 (GetFirstQuestion,
GetNextQuestion, and paraphrasing) and dupli-
cated them to submit ten. Naturally, repeating
can be helpful if one generated QA pair addresses
points raised in multiple gold QA pairs. The effect
of inflating the QA pairs on our full dev set and test
set performance is shown in Table 3.

5 Conclusion

The AVeriTeC shared task is a realistic fact-
checking challenge on actual web disinformation.
The best large language models offer the deep rea-
soning power needed to pursue missing evidence
to verify claims, and the best web search engines
provide the vast document indices and retrieval
capabilities needed to find it.

We have contributed a multi-hop evidence pur-
suit framework which combines the strengths of
sequence to sequence models with LLMs to gen-
erate first question and subsequent questions sepa-
rately, considering the present information; to stop
pursuit once the answer is clear; and to embellish
evidence by paraphrasing before considering the
whole evidence chain to make the final verdict.
Ablations indicate the importance of each design
choice. Multi-hop evidence pursuit outperforms
trying to generate all questions in one step. Reduc-
ing the number of classes, and using metadata and
multi-sentence context from one best document,
were important in obtaining our best performance.

The fact checking system presented may be use-
ful to expedite the work of human fact checkers or
provide a more rapid preliminary response to disin-
formation. Its full explainability could mitigate the
effect of misclassifications, if the explanations were
read and considered by a human. Over a history
of many claims, ratings of disinformation from our
system and/or human fact checkers could be used
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to rate the credibility of an information source.

Limitations

When “Not Enough Evidence” (NEI) is an option,
an LLM tends to select it too often. Our system
was unable to predict either NEI or “Conflicting
Evidence / Cherrypicking” with acceptable accu-
racy. Considering this, and the fact the overall label
accuracy is only .754, humans should be cautious
in trusting this system’s output to verify a claim
without reading the rationale.

LLMs have insufficient information to judge the
overall credibility of a website, and currently just
the site name is given for the LLM’s consideration.
Metadata including the site name helps (to give an
example from the dev set, GPT-40 was aware or
discovered through its searches that Scoopertino
was a satirical website), but generally, misinforma-
tion that is corroborated elsewhere on the web may
fool our fact checking system.

Although the LLM is always prompted to an-
swer questions “based on the above information”
quoted from retrieved documents or its previous
answers, there is no guarantee that the LLM does
not apply other, untraceable knowledge in forming
its answers. We use a date filter to ensure that all
web searches return documents only from before
each claim date, but we use an LLM whose training
cutoff is after the claim dates.

Novel information first reported, which has no
basis in existing documents, can never be fact-
checked with the techniques of this system (for
example, the first report that a presidential candi-
date was shot). That kind of fact checking requires
judgments of plausibility, credibility, and consis-
tency that are out of scope for this system.
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A Fine-tuning

A t5-large model was fine-tuned for three
epochs with batch size 4, maximum source
length 64 or 256 for GetFirstQuestion or
GetNextQuestion, and maximum target length
64. For the AdamW optimizer, default Hugging-
face values of 5 x 10~° were used for the learning
rate, /1 = 0.9, and By = 0.999. The model was
prompted with the prefix “question: ~ followed by
the inputs. Only gold data from AVeriTeC was used
for the fine-tuning of each model.

B Prompts

GetFirstQuestion.
prompt is:

For the LLLM variant, the

We are trying to verify the following
claim by speaker on date. Claim: claim
We aren’t sure whether this claim is true
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or false. Please write one or more ques-
tions that would help us verify this claim,
as a JSON list of strings. Keep the list
short.

The JSON is parsed and only the first string in the
list is used.

AllAtOnce. For the All AtOnce variant, we use
the same prompt as Get FlirstQuestion to get the
questions, but we keep the entire list.

GetNextQuestion. For the LLM variant, the
prompt is:

We are trying to verify the follow-
ing claim by speaker on date. Claim:
claim So far we have asked the ques-
tions: Question 0: questiony An-
swer: answerg Question 1: question;
Answer: answery ... Based on these
questions and answers, can you verify
whether the claim is true or false? Please
answer [ [True]] or [ [False]], or
ask one more question that would help
you verify.

The response is searched for [[True]] or

[ [False]]. If neither is found, then the response

1s sentence tokenized with the sent _tokenize

function of NLTK 3.8.1 and the first sentence that

includes a question mark is returned.
LLMBestDoc. The prompt is:

We searched the web and found
the following information. Docu-
ment O (titleg, from siteg, published
dateg): snippety Document 1 (titleq,
from site, published date;): snippety
...Document 9 (titleg, from siteg, pub-
lished dateg): snippetg Based on the
above information, please answer the
following question, referring to the one
document that best answers the question.
question

Note that the original claim is not used in this
prompt. The response is searched with a regex for
the first instance of Document\s+ ([0-9])/or
Documents[ 0-9, ]+and ([0-9]+) and
the corresponding numbered document is taken. If
the regex search fails, the search result page itself
is used as context for answering the question, and
the full response is used as the answer.

LLMAnswer. Unlike LLM BestDoc, this is
called with context from one document. The
prompt is:
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We searched the web and found the
following information. Document (¢itle,
from site, published date): context
Based on the above information, please
answer the following question. question

The entire response is used as the answer.
Paraphrase. The prompt is:

Please give four ways to rephrase the
following question. Give your answer as
a JSON list of strings, each string being
one question. Question: question

LLMVerify. The prompt is:

We are trying to verify the follow-
ing claim: claim Based on our web
searches, we resolved the following ques-
tions. 0. questiong answery ...k.
questiony answery Is the claim (A)
fully supported by the evidence, or (B)
contradicted by the evidence? Please re-
spond in the format [ [A]] or [ [B]].

We search the response for [ [A]] or [ [B] ]. For
the four class variant, the end of the prompt is:

Is the claim (A) fully supported by
the evidence, (B) contradicted by the ev-
idence, (C) insufficient information, or
(D) conflicting evidence? Please respond
in the format [ [A]], [[B]], [[C]],
or [[D]].
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Abstract

Fact-checking involves searching for relevant
evidence and determining whether the given
claim contains any misinformation. In this pa-
per, we propose a fact verification system based
on RAG-Fusion. We use GPT-40 to generate
questions from the claim, which helps improve
the accuracy of evidence retrieval.

Additionally, we adopt GPT-40 for the final
judgment module and refine the prompts to en-
hance the detection accuracy, particularly when
the claim contains misinformation. Experiment
showed that our system achieved an AVeriTeC
Score of 0.3865 on the AVeriTeC test data, sig-
nificantly surpassing the baseline score of 0.11.

1 Introduction

In recent years, misinformation has become easier
to spread online (Guo et al., 2022). Consequently,
to prevent its spread, the demand for automated
fact-checking, which automatically detects unreli-
able information has significantly increased (Nakov
et al., 2021). Fact-checking involves searching for
information necessary for verification (evidence)
from reliable external databases, and determining
the truthfulness of given claim based on that infor-
mation (Zhou et al., 2019).

There are various fact-checking datasets, with
unstructured data like text (Thorne et al., 2018;
Schuster et al., 2021) and structured data like tables
(Wenhu Chen and Wang, 2020; Aly et al., 2021) or
knowledge graphs (Kim et al., 2023). Generally,
these datasets include a claim, the evidence that
needs to be searched to verify the claim, and a
label indicating the judgment.

For example, in FEVER (Thorne et al., 2018),
claims need to be classified into three labels: “Sup-
ported”, “Refuted”, or “Not Enough Information”.
Numerous systems have been proposed (DeHaven
and Scott, 2023; Krishna et al., 2022; Liu et al.,
2020), and the accuracy of this three-class clas-
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sification has reached nearly 0.8'. However, the
claims included in these datasets are created from
sources like Wikipedia for specific purposes, and
they differ from the claims that journalists actually
verify. There is a dataset that include real-world
data (Wang, 2017), but they face the issue of not
providing sufficient evidence necessary for judg-
ment (Schlichtkrull et al., 2023).

In this Shared Task, AVeriTeC(Schlichtkrull
et al., 2023) has been newly created. In AVeriTeC,
the evidence is based on information collected from
the web and is provided in a Question-Answer pair
format by human annotators. The judgment labels
are: “Supported”, “Refuted”, “Not Enough Evi-
dence (NEE)”, and “Conflicting Evidence/Cherry-
picking”. Additionally, for each claim, the reasons
why annotators assign the judgment labels are an-
notated.

The system needs to extract evidence from docu-
ments obtained through web searches or from doc-
uments provided by the organizers as web search
results, and then predicts the claim label. The claim
is considered correctly judged only if the necessary
evidence is appropriately retrieved, and the final
judgment label is correctly predicted.

In this paper, we designed the system shown in
Figure 1 to improve the AVeriTeC baseline. The
baseline system primarily used BM25 (Robertson
and Zaragoza, 2009) for evidence collection, but
this method does not allow for searching based on
the meaning of the claim or web document. There-
fore, we perform searches using embedding vectors
with stella_en_400M_v5°. We generate embedding
vectors for the claim and the document, and collect
50 documents related to the claim based on their
similarity.

Next, inspired by RAG-Fusion (Rackauckas,

1ht’cps: //competitions.codalab.org/
competitions/18814

2https: //huggingface.co/dunzhang/stella_en_
400M_v5
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2024), we use GPT-4o to generate three questions
from the claim that are needed to search for the ev-
idence. For each of these generated questions, we
select three answer sentences from the previously
collected 50 documents. These Question-Answer
pairs collected through this procedure are input into
GPT-40 along with the claim for the final judgment
in verdict inference.

The proposed fact-checking system achieved an
AVeriTec score of 0.3865 on the test data.

2 System Description

The system we developed is structured in three
phases similar to (Gi et al., 2021): Document
Retrieval, Question Generation and Sentence Re-
trieval and Verdict Inference. Document Retrieval:
Since the document set provided by the organiz-
ers is vast, this phase selects documents related to
the claim. Question Generation and Sentence
Retrieval: Referring to the RAG-Fusion method,
questions for information retrieval are generated us-
ing GPT-40 from the claim. Subsequently, the sen-
tences that answer these generated questions are re-
trieved from the sentences contained within the doc-
uments selected in the Document Retrieval phase.
Verdict Inference: Using GPT-40, which has high
inferential capabilities, a judgment is made based
on the obtained Question-Answer pairs and the
claim. We use GPT-4o via OpenAl API®.

2.1 Document Retrieval

The AVeriTec dataset provides an average of 999.3
documents per claim, and splitting them into sen-
tences would require extensive resources. There-
fore, the target of this phase is to narrow down the
candidates at the document level.

In the baseline system, all documents related
to a claim were split into sentences, and relevant
sentences for each claim were retrieved primarily
using BM25. However, this approach doesn’t ac-
count for paraphrasing or semantic similarity, lim-
iting its search performance. Therefore, we use
stella_en_400M_v5 to perform searches for the
related documents using embedding vectors. At
the time of writing this paper, stella_en_400M_v5
was the highest-performing model under 1B on
the MTEB leader-board*. Given the vast amount
of document to be processed in this dataset, a

3https://openai.com/api/
4https://huggingface.co/spaces/mteb/
leaderboard
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Figure 1: System Overview: Document Retrieval, Ques-
tion generation and Sentence Retrieval, and Verdict
inference. In Document Retrieval, 50 documents are
searched. In Sentence Retrieval, up to 3 questions are
generated, and for each question, 3 candidate answers
are retrieved.

lightweight model was chosen. Each claim and the
documents provided for that claim are converted
into embedding vectors, and relevant documents
are selected based on similarity. (The prompt used
for embedding claim was s2p_query (sentence to
passage query). When we use stella_en_400M_v5
for embedding search sentence, we can select
s2p_query or s2s_query (sentence to sentence
query) depending on our purpose).

2.2 Question Generation and Sentence
Retrieval

After narrowing down documents with Document
Retrieval, the document is split into sentences to
search for more critical information. The URL
of each sentence remains the same as that of the
original document before splitting.

The simplest approach is to convert both the
claim and each sentence into embedding vectors
then retrieve the most similar sentences. On the
other hand, a method called RAG-Fusion (Rack-
auckas, 2024) has been proposed. RAG is a system
that searches for relevant information in response
to a user’s input and uses both the input and the re-
trieved information to generate a response through


https://openai.com/api/
https://huggingface.co/spaces/mteb/leaderboard
https://huggingface.co/spaces/mteb/leaderboard

(a) Prompt for question generation from claim

(b) Prompt for question generation from answer sentence

You will be given a text. Your task is to generate up to 3
questions that are necessary to verify the accuracy of the
information contained in the text.

Example:

Text: Why should you pay more taxes than Donald Trump pays?
And that’s a fact. $750. Remember what he said when that was
raised a while ago, how he only pays... He said, ‘Because I'm smart.
| know how to game the system.’

Questions: 1. What was Trump's tax return in 2017

2. When did Trump say he was smart for not paying taxes

| will give you a sentence. Create a question for which this
sentence could be the answer.
Output only the question.

Example:
Sentence: Trump Paid $750 in Federal Income Taxes in 2017
Question: What was Trump's tax return in 2017

(d) Prompt for verdict inference

(c) Prompt for verdict inference with 3 questions

Classify the given claim into four labels: "Supported",
"Refuted", "Not Enough Evidence" or "Conflicting
Evidence/Cherrypicking".

Your predictions must be based on the given evidence.
The evidence includes questions and three pieces of
related information for each question.

If there is even the slightest possibility that it is incorrect,
output "Refuted"”.

Output Format:
"Supported”, "Refuted”, "Not Enough Evidence" or
"Conflicting Evidence/Cherrypicking"

Classify the given claim into four labels: "Supported”,
"Refuted", "Not Enough Evidence" or "Conflicting
Evidence/Cherrypicking".

Your predictions must be based on the given evidence.

If there is even the slightest possibility that it is incorrect,
output "Refuted"”.

Output Format:
"Supported”, "Refuted”, "Not Enough Evidence" or
"Conflicting Evidence/Cherrypicking"

(e) Prompt for inferring whether the information is sufficient

We are collecting evidence to determine whether
the following claim contains incorrect
information.

Determine if enough information has already been
gathered or if further information is needed.

Output Format:
"Enough Evidence", "Need More Evidence"

Figure 2: Prompts designed for GPT-40. In our final system, we use (a) and (c). The other prompts are used only for

performance evaluation purposes.

a language model (Gao et al., 2024). The concept
of retrieving relevant information and using it in
subsequent processing is similar to fact-checking.

RAG-Fusion is a method proposed to enhance
the retrieval performance of RAG. Instead of di-
rectly searching with the user’s input, it conducts
the search using multiple questions generated from
user’s input by LLMs (Large Language Models)
and re-ranks the external information based on
the search results. This approach allows for a
broader perspective in the search process compared
to searching directly with the user’s input, poten-
tially improving search accuracy.

In this study, we focus on RAG-Fusion’s ability
to retrieve diverse information through search using
multiple questions. Using the prompt shown in
Figure 2(a), three questions were generated from
the claim using GPT-40 to search for information
necessary for judgment. At this time, the claim
most similar to the target claim was retrieved from
the training data (using stella_en_400M_v5), and
questions were copied from the evidence annotated
to that claim to as the one-shot example included in
the prompt. (When experimenting with validation
data (500 claims), the claim is retrieved from the
training data (3068 claims); when experimenting

with test data (2215 claims), it’s retrieved from
both the training and validation data.)

For each question, three appropriate an-
swers were retrieved, just as before, using
stella_en_400M_v5. However, when stella is used
to search for similar claims to generate questions,
it is set to s2s_query; when searching for answers,
it is set to s2p_query.

2.3 Verdict inference

In the final judgment, based on the created Evi-
dence (Question and Answer), the system must
classify the claim into one of four categories: “Sup-
ported”, “Refuted”, “Not Enough Evidence” or
“Conflicting Evidence/Cherry-picking”. We used
GPT-40 for this judgement. In Fact-checking, the
most critical error to avoid is mistakenly classifying
a “Refuted” claim as another label. Therefore, the
prompt includes the instruction: “If there is even
the slightest possibility that it is incorrect, output
"Refuted’.” The prompt is shown in Figure 2(c).

3 Result

In this chapter, we explain the results at each phase
of the system. To consider improving search ac-
curacy, we report the experimental results using a
validation dataset (containing 500 claims) where
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the correct evidence has been distributed. Addition-
ally, when using GPT-4o, the temperature is set to
0 to ensure the reproducibility of the experiments.

3.1 Document Retrieval Result

To verify how many documents could be retrieved
necessary for judgment, we utilize the annotated
URLs. We counted the number of claims for which
the search was successful by comparing the URLs
of documents annotated as the necessary sentences
for judgment with the URLSs of the documents re-
trieved through embedding vectors (up to a max-
imum of 500 claims in the validation data). The
verification is conducted under two settings: when
all the correct URLs are retrieved (All) and when
at least one correct URL is retrieved (Easy).

We compared two document retrieval methods:
one that uses embedding vectors of claims and doc-
uments as described in 2.1, and another that uses
the questions generated by the method described
in 2.2. The questions generated in 2.2 can also
be used for document retrieval. Therefore, each
question is converted into an embedding vector and
used for document retrieval. We compared whether
it is better to use the claim itself or the question
generated from the claim for document retrieval.

The search results are shown in Table 1. In the ta-
ble, “top k” refers to the top k results for each ques-
tion in the question-based search. In other words,
the top 25 for each question retrieves the same
number of documents as the top 75 in the claim-
based search (25x3=75). However, in the baseline
system of (Schlichtkrull et al., 2023), documents
were divided into sentences before the search, so a
comparison at this stage cannot be made.

The comparison between the top 75 in claim-
based search and the top 25 in question-based
search in Table 1 shows that claim-based search
yields higher accuracy. Of course, if we increase
the top k, search accuracy improves naturally. How-
ever, considering computational costs, we decided
to retrieve the top 50 documents in claim-based
search for this time.

Method Top k Easy | All
Top 75 | 283 90
Claim Top 50 | 247 78
Top25 | 187 | 54
Top 75 | 313 115
Question | Top 50 | 295 100
Top25 | 242 | 72

Table 1: Document Retrieval Result

Method Top k Easy | All
Top 10 | 51 14
Base Top 3 33 8

Top 1 17 4

Top 10 | 94 27
Claim Top 3 50 15
Top 1 26 8

Top 10 | 143 36
Question | Top 3 79 19
Top 1 44 13

Table 2: Sentence Search Result

Method Q A Q+A
Claim (Top 3) 0.3063 | 0.1814 | 0.2258
Question (Top 1) | 0.3898 | 0.1699 | 0.2436

Table 3: Evidence evaluation score of Sentence Search
Result

3.2 Sentence Retrieval Results

We compare the performance of sentence retrieval
using BM25 at the baseline and retrieval using
embedding vectors. In the original baseline, a re-
ranker was employed, but the results before intro-
ducing the re-ranker are shown for performance
comparison. For retrieval using embedding vec-
tors, we employ two methods: one based on the
RAG-Fusion method explained in 2.2 and another
based on the claim-based retrieval method. Similar
to the comparison in 3.1, the top k retrieval results
using the question correspond to the number of
documents retrieved in the top 3k using the claim.

For evaluation, we report scores based on
whether all correct URLs were retrieved or at least
one correct URL was retrieved, using the URLSs ob-
tained from the retrieved sentences and the correct
URLSs. The results are shown in Table 2.

When comparing the top 1 in the question-based
retrieval and the top 3 in the claim-based retrieval,
the retrieval performance is nearly equivalent. Both
methods yield higher scores than the baseline. Of
course, this evaluation simply calculates the score
based on URLs, so there might be cases where
an unrelated sentence from the same document
as the correct answer is retrieved. Therefore, we
also report the evidence evaluation score used in
this Shared Task. The evidence evaluation score is
calculated as following:

ug(¥.Y) = o max 303 (5.4)X(0.0)
ey YEY
ey
Here, X is a boolean function denoting the as-
signment: Y xY—{0, 1}. Y is generated se-
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Method Q Q+A Label Accuracy | AVeriTec Score (.1, .2, .25)
Claim (Top 3) 0.3063 0.2258 0.568 0.528 0.336 0.198
Question (Top 1) | 0.3898 0.2436 0.612 0.588 0.384 0.264
Question (Top 3) | 0.3898 0.2757 0.692 0.676 0.524 0.38

Gold Evidence 1.0 1.0 0.858 0.858 0.858 0.858

Table 4: Results of claim-based method and question-based method on the validation dataset. AVeriTec Scores are
conditioned on correct evidence (Q+A) at A=(0.1, 0.2, 0.25)

quences and Y is the reference sequences. f is
a pairwise scoring function: Y xY —R.

In the Shared Task, two scenarios are evaluated:
one where only the question from the QA pair pro-
vided as necessary information for the judgment
is used, and another where the combination of the
question and the answer is used. In this paper, to
compare performance in more detail, we also in-
cluded the scenario where only the answer is used.

In retrieval with the claim and the baseline, the
relevant sentences associated with the claim have
been retrieved at this point. Consequently informa-
tion corresponding to the answer has been retrieved.
However, the part corresponding to the question
has not yet been created. Therefore, we used GPT-
40 to generate a question that would match the
retrieved sentence as an answer. In this way, we
created Question-Answer pairs in the same format
as the correct evidence provided for the judgment.
The prompt used is shown in Figure 2(b), and the
scores are shown in Table 3.

The comparison between claim-based and
question-based approaches shows that the pre-
creation of questions yields higher Question scores,
which in turn improves the Question+Answer
scores. On the other hand, the score for the answer
alone is slightly higher when using the approach
of retrieving with the claim alone and then gener-
ating the question afterward. Since this evaluation
metric only assesses sequence match, it is difficult
to determine superiority at this point. Therefore,
we decided to calculate the performance of both
methods in the next Verdict Inference and select
the approach with higher accuracy.

3.3 Verdict Inference Result

For the final evaluation, we employed GPT-40. Us-
ing the prompt shown in Figure 2(d), we compare
the results of Question Top 1 and Claim Top 3.

In the Shared Task, a judgment was considered
correct only when the evidence evaluation score
(Eq. (1)) exceeded a certain threshold and the final
judgment was correct (AVeriTeC Score). However,
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Example Evidence of for verdict inference with 3 questions

{'question': 'Did Sean Connery write a letter to Steve Jobs?',
‘answer': "This is a letter Sean Connery wrote didn't write in
response to Steve Jobs after being asked to appear in an
Apple ad.",

{'question’: “,

‘answer': 'First, the bad news. Sean Connery never actually
sent a typewritten letter to Steve Jobs in 1998 refusing to be
in an Apple ad}

{'question': “,
‘answer': 'Pingback: Did Sean Connery Write an Angry Letter
to Steve Jobs? | wafflesatnoon.com’}

Figure 3: Example of increasing the number of possible
answers to a question to three. For each claim, three
evidences are created that are the same as the following
QA pairs.

the AVeriTeC Score is solely based on sequence
matching and does not account for the meaning of
the sentences. Moreover, it is possible to retrieve
information useful for judgment outside of the cor-
rect evidence. This indicates that the evidence re-
trieval may not have been adequately evaluated by
AVeriTeC Score.

Therefore, in addition to the AVeriTeC Score, we
compared how well the four-class classification of
final judgments was performed using Label Accu-
racy, ignoring the Evidence evaluation score. Since
the Label Accuracy is expected to be higher when
the necessary evidence for judgment is retrieved,
it can be considered an indicator of how well the
evidence retrieval was performed. Additionally,
since no comparison with the correct Evidence is
required, the problem with AVeriTeC Score, where
useful information must be retrieved from sources
other than the correct evidence, does not become an
issue (though there is a possibility of accidentally
making the correct judgment based on inappropri-
ate evidence).

The experimental results are shown in Table 4. A
comparison of the first and second rows of this table
shows that the Label Accuracy for Question Top 1
is higher than the Label Accuracy for Claim Top 3.
This suggests that with the current Evidence eval-
uation score, a small difference in Answer scores
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Figure 4: Confusion Matrix of verdict result of GPT-40. (a) Given gold evidence with prompt Figure 2(d), (b) Given
Retrieved evidence with prompt Figure 2(c), (c) Given gold evidence with removing “If there is even the slightest
possibility that it is incorrect, output "Refuted"” from prompt Figure 2(d)

of around 0.1, as observed in Table 3, cannot be
conclusively interpreted as a decline in retrieval
performance.

To further improve the score,we considered the
top 3 search results for each question (i.e., when
a total of 9 sentences were retrieved). Then we
included the Top 3 sentences as Evidence, noting
the increase in URL hit rate (Table 2). However,
if there are three answers for each question, each
question will be reused three times. In this case,
if an appropriate question can be created, there is
concern that the evidence evaluation score may be
unfairly high. Therefore, as shown in Figure 3,
we used only the QA pair for the Top 1 answer,
leaving the Question field empty for the Top 2 and
Top 3 answers, and including them as evidence. In
competitions using this dataset, participants can
use up to 10 QA pairs. By following this limitation,
we select the Top 3 answer sentence. This approach
allowed for a fair evaluation of the AVeriTeC Score.
The prompt given to GPT-4o in this case is shown
in Figure 2(c). The judgment results are shown in
the third row of Table 4, where both the Evidence
score and judgment score improved by considering
more Evidence.

Based on these results on validation dataset, the
final form of the system was determined to involve
searching based on RAG-Fusion, including three
candidate answers in the questions, and making
the final judgment using GPT-40. The scores on
the test data were Q 0.3774, Q+A 0.2851, and
AVeriTeC Score 0.3865, with a rank of 8 on the
leader-board.

4 Error Analysis

Figure 4(a)(b) shows the confusion matrix when
the correct data or retrieved data using a RAG-
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Fusion-based search is provided. It can be seen
that when the correct label is “NEE (Not Enough
Evidence)” or “Conflict”, there is a tendency to
predict it as “Refuted”. This is likely due to the
instruction included in the prompt: “If there is
even the slightest possibility that it is incorrect,
output 'Refuted’.” However, in Fact-checking, to
accurately predict “Refuted” claims as Refuted is
the most important. Since it is crucial not to provide
the user with incorrect information, it is undesirable
to remove this instruction from the prompt.

Figure 4(c) shows the confusion matrix when
this instruction is removed and the correct evidence
is provided, revealing an increased risk of failing to
detect Refuted claims, even when the information
is complete.

To address this, adopting the concept of Cor-
rective Retrieval Augmented Generation (CRAG)
(Yan et al., 2024) could be considered for “NEE”.
In CRAG, a new module is introduced to determine
whether the retrieved document is necessary or not.
If we incorporate the module into our system, we
could first determine whether the information is
enough or not. If the information is not enough,
the system would classify it as “NEE”. If the in-
formation is enough, the system would proceed to
classify the remaining three classes using the simi-
lar prompt as in 2(d). By adopting this new mod-
ule, we will be able to improve the performance of
“NEE”.

As a test, using GPT-40, we performed a two-
class classification—whether the information was
complete—using the prompt from Figure 2(e) with
the correct data provided. In this task, “Supported”,
“Refuted”, and “Conflict” were considered as hav-
ing complete information, while “NEE” was con-
sidered as lacking information. The accuracy rates



were 90% for “Supported”, 86% for “Refuted”,
60% for “NEE”, and 78% for “Conflict”. There-
fore, further prompt improvements are needed to
adapt GPT-4o to this two-stage approach. Fine-
tuning BERT should also be considered.

The “Conflict” class is difficult to render a ver-
dict on, so further improvements will be necessary.

5 Another Approach

In this section, we will introduce a classification ap-
proach that we experimented with but did not yield
satisfactory results. Although the performance did
not exceed that of GPT-40’s 4-class classification,
we will present it here in the hope that it may con-
tribute to future efforts by other participants.

We considered fine-tuning BERT as the final
classifier for 4-class classification. However, the
dataset exhibits a bias in the classification labels
(in the training data: “Supported” 27.6%, “Refuted”
56.8%, “Not Enough Evidence (NEE)” 6.4%,
“Conflicting Evidence/Cherry-picking” 9.2%). In
particular, the “NEE” and “Conflict” labels are un-
derrepresented. To address this, we devised two
separate classifiers: one for “Supported” and an-
other for “Refuted”. These classifiers perform bi-
nary classification, with the Supported classifier
determining whether a claim is “Supported” or not,
and the “Refuted” classifier determining whether
a claim is “Refuted” or not. The final prediction
label for the claim is then determined based on the
results of these classifiers.

If the Supported classifier predicts True and the
Refuted classifier predicts False, the final predic-
tion is “Supported”. Conversely, if the Supported
classifier predicts False and the Refuted classifier
predicts True, the final decision is “Refuted”. If
both classifiers predict False, the decision is “NEE”,
and if both predict True, it is “Conflict”. This ap-
proach can mitigate the issue of label imbalance.
For example, in the Supported classifier, claims that
are annotated as “Supported” are used as positive
examples, while “Refuted” and “NEE” claims are
used as negative examples. This allows for similar
treatment of “Refuted” and “NEE” labels.

We fine-tuned bert-base-uncased® for both a 4-
class classifier and the combined two-classifier ap-
proach (batch size=32, learning rate=1e-5, with
the training data split 9:1 and used for fine-tuning).
The label accuracy on the validation data, when

5https://huggingface.co/google—bert/
bert-base-uncased
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provided with correct evidence, was 0.536 for the
4-class classifier and 0.60 for the combined two-
classifier approach. These results indicate that
combining the two classifiers yields higher accu-
racy. However, as shown in the fourth row of Table
4, simply using GPT-4o0 for 4-class classification
achieves a sufficiently high accuracy of 0.858, so
this approach was not adopted for our system. We
also conducted experiments where GPT-40 was
assigned the task of the two classifiers, but the Re-
futed classifier did not perform well. We believe the
issue arises because the difference between being
“Refuted” and lacking the evidence to determine if
it is “Refuted” has become unclear.

6 Conclusion

This paper discusses a method for solving the
AVeriTeC Task. The proposed system, inspired
by RAG Fusion, pre-generates questions for infor-
mation retrieval. This approach allows for a greater
amount of information to be used in searches com-
pared to using only the claims. The Label Accuracy
and AVeriTec Score showed that pre-generating
questions resulted in higher accuracy.

Proposing an evaluation metric that can con-
sider information beyond the currently accepted ev-
idence when making judgments may lead to more
appropriate progress in future research and devel-
opment. Given the rapid advancement of LLMs,
there is also a need to conduct research on adopting
LLMs for the evaluation of evidence validity.

Limitation

In this system, the search for answers to questions
is conducted using embedding vectors. This ap-
proach carries the risk of reducing the validity of
the Question-Answer pairs compared to the method
where the relevant sentences are searched first and
the question is generated afterward. However, as
shown in Table 4 of the current dataset, the ap-
proach of generating the question first and then
searching for the answer yields higher accuracy,
indicating that the validity of the Question-Answer
pairs has not been compromised. Nonetheless,
when the search for answers is more challenging,
such as in highly specialized domains like medicine
or biology, it is necessary to carefully verify the
validity of the QA pairs.

While the current system primarily uses GPT-4o,
further experiments with other models are neces-
sary to verify its generalizability.


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased

Acknowledgments

This work was supported in part by JSPS KAK-
ENHI (Grant No. JP23K20733).

References
Rami Aly, Zhijiang Guo, Michael Sejr Schlichtkrull,
James Thorne, Andreas Vlachos, Christos

Christodoulopoulos, Oana Cocarascu, and Arpit
Mittal. 2021. The fact extraction and VERification
over unstructured and structured information
(FEVEROUS) shared task. In Proceedings of the
Fourth Workshop on Fact Extraction and VERifica-
tion (FEVER), pages 1-13, Dominican Republic.
Association for Computational Linguistics.

Mitchell DeHaven and Stephen Scott. 2023. BEVERS:
A general, simple, and performant framework for
automatic fact verification. In Proceedings of the
Sixth Fact Extraction and VERIfication Workshop
(FEVER), pages 58—65, Dubrovnik, Croatia. Associ-
ation for Computational Linguistics.

Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia,
Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, Meng Wang,
and Haofen Wang. 2024. Retrieval-augmented gener-
ation for large language models: A survey. Preprint,
arXiv:2312.10997.

In-Zu Gi, Ting-Yu Fang, and Richard Tzong-Han Tsai.
2021. Verdict inference with claim and retrieved
elements using RoOBERTa. In Proceedings of the
Fourth Workshop on Fact Extraction and VERIfica-
tion (FEVER), pages 60—65, Dominican Republic.
Association for Computational Linguistics.

Zhijiang Guo, Michael Schlichtkrull, and Andreas Vla-
chos. 2022. A survey on automated fact-checking.
Transactions of the Association for Computational
Linguistics, 10:178-206.

Jiho Kim, Sungjin Park, Yeonsu Kwon, Yohan Jo, James
Thorne, and Edward Choi. 2023. FactKG: Fact veri-
fication via reasoning on knowledge graphs. In Pro-
ceedings of the 61st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 16190-16206, Toronto, Canada. As-
sociation for Computational Linguistics.

Amrith Krishna, Sebastian Riedel, and Andreas Vlachos.
2022. ProoFVer: Natural logic theorem proving for
fact verification. Transactions of the Association for
Computational Linguistics, 10:1013-1030.

Zhenghao Liu, Chenyan Xiong, Maosong Sun, and
Zhiyuan Liu. 2020. Fine-grained fact verification
with kernel graph attention network. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 7342-7351, On-
line. Association for Computational Linguistics.

Preslav Nakov, David Corney, Maram Hasanain, Firoj
Alam, Tamer Elsayed, Alberto Barrén-Cedefio, Paolo

54

Papotti, Shaden Shaar, and Giovanni Da San Martino.
2021. Automated fact-checking for assisting human
fact-checkers. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence,
IJCAI-21, pages 4551-4558. International Joint Con-
ferences on Artificial Intelligence Organization. Sur-
vey Track.

Zackary Rackauckas. 2024. Rag-fusion: A new take on
retrieval augmented generation. International Jour-
nal on Natural Language Computing, 13(1):37-47.

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm?25 and be-
yond. Foundations and Trends in Information Re-
trieval, 3:333-389.

Michael Sejr Schlichtkrull, Zhijiang Guo, and Andreas
Vlachos. 2023. Averitec: A dataset for real-world
claim verification with evidence from the web. In
Thirty-seventh Conference on Neural Information
Processing Systems Datasets and Benchmarks Track.

Tal Schuster, Adam Fisch, and Regina Barzilay. 2021.
Get your vitamin C! robust fact verification with
contrastive evidence. In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 624—643, Online. As-
sociation for Computational Linguistics.

James Thorne, Andreas  Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a large-scale dataset for fact extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of
the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
Papers), pages 809-819, New Orleans, Louisiana.
Association for Computational Linguistics.

William Yang Wang. 2017. “liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
In Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 2:
Short Papers), pages 422-426, Vancouver, Canada.
Association for Computational Linguistics.

Jianshu Chen Yunkai Zhang Hong Wang Shiyang Li
Xiyou Zhou Wenhu Chen, Hongmin Wang and
William Yang Wang. 2020. Tabfact : A large-scale
dataset for table-based fact verification. In Infer-
national Conference on Learning Representations
(ICLR), Addis Ababa, Ethiopia.

Shi-Qi Yan, Jia-Chen Gu, Yun Zhu, and Zhen-Hua Ling.
2024. Corrective retrieval augmented generation.
Preprint, arXiv:2401.15884.

Jie Zhou, Xu Han, Cheng Yang, Zhiyuan Liu, Lifeng
Wang, Changcheng Li, and Maosong Sun. 2019.
GEAR: Graph-based evidence aggregating and rea-
soning for fact verification. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 892-901, Florence, Italy.
Association for Computational Linguistics.


https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2021.fever-1.1
https://doi.org/10.18653/v1/2023.fever-1.6
https://doi.org/10.18653/v1/2023.fever-1.6
https://doi.org/10.18653/v1/2023.fever-1.6
https://arxiv.org/abs/2312.10997
https://arxiv.org/abs/2312.10997
https://doi.org/10.18653/v1/2021.fever-1.7
https://doi.org/10.18653/v1/2021.fever-1.7
https://doi.org/10.1162/tacl_a_00454
https://doi.org/10.18653/v1/2023.acl-long.895
https://doi.org/10.18653/v1/2023.acl-long.895
https://doi.org/10.1162/tacl_a_00503
https://doi.org/10.1162/tacl_a_00503
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.18653/v1/2020.acl-main.655
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.24963/ijcai.2021/619
https://doi.org/10.5121/ijnlc.2024.13103
https://doi.org/10.5121/ijnlc.2024.13103
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://doi.org/10.1561/1500000019
https://openreview.net/forum?id=fKzSz0oyaI
https://openreview.net/forum?id=fKzSz0oyaI
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/2021.naacl-main.52
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/N18-1074
https://doi.org/10.18653/v1/P17-2067
https://doi.org/10.18653/v1/P17-2067
https://arxiv.org/abs/2401.15884
https://doi.org/10.18653/v1/P19-1085
https://doi.org/10.18653/v1/P19-1085

UHH at AVeriTeC: RAG for Fact-Checking with Real-World Claims

Ozge Sevgili, Irina Nikishina, Seid Muhie Yimam, Martin Semmann, Chris Biemann

Language Technology Group, Dept. of Informatics &
Hub of Computing and Data Science,
Universitit Hamburg
Germany
{oezge.sevgili.ergueven,irina.nikishina,seid.muhie.yimam,
martin.semmann,chris.biemann}@uni-hamburg.de

Abstract

This paper presents UHH’s approach developed
for the AVeriTeC shared task. The goal of the
challenge is to verify given real-world claims
with evidences from the Web. In this shared
task, we investigate a Retrieval-Augmented
Generation (RAG) model, which mainly con-
tains retrieval, generation, and augmentation
components. We start with the selection of
the top 10k evidences via BM25 scores, and
continue with two approaches to retrieve the
most similar evidences: (1) to retrieve top 10
evidences through vector similarity, generate
questions for them, and rerank them or (2) to
generate questions for the claim and retrieve the
most similar evidence, again, through vector
similarity. After retrieving the top evidences,
a Large Language Model (LLM) is prompted
using the claim along with either all evidences
or individual evidence to predict the label. Our
system submission, UHH, using the first ap-
proach and individual evidence prompts, ranks
6th out of 23 systems.

1 Introduction

Fact-checking is a process to (automatically) as-
sess the truthfulness of a claim, which is an im-
portant task for some domains, e.g. journalism
(Guo et al., 2022; Thorne et al., 2018; Thorne and
Vlachos, 2018; Vlachos and Riedel, 2014). The
AVeriTeC shared task!(Schlichtkrull et al., 2023)
aims at dealing with the challenge of verifying real-
world claims with pieces of evidence from the Web,
as shown in Figure 1.

Recently, Retrieval-Augmented Generation
(RAG) provides a remedy for some issues of Large
Language Models (LLMs), e.g. hallucination,
while increasing the performance of especially
knowledge-intensive tasks, including fact-checking
(Gao et al., 2024). Motivated by this, we investi-
gate how to effectively leverage such a method in
this shared task.

"https://fever.ai/task.html
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Evidences from the Web @
Real-world Claim
1) NEW DELHI: India's imports from China decline

India’s imports from China increased by d by 27.63 per cent during April-August ..

o 8
27% in April-August 2020 2) Value of imports from China stood at $4.98 billio
nin August ...

) During the first half of September, exports have
recorded a growth ..

Label
Refuted

Figure 1: An example claim and several example evi-
dences for this claim provided by organizers.

Our submission’s pipeline is as follows; evi-
dences (in the form of short texts like sentences?)
per claim provided by task organizers are ranked
using BM25 (Robertson and Zaragoza, 2009) and
the top 10k evidences are selected. For retrieving
the most relevant evidences, we consider two ap-
proaches: (1) Retrieve-Question: retrieving the
most similar 10 evidences using vector similar-
ity and generating questions for these evidences.
Then, evidences are reranked again based on vector
similarity with evidences in the form of question-
answer.; (2) Question-Retrieve: generating ques-
tions for a claim, inspired from Chen et al. (2022),
where they see an improvement for the retrieval
with decomposed questions. We retrieve the single-
best evidence per a question using vector similar-
ity. The two approaches perform competitively in
the development set. In the last step, we prompt
LLM with the retrieved evidences to predict the
label. We experiment to prompt with either all
evidences or one evidence at a time. In our ex-
periments, prompting with individual evidence can
reach higher scores. Note that our pipeline resem-
bles the steps conducted in the organizer’s base-
line (Schlichtkrull et al., 2023), especially in the
Retrieve-Question approach, for more details see
Section 4.

The contributions of this paper as follows:

* We investigate the use of RAG in the fact-

2Thus, we use evidence and sentence, interchangeably.
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Approach-1: Retrieve - Question

Retrieve
top 10
evidences
via vector
similarity

Generate
Questions
for these
evidences

Select top 10k
evidences
via BM25

t Evidences |
for Claim !

Generate 3

Questions fop

Re-rank
via vector
similarity

Approach-2: Question - Retrieve

Retrieve

evidence

for given

claim S
similal

via vector

rity

« Supported

« Refuted

« Not Enough Evidence

« Conflicting Evidence/Cherry-Picking

LLM

Figure 2: Inputs are the claim and evidences for this claim provided by task organizers. Top 10k evidences are
selected with BM25 scores. Top question-sentence pairs are retrieved with Approach-1 (Retrieve-Question) or
Approach-2 (Question-Retrieve). An output label is generated with LLM, prompted with either all pairs or individual

pair.

checking task with real-world claims and evi-
dences from the Web.

* We increase the baseline AVeriTeC score by
more than three times, from 0.11 to 0.45, rank-
ing 6th among 23 systems.

Considering the fact that our method is highly
similar to the baseline, we also provide a list of
main differences and/or improvements:

* We use top-10 evidences instead of top-3;

¢ We select 10K sentences with BM25 instead
of 100 in baseline;

* Our Approach 2 is different than their
pipeline;

* For veracity prediction, we rely on RAG-
based predictions, i.e. incorporate evidence(s)
into the prompt, while they use a finetuned
BERT-large model.

Our code? is publicly available. The remainder
of the paper is structured as follows. We continue
with the background, and then the methodology
is explained in detail. In subsequent sections, we
present the experimental setup and discuss the re-
sults. And finally, conclusions, future work, and
limitations are discussed.

2 Background

Retrieval-Augmented Generation LLMs have
shown good performance on many tasks with their
emergent abilities, e.g. in-context learning (Zhao
et al., 2023). Yet, they still have some issues, e.g.

Shttps://github.com/uhh-hcds/UHH-at-AVeriTeC
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hallucination. To resolve such issues, RAG inte-
grates external information into LLMs (Fan et al.,
2024; Gao et al., 2024; Li et al., 2024). Recently,
many techniques have been developed for RAG in
many aspects, for example, RalLLe (Hoshi et al.,
2023) provides a framework for the evaluation of
RAG approaches. Additionally, RAG has been ap-
plied to many tasks, e.g. question answering, fact
checking, etc. We refer the readers to surveys, e.g.
by Fan et al. (2024); Gao et al. (2024), for more
information.

Fact-Checking It is a challenging task to auto-
mate a fact-checking process (Guo et al., 2022;
Thorne and Vlachos, 2018), with different is-
sues, for example, Chen et al. (2022) discuss the
challenges of complex political claims. Many
datasets have been developed for this task, e.g.
the FEVER (Thorne et al., 2018) dataset from
Wikipedia sources. In the AVeriTeC shared task,
the dataset contains real-world claims, as shown in
Figure 1, annotated with question-answer pairs.

3 Methodology

Overview The pipeline used in our solution is
shown in Figure 2. Evidences per claim provided
by task organizers are first ranked using BM25
(Robertson and Zaragoza, 2009). The highest-
ranked 10k evidences to an input claim are selected.
We have experimented two approaches to select the
most similar evidences: (1) retrieving top 10 ev-
idences first and then generating questions from
evidences (Retrieve-Question), or (2) generating
questions for a claim and retrieving the most similar
evidence per question (Question-Retrieve). After
the most similar evidences to a claim are retrieved,
they are used to prompt LLM together with a claim.


https://github.com/uhh-hcds/UHH-at-AVeriTeC

From the sentence below, please
formulate 1 question that could be
answered with this question. This

question and answer should help to do
the fact checking for the claim that
is also given. Which question would be
asked to get this asnwer given that we
need to know whether the claim is true?
Examples:

claim:

answer:

question:

Figure 3: Prompt for Retrieve-Question Approach

Based on an LLM response, one of the labels,
Supported, Refuted, Not Enough Evidence,
Conflicting Evidence/Cherrypicking, is as-
signed.

3.1 Selecting Evidences via BM25

The task organizers provide a document collection
in the form of short text for each claim. First, we
make all sentences unique by keeping url refer-
ences, to reduce the computation time and keep
provenance. We apply BM25 to rank these evi-
dences per claim. Then, the top 10K closest evi-
dences to a given claim are selected.

3.2 Approach-1: Retrieve-Question

In this approach, vector representations for a claim
and 10k sentences are created. Vector similarities
between each sentence and claim are computed.
The most similar 10 sentences to a claim are re-
trieved. Next, we generate a question using LLM
for each of these top 10 sentences with the prompt,
which is shown in Figure 3.

The vector representations for question + an-
swer and claim are created. Evidences are reranked
based on similarity of claim and each evidence in
the form of question and answer. We experiment
with {3,5,7,10} evidences for the next step.

3.3 Approach-2: Question-Retrieve

First, 3 questions are generated for each claim us-
ing the prompt in Figure 4. For each question, the
most similar sentence is selected using the simi-
larity between vectors of 10K sentences and the
question and claim vector.
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From the sentence below, please
formulate up to 3 questions to help
to do the fact-checking. What do we
need to know to check whether the
claim is true? "Decompose” the claim
into subquestions. Generate as few
questions as possible.

Example:

claim:

questions:

Figure 4: Prompt for Question-Retrieve Approach

3.4 LLM Strategies

In the typical RAG (Gao et al., 2024), all selected
documents and claims are combined into a prompt.
We experiment two ways, either as in the common
RAG or to utilize one retrieved document at a time
and then based on individual predictions, assign
one label, inspired from the baseline (Schlichtkrull
et al., 2023). The prompt* that we use in our exper-
iments for the first alternative is shown in Figure 5.

<s>[INST]

Classify the claim into “Supported”,
“Refuted”, “Not Enough Evidence”, or
“Conflicting Evidence/Cherrypicking”

based on list of evidences.

No Explanation, No Note! Your respond

should be in JSON format containing
““label”” key-value pair without any

further information. For instance,
“json

{

“label”: “Supported”

}

User Claim: ..
Evidences: [..
Class: [/INST]

-]

Figure 5: Prompt for a label with all evidences

The prompt for the second option also includes
a prediction of a score, as shown in Figure 6.
The score prediction is only used to assign a la-
bel Not Enough Evidence. If LLM has no pre-

“We use as a reference: https://www.pinecone.io/
learn/mixtral-8x7b/


https://www.pinecone.io/learn/mixtral-8x7b/
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diction of Refuted or Supported (or it generates
something different or more), and the score is
smaller than or equal to 0.5, then Not Enough
Evidence is assigned. Therefore, a smaller score
is used for the Not Enough Evidence label. We
have two strategies to assign a final label from
individual evidence labels. In the first one, sim-
ilar to the baseline, if all labels from evidences
are the same, this label is assigned, otherwise
Conflicting Evidence/Cherrypicking. In the
other one, again if there is only one label, the
predicted label will be assigned; if there are
only two different labels from evidences, then the
majority is assigned. Otherwise, Conflicting
Evidence/Cherrypicking is assigned.

LLM might generate different texts than only the
label output, in these cases, we assign Refuted, as
it is the most common label in the training set>.

4 Experimental Setup

4.1 Data, Evaluation, and Baseline

Data The task organizers provide real-world
claim files for training, development, and testing
that contain 3068, 500, 2215 samples, respectively.
They also provide document collections for each
claim from the Web, and we leverage these given
document collections.

Evaluation Evaluation is done by organizers and
based on the agreement between predicted evi-
dences and gold ones with the scoring function of
METEOR (Banerjee and Lavie, 2005), computing
for question-only pairs (Q) or question and answer
pairs (Q+A). If this evidence score is higher than a
cutoff value of 0.25, then veracity predictions are
evaluated, referred to as Veracity @25 or AVeriTeC
score, in this paper. For more information, we refer
to the paper by Schlichtkrull et al. (2023).

Baseline The pipeline in the baseline, provided
by organizers, starts with collecting evidences from
the Web by searching via Google Search API
for each claim. Our Retrieve-Question approach
pipeline is similar to their pipeline. For example,
the next step in the AVeriTeC approach is to filter
top 100 sentences using BM25, and then to gen-
erate a question for each sentence using BLOOM
(Workshop et al., 2023). The question-answer pairs

SFor the best model with unique sentences (with veracity
score, 0.40) in Table 1, we assigned Refuted for 1573 evi-
dences over 5000 evidences, while for test submission 6767
over 22150 evidences were assigned Refuted.
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<s>[INST]

Classify the claim into “Supported” or
“Refuted” based on list of evidences.
Produce a score for the class label.
No Explanation, No Note! Your respond
should be in JSON format containing

““label”’ key-value pair without any

further information. For instance,
““json

{

“label”: “Supported”

“score”: 0.7

}

User Claim:

Evidence:

Class: [/INST]

Figure 6: Prompt for a label with individual evidence

are reranked with a fine-tuned BERT-large model
(Devlin et al., 2019). The number of top evidences
and models differ in our experiments. For final
step of the veracity prediction, AVeriTeC leverages
a fine-tuned BERT-large model for an individual
question-answer pair prediction with a label of sup-
porting, refuting, or irrelevant. If all labels are
Supported or Refuted, the respective one is as-
signed, else if there are both labels, Conflicting
Evidence/CherryPicking is assigned. If no label
is assigned based on these two conditions, then Not
Enough Evidence is assigned. Our LLM strategy
with individual prompt (Figure 6) along with the
first strategy is similar to their veracity prediction.

4.2 Implementation Details

For the computation of vectors, we use the model
Alibaba-NLP/gte-base-en-v1.5% (Li et al.,
2023; Zhang et al., 2024), which is avail-
able in Hugging Face (Wolf et al., 2020),
using sentence-transformers (Reimers and
Gurevych, 2019). We choose this model from Hug-
ging Face’s MTEB leaderboard’ by using the “Re-
trieval” task and the “FEVER” data, as we consider
this task and data are relevant to the shared task.
This model was ranked 2™ in the leaderboard?;

®https://huggingface.co/Alibaba-NLP/
gte-base-en-v1.5

7https://huggingface.co/spaces/mteb/
leaderboard

8checked on a date - 08.07.2024
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Retrieval LLM unique .
LLM Approach prompt top-n sentences Q Q+A Veracity@0.25
Mixtral-8x7B-Instruct-v0.1 (y ion Retrieve 1 3 v 037 024 0.19
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 g o deve Question 1 3 v | 040 024 0.19
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 - p o cove Question 1 5 v 044 027 0.23
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 - p o eve Question 1 7 v 046 028 0.27
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 - p o dove Question 1 10 v | 048 030 0.30
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 — p o cove Question 2-1 10 v 048 030 0.19
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 - p oot Question  2-2 10 v 048 030 0.40
(quantized 4bit)
Mixtral-8x7B-Instruct-v0.1 g o dove Question  2-2 10 X 049 031 0.42
(quantized 4bit)
Meta-Llama-3.1-8B-Instruct p 2o Ouestion 2-2 10 v 048 030 0.26
(quantized 4bit)
GPT-40-mini Retrieve-Question 2-2 10 v 0.48 0.30 0.38
Baseline 0.24 0.19 0.09

Table 1: Results of different approaches on the development for Q, Q+A, Veracity @(0.25 scores are shown. Baseline
is provided by task organizers. LLM: name of LLM model, used in the generation step. Retrieval Approach:
either Retrieve-Question (first retrieve sentences with vector similarity, generate questions for sentences, and rerank
with vector similarity, including questions) or Question-Retrieve (generate questions for a claim and retrieve a
sentence based on vector similarity, including questions). LLM prompt: either all evidences at once (1) or one
by one (2) - (2-1, 2-2) used strategy 1 or 2 for a final label assignment. top-n: number of evidences used for the
prompt. unique sentence: either to make sentences unique before BM25 or not.

however, we preferred it over the first-ranked model
due to a lower dimension size of 768.

For question generation, we experiment with
GPT-40-mini LLM from OpenAl. For the LLM in
the generation step, we have experimented with
mistralai/Mixtral-8x7B-Instruct-vo.1,
Meta-Llama-3.1-8B-Instruct’ with  4-bit
quantized, also available in Hugging Face and
GPT-40-mini. For BM25, we use the rank-25
library'?, as used in the baseline system, and we
use the NLTK library (Bird et al., 2009) to tokenize
claims and evidences.

5 Results

We report Q, Q+A, and Veracity @0.25 scores in
Table 1, for the development set. According to the
results, the veracity scores for Question-Retrieve

*https://huggingface.co/mistralai/
Mixtral-8x7B-Instruct-ve.1, https://
huggingface.co/meta-1lama/Llama-3.1-8B-Instruct
with  pipeline parameters top_k=50 and repeti-
tion_penalty=1.204819277108434 by referencing Hoshi et al.
(2023), and do_sample=False and max_new_tokens=32

Yhttps://pypi.org/project/rank-bm25/
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and Retrieve-Question for the top 3 are the same,
however, we continue with Retrieve-Question
since the Q score is slightly higher. Although
the difference is not that much, we continue with
the higher one. Leveraging the top 10 evidences
reaches best among top {3, 5, 7, 10} evidences.
Prompting LLM with all evidences (LLM prompt
1 — Figure 5), is better than prompting individually
with labeling strategy 1 (LLM prompt 2-1 — Figure
6), however, strategy - 2 (LLM prompt 2-2 — Figure
6) reaches higher score. As explained in Section
3.1, we make sentences unique to reduce the com-
putation time, yet for the development set we have
also experimented without applying this, as marked
with a cross in the “unique sentence” field in Table
1 and observed an improvement. However, since
the number of evidences is larger in the test set, we
rather prefer to compute with unique sentences for
efficiency. We also experiment with two different
LLMs, namely Meta-Llama-3.1-8B-Instruct
and GPT-40-mini with the same prompt,
the latter one is competitive with the
Mixtral-8x7B-Instruct-ve.1.
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Figure 7: The frequencies of the predicted labels for different model configurations and gold labels on the
development set are shown. Q-R/R-Q: Question-Retrieve or Retrieve-Question approach. Other configurations are

the same as in Table 1.

Rank Participant Team | Q

Q+A AVeriTeC

1 TUDA_MAI 045 034 0.63
2 HUMANE 0.48 0.35 0.57
3 CTU AIC 0.46 0.32 0.50
4 Dunamu-ml 049 0.35 0.50
5 Papelo 0.44 0.30 0.48
6 UHH 048 0.32 0.45
20 Baseline 0.24 0.20 0.11

Table 2: Results of baseline and models ranked above our system, UHH, on the test computed and provided by task

organizers for Q, Q+A, AVeriTeC scores are displayed.

Table 2 shows the test set results provided by
task organizers. We display the systems results that
ranked above us and the baseline scores, however
in total there are 23 results in the leaderboard'!.
Our approach improves the baseline score and is
ranked 6th. Our Q score is in the top 3 and the
AVeriTeC score is more than quadrupled as com-
pared to baseline.

11https ://eval.ai/web/challenges/
challenge-page/2285/1eaderboard/5655
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5.1 Analysis

To analyze the results, we first built a class distribu-
tion of the predicted results with all our approaches
and compared them with the gold standard label
distribution. From Figure 7, we can see that the
Refuted class has the highest frequency, making it
the most common label. In contrast, all models tend
to predict Supported or Not Enough Evidence
labels more frequently than Refuted, leading to
a significant mismatch between the models’ pre-
dictions and the gold standard. For Conflicting
Evidence/Cherrypicking, all models predict it


https://eval.ai/web/challenges/challenge-page/2285/leaderboard/5655
https://eval.ai/web/challenges/challenge-page/2285/leaderboard/5655

Claim ID - Individual Evidences Final Gold Label

Claim Predictions Prediction

Q: What is Nigeria’s current estimated population?
A: With a population of roughly 200 million people, Nigeria’s
Q: What is the current population estimate for Nigeria?
A: Nigeria’s population is projected to reach 262.9 and 401.3 million people in 2030 and 2050, respectively.

217 - : - - ——
Nigeria’s current Q: What is the current estimated population of Nigeria?
o uliion exceeds 200 A: The population of Nigeria is currently estimated at 198 million, with an annual
pop! million Q: What is Nigeria’s estimated population in comparison to 200 million?
: A: With over 220 million people, Nigeria is the most populated country in Africa

and the sixth in the world.
Q: What is the estimated population of Nigeria?
A: Nigeria has a population of 180 million people (seventh largest
in the world) and an economy worth more than $500 billion (21st in the world).
Q: Is Nigeria currently the most populous country in Africa?
A: Nigeria is the most populous country in Africa and the eighth most populous
country in the world, with approximately 162 million people.
Q: What was Nigeria’s population in 2021?
A: - The population of Nigeria in 2021 was 213,401,323, a 2.44% increase from 2020.
Q: What was Nigeria’s population in 2022?
A: - The population of Nigeria in 2022 was 218,541,212, a 2.41% increase from 2021.
Q: What was Nigeria’s population in 2020?
A: Nigeria had a population of 206.14 million people (2020) with an annual
population growth rate of 2.5%.
Q: What was Nigeria’s population as of 2008?
A: Nigeria is a West African country with about 152 million people (as of 2008). It is by far

Q: Did Carlos Gimenez approve a pay raise for himself?
A: The amount of money that employees are voluntarily putting into their own pension
funds has more than doubled and 70% of employees say they’ve paid off debt.
327 - Q: Did Carlos Gimenez approve a pay raise for himself and increase his pension?
Carlos Gimenez A: to accrue benefits under the defined benefit pension arrangements, net
approved a 67% pay of his own contributions.
raise for himself and Q: What changes did Carlos Gimenez make to his pay and pension?
A: subsequently increased the monthly pension rate above what had
Q: Did Carlos Gimenez approve a pay raise for himself and increase his pension?
A: Gimenez gets a pension of about $120,000 a year from the city of Miami,
and has caught heat from labor for opposing the salary hikes for county employees.
Q: What changes to retirement age and pension plans were approved under Carlos Gimenez?
A: retirement age will gradually increase to 67 by the year 2027, and
Q: What was Carlos Gimenez’s salary before the pay raise?
A: By jacking his own salary up $100,000 for the last two years to $250,000,
he significantly improves that average.
Q: What significant changes did Carlos Gimenez implement regarding pay
and pensions upon taking office?
A: huge boost when Carlos Gimenez came into the office
Q: What percentage of pay increase did Carlos Gimenez approve for himself?
A: Read related: Termed out Mayor Carlos Gimenez gives self undeserved 70% pay raise
Q: Did Carlos Gimenez authorize a pay raise for himself while making budget cuts in Miami-Dade?
A: In his time in office, Giménez gave himself a 67% pay raise, and kept a taxpayer funded
Mercedes while cutting $400 million in Miami-Dade jobs and investment.
Q: What actions did Carlos Gimenez take regarding pay raises and pensions during his tenure as mayor?
A: Remember, former Mayor Carlos Alvarez gave big raises to his inner circle also before he
was recalled so that Gimenez — or Carlos II, as some have taken to call him — could be elected.

increased his
own pension.

Q: Did the CDC recommend wearing only certain
beard styles to help prevent the spread of coronavirus?
421- A: The CDC recommends shaving beards to protect against the virus
The CDC Q: What does the CDC say about beard styles in relation to preventing the spread of coronavirus?
. A: The CDC did not, and does not, recommend that men shave their beards to protect
recommended wearing . .
only certain beard against the SARS-COV—Z virus. ] ] i
Q: What does the CDC recommend regarding beard styles in relation to preventing
styles to help A
the spread of coronavirus?
pre.vent the spread A: To recap, CDC beard advice is not to shave your beard. Coronavirus prevention is best done by
of coronoavirus. . .. L . . . - .
washing your hands and practicing social distancing while wearing a cloth face covering.
Q: Did the CDC recommend specific beard styles for preventing the spread of coronavirus?
A: It’s advice about which beards block respirators.
The CDC has not said anything about shaving beards for this Coronavirus.
Q: Is the CDC recommending specific beard styles to prevent the spread of coronavirus?
A: And while facial hair could interfere with respirator masks,
the CDC has not recommended people shave their beards to ward off the virus.
Q: What does the CDC say about beard styles and their impact on preventing the spread of coronavirus?
A: A headline claims that the CDC recommends men shave their beards to protect against coronavirus.
Q: Did the CDC issue guidelines regarding facial hair styles for preventing the spread of coronavirus?
A: Social media users sharing a CDC infographic showing various styles of
facial hair have suggested that the agency is instructing people
to shave beards and mustaches to prevent the coronavirus.
Q: What does the CDC say about facial hair styles in relation to the use of respirators?
A: While the Centers for Disease Control and Prevention (CDC) recommends against
certain facial hair stylings for workers who wear tight-fitting respirators, it has not recommended
shaving as a precaution to prevent COVID-19.
Q: What guidelines has the CDC provided regarding personal hygiene related to the spread of coronavirus?
A: The CDC has touted basic personal hygiene like avoiding touching
your face and washing your hands since the coronavirus outbreak started, and
the same type of cleanliness can be applied to beards.
Q: What does the CDC recommend regarding beard styles for effective mask use?
A: The CDC says to shave your beard into one of a few acceptable
styles so you can ensure a snug fit for a mask, if needed.

Table 3: Some examples on the development set, where we leverage the majority choices based on Retrieve-Question
approach along with LLM 2-2, top-10 evidences from unique sentences, and with Mixtral model.
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less frequently, aligning with its lower occurrence
in the gold standard but still under-predicting it
relative to the gold standard’s distribution.

Our major concern of the pipeline is “majority
voting”. One of the hypothesis is that many of the
lower-level evidences are unrelated to the claim,
making it easier for the LLM to determine that this
claim is Refuted. In this case, majority voting is
also likely to be Refuted. To check this, we man-
ually analyze some samples with a majority and
demonstrate the examples of different cases in Ta-
ble 3. For example, the claim “Nigeria’s current
population exceeds 200 million” has Refuted label
predictions at the top of the list, however, due to
the majority vote, the correct label Supported is
selected. If we counted only top 5 evidence into
account, the final answer could be either Refuted
(majority vote) or Conflicting (both labels are
presented, no evident winner). Regarding the sec-
ond example, we can see that the claim was refuted
due to the majority of the retrieved evidence be-
ing classified as refuted. However, the majority
vote in this case led to an incorrect classification.
Regarding the third example, we can see the ma-
jority class Refuted is coherent with the correct
answer, even though the top 1 evidence is classified
as Supported.

From these examples, we can see that the higher-
ranked evidences’ labels are not coherent with
the golden labels always, the top-10 retrieved ev-
idences provide either correct or incorrect labels
regardless the lower-ranked arguments.

6 Conclusion

We have described our UHH system that is submit-
ted to the AVeriTeC shared task. We have explored
the use of RAG in this task and have used different
LLMs in different steps, with a different number of
evidences - top {3, 5, 7, 10}. Top 10 evidences us-
ing Mixtral-8x7B-Instruct-v@.1 (quantized 4-
bit) model by prompting individual evidence (strat-
egy 2-2) in the Retrieve-Question approach are
ranked 6th in the shared task. In future work, we
would like to investigate using a vector database.
We have used the evidences as provided by organiz-
ers, and we also plan to experiment with different
granularity of texts from these evidences.

Limitations

For the creation of unique sentences before BM25
ranking, we used the “set” operation that might

change the order of sentences and this might af-
fect the reproducibility regarding the same order
of sentences. Additionally, we leverage LLMs,
and it could produce different responses every time
that might affect the results if reproducing the ap-
proach from scratch. However, we have saved the
predictions that are used for the task submission.
Thus, these predictions can be used to reproduce
the results. It is important to note that the compu-
tation time for the LLM when predicting a label
using strategy 2 is longer than that for strategy 1,
as strategy 2 involves prompting individually for
each piece of evidence.
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Abstract

The AVeriTeC shared task introduces a new
real-word claim verification dataset, where a
system is tasked to verify a real-world claim
based on the evidence found in the internet. In
this paper, we proposed a claim verification
pipeline called QECV which consists of two
modules, Evidence Retrieval and Claim Veri-
fication. Our pipeline collects pairs of <Ques-
tion, Answer> as the evidence. Recognizing
the pivotal role of question quality in the ev-
idence efficacy, we proposed question enrich-
ment to enhance the retrieved evidence. Specif-
ically, we adopt three different Question Gen-
eration (QG) technique, muti-hop, single-hop,
and Fact-checker style. For the claim verifica-
tion module, we integrate an ensemble of mul-
tiple state-of-the-art LLM to enhance its robust-
ness. Experiments show that QECV achieves
0.41, 0.29, and 0.42 on Q, Q+A, and AVeriTeC
scores. Code is available here.

1 Introduction

Claim Verification has become critical in the past
few years due to the widespread of false informa-
tion. This highlight the needs for robust automated
system for claim verification. To advance the re-
search area, benchmark datasets and challenges
such as FEVER (Thorne et al., 2018) and FEVER-
OUS (Aly et al., 2021) have been introduced and
subsequent systems (Zhou et al., 2019; Liu et al.,
2020; Zhong et al., 2020; Barik et al., 2022; Chen
et al., 2022; Bouziane et al., 2021; Gi et al., 2021)
have demonstrated progress in claim verification.
Nevertheless, given the artificial claims and struc-
tured Wikipedia evidence in FEVER and FEVER-
OUS, those systems have been optimized primarily
under this condition. Verifying real-world claim
such as news claim still poses a significant chal-
lenge due to the complexity of sources, varying
* All authors have contributed equally.
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contexts, and the potential for misleading or evolv-
ing information.

Recently, a new claim verification benchmark
on real-world called AVeriTeC (Schlichtkrull et al.,
2024) was introduced. In this benchmark, the sys-
tem is required to retrieve relevant document from
articles across the internet and extract essential in-
formation from the articles that can debunk the
claim. Then, the system must classify the claim
as Supported, Refuted, Not Enough Evidence, or
Conflicting Evidence/Cherrypicking.

Compare with previous datasets that relies on
synthetic claims derived from Wikipedia, AVeriTeC
focused on real-world claims.  Additionally,
question-answer pairs have been introduced to cap-
ture reasoning steps and include annotations for
conflicting evidences, offering a more nuanced ap-
proach to claim verification.

In this dataset, question generation is a struc-
tured process aimed at deconstructing the reason-
ing used in fact-checking. Annotators identify key
aspects of a claim that require verification by read-
ing original claim, relevant fact-checking source(s)
and original source of the claim. They have been
tasked to generate questions that would help break
verification into the smaller steps. These questions
need to be designed to extract specific pieces of
evidences that would be required to verify claim.

In this paper, we propose Question Enrichment
Claim Verification (QECV) consisting of 2 mod-
ules, Evidence Retrieval and Claim Verification.
To enhance the quality of the retrieved evidence,
we adopt three different question generation ap-
proaches; multi-hop, single-hop, and fact-checker
style. Single-hop aims to retrieve more general evi-
dence to verify the claim, while multi-hop targets
more detailed evidence for each component of the
claim. Fact-checker style mimic how human fact-
checker generate questions by conditioning on both
the claim and the content article. In contrast, single-
hop and multi-hop solely rely on the claim for
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question generation. Our claim verification mod-
ule combine two different approaches: evidence-
level verifier and claim-level verifier. The former
classify intermediate label to individual piece of
evidence, which are subsequently aggregated to
determine the claim label. Conversely, the latter
directly classifies the claim label based from all
the retrieved evidence. To leverage the strength
of each approach, we employ a voting-based en-
semble model to aggregate the output and obtain
the final label. Our pipeline achieves 0.41, 0.29,
and 0.42 on Q, Q+A, and AVeriTeC scores respec-
tively, which outperforms the baseline model with
a substantial margin.

2 Pipeline

As shown in Figure 1, our pipeline consists of two
modules: Evidence Retrieval and Claim Verifica-
tion. The input claim first passes through our three
variants of evidence retrieval to retrieve relevant
pairs of <Question, Answer>. Each variant gener-
ate questions from the claim and retrieve relevant
articles through Faiss: a library for efficient simi-
larity search (Douze et al., 2024). Then, it outputs
list of <Question, Answer> which later combined
to become the retrieved evidence. Thereafter, the
claim sentence and the retrieved evidence are fed
to the claim verification module to predict the final
label. The detail of each module will be elaborated
in subsequent subsections.

2.1 Evidence Retrieval

The evidence retrieval module processes a claim
sentence through a sequential of sub-modules to
extract relevant pairs of <Question, Answer> evi-
dence.

2.1.1 Question Generation

Crafting effective questions is crucial in the ques-
tion generation process, especially for claim veri-
fication. The quality of the questions can signifi-
cantly influence the verification outcome, guiding
it towards uncovering the truth or leading to ambi-
guity. Therefore, we place great importance on de-
signing these questions carefully. Specifically, we
propose three different question generation strate-
gies: multi-hop, claim as a question, and FC-style
question generation.

Multi-hop Question Generation Following
QACheck methodologies (Pan et al., 2023), we
employ two different question types in this strategy,
initial question and follow-up question. The initial
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question serves as the starting point for verification.
Here is the prompt structure for generating initial
question:

Claim CLAIM

What kind of question need to be
asked to start fact checking
process?

Follow-up questions build on the initial question
and any previous responses to further validate the
claim. Here is the prompt structure for generating
follow-up questions:

Claim CLAIM

We already know the following:
CONTEXT = Prev. QA Pairs

Given a claim and previous
questions, what follow-up
question need to be asked to
verify the claim?

Claim as Question Generation Unlike the
multi-hop question, this strategy leverages the en-
tire claim as a question to better grasp the overall
context and nuances of the claim. Specifically, a
question "Is it true that CLAIM?" is manually con-
structed and subsequently paraphrased using Ope-
nAl’'s GPT4o.



Fact-checker Style Question Generation

After manually reviewing the questions gener-
ated by annotators, we discovered that most of
these questions are more sophisticated than those
based solely on the claim. Generating such sophis-
ticated questions requires additional knowledge,
including details from the source text, information
about where the claim was published, and the na-
ture of the publishing company. Often, this infor-
mation might not seem directly connected to the
claim at first glance.

To generate these types of questions, we need
to provide more comprehensive information to the
model and tailor the question generation process
accordingly.

Here is the prompt structure for generating fact-
checker style questions:

CLAIM

Article text = TEXT Is this
article relevant to our claim?
If yes - what question need to
be asked based on the article
text that will be required to
verify claim?

Claim

By systematically asking well-structured ques-
tions, our system aims to facilitate a thorough and
accurate verification process.

2.1.2 Document Retrieval

This module accepts a question as input to extract
relevant documents. We leverage the provided doc-
ument collections from the dataset provided in the
challenge. However, given the substantial propor-
tion of empty documents (exceeding 50%) within
these collections, we augmented more documents
by querying the claim itself with Google API. We
also scraped a few hundred URLs manually for
which document-text field was empty.

To match any question with the corresponding
documents, we tried multiple techniques. In sum-
mary, we create an embedding vector for each doc-
ument and also the question, using the Sentence
Transformer library (Reimers and Gurevych, 2019).
Considering the resource constraints, we used "all-
MiniLM-L6-v2" model to get the encodings. We
found that Faiss yields fast indexing and best simi-
larity results even for extremely long texts, partly
due to the quality of encodings by Sentence Trans-
formers. We get the 20 best matches with the ques-
tion and pass it to the Reranking module which is
described below.
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2.1.3 Rerank Documents

In our manual analysis, we noticed that some of
the URLSs could be from inauthentic sources, and
could include wrong information. However, the
gold labeled URLs in training data seemed to have
authentic information. To leverage this, we de-
vise a simple reranking algorithm, based on the
training data’s Gold standard websites (retrieved
from the URLs). We calculate the frequency based
weighting for the training data’s ground truth web-
sites which are of type "gold", and also for the rest,
which we call "normal" website weight. Now, for
the test stage, we check every URL’s Faiss score,
and multiply it with the corresponding website
weight. Gold websites are always prioritised above
the normal weighted websites. This reranking mul-
tiplication considers only the top 20 documents and
not all, because considering all URLs could result
in dissimilar documents being at the top.

Post-reranking, we take the top 5 documents re-
trieved and pass them to the Question Answering
stage, which is described below. This reranking
stage yielded us best results for Claim-as-question
generation. However, it didn’t yield significantly
better results for the Multi-hop based QG. By
adding URL weightings (and using no claim-as-
questions yet) on the development dataset, our Q
and Q+A score slightly go down from 31.35 and
21.67 to 30.64 and 20.32 respectively. Our hypoth-
esis for this observation is that, multiple questions
retrieve multiple documents. As a result, those
retrieved documents already cover a number of au-
thentic websites. Hence, URL weighting might
hinder more than help in multi-hop stage.

2.1.4 Question Answering

Once we retrieve the five most relevant documents,
the first step is to generate a summary tailored to
the question at hand. For summary generation,
we utilize OpenAI’s GPT4o, providing it with the
question, the claim, and the text of the document
as input.

Since the summary is generated with the specific
goal of addressing the question based on the doc-
ument’s content, it is subsequently treated as the
answer in the following modules. The prompt used
for generating the summary is as follows:

Claim = CLAIM
Question= QUESTION
Text = TEXT



Provide a brief summary of the
text, focusing on information
relevant to the question. The
summary should aim at answering
the question.

2.1.5 QA Validator

The QA Validator module plays a crucial role in
our fact-checking system, as it determines the di-
rection of subsequent verification processes. Given
that some questions may yield conflicting answers
(which could lead to cherry-picking the final label),
it is essential to determine differences in answers
before proceeding. To address this, we assign indi-
vidual labels to each QA pair based on their con-
tent.

Each QA pair can be assigned one of three labels:
Supported, Refuted, or Not Enough Evidence. Once
each QA pair is labeled, we group them based on
these three categories. The logic for handling the
labels is as follows:

* If a question has both Supported and Not
Enough Evidence pairs, we only consider the
Supported pairs.

* If a question has both Refuted and Not Enough
Evidence pairs, we only consider the Refuted
pairs.

e If a question has both Supported and Refuted
pairs, we retain both and generate follow-up
questions based on these two paths.

* If a question only has Not Enough Evidence
pairs, we proceed with that label.

After selecting the pairs to continue with, we
must choose the best QA pair within each cate-
gory. Using OpenAI’'s GPT40, we analyze each
QA pair and select the one that provides the most
informative response to the question.

2.2 Claim Verification

The claim verification module is given a claim sen-
tence and evidence as input, it tasked to classify the
label of the claim. The module is a combination
of two claim verification system variants, namely
Evidence-level verifier and Claim-level verifier.

Evidence-level Verifier In this variant, the model
was trained to independently classify the label of a
claim w.r.t a piece of evidence. The evidence is a
concatenation of a question and an answer follow-
ing this format: "Question: [Question]. Answer:
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[Answer]". Claims are classified as Supported, Re-
futed, or Not Enough Evidence, constituting a fine-
grained label. Ultimately, the claim label was de-
termined through applying deterministic function
to the fine-grained labels:

* Supported: If all the fine-grained labels are
Supported.

* Refuted: If all the fine-grained labels are Re-
futed.

* Conflicting Evidence/Cherrypicking: If
both Supported and Refuted are presents in
the fine-grained labels

* Not Enough Evidence: Otherwise

Claim-level Verifier In this variant, we follow
a conventional claim verification model, in which,
the model is tasked to classify the label of the claim
given all pieces of evidence. The evidence is the
concatenation of questions and answers following
this format: Question-1: [Question-1]. Answer-1:
[Answer-1]. ... Question-N: [Question-N|]. Answer-
N: [Answer-N]. The claim is classified either Sup-
ported, Refuted, Not Enough Evidence, or Conflict-
ing Evidence/Cherrypicking.

For each variant, we experimented with different
LLMs as the backbone and we combine the output
of these models through a voting-based ensemble
model to obtain the final claim label. A compre-
hensive description of each LLM is presented in
the next section.

2.2.1 Training Detail

We fine-tuned five LLMs: (1) flan-t5-Large (Chung
et al., 2024), (2) Mistral-7B-Instruct-v0.1 (Jiang
et al., 2023), (3) Mixtral-8x7B-Instruct-v0.1 (Jiang
et al., 2024), (4) gpt-3.5-turbo-0125, and (5) gpt-
4o0-mini. For TS, Mistral, and Mixtral, we set the
learning rate to 1e—4 and fine-tuned it for 2 epochs.
We use LoRA with rank, alpha, and dropout are
set to 8, 32, and 0.05. Meanwhile, for GPT3.5
and GPT4, we use 4 epochs. We set the other
hyperparameters as default.

Evidence-level Verifier: to  obtain
the training data for this variants, we
first filter out all claims with label

Conflicting Evidence/Cherrypicking. Then,
quadruplets of <claim, question, answer, label>
are obtained from the training set. For Claim-level
Verifier, we collect quadruplets of <claim, list of



Model Q Q+A
baseline 0.24 0.19
Single 0.23 0.16
Single+Multi 0.39 0.27
Single+Multi+FC  0.44 0.31

Table 1: Evidence Retrieval Result on Development Set.
Comparison of results from different question genera-
tion types.

questions, list of answers, label> from the whole
training set.

We employ majority voting for the ensemble
models. Based from the experiments on the dev
set, our final claim verification is an ensemble of 4
different models: GPT4 on Evidence-level verifier
and Mistral, GPT3.5, and GPT4 on Claim-level
verifier.

3 Results

3.1 Evidence Retrieval

Table 1 reports the results evidence retrieval per-
formance of QECV compared to the baseline mod-
els on the development set. Among the investi-
gated Question Generation style, the single-hop
approaches yield the lowest score among other vari-
ants. This shows that claim as question is not suf-
ficient to retrieve enough evidence to verify the
claim. Nevertheless, the claim as question is com-
petitive with the baseline models. Augment the
evidence through multi-hop question led to a sub-
stantial improvement, which improves 0.13 on Q
and 0.11 on Q+A. This suggest that Q+A effec-
tively capture more detailed and relevant evidence.
Finally, adding FC-style question improve addi-
tional performance gain by 0.5 on Q and 0.4 on
Q+A, emphasizing the efficacy of this approach
to collect evidence that are hardly mention by the
claim.

3.2 Claim Verification

Table 2 reports the Evidence-level Verifier, and
Table 3 reports the Claim-level Verifier on the de-
velopment set using various fine-tuned LLM.

Effect on LLMs size: Through the experiments,
we can see that on evidence-level verifier, bigger
model such as mixtral, GPT3.5, and GPT4 outper-
forms smaller models on AVeriTeC score. Mean-
while on claim-level verifier, mistral, GPT3.5 and
GPT4 outperforms smaller models on AVeriTeC
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score. Moreover, GPT3.5 and GPT4 are consis-
tently achieved the highest performance across both
variants.

Effect on Different Variants: Experimental re-
sults demonstrate that claim-level verifier are supe-
rior than the evidence-level verifier, both in macro
F1 and AVeriTeC score. The under performance
of evidence-level is attributed to the deterministic
function. For instance, for a "Supported” claim
"Amy Coney Barrett was confirmed as US Supreme
Court Justice on October 26, 2020.", our evidence
retrieval retrieves 7 evidence and the evidence-
level verifier predicts 6 out of the 7 evidence as
"Supported". The last evidence stated that "The
summarized information does not provide the ex-
act date of Amy Coney Barrett’s confirmation to
the US Supreme Court. It only states that she has
been confirmed.", which the verifier predicts as Not
Enough Evidence. Finally, the final claim label
is Not Enough Evidence due to the deterministic
function. Nevertheless, evidence-level verifier is
superior in identifying Not Enough Evidence label,
achieving 0.28 F1 score compared to 0.16 F1 score
for claim-level verifier.

Impact of using different LLMs: Experimental
results indicate that different models exhibit vary-
ing strength. In claim-level verifier, GPT3.5 and
GPT4 are superior on Supported and Refuted la-
bels, whereas Mistral and Mixtral excel on Not
Enough Evidence and Conflicting labels. Con-
versely, in the evidence-level verifier, GPT3.5 and
GPT#4 are the most effective on Not Enough Evi-
dence and Conflicting labels, meanwhile Mixtral
excels on Refuted and BART on Supported. This
suggest that each LLM possesses it’s own strength
depending on the verifier variant. Consequently,
combining the strength of these models across dif-
ferent variants can enhance the robustness of the
verifier.

3.3 Full Pipeline

For our final pipeline, we use the best performance
for the evidence retrieval, which is a combination
Single+Multi+FC-style based QG. For the claim
verification, we ensemble GPT4 on evidence-level
verifier and Mistral, GPT3.5, and GPT4 on claim-
level verifier to gain benefit the strength of dif-
ferent variants. Table 4 indicates that our final
pipeline significantly outperforms the baseline on
every metrics, by 0.17 on Q, 0.10 in Q+A, and 0.31
in AVeriTeC score.



Model AVeriTeC F1
Sup Ref Nee Conf Macro

baseline (BART _large) 0.09 043 0.71 0.00 0.09 0.32
T5 0.33 0.28 0.78 0.27 0.14 0.36
Mistral 0.32 0.19 0.78 0.24 0.10 0.33
Mixtral 0.36 0.33 081 0.16 0.09 0.35
GPT3.5 0.35 024 079 0.28 0.13 0.36
GPT4 0.37 040 0.80 0.22 0.14 0.39

Table 2: Evidence-level verifier results on the development set. "Sup" denotes "Supported,” "Ref" stands for
"Refuted," "Nee" represents "Not Enough Information," and "Conf" corresponds to "Conflicting" or "Cherrypicking"

label types.
Model AVeriTeC F1
Sup Ref Nee Conf Macro

T5 0.39 042 0.79 0.11 0.14 0.37
Mistral 0.44 0.61 0.82 0.09 0.20 0.43
Mixtral 0.38 046 0.82 0.16 0.16 0.40
GPT3.5 0.46 0.61 084 0.12 0.16 0.43
GPT4 0.44 0.59 0.84 0.08 0.18 0.42

Table 3: Claim-level Verifier Result on Development Set, where "Sup" - Supported, "Ref" - Refuted, "Nee" - Not
Enough Information, "Conf" - Conflicting/Cherrypicking type of labels.

Development Set Test Set
Model Q Q+A AVeriTeC| Q Q+A AvVeriTeC
baseline 0.24 0.19 0.09 024 0.20 0.11
ours 044 0.31 0.46 041 0.30 0.42

Table 4: Result on Full Pipeline compare with baseline results, where "Q" - question-based retrieval performance,

"Q+A" - question + answer retrieval performance

4 Conclusion

In this paper, we introduced the QECYV, a pipeline
for verifying real-world claims. Improving the evi-
dence retrieval through question enrichment enable
the framework to cover more evidence for verify-
ing the claim, thus achieves 0.41 and 0.30 for the
Q and Q+A performance on the test set. Addition-
ally, our pipeline combines across various claim
verifier variants and LLMs to leverage their unique
strengths, resulting in more robust verification pro-
cess and an 0.42 AVeriTeC score on the test set.

5 Limitations

We believe one of the major limitations of this
pipeline is relevance of documents we retrieve for
each question. We have tried to address this by
introducing multi-hop QG, claim-as-question mod-
ule, and emphasising fact-checking styled docu-
ments. However, there is definitely scope of further
improvement here.

Despite the ability of our question enrichment
methods on the evidence retrieval, the hallucina-
tion remains, particularly in the question answer-
ing stage. Moreover, our claim verification models
rely solely on the ground truth data for training.
Given that the previous works demonstrate the ef-
fectiveness of adding noise for claim verification
on synthethic claim, it is worthwhile to investigate
whether a similar approach can be applied to the
real-world claims.
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Abstract

This paper presents the Dunamu-ml’s submis-
sion to the AVERITEC shared task of the 7th
the Fact Extraction and VERIification (FEVER)
workshop. The task focused on discriminating
whether each claim is a fact or not. Our method
is powered by the combination of an LLM and
a non-parametric lexicon-based method (i.e.
BM25). Essentially, we augmented the list
of evidences containing the query and the cor-
responding answers using an powerful LLM,
then, retrieved the relative documents using
the generated evidences. As such, our method
made a great improvement over the baseline
results, achieving 0.33 performance gain over
the baseline in AveriTec score.

1 Introduction

The rise in misinformation has led to a greater
need for fact-checking, which involves determining
the accuracy of a claim through evidence. Conse-
quently, research on methods that automatically
detect whether specific claims are true or false
is being conducted actively. (Vlachos and Riedel,
2014; Thorne et al., 2018a) As part of this effort,
the shared task Fact Extraction and VERification
(FEVER) ! is held regularly (Thorne et al., 2018b,
2019; Wang et al., 2021; Aly et al., 2021).

Fact-checking requires large-scale retrieval.
Large-scale retrieval involves retrieving the most
relevant documents from a vast collection contain-
ing millions to billions of entries in response to a
text query. Over the past ten years, deep representa-
tion learning techniques have become essential for
large-scale retrieval, transitioning from traditional
Bag-of-Words (BoW) (Mikolov et al., 2013) meth-
ods to Pre-trained Language Models (PLMs) (De-
vlin et al., 2019). The latest advancements in LLMs
offer a quicker path to achieve zero-shot retrieval
by enhancing a query with potential answers ob-
tained from the LLMs (Gao et al., 2023).

"https://fever.ai/index.html
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In this paper, we introduce our approach to the
FEVER 2024 Share Task named AveriTeC shared
tasks (Schlichtkrull et al., 2023). We aim to build
our model powered by the generation and retrieval
ability of recent LLMs (Achiam et al., 2023). Our
method is inspired by (Shen et al., 2023) which uti-
lize a non-parametric lexicon-based method (such
as BM25 (Robertson et al., 2009)) as the retrieval
component to directly measure the similarity be-
tween the query and document and boost the query
using powerful LLM.

First, we generated initial question and answer
pairs without any documents retrieved. Then, we
retrieved relevant documents and fix the initial an-
swers using it. Finally, we infer the final answer
using the given evidences. Our approach signifi-
cantly enhanced the baseline outcomes, securing
a 0.33 increase in performance compared to the
baseline according to the AveriTec score. For eval-
uation, we used the given system?.

2 Task Description

The AVeriTeC challenge (Schlichtkrull et al., 2023)
aims to evaluate the ability of systems to verify
real-world claims with evidence from the Web.

* The systems need to find evidence that either
supports or contradicts a claim, based on the
claim itself and its accompanying metadata.
This evidence can be sourced from the Web
or from the collection of documents provided
by the organizers.

* Based on the evidence gathered, classify the
claim as either Supported or Refuted, or cat-
egorize it as Not Enough Evidence if there
is insufficient evidence to make a determina-
tion. If the evidence presents conflicting view-

2https: //eval.ai/web/challenges/
challenge-page/2285/overview
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points or appears selective, label the claim as
Conflicting Evidence/Cherry-picking.

For a response to be deemed accurate, both
the label assigned and the quality of evidence
provided must be correct. Since evaluating
evidence retrieval can be challenging to auto-
mate, participants will be requested to assist
in manually evaluating it to ensure a fair as-
sessment of the systems.

The output format of each claim should be:

* clatm_id: The ID of the sample.

* claim: The claim text itself.

 pred_label: The predicted label of the claim.

* evidence: A list of QA pairs. Each set con-
sists of dictionaries with four fields.

— question: The text of the generated
question.

— answer: The text of the answer of the
generated question.

— url: The source url for the answer.

— scraped_text: The text scraped from
the url.

2.1 AVERITEC Corpus

The AVeriTeC dataset, as described in the study
by (Schlichtkrull et al., 2023), comprises 4,568
examples sourced from 50 fact-checking organiza-
tions using the Google FactCheck Claim Search
APP, which is built on ClaimReview?. AVeriTeC
is distinguished as the initial AFC dataset to offer
question-answer decomposition along with justifi-
cations, while also addressing challenges related
to context dependence, evidence insufficiency, and
temporal leaks. Additional details about AVeriTeC
can be found on the project’s GitHub repository:
https://github.com/MichSchli/AVeriTeC.

2.2 Evaluation metric

The AVeriTeC score is based on adjustments made
to the FEVER scorer (Thorne et al., 2018a). While
FEVER relies on a closed evidence source such as
Wikipedia, AVERITEC is tailored to handle evi-
dence sourced from the open web. Since identical
evidence may be found across multiple sources,
precise matching for scoring retrieved evidence is

3https://toolbox.google.com/factcheck/apis
4https://www.claimreviewproject.com/
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impractical. Hence, AVERITEC utilizes approx-
imate matching and utilizes the Hungarian Algo-
rithm to determine the most suitable match between
the provided evidence and the annotated evidence.

1

up(Y,Y) = v

max Y Y f(5,9)X(8,y)

gey yeY
ey

During the evaluation process, the system em-
ployed the METEOR (Banerjee and Lavie, 2005)
implementation from NLTK (Bird et al., 2009)
as the scoring function f, known for its strong
correlation with human assessments of similar-
ity (Fomicheva and Specia, 2019). They do not
utilize a precision metric to prevent penalizing sys-
tems for posing extra relevant information-seeking
questions. Nevertheless, all systems are con-
strained to a maximum of £ = 10 question-answer
pairs. We assess the accuracy of truthfulness predic-
tions and supporting evidence by applying a thresh-
old of f(§,y) >= A to ascertain the retrieval of
accurate evidence (using combined questions and
answers). Claims with lower evidence scores are
assigned veracity and justification scores of 0.

3 System Overview

In this section, we firstly provide a brief description
of how we pre-processed the given knowledge store
and present our approach to the task.

3.1 Data crawling and preprocessing

As we mentioned in Section 2.1, the pre-googled
knowledge store, which includes web urls and their
scraped text for each claim, is provided by the or-
ganizers. However, in the case that the url corre-
sponds to either a YouTube video or a PDF docu-
ment, the scraped text field is left blank, even if it
includes crucial evidence for verifying the claim.
To address this, we extract the transcripts from
YouTube videos and parse the text from PDF docu-
ments, subsequently saving them in the data store.
In addition, we segment all the documents into
segments comprising 10 sentences each, not con-
taining an excessive amount of information.

3.2 Model configuration

Our approach to the task consists of three steps, as
depicted in Figure 1.

Step 1: Generate initial question and answer
pairs without any documents retrieved. In or-
der to verify the veracity of claims, it is essential to
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Figure 1: A diagram illustrating the three steps of our method for AVERITEC shared task. The text generated by
GPT-4 is in green in Step 1 and in red in Step2. In Step 3, the predicted answer by GPT-4 is enclosed in a red box.

formulate questions that can be answered based on
reliable documents retrieved from the knowledge
store. Research has shown that utilizing artificially
generated answers in the search, as opposed to
using the questions alone, can enhance document
retrieval performance. (Gao et al., 2023) As a result,
a decision has been made to concurrently generate
both questions and answers for use in the search
process. This approach aims to improve the effi-
ciency and effectiveness of information retrieval
for fact-checking purposes.

Initially, we categorize each claim using GPT-4
with few shots which consist of pairs of (1) each
claim and (2) its corresponding claim type. We
classify each claim using the following prompt:

Every claim belongs to at least one of the
categories below.
It may also belong to multiple categories.
Return one or more categories to which the
claim belongs. The majority of claims belong
to only one category.
{’Numerical Claim’, ’Causal Claim’,
Verification’, ’Event/Property
’Position Statement’}

’Quote
Claim’,

<few shots>
<claim>
Next, in training dataset, we extract samples cor-
responding to the predicted claim category. We
then create total 20 few-shot samples by randomly
selecting four samples labeled as "supported" or
"refuted," respectively and six samples from the
other two labels, respectively. Each few-shot sam-
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ple consists of (1) claim, (2) claim label and (3)
its evidence list. Finally, we have gpt-4 to gener-
ate initial evidence list, question and answer pairs,
using these few shots with following prompt:

The given claim falls into one of the following
four categories.

1. Supported

2. Refuted

3. Not Enough Evidence (if there isn’t
sufficient evidence to either support or refute
it)

4. Conflicting Evidence/Cherry-picking (if the
claim has both supporting and refuting evidence)

Classify each claim into four categories
and provide evidence for the classification.
If there are not enough evidences, you should
list the evidence that needs to be supported
or refuted.

<few shots>
<claim>

Step 2: Retrieve relevant documents and fix the
initial answers using it. In the second step, we
revise the initial answers for each question we gen-
erate in Step 1. Initially, for each generated ques-
tion answer pair, we retrieved reliable document
segments. Then, we also retrieved similar questions
with each generated question for few shots. We con-
struct each few-shot sample with (1) the retrieved
questions, (2) their corresponding answers and (3)
gold documents segments. For both retrieval, we
leveraged ranked bm25 package which built on the



algorithm taken from (Trotman et al., 2014). Using
those few shots and retrieved document segments,
we fix the initial answer with following prompt:

Given the context, you should find the answer
for each question.
When answering, try to use as many words from
the passage as possible.

But if you cannot find the answer, say "No
answer could be found."” without extra words.

<few shots>

<claim>

<retrieved document segments>
<generated question>

Step 3: Infer the final answer using the given ev-
idences. In the last step, we infer the final answer.
We re-used the same samples as a few-shot in Step
1 (used in the second prompt). While in Step 1 we
utilized a sequence the claim, evidence list, and
label for one few-shot, in this step, we employed a
sequence including (1) the claim, (2) evidence list,
(3) justification, and (4) label. The justification text
describes the reason why the claim is supported
and refuted (Wei et al., 2022). Using gpt-4, we
predict final answer with the following prompt:

The given claim falls into one of the following

four categories.

1. Supported

2. Refuted

3. Not Enough Evidence (if there isn’t

sufficient evidence to either support or refute

it)

4. Conflicting Evidence/Cherry-picking (if the

claim has both supporting and refuting evidence)

Classify each claim into four categories
and provide evidence for the classification.
If there are not enough evidences, you should
list the evidence that needs to be supported
or refuted.

<few shots>
<claim>
<generated evidence>

4 Experiment

In this section, we present our experimental setup,
the tools we used and the final task results.

Implementation Details The library used to ob-
tain Youtube transcripts is youtube-transcript-api ,
and the library used for PDF parsing is PyMuPDF .
We used GPT-4 as an LLM and the LLM model

5https://pypi.org/project/
youtube-transcript-api/
®https://github.com/pymupdf/PyMuPDF
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Model Qonly Q+A AveriTeC
TUDA_MAI_O 0.45 0.34 0.63
HerO 0.48 0.35 0.57
AIC System 0.46 0.32 0.50
papelo-ten-r773  0.44  0.30 0.48
dun-factchecker  0.49 0.35 0.50

Table 1: The systems ranked in the top 5 in the
AVERITEC leaderboard during the test phase. The
system "dun-factchecker" is ours.

used GPT-4, and BM25 was implemented through
the langchain library 7. For GPT-4 we use T' = 0.7
without top-k truncation and N = 5, then select the
last answer by majority voting (Wang et al., 2022).

Baseline The baseline model that has been fine-
tuned on BLOOM (Schlichtkrull et al., 2023) can
be referred to in (Le Scao et al., 2023).

Main Results Table 1 presents the evaluation
results in test phase. We have the following obser-
vations:

e Our method achieved SOTA in Q and Q+A
humeteor scores, indicating that the few-shot
sampling method following classification in
Step 1 was effective.

* We observed that although our scores in ev-
idence generation were higher or equal to
those of the TUDA_MAI_O and HerO sys-
tems, there was a slight drop in the perfor-
mance when it comes to the final label predic-
tion.

It appears that utilizing generated questions
and answers for retrieval was quite effective,
but there are some limitations of the final pre-
diction in the Step 3 that need to be addressed
in the future.

5 Conclusion

In this work, we described the Dunamu-ml’s
submission to the AVERITEC shared tasks of
the FEVER 2024. By integrating a language
model (LLM) with a non-parametric lexicon-based
method (BM25), our approach bolstered the evi-
dence list by integrating the query and associated
answers using a robust LLM. This strategy allowed
us to pinpoint pertinent documents based on the

"https://github.com/langchain-ai/langchain
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generated evidence, resulting in a notable improve-
ment over the baseline outcomes with a 0.33 per-
formance gain in the AVeriTeC score.
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Abstract

This paper describes the FZI-WIM system at
the AVeriTeC shared Task, which aims to as-
sess evidence-based automated fact-checking
systems for real-world claims with evidence
retrieved from the web. The FZI-WIM system
utilizes open-source models to build a reliable
fact-checking pipeline via question-answering.
With different experimental setups, we show
that more questions lead to higher scores in the
shared task. Both in question generation and
question-answering stages, sampling can be a
way to improve the performance of our system.
We further analyze the limitations of current
open-source models for real-world claim verifi-
cation. Our code is publicly available'.

1 Introduction

Disinformation is a major concern in digital times
as recent advances in generative artificial intelli-
gence, i.e., large language models (LLMs), en-
able humans to create fake information on a large
scale. Meanwhile, LLMs have also been inte-
grated into automated fact-checking (AFC) sys-
tems (Chen and Shu, 2024), which have drawn
lots of attention. Guo et al. (2022) summarize
three stages of an AFC system: claim detection,
evidence retrieval, and claim verification. Vari-
ous evidence-based fact-checking datasets have
been proposed for testing the systems (Thorne
et al.,, 2018; Wadden et al., 2020; Jiang et al.,
2020; Aly et al., 2021). The AVeriTeC shared task
aims to fact-check real-world claims. Compared
to previous fact-checking datasets, the AVeriTeC
dataset (Schlichtkrull et al., 2023) utilizes question-
answer (QA) pairs to tackle the complex reasoning
task for real-world claims. Questioning is a natu-
ral step in the fact-checking process. The follow-
ing steps involve retrieving corresponding answers
and making inferences based on the QA pairs to

"https://github.com/jens5588/
FZI-WIM-AVERITEC

77

validate the claims. Fan et al. (2020) have intro-
duced the QABRIEF dataset, which was collected
via crowdsourcing. They demonstrate that generat-
ing questions and then answering questions using
open-domain question-answering can increase the
accuracy and efficiency of fact-checking. With the
ClaimDecomp dataset, Chen et al. (2022) show that
questions to the claim can help identify relevant
evidence and verify the claim with their answers.

The FZI-WIM system is composed of three
stages, namely, question generation, question-
answering, and claim verification. All components
in the system are designed with open-source mod-
els. Given the claim and its meta information, the
system first generates critical questions. A retrieval
augmented generation (RAG) system is utilized to
answer the generated questions with context infor-
mation from the provided knowledge store. The
generated QA pairs are fact-checked and filtered
to tackle the potential hallucination problem. The
selected QA pairs are utilized to verify the claim.
We summarize our findings regarding this shared
task as follows:

* More sets of distinct questions lead to better
performance.

* The sampling strategy can compensate for the
deficits of open-source LLMs.

* Fact-checking the RAG system is critical for
getting reliable grounded answers.

* Compared to open-source models, proprietary
models show significantly better performance
regarding context understanding and reason-
ing capabilities for answering questions.

2 Background

The AVeriTeC dataset (Schlichtkrull et al., 2023)
is a continuation of the previous evidence-based
fact-checking dataset FEVER (Thorne et al., 2018)
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and FEVEROUS (Aly et al., 2021). The dataset
contains real-world claims from various sources.
The number of claims in the train, dev, and test
set are 3068, 500, and 2215 respectively. There
are five types of claims in the dataset, namely po-
sition statement, numerical claim, event/property
claim, quote verification, and causal claim. The
corresponding evidence has been collected from in-
ternet websites. Different from the previous dataset,
which uses sentences from documents as evidence,
the evidence of the AVeriTeC dataset has been for-
mulated as QA pairs. On average, each claim in the
train and dev sets has 2.6 questions. The answers
can be classified into four types, boolean, abstrac-
tive, extractive, and unanswerable. Based on the
QA pairs, the verification labels of the claims can
be classified into supported, refuted, not enough
evidence, and conflicting evidence/cherry-picking.
Figure 1 shows an example from the dataset.

Claim: Donald Trump has kept his promises to voters.
Claim type: Event/Property Claim

Speaker: None

Claim date: 24-8-2020

Question 1:
make to voters?
Answer 1 (Extractive & Abstractive): During the 2016
campaign, Donald Trump made more than 280 promises,
though many were contradictory or just uttered in a single
campaign event. By 2020 Trump had made a number of
promises, 6 of which he had not fulfilled, including ...
Question 2: Of the promises Donald Trump made, did he
fulfil any of them?

Answer 2 (Boolean): Yes.

Question 3: Has President Donald Trump kept his
campaign promises to voters?

Answer 3 (Abstractive): President Trump has only kept a
few of his promises.

What promises did Donald Trump

Verification: Conflicting Evidence/Cherrypicking
Justification: QA pairs state promises kept and not kept.
Claim does not state he kept all promises.

Figure 1: An example from the AVeriTeC dataset, which
includes the claim, meta information, questions, an-
swers (answer types), verification label, and justification

3 System Description

Figure 2 illustrates the three-stage pipeline of the
FZ1-WIM system for the AVeriTeC shared task in
the test phase. In the following, we will describe
the key components of each stage. The techni-
cal implementation details are presented in Ap-
pendix A.1.
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3.1 Question Generator

As mentioned by (Chen et al., 2022), questions
can help to identify relevant evidence. As the first
component of the pipeline, raising the right ques-
tions about the claim can be critical for the final
verification. Similar to the AVeriTeC dataset, the
ClaimDecomp dataset (Chen et al., 2022) contains
in total 1200 claims in the training, validation, and
test sets while, on average, each claim has 2.7 ques-
tions. We integrate both datasets and create an
instruction-tuning dataset. Besides the claim and
questions, we also include the relevant meta infor-
mation, such as the speaker and claim date, in the
instruction dataset. We show an example of the
instruction dataset in Appendix A.2.

We apply Low-rank adaption (LORA) (Hu et al.,
2022), one of the parameter-efficient fine-tuning
methods for LLMs, to fine-tune the existing LLM,
Llama-3-70B-Instruct (Al@Meta, 2024). The con-
cept of LORA assumes that the updates to the
weights have a low intrinsic rank during the adap-
tion of LLMs for downstream tasks. The parameter
updates AW for a pre-trained matrix W, can be
formulated as

Wo + AW = Wy + BA, (D

where B € R, A € R"™¥ and r < min(d, k)
(Hu et al., 2022). Given the instruction x and tar-
get output {y1, Y2, ..., Ym }, i.€., questions, the loss
function of the training can be formulated as

L=>Y —log(ps(yilz,y1, . vi-1)), ()
i=1

where 6 represents Wy, B, A and only B and A
are trainable.

With the instruction-tuned model, we first gen-
erate for each claim one set of questions greedily.
With the greedy generation strategy, the model se-
lects the token with the highest probability as its
next token”. We further sample five sets of ques-
tions for each claim with a temperature of 0.7. With
an embedding model, all-mpnet-base-v2> (Reimers
and Gurevych, 2019), we iteratively select 2 sets
from 5 sampled sets, which are most distinct from
the greedy set based on the cosine similarity. Fi-
nally, each claim has three sets of questions, one
greedy set, and two sampled sets.

https://huggingface.co/blog/
how-to—-generate

*https://huggingface.co/
sentence-transformers/all-mpnet-base-v2
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Figure 2: FZI-WIM system pipeline for the test phase in stages. In Stage 1, we first generate three sets of questions
for each claim. One set of questions can contain multiple questions. Given questions and the knowledge store, our
system utilizes an RAG system to generate answers to the questions. With an entailment model, the generated QA
pairs are filtered. The selected QA pairs have a further conditional check. If conditions are not fulfilled, the steps in
stage 2 are then repeated with another set of questions, a maximum of two repeats. Finally, an instruction-tuned
claim verifier verifies the claim based on the aggregated QA pairs.

3.2 Question Answering

After generating questions for each claim, stage
2 answers these generated questions. Beginning
with the greedy set of questions, the questions are
answered with a retrieval augmented generation
(RAG) system. We further fact-check and select
answered QA pairs. We check whether the selected
QA pairs fulfill the predefined conditions. If not,
we then repeat the process with another sampled
question set. The process is repeated at most two
times.

3.2.1 RAG-based QA

Retriever After generating questions for the
claims, we retrieve relevant evidence in the pro-
vided knowledge store to answer these questions.
Our system only uses the provided knowledge
store without querying further documents with the
Google search engine. For each claim, the rel-
evant documents are provided in the knowledge
store. Various retrieval methods have been applied
for documents and sentence retrieval in evidence-
based fact-checking, including TF-IDF (Thorne
et al., 2018), BM25 (Schlichtkrull et al., 2023), bi-
encoder (Karisani and Ji, 2024), ColBERT (Khat-
tab et al., 2021), cross-encoder (Soleimani et al.,
2020), etc. Due to the limited number of rele-
vant documents for each claim in the knowledge
store, we directly apply a cross-encoder, ms-marco-
MiniLM-L-12-v2* (Reimers and Gurevych, 2019),

*https://huggingface.co/cross—encoder/
ms-marco-MiniLM-L-12-v2
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licLs]| Claim | Question [SEP] Sentence Chunk [SEP]

Figure 3: Input of the cross-encoder. The document
is split into multiple sentence chunks so that the total
length of the combination doesn’t exceed 512 tokens. A
sentence chunk includes about 400 to 500 tokens.

to select relevant evidence. Concretely, for each
generated question, we concatenate it with the
claim as the query. We then iteratively split each
document into chunks so that the total length of
the query and chunk pair does not exceed the maxi-
mum length of the cross-encoder, 512 tokens. Fig-
ure 3 illustrates the input of the cross-encoder. We
rank the chunks based on the relevance scores pre-
dicted by the cross-encoder. For each question, we
select the top 3 chunks for answering the question.

Generator With the retrieved top 3 chunks for each
question, we utilize a fine-tuned LLM, Llama3-
ChatQA-1.5-70B (Liu et al., 2024), to generate
answers given the question and corresponding top
chunks as the context. Besides the greedy gener-
ation, we sample 10 further answers with temper-
ature 0.7 to increase the probability that the gen-
erator correctly answers the question. We show
the prompt for answer generation in Appendix A.3.
The candidate pool for the answer is initialized with
the greedy answer. Further distinct answers from
sampling are iteratively added to the candidate pool
based on the similarity scores with an embedding
model, all-mpnet-base-v2 (Reimers and Gurevych,
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2019). In this step, one question can have multiple
distinct answers. This design choice is based on
our observation from experiments, that the correct
answer to the question can not always be generated
with the greedy decoding strategy by our generator.

3.2.2 Fact-check QA Pairs

Hallucination is a common problem of current
RAG systems and it can lead to the problem that
generated answers are not entailed in the source
chunks. Therefore, we further add an entailment
check step for generated answers. We first use
few-shot learning to convert QA pairs into state-
ments. The prompt is shown in Appendix A.4.
A pre-trained natural language inference (NLI)
model, bart—large—mnli5 (Lewis et al., 2019), is used
to check whether the statement is entailed in the
corresponding sentence chunks. The pre-trained
NLI model has three labels for (premise, hypothe-
sis) pairs, namely refuted, not enough information
(NEI), and entailed. Each statement corresponds
to three sentence chunks. As soon as the statement
is entailed in one sentence chunk, the correspond-
ing QA pair will be selected. Since one question
can have multiple entailed answers, i.e., statements,
we select the answer with the largest entailment
probability. We observe that our NLI model can-
not correctly handle the entailment relationship for
statements like No information regarding ... could
be found., which are often classified as NEI despite
being entailed (supported) in the sentence chunks.
So if a question has no entailed answer and there
are NEI answers like There is no information...,
Sorry, I cannot find the answer based on the con-
text, etc., we also select the question with a uniform
answer No answer could be found. for further pro-
cessing. The questions that have neither entailed
answers nor NEI answers are dropped.

3.2.3 Check Conditions & Aggragate

Since the fact-checking step has filtered some
QA pairs, it can make the verification step
difficult. We introduce two conditions to
check the completeness of answers to a set of

. #questions answered
questions, namely Tquestions > 0.8

#question answered with NEI
and #questions answered < 0.3, where

#questions answered represents for the number
of answered questions and includes both the en-
tailed answer and the NEI answer. If the conditions

Shttps://huggingface.co/facebook/
bart-large-mnli
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are not fulfilled, we repeat the steps in stage 2 with
another set of questions.

After the maximal two times repeat, we aggre-
gate all QA pairs for each claim. Each claim can
have from one to three rounds of question answer-
ing. There can be duplicated QA pairs after ag-
gregation. We first rank the QA pairs with a cross-
encoder model based on their relevance to the claim.
The QA pairs are iteratively selected with a further
embedding model so that the to-be-selected pair
does not exceed the similarity threshold to selected
pairs. Some claims do not have any entailed or NEI
answer after the third question answering round.
For these claims, we use the greedy set of ques-
tions and assign No answer could be found. as the
answer.

3.3 Claim Verification

We verify the claims with the aggregated QA pairs.
Similar to the question generation process, we uti-
lize the train and dev set to instruction-tune a pre-
trained LLM, Llama-3-70B-Instruct (AI@Meta,
2024), with LORA. We show an example of the in-
struction dataset in Appendix A.5. We also include
the justification in the target output before the veri-
fication label so that the model not only generates
the verification label but also the justification. This
mimics the chain-of-thought idea (Wei et al., 2022).
Studies (Wang et al., 2023; Liu and Thoma, 2024)
show that sampling instead of greedy decoding can
improve the reasoning performance of LLMs. We
sample 40 verifications for each claim and apply
majority voting to derive the final verification label.

4 Evaluation

In this section, we show the performance of our
proposed systems for the shared task. Besides the
system in the test phase, the FZI-WIM Test, we also
include the improved version in the after competi-
tion phase, FZI-WIM After Compet., for compari-
son. With the FZI-WIM After Compet. setup, each
claim has three sets of distinct questions without
conditional check described in Section 3.2.3.

4.1 Evaluation Metrics

For the shared task, both retrieved evidence and
veracity predictions are evaluated. For the evi-
dence evaluation, generated questions and answers
are compared to the reference (gold questions and
answers). The pairwise scoring function is de-
fined as f : S xS — R, where S is the set
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System Q Q+A AvVeriTeC Score
FZI-WIM Test 032 0.21 0.20
FZI-WIM After Compet. 0.40 0.27 0.33
Baseline 0.24 0.20 0.11
Best scores 049 0.35 0.63

Table 1: Overview of our systems compared to the base-
line system and best scores in each category. FZI-WIM
Test is our proposed system in the test phase. We further
improve the system in the after competition phase with
the system FZI-WIM After Compet..

of sequence tokens. The scoring function adopts
the METEOR (Banerjee and Lavie, 2005) metric.
The Hungarian Algorithm (Kuhn, 1955) is applied
to find an optimal match between generated se-
quences and reference sequences (Schlichtkrull
et al., 2023). A boolean function X is defined
as X : Y x Y — {0,1} to denote the assignment
between the generated sequences Y and the refer-
ence sequences Y . The final score u is calculated
(Schlichtkrull et al., 2023) as:

Uf(f/ Y

) = D1,|max2 S 1 6,9)X(5,9)

jeY YEY
(3)
The evaluation of veracity prediction uses the
accuracy metric. A cut-off of f(¢,y) > A has
been applied to determine whether correct evidence
(concatenation of questions and answers) has been
retrieved. Claims with an evidence score lower
than the cut-off score \ receive veracity scores of
0. The AVeriTeC score in the shared task has a A
value of 0.25 (Schlichtkrull et al., 2023).

4.2 Results

Table 1 shows the performance of our proposed
systems compared to the baseline system and the
best scores in each category. After the competition,
we further improved our system with more ques-
tions (FZI-WIM After Compet.). Concretely, we
remove the conditional check step and further re-
peat stage 2 twice for every claim. This means each
claim has three sets of questions and three rounds
of question answering. With more questions, we
can observe significant performance improvement
regarding three metrics. In the following, we give a
detailed analysis of our system regarding question
generation & answering and claim verification.
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4.3 QA Analysis

Table 2 shows the statistics of three different setups
for selecting QA pairs. In the Greedy setup, the se-
lected QA pairs for each claim are aggregated only
with the greedy set of questions. In the FZI-WIM
Test setup, with the conditional check, 1405 claims
have utilized one set of questions, 365 claims with
2 sets of questions, and 445 claims with three sets
of questions to select QA pairs. In the FZI-WIM
After Compet. setup all 2215 claims have three sets
of questions to select QA pairs. From the results,
we can observe that more sets of different questions
improve the scoring of both question and QA pairs.
This is partly because we have not retrieved extra
documents outside the knowledge store, which can
cause questions to be not properly answered. There
are various ways to ask critical questions for each
claim, i.e., various reasoning possibilities. More
sets of different questions can increase the probabil-
ity of matching the gold questions. In the following,
we give a further analysis regarding each compo-
nent in our question-answering pipeline, with a
focus on the deficits that cause errors.

Retriever We have directly applied a cross-encoder
model to select relevant chunks from the docu-
ment corpus. Compared to other methods, e.g., TF-
IDF, dual-encoder, etc., the advantage of the cross-
encoder is the retriever performance, and the disad-
vantage is the computing time. Another limitation
of the cross-encoder model is the input length, in
our case a maximum of 512 tokens. The incom-
plete context information can lead to misleading
answers, especially adversarial information, i.e.,
misinformation or satire exists in the context.

Generator We have utilized Llama3-ChatQA-1.5-
70B (Liu et al., 2024) from Nvidia to generate an-
swers with a zero-shot setup. For a question, the
corresponding context combined of the top 3 sen-
tence chunks, normally includes around 1500 to-
kens. Hallucination and insufficient understanding
of questions and contexts are two major reasons
leading to wrong answers. We observe that with
the greedy generation, the model cannot always
come to the correct answer. We further sample 10
answers with a temperature of 0.7 for each question.
Table 3 shows the distribution of answer sources.
The statistics show the necessity of sampling be-
sides the greedy generation.

Fact-check The difference between the number of
total questions and answered questions in Table 3
reflects the number of dropped questions under



Setup #Total Questions #Selected QA NEI (%) Q Q+A
Greedy Set of Questions 5004 3846 17.57 0.28 0.18
FZI-WIM Test 8212 5574 16.02 0.32  0.20
FZI-WIM After Compet. 16696 10048 18.68 0.40 0.27

Table 2: Comparison of different setups for QA pairs selection, including the numbers of total generated questions
and selected QA pairs, percentage of the NEI answer in selected QA pairs, and the resulting question scores,

question + answer scores.

Setup #Total Questions #Answered Greedy / Sampling (%)

5004 4381 74.30/25.70

8212 7004 69.20/30.80
16696 14512 68.54/31.46

Greedy Set of Questions
FZI-WIM Test
FZI-WIM After Compet.

Table 3: Distribution of answers, including entailed and
NEI answers, among greedy generation and sampling
under different setups.

System Greedy Sampling
FZI-WIM Test 0.1991 0.1959
FZI-WIM After Compet. 0.3314 0.3336

Table 4: Comparison of AVeriTeC scores under greedy
generation and sampling strategies for claim verification.
The same QA pairs are used for each system with two
strategies.

each setup. The dropped questions have neither en-
tailed answers nor NEI answers, which shows the
necessity of fact-checking the RAG system in the
pipeline. We have utilized a pre-trained discrim-
inative NLI model, bart-large-mnli (Lewis et al.,
2019), with a maximum input length of 1024 to-
kens. Existing pre-training datasets for NLI, i.e.,
MNLI, SNLI, etc., have normally short contexts.
Given the trend of growing context length in the
current RAG systems, reliable entailment-check at
the document level can be interesting for future
research.

4.4 Claim Verification

The claim is verified with an instruction-tuned
model. In the submitted systems, we have sampled
40 verifications for each claim and applied major-
ity voting to select the final label. With the same
instruction-tuned model and QA pairs, we generate
the verification greedily for comparison. Table 4
shows the verification performance of greedy gen-
eration and sampling. The performance difference
regarding the AVeriTeC score is negligible between
the two strategies. This can be partly attributed
to the final AVeriTeC scoring function. We can
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only conclude the greedy generation and sampling
for claims, whose corresponding QA pairs com-
pared to gold QA pairs have exceeded the cut-off
threshold of 0.25, make a small difference. For
claims with QA scores smaller than 0.25, which
are not necessarily wrong, the effect of sampling
compared to the greedy generation is not reflected
in the AVeriTeC scores.

4.5 Open-source VS Proprietary Models

We have observed the current bottleneck of our
pipeline lies in the generator, which utilizes an
open-source LLLM Llama3-ChatQA-1.5-70B (Liu
et al., 2024) as the backbone to answer ques-
tions. We conduct further experiments and replace
the open-source LLM with a proprietary model,
namely GPT4-Turbo from OpenAlI ©. Concretely
we apply the same question generator, retriever,
and claim verifier as shown in Figure 2. Only the
generator is replaced with GPT4-Turbo. Due to
the budget constraint, we evaluate the model only
on the dev set and generate the answers greedily
(temperature 0) without sampling. We have not
fact-checked (entailment check) the answers from
GPT4-Turbo, which is generally wordy compared
to the open-source generator and makes the entail-
ment check difficult. We have utilized maximal
two sets of distinct questions. For comparison, we
select the FZI-WIM After Compet. system, which
utilizes three sets of distinct questions for each
claim. The results are shown in Table 5. The Q+A
scores in the table demonstrate significantly better
performance of GPT4-Turbo than the open-source
generator. Our manual investigation shows also
that GPT4-Turbo has better context understanding
and reasoning capabilities, especially in adversarial
cases.

*https://openai.com


https://openai.com

Setup #Selected QA Q Q+A AVeriTeC Score
FZI-WIM After Compet. 2266 041 0.26 0.29
GPT4-Turbo (1 Set Questions) 1096 0.32 0.22 0.24

GPT-4 Turbo (2 Sets Questions) 2372 042 0.30 0.45

Table 5: Comparison between open-source and propri-
etary LLMs as the generator for answering questions on
the dev dataset. FZI-WIM After Compet. utilizes all
three sets of questions.

5 Conclusion & Outlook

In this paper, we have described the FZI-WIM sys-
tem for the AVeriTeC shared task, which aims to
tackle the real-world claim verification problem.
The complex reasoning problem in fact-checking
is tackled via question-answering. For each claim,
we first generate relevant critical questions. Based
on the provided knowledge store, the questions
are answered with an RAG system. Considering
the hallucination problem in RAG systems, we fact-
check the generated QA pairs to ensure the answers
are entailed in the source texts. We show that more
questions, i.e., more question-answering rounds,
lead to better model performance. The claim verifi-
cation is based on the selected QA pairs.

Generally, our current systems need a large
amount of computing. The improvement of the
efficiency with open-source models is needed for
the real-world scenario. Compared to proprietary
models, our generator in the RAG system is not
robust enough against adversarial contexts, e.g.,
misinformation, satire, etc. Further enhancement
of the robustness can be a promising research di-
rection.
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Limitations

Due to the limited time for developing the sys-
tems in the test phase, our systems have only used
the provided knowledge store without searching
for extra relevant documents related to our ques-
tions. Extra search can make a big difference for
certain steps, e.g., the repeated processes in stage

&3

2. With extra search, the times of repeats can be
reduced. To achieve the best performance our cur-
rent systems have always selected better-performed
open-source models, e.g., cross-encoder, LL.Ms,
etc., which normally have a larger size. This leads
to the fact that our systems require a large amount
of computing. In the future, we will focus on the
trade-off of performance and efficiency for real-
world fact-checking systems.
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A Appendix

A.1 Implementation details

Instruction-tuning We have applied Fully Shared
Data Parallel (FSDP) from Meta Al (Zhao et al.,
2023) for the instruction-tuning of question gen-
eration and claim verification models. The train-
ing script is based on llama-recipes’ with two
4xNvidia-H100 nodes. The dev sets are included
for fine-tuning to make predictions on the final test
set. For question generation, we have fine-tuned
for 5 epochs and claim verification for 3 epochs.
Model inference We have applied transformers li-
brary® for inference. For the greedy generation, we
set the parameter do_sample as false. For sampling,
we set temperature as 0.7 and top_k as 50.

A.2 Example for instruction-tuning question
generator

Figure 4 shows an example of the instruction-
tuning dataset for the question generator.
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llama—-recipes
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transformers
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You are a fact-checker and your task is to generate
critical questions for verifying the following claim.
Claim date: 25-8-2020

Claimer: Pam Bondi

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Questions: Did Hunter Biden have any experience in the
energy sector at the time he joined the board of the Burisma
energy company in 2014? Did Hunter Biden have any
experience in Ukraine at the time he joined the board of
the Burisma energy company in 2014?

Figure 4: An example of the instruction dataset for fine-
tuning an LLM to generate questions. The prompt ends
with "Questions: ". The questions are the target output
for fine-tuning the LLM.

A.3 Prompt for question-answering

Figure 5 shows the prompt for question-answering.

System: This is a chat between a user and an artificial
intelligence assistant. The assistant gives helpful,
detailed, and polite answers to the user’s questions
based on the context. The assistant should also indicate
when the answer cannot be found in the context.

GSK does not own Pfizer and or the Wuhan bio-
logical laboratory You have sent us an Instagram message
with these and other misleading and false relation ...

Disclosure: ~ The Open Society Foundations and
Bill and Melinda Gates Foundation are among Africa
Check’s funders, which together provided 21% of our
income in 2019 ...

Rumor — Facts list shows that the Wuhan Labora-
tory is owned by Glaxo, Pfizer, has connections with
foreign companies and receives money from George Soros
and Bill Gates ...

User: Please give a full and complete answer for
the question. Who owns GlaxoSmithkline?

Assistant:

Figure 5: Prompt template for answering the question
given the top 3 chunks, adopted from Liu et al. (2024).
The top 3 chunks in the context are ordered reversely.

A.4 Few-shot prompt for converting QA pairs
to statements

Figure 6 shows the few-shot examples to convert
QA pairs to statements.

A.5 Example for instruction-tuning claim

Your task is to convert question answer pairs into
statements. In the following there are some example
showing how to convert question answer pairs into
statements.

Question: What resolutions did Biden support in
favor of US intervention in Iraq?

Answer: He supported the H.J.Res.114 - Authorization
for Use of Military Force Against Iraq Resolution of 2002
107th Congress (2001-2002)

Statement: Joe Biden supported the H.J.Res.114 -
Authorization for Use of Military Force Against Iraq
Resolution of 2002 107th Congress (2001-2002)

Question: How much of their national budget did
the Kenyan judiciary receive in 2021?

Answer: Budget speeches for 2020/21 show the judiciary
received 0.6% of the national budget.

Statement: Budget speeches for 2020/21 show the Kenyan
judiciary received 0.6% of the national budget.

Question:  Should counties be chasing the 10%
spending target or should it be done at a national level?
Answer: No answer could be found.

Statement: No answer could be found regarding whether
counties should be chasing the 10% spending target or if it
should be done at a national level.

Question: Did Hunter Biden have any experience
in the energy sector at the time he joined the board of the
Burisma energy company in 2014

Answer: No

Statement: Hunter Biden didn’t have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014.

Figure 6: Few-shot prompt for converting QA pairs to
statements.

Your task is to verify the claims based on the context
information in format of question answer pairs. Verify
the claim with justification using the following labels:
Supported, Refuted, Not Enough Evidence, Conflicting
Evidence/Cherrypicking.

Claim: Hunter Biden had no experience in Ukraine or in
the energy sector when he joined the board of Burisma.
Question 1: Did Hunter Biden have any experience in
the energy sector at the time he joined the board of the
Burisma energy company in 2014

Answer 1: No

Question 2: Did Hunter Biden have any experience in
Ukraine at the time he joined the board of the Burisma
energy company in 2014

Answer 2: No

Justification: No former experience stated.
Label: Supported

verifier Figure 7: An example of the instruction dataset for fine-
tuning an LLM to verify the claims. The prompt ends
with "Answer 2: No ". The justification and label are
the target output.

Figure 7 shows an example of the instruction
dataset for the claim verification.
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Abstract

Automated fact-checking is an important task
because determining the accurate status of a
proposed claim within the vast amount of in-
formation available online is a critical chal-
lenge. This challenge requires robust evalu-
ation to prevent the spread of false information.
Modern large language models (LLMs) have
demonstrated high capability in performing a
diverse range of Natural Language Processing
(NLP) tasks. By utilizing proper prompting
strategies, their versatility—due to their under-
standing of large context sizes and zero-shot
learning ability—enables them to simulate hu-
man problem-solving intuition and move to-
wards being an alternative to humans for solv-
ing problems. In this work, we introduce a
straightforward framework based on Zero-Shot
Learning and Key Points (ZSL-KeP) for au-
tomated fact-checking, which despite its sim-
plicity, performed well on the AVeriTeC shared
task dataset by robustly improving the baseline
and achieving 10" place.

1 Introduction

The AVeriTeC task (Schlichtkrull et al., 2024) is de-
signed to encourage the development of advanced
frameworks for automated fact-checking, a criti-
cal task in NLP. With the rapid spread of informa-
tion and misinformation online, automated fact-
checking is increasingly important. Given the
time-consuming nature of manual fact-checking,
building an effective neural language model-based
framework is valuable for saving time and costs,
improving performance, and supporting human
judgment. Significant efforts are being made to
automate this process within digital tools or LLMs
(Nakov et al., 2021).

LLMs with billions of parameters offer extensive
knowledge and strong reasoning capabilities that

!Code and data released at https://github.com/
mghiasvand1/ZSL-KeP
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can be customized for various tasks. Designing
effective and appropriate prompts is crucial in this
customization process. Recent utilization of LLMs
can mainly be divided into two categories: fine-
tuning and In-Context Learning (ICL). Given the
enormous size of LLMs and the high computational
cost associated with fine-tuning them, utilizing ICL
through zero-shot or few-shot prompting is much
more efficient.

Explaining the reasoning behind a decision is
crucial for user trust in automated fact-checking,
as users need to understand the evidence behind
the model’s verdict (Guo et al., 2022). This work
employs Large Language Models (LLMs) with
Zero-Shot Learning (ZSL), which offer advantages
over simpler, classification-based models due to
their long context windows and high reasoning
capabilities. Besides using powerful LLMs and
effective prompting, accurate retrieval of relevant
information is vital. This involves hierarchical,
step-by-step prompting and decomposition-based
retrieval methods (Zhang and Gao, 2023). This
paper describes the novel approach implemented
by our team, MA-Bros-H, for the AVeriTeC shared
task, which integrates ZSL and key point utilization
within a unified and straightforward framework.

2 Related Works

To highlight a few recent research efforts in auto-
mated fact-checking, it is notable that (Kotonya
and Toni, 2020) provided explainability through
summarization, and (Lee et al., 2020) utilized the
internal knowledge of pretrained language models
such as BERT (Devlin, 2018) within their frame-
work. Additionally, (Lee et al., 2021) employed
few-shot prompting for fact-checking, (Zhang and
Gao, 2023) introduced a hierarchical, step-by-step
prompting method that involves claim decomposi-
tion followed by step-by-step reasoning to predict
the final verdict, and (Kim et al., 2024) proposed
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November 15, 2024 ©2024 Association for Computational Linguistics


https://github.com/mghiasvand1/ZSL-KeP
https://github.com/mghiasvand1/ZSL-KeP

-

~

Zero-Shot
Prompting

A

Key_Point 1 —>

Key_Point n —>

l

.

evidence
top_k + ref @
e
> justification
Zero-Shot
4 Prompting
verdict

/

Figure 1: ZSL-KeP Framework Illustration

a multi-agent debate strategy for explainable fact-
checking.

3 Methodology

This section provides a detailed overview of the
problem definition of AVeriTeC task, as well as the
operational procedure of our ZSL-KeP model, as
outlined in Figure 1.

3.1 Problem Definition

Since our method is explicitly based on zero-
shot prompting, we use only the test data to ex-
ecute our framework, ignoring the train and val-
idation datasets. For each data point in the test
dataset, a claim is provided, and a verdict must
be predicted from the labels “Supported”, “Re-
futed”, “Not Enough Evidence”, and “Conflicting
Evidence/Cherry-Picking”. Additionally, for each
claim, a JSON file called a knowledge store is pro-
vided. This file contains numerous URLs with
scraped texts, including some gold documents that
assist in selecting the accurate label. The expected
output includes a verdict for the input claim and
adequate, yet non-redundant, evidence, preferably
in the form of question-answer pairs, along with
the corresponding URL and scraped text for each
pair to justify the source of each proposed question-
answer pair. It is noteworthy that the answer type
for each question can be “Extractive”, “Abstrac-
tive”, “Boolean” or “Unanswerable’.

3.2 ZSL-KeP Framework

Our ZSL-KeP framework is a procedure that con-
tains multiple steps detailed below. However,
compared to the baseline method proposed in
(Schlichtkrull et al., 2024), our method is much
more straightforward, containing fewer steps than
the baseline, does not require any fine-tuning, and
is simpler to implement.
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3.2.1 Zero-Shot Key Points Construction

In the first step, we receive the claim as input
and aim to construct key points based on the re-
ceived claim using ZSL with our chosen LLM. The
primary objective of forming key points is that
even a simple claim can contain several key points.
When searching and retrieving information from
the knowledge store, more extensive retrieval typ-
ically yields more comprehensive information. A
claim might not return many helpful documents
when queried directly, but by constructing diverse
key points from it, we can obtain more relevant and
diverse information. As shown in the prompting
template in Appendix A, we limit the number of
primitive key points to four. For these distinct key
points, we ask the LLM to identify and return pairs
of key points whose combinations result in valu-
able and richer key points. This process aims to
construct an extensive set of key points based on
the input claim, facilitating more divergent retrieval
in the next step.

3.2.2 Extensive Retrieval with References

As mentioned, for each claim, we have a large
knowledge store consisting of various URLs with
their scraped texts, among which the gold docu-
ments for selecting the best and correct verdict are
present. In the previous step, we constructed sev-
eral key points for each claim, either of a normal
type or paired, as explained earlier. If the number
of constructed key points is n, we treat these key
points as a list of queries. We append the main
input claim to this list and use BM25 (Robertson
et al., 2009) to retrieve results for each of the n + 1
queries with a different fop_k parameter for each
query. For each selected retrieval result, since each
JSON file contains many URLs and each URL has
several scraped texts, we construct an ID by con-
catenating the URL index within the JSON file



Method

| Qonly Q+A | AVeriTeC score

AVeriTeC Baseline (Schlichtkrull et al., 2024) |

024 0.0 | 0.11

ZSL-KeP (Ours)

| 038 024 0.27

Table 1: Main results include retrieval scores for both questions alone and for questions with answers, as well as the AVeriTeC

score for the baseline and our proposed method.

with an underscore, followed by the index of the
scraped text within the list. For each retrieval docu-
ment, we attach the text “<ID>" (where ID is the
constructed corresponding ID) to the document.
After retrieving and appending all these documents
for each query, we separate them with a newline
character. Finally, we concatenate all groups of
retrievals, separating them with two newline char-
acters and several dashes in between, to form a
unified retrieval string for the input claim.

3.2.3 Zero-Shot Prediction

In this stage, which is the final step of our frame-
work, we use ZSL to generate evidence, followed
by a justification and, finally, a verdict. We pass
the original claim along with the unified retrieval
string formed in the previous step as input, exactly
as shown in Appendix A; However, due to the lim-
ited context window of the LLM we are using,
errors may arise. In such cases, we reduce the
number of documents in the unified retrieval string
and prompt the LLLM again with a shorter input
length. The reason we include only the retrievals in
the unified retrieval string and omit the key points
is that we want to avoid influencing the evidence
construction process—specifically, the creation of
question-answer pairs—in our strategy. We aim to
keep this process dynamic, based on the available
selected knowledge and the claim’s purpose.

Since the number of adequate question-answer
pairs available as evidence for any claim may vary,
we limit the LLM to providing at most 4 pairs
to avoid penalties from additional, non-essential
question-answer pairs in our prompt. The justifica-
tion is needed to reason about the verdict based on
the evidence and to directly write the predicted ver-
dict afterward. Since the task requires the URL and
scraped text for each item of evidence, we instruct
the LLM to provide the citation ID when answer-
ing questions. This ensures that we can show the
source for our verdict and each question-answer
pair.
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4 Experiments and Results

4.1 Experimental Setup

In this work, we utilized the Llama-3-70B model
for both steps described in Sections 3.2.1 and 3.2.3,
using the Groq API%. Additionally, we set the tem-
perature to 0 to ensure reproducibility and top_p to
0.8. For key point construction, we set max_length
to 512, and for zero-shot prediction, we set it to
1024. In the retrieval step using BM25, we set
top_k to 70 for the original claim and to 12 for
other queries, which include key points from both
normal and combined forms. For zero-shot pre-
diction, which is the third step of the strategy, if a
rate limit occurs due to input length limitations, we
retain only the first 55 documents for the original
claim and 9 documents for key point retrievals.

4.2 Evaluation Metrics

The AVeriTeC scoring follows a similar approach
to FEVER (Thorne et al., 2018) and considers the
correctness of the verdict label conditioned on the
correctness of the evidence retrieved. The label
will only be considered correct if it mathches with
the gold label and the Hungarian meteor score be-
tween the predicted evidence and the gold evidence
is at least 0.25. However, Unlike in FEVER us-
ing a closed source of evidence such as Wikipedia,
AVERITEC is intended for use with evidence re-
trieved from the open web. Since the same evidence
may be found in different sources, we cannot rely
on exact matching to score retrieved evidence. As
such, the shared task evaluation strategy instead
rely on approximate matching. Specifically, the
Hungarian Algorithm (Kuhn, 1955) is used to find
an optimal matching of provided evidence to anno-
tated evidence.

4.3 Main Results

Despite our framework’s straightforward proce-
dure, which does not require any fine-tuning and
only utilizes ZSL, as depicted in Table 1, it ro-
bustly improves the baseline in both retrieval

Zhttps://grog.com/



scores—calculated for questions alone and for
questions with answers—and the AVeriTeC score.
This includes improvements of 0.14, 0.04, and
0.16 in retrieval scores for questions only, re-
trieval scores for questions with answers, and the
AVeriTeC score, respectively. Based on these re-
sults, by using an open-source LLM, our frame-
work has achieved a 10" rank among all 23 system
result submissions.

5 Conclusion

In this paper, we introduced ZSL-KeP, an effec-
tive yet straightforward framework for automated
fact-checking. We utilized the ZSL capability of
LLMs and constructed key points for extensive
retrieval to generate evidence in a question-and-
answer pairs format, along with a final verdict. By
relying solely on the ICL capability of LLMs, our
strategy operates without requiring any fine-tuning
and is more straightforward compared to the base-
line. Our framework sets a new benchmark, in-
dicating promising avenues for future research in
related topics.

6 Limitations

While our work shows strong performance, it has
some limitations that suggest areas for future re-
search. Our method improves diversity by using
zero-shot key points for retrieval, but the limited
input length of our LLM, constrained by time and
budget limitations, prevented us from retrieving a
larger document set. Additionally, a more powerful
LLM could enhance accuracy in generating evi-
dence and verdicts. Addressing these issues could
significantly improve our framework’s results.
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A Prompt Templates

This section provides all of the prompting tem-
plates used within the strategy. Figure 2 illus-
trates the full prompts for section 3.2.1, while the
prompts for section 3.2.3 are shown in Figure 3. It
is noteworthy that in the user messages, the tags
“<claim>" and “<retrieval>" are replaced by the
original claim and the unified retrieval string, re-
spectively.



[System]
You're a helpful assistant with expertise in understanding the concepts of a given claim and writing subclaims that
decompose the main claim well.

[User]

Based on the given claim, your task is to extract several distinct key points (2 to 4, depending on the claim's length
and complexity) without paraphrasing, in the format of short sentences. Focus on key points that support the
main intent of the claim, rather than unnecessary details. Then, only if the number of key points is more than two,
identify the pairs of key points whose combination leads to new and richer key points, and return a single
coherent short text as a representation of each combination without paraphrasing. Provide your response
explicitly in the format of {"key_points": [], "combined_key_points": []}.

Claim: <claim>

Figure 2: The Prompts for Zero-Shot Key Points Construction

~
[System]
You are a helpful assistant with expertise in creating evidence through suitable question-answer pairs based on a
given claim and the available key points within the retrieved knowledge, and in providing an accurate verdict for
that claim.
[User]
Your task is to accurately determine a correct verdict for a given claim from the labels "Refuted", "Supported",
"Not Enough Evidence", or "Conflicting Evidence/Cherry-Picking". You need to provide 1 to 4 necessary and
helpful question-answer (QA) pairs. Each QA pair should be well-constructed, focusing on different important
parts of the claim and utilizing the retrieved knowledge effectively to guide accurate decision-making. Therefore,
you need to break down the claim into its distinct and most important subclaims, focusing on these individual
components, as well as considering direct questions related to the main claim if the retrieved knowledge is
sufficient. Your answers can only be in the forms of extractive (preferred), abstractive, or unanswerable.
Extractive answers are those directly pulled from the text, while abstractive answers summarize or infer
information based on the text. Unanswerable type is very rare, and in this case, set the answer to "No answer
could be found." and the citation_id to "". Each piece of text in the retrieved knowledge has a <citation_id> at its
end, where the placeholder is replaced by the main citation ID. For each proposed answer to all answerable
guestions in your evidence, you must include exactly one citation ID (if there are multiple citation_id, select only
one) solely within the "citation_id" field. After providing evidence, you must also provide a concise justification
explaining how the evidence and the retrieved knowledge support the selected label for the claim. Provide your
answer explicitly in the following format without any other change or additional feedback:
{
"evidence": [
{
"question": "question",
"answer": "answer",
"citation_id": "<citation_id>"
2
l
"justification": "justification",
"pred_label": "pred_label"
}
Claim:
<claim>
Retrieved Knowledge:
<retrieval>
J

Figure 3: The Prompts for Zero-Shot Prediction

90



Evidence-backed Fact Checking using RAG and Few-Shot In-Context
Learning with LLLMs

Ronit Singhal', Pransh Patwa?, Parth Patwa’,
Aman Chadha*>*, Amitava Das®,

'IIT Kharagpur, India, >Aditya English Medium School, India, *'UCLA, USA,
4Stanford University, USA, >Amazon GenAl, USA, ®University of South Carolina, USA
'ronit@kgpian.iitkgp.ac.in, >pransh.patwa@aemspune.edu.in, *parthpatwa@g.ucla.edu
45hi@aman.ai, ®amitava@mailbox.sc.edu

Abstract

Given the widespread dissemination of
misinformation on social media, implementing
fact-checking mechanisms for online claims
is essential. Manually verifying every claim
is very challenging, underscoring the need
for an automated fact-checking system. This
paper presents our system designed to address
this issue. We utilize the Averitec dataset
(Schlichtkrull et al.,, 2023) to assess the
performance of our fact-checking system. In
addition to veracity prediction, our system
provides supporting evidence, which is
extracted from the dataset. We develop a
Retrieve and Generate (RAG) pipeline to
extract relevant evidence sentences from a
knowledge base, which are then inputted
along with the claim into a large language
model (LLM) for classification. We also
evaluate the few-shot In-Context Learning
(ICL) capabilities of multiple LLMs. Our
system achieves an ’Averitec’ score of 0.33,
which is a 22% absolute improvement over
the baseline. Our Code is publicly available
on https://github.com/ronit-singhal/evidence-
backed-fact-checking-using-rag-and-few-shot-
in-context-learning-with-1lms.

1 Introduction

The proliferation of fake news and misinformation
on social media platforms has emerged as a signifi-
cant contemporary issue (Panke, 2020). False on-
line claims have, in some cases, incited riots (Lind-
say and Grewar, 2024) and even resulted in loss of
life (Kachari, 2018). This problem is particularly
amplified during critical events such as elections
(Bovet and Makse, 2019) and pandemics (Karimi
and Gambrell, 2020; Bae et al., 2022; Morales et al.,
2021). Given the vast volume of online content,
manually fact-checking every claim is impractical.
Therefore, the development of an automated fact

“Work does not relate to position at Amazon.
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Figure 1: Overview diagram of our system. First, the
claim is used to retrieve the top 3 relevant documents.
Next, evidence is extracted from these documents using
questions and answers generated by an LLM. Finally,
the evidence is used for veracity prediction via few-shot
ICL.

verification system is imperative. Moreover, sim-
ply assigning a veracity label is inadequate; the
prediction must be supported by evidence to en-
sure the system’s transparency and to bolster pub-
lic trust. Although recent solutions have been pro-
posed (Patwa et al., 2021a; Capuano et al., 2023),
the problem remains far from resolved and requires
further research efforts.

In this paper, we present our system for au-
tomated fact verification. Our system classi-
fies a given textual claim into one of four cat-
egories: Supported, Refuted, Conflicting Evi-
dence/Cherrypicking, or Not Enough Evidence.
Additionally, it provides supporting evidence for
the classification. Our approach leverages re-
cent advancements in Large Language Models
(LLMSs), specifically Retrieval-Augmented Genera-
tion (RAG) and In-Context Learning (ICL), to pro-
duce evidence-backed veracity predictions. Given
a claim and a collection of documents, our system
first employs a RAG pipeline to retrieve the three
most relevant documents and extract evidence from
them. Subsequently, we utilize ICL to determine
the veracity of the claim based on the extracted evi-
dence. Figure 1 provides a high-level overview of
our system. We evaluate our system on the Averitec
dataset (Schlichtkrull et al., 2023), where it outper-
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forms the official baseline by a large margin. Our
key contributions are as follows:

* We develop a system for automated fact veri-
fication that integrates RAG with ICL to pro-
vide evidence-based classifications.

* Our proposed system requires only a minimal
number of training samples, thereby eliminat-
ing the need for a large manually annotated
dataset.

* We conduct experiments with various recent
LLMs and provide a comprehensive analysis
of the results.

The remainder of this paper is structured as fol-
lows: Section 2 provides a literature review of re-
lated works, while Section 3 describes the dataset.
In Section 4, we outline our methodology, followed
by a detailed account of the experimental setup in
Section 5. Section 6 presents and analyzes our
results, and finally, we conclude in Section 7.

2 Related Work

Recently, there has been increased research interest
in fake news detection and fact checking. Glazkova
et al. (2021) proposed an ensemble of BERT (De-
vlin et al., 2019) for Covid fake news (Patwa et al.,
2021b) detection. Harrag and Djahli (2022) em-
ployed deep learning techniques for fact checking
in Arabic (Baly et al., 2018). (Song et al., 2021)
tackled the problem of fake news detection using
graph neural networks. The factify tasks (Mishra
et al., 2022; Suryavardan et al., 2023b) aimed to
detect multi-modal fake news. However, these sys-
tems only provide the veracity prediction without
any evidence.

On the FEVER dataset (Thorne et al., 2018), Kr-
ishna et al. (2022) designed a seq2seq model to gen-
erate natural logic-based inferences as proofs, re-
sulting in SoTA performance on the dataset. Schus-
ter et al. (2021) released the VitaminC dataset and
propose contrastive learning for fact verification.
Hu et al. (2022) proposed a DRQA retriever (Chen
et al., 2017) based method for fact checking over
unstructured information (Aly et al., 2021). These
systems provide evidence or explanation to back
their predictions but they test the veracity of syn-
thetic claims whereas we test real claims.

Some researchers have also used LLMs to tackle
the problem. Kim et al. (2024) leveraged multiple
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Class Train Dev
Supported 847 122
Refuted 1743 305
Conflicting evidence/Cherrypicking 196 38
Not enough evidence 282 35
Total 3068 500

Table 1: Class-wise distribution of train and dev set of
the dataset. The data is skewed towards the Refuted
class.

Word Cloud of Claims
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Figure 2: Word cloud of the claims. We can see that Pol-
itics and COVID-19 are common topics in the claims.

LLMs as agents to enhance the faithfulness of ex-
planations of evidence for fact-checking. Zhang
and Gao (2023) designed a hierarchical prompting
method which directs LLMs to separate a claim
into several smaller claims and then verify each of
them progressively.

There have also been attempts to solve the prob-
lem using RAG. Khaliq et al. (2024) utilized multi-
modal LLMs with a reasoning method called chain
of RAG to provide evidence based on text and
image. Deng et al. (2024) proposed a method to
decrease misinformation in RAG pipelines by re-
ranking the documents during retrieval based on
a credibility score assigned to them. Similar to
these systems, we also use RAG and LLMs in our
solution.

For more detailed surveys, please refer to Thorne
and Vlachos (2018); Kotonya and Toni (2020); Guo
et al. (2022).

3 Data

We utilize the Averitec dataset (Schlichtkrull et al.,
2023) for fact-checking purposes. This dataset
comprises claims accompanied by a knowledge
store (a collection of articles). Each claim is an-
notated with question-answer pairs that represent
the evidence, a veracity label, and a justification
for the label. The veracity label can be one of



N
Convert the following claim to one neu-

tral question. Do not miss out anything
important from the claim. Question the
claim, not the fact.

Claim: Donald Trump has stated he will
not contest for the next elections
Incorrect Question: "What did Donald
Trump state for the next elections?"
Correct Question: "Did Donald Trump
state that he will not contest for the next
elections?"

Claim: [another claim]

Incorrect Question: [example of an in-
correct question]
Correct Question:
question]

Given claim: In a letter to Steve Jobs,
Sean Connery refused to appear in an Ap-
ple commercial.

[expected correct

"Is it true that Sean

Connery wrote a letter to Steve Jobs refus-
ing to appear in an Apple commercial?"

. J

Figure 3: The prompt used for generating questions.
Some manually created correct and incorrect examples
are given to guide the LLM.

the following: Support (S), Refute (R), Conflicting
Evidence/Cherrypicking (C), or Not Enough Evi-
dence (N). A claim is labeled as C when it contains
both supporting and refuting evidence. The data
distribution, as shown in Table 1, indicates a class
imbalance favoring the R class, while the C and N
classes have relatively few examples. The final test-
ing is conducted on 2,215 instances (Schlichtkrull
et al., 2024). For further details on the dataset,
please refer to Schlichtkrull et al. (2023, 2024).
On average, each claim consists of 17 words.
Figure 2 (word cloud of the claims) reveals that
most claims are related to politics and COVID-19.

4 Methodology

Given a claim and a knowledge store, our sys-
tem is comprised of three key components: rel-
evant document retrieval, evidence extraction from
the documents, and veracity prediction based on
the extracted evidence. The first two components
form our Retrieval-Augmented Generation (RAG)
pipeline.

4.1 Document Retrieval Using Dense
Embeddings

In the document retrieval phase, it is essential
to match claims with relevant documents from
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Your task is to extract a portion of the\
provided text that directly answers the
given question. The extracted informa-
tion should be a conclusive answer, ei-
ther affirmative or negative, and con-
cise, without any irrelevant words. You
do not need to provide any explanation.
Only return the extracted sentence as
instructed. You are strictly forbidden
from generating any text of your own.
Question: Is it true that Sean Connery
wrote a letter to Steve Jobs refusing to ap-
pear in an Apple commercial?
Document text: [entire text of one of the
retrieved documents]

"No, it is not true that
Sean Connery wrote a letter to Steve Jobs
refusing to appear in an Apple commercial.
The letter was a fabrication created for a
L satirical article on Scoopertino."

J

Figure 4: The prompt used for generating answers. This
prompt is repeated for each of the top three documents.

a knowledge store (in our case, the knowledge
store consists of documents provided in the dataset,
though it could be replaced with documents re-
trieved via a search engine). To facilitate this, all
documents are first transformed into dense vector
embeddings using an embedding model. Since our
knowledge store is static, this transformation is a
one-time process. The claim in question is then
converted into embeddings using the same model.
Once the claim is embedded, we utilize FAISS
(Facebook AI Similarity Search) (Douze et al.,
2024) to conduct a nearest-neighbor search within
the knowledge store. FAISS is an efficient library
for similarity search and clustering of dense vec-
tors. We configure FAISS to retrieve the top three
documents most relevant to the claim. These doc-
uments are then used in the subsequent evidence
extraction and veracity prediction steps.

4.2 Evidence Extraction Using LLMs

After identifying the top three relevant documents,
the next step involves extracting evidence sup-
ported by these documents. This process consists
of two steps:

Question Generation: The claim is transformed
into a question challenging its validity using an
LLM. We employ In-Context Learning, which en-
ables the model to generate responses based on
a few provided examples, aiding in the creation
of nuanced and contextually appropriate questions.



Classify the given claim based on provided state-|

ments into one of:

1. ’Supported’ if there is sufficient evidence indi-

cating that the claim is legitimate. 2. ’Refuted’ if

there is any evidence contradicting the claim.

3. Not Enough Evidence’ If you cannot find any

conclusive factual evidence either supporting or

refuting the claim.

4. ’Conflicting Evidence/Cherrypicking’ if there

is factual evidence both supporting and refuting

the claim.

Claim: [claim ]

Statements: [statements related to claim]

Class: [ground truth class]

Claim: [claim]

Statements: [statements related to claim]

Class: [ground truth class]

Given Claim: New Zealand’s new Food Bill bans

gardening.

Given Statements: ["The Food Bill does not impose

restrictions on personal horticultural activities, such

as growing vegetables and fruits at home.", "Garden-

ing is not banned in New Zealand.", "There are no

laws against people having gardens, or sharing food

that they’ve grown at home, said a spokesperson for

New Zealand’s Ministry for Primary Industries."]
Refuted

(. J

Figure 5: A prompt similar to the one used for gener-
ating the final prediction. The actual prompt has some
more instructions which are omitted here in the interest
of space. two annotated train examples are provided for
the LLM to learn from.

The prompt is designed to ensure that the gener-
ated question challenges the claim’s veracity rather
than simply seeking a factual answer. An example
prompt is provided in Figure 3.

Answer Generation: After generating the ques-
tion, we provide a single document to an LLM
and pose the question. The LLM is prompted to de-
liver concise and definitive answers derived directly
from the content of the document. This process is
repeated for each of the three documents, result-
ing in three distinct answers for each claim. These
answers collectively constitute our evidence. It is
important to note that in our experiments, the LLM
used for answer generation does not necessarily
need to be the same as the one used for question
generation. The prompt utilized in this step is simi-
lar to the one depicted in Figure 4.

4.3 Few-Shot ICL for Final Classification

For the final veracity prediction, we use an LLM
to classify a claim based on the three pieces of
evidence extracted earlier. The LLM is prompted
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to choose one out of the four possible classes. The
prompt is designed to guide the model through
the classification process, ensuring that it correctly
interprets the relationship between the claim and
the evidence. An example prompt is given in Figure
5.

Our methodology aligns with recent advance-
ments in retrieval-augmented generation (RAG)
pipelines which alleviate hallucination and ICL
methods, which have been shown to improve the
accuracy of LLMs. The integration of these state-
of-the-art methods is an attempt to ensure that the
extracted evidence is both relevant and contextually
appropriate for validating the claims accurately.

S Experiments

To convert documents into dense embeddings,
we utilize the dunzhang/stella_en_1.5B_v5
model!. This model is chosen because, at the time
of our experiments, it was ranked first on the Mas-
sive Text Embedding Benchmark (MTEB) leader-
board (Muennighoff et al., 2022), and holds the
second position at the time of writing this paper.

For all LLMs used in our experiments, we em-
ploy their 4-bit quantized versions via Ollama®.
This quantization enables us to load larger LLMs
onto our GPUs.

For question generation, we use the Phi-3-
medium model (Abdin et al., 2024). The temper-
ature is set to 0, and greedy decoding is used to
ensure that the answers are as factual as possible
and to minimize hallucinations.

For answer generation and final classification,
we experiment with multiple LLMs of varying
sizes, including InternLM?2.5 (Cai et al., 2024),
Llama-3.1 (Dubey et al., 2024), Phi-3-medium (Ab-
din et al., 2024), Qwen2 (Yang et al., 2024), and
Mixtral (Jiang et al., 2024). These models are se-
lected based on their performance on the Open
LLM Leaderboard (Fourrier et al., 2024) and their
availability through Ollama.

We utilize an A40 GPU for Mixtral, while
all other models are run on an A100 GPU. Our
best-performing model, Mixtral, requires an
average of 2 minutes for evidence extraction and
final prediction. Our code is publicly available on
https://github.com/ronit-singhal/evidence-backed-
fact-checking-using-rag-and-few-shot-in-context-

1https: //huggingface.co/dunzhang/stella_en_1.
5B_v5
Zhttps://github.com/ollama/ollama
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Model Size Q+A T AveritecT Acc? Model S R N C Macro
InternLM2.5 7B 0.278 0.194 0.374 Mixtral 0.605 0.780 0.126 0.117 047
Llama3.1 8B 0.259 0.224 0.538 Qwen2 0.620 0.754 0.157 0.153 042
Phi-3-Medium  14B 0.259 0.28 0.654 Llama 3.1 70b 0.613 0.809 0.022 0 0.361
Llama 3.1 70B 0.272 0.328 0.662

Qwen2 72B  0.285 0.33 0.61 Table 4: Class-wise F1 scores of our top three LLMs
Mixtral 8+#22B  0.292 0.356 0.636 on the dev set. Classes are Supported (S), Refuted

Table 2: Results of various models on the dev set. Per-
formance improves as the model size increases. Acc
refers to accuracy. Q+A and Averitec scores are de-
scribed in Section 5.1.

System Q1 Q+A 1T Averitec T
Official Baseline 0.24 0.2 0.11
Mixtral (ours) 035 0.27 0.33

Table 3: Results on the test set. Our system which
uses Mixtral for final prediction outperforms the official
baseline in all metrics. For more details of the metrics,
please refer to section 5.1.

learning-with-1lms.

5.1 Evaluation Metrics

The evaluation metrics used ensure that credit for a
correct veracity prediction is given only when the
correct evidence has been identified.

To evaluate how well the generated questions
and answers align with the reference data, the pair-
wise scoring function METEOR (Banerjee and
Lavie, 2005) is used. The Hungarian Algorithm
(Kuhn, 1955) is then applied to find the optimal
matching between the generated sequences and the
reference sequences. This evidence scoring method
is referred to as Hungarian METEOR. The system
is evaluated on the test set using the following met-
rics:

* Q only: Hungarian METEOR score for the
generated questions.

* Q + A: Hungarian METEOR score for the
concatenation of the generated questions and
answers.

* Averitec Score: Correct veracity predictions
where the Q+A score is greater than or equal
to 0.25. Any claim with a lower evidence
score receives a score of 0.

6 Results and Analysis

Table 2 provides a summary of the performance
of various models on the development set. The
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(R), Not enough evidence (N), and conflicting evi-
dence/cherrypicking. Macro-averaged F1 score is also
reported.

Mixtral 8#22B model (Jiang et al., 2024) achieves
the highest Averitec score, while the Llama 3.1
model (Dubey et al., 2024) attains the highest ac-
curacy. These findings indicate that model perfor-
mance generally improves with increasing model
size. Moreover, the relative rankings of these mod-
els on the development set differ from their posi-
tions on the Open LLM leaderboard (Fourrier et al.,
2024), suggesting that superior performance on the
Open LLM leaderboard does not necessarily corre-
late with better performance in the fact verification
task.

Given that Mixtral achievs the highest Averitec
score on the development set, we select it for eval-
uation on the test set. Table 3 provides a com-
parison of our system and the official baseline
(Schlichtkrull et al., 2023) on the test set. The
baseline model utilizes Bloom (Scao et al., 2023)
for evidence generation, followed by re-ranking of
the evidence using a finetuned BERT-large model
and finally a finetuned BERT-large model veracity
prediction. Unlike the baseline, which uses fine-
tuned models, we only use a few train examples
via ICL. Despite that, our system outperforms the
baseline across all three evaluation metrics. No-
tably, our Averitec score of 0.33 is a 22% absolute
improvement over the baseline.

6.1 Class-wise Performance

Table 4 presents the class-wise performance of our
top three models on the development set. Across
all models, the Refuted class emerges as the eas-
iest to predict, while the "Not Enough Evidence"
and "Conflicting Evidence/Cherrypicking" classes
present greater challenges. Notably, no single
model excels across all classes. Although Mix-
tral achieves the highest macro F1 score, it is not
the top-performing model for any individual class.
Qwen?2 surpasses the other models in performance
across all classes except Refuted. This suggests
that exploring ensemble techniques could be a valu-
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Figure 6: Confusion matrix of Mixtral on the develop-
ment set, illustrating the model’s performance across
four classes (C, N, R, S). While class R is mostly accu-
rately classified, classes C and N are often mis-predicted
as R or N.

able direction for future research.

Figure 6 illustrates the confusion matrix of Mix-
tral 8%22B on the development set. It reveals that
both the N and C classes are equally likely to be
misclassified as the R and S classes. Additionally,
there is significant confusion between the S and R
classes, highlighting the inherent difficulty of fact
verification.

7 Conclusion and Future Work

In this paper, we introduced our system for
evidence-supported automated fact verification.
Our system - based on RAG and ICL - requires
only a minimal number of training examples to
extract relevant evidence and make veracity pre-
dictions. We observed that all LLMs demonstrate
sub-optimal performance on the "Conflicting Evi-
dence/Cherrypicking" and "Not Enough Evidence"
categories, which emphasizes the inherent chal-
lenges of these categories. Additionally, no single
LLM consistently outperforms others across all cat-
egories. Our system achieved an Averitec score
of 0.33, highlighting the complexity of the prob-
lem and indicating a substantial potential for future
improvement.

Future research could involve fine-tuning the
LLM using parameter-efficient fine-tuning (PEFT)
techniques (Liu et al., 2022; Patwa et al., 2024)
and improving performance through the use of en-
semble techniques (Mohammed and Kora, 2022).
Extending the system to include multi-modal fact

verification (Patwa et al., 2022; Suryavardan et al.,
2023a) also represents an interesting direction for
further investigation.

8 Limitation

As we are using few-shot ICL, our system can-
not make use of large annotated datasets if avail-
able, because of the limitation of the prompt size.
Furthermore, we assume the availability of high-
quality LL.Ms, which might not be the case for
some low-resource languages.

9 [Ethical Statement

LLMs are prone to hallucination. In our case, the
extracted evidence could be incorrect due to hallu-
cination. Furthermore, the prompts can be tweaked
to intentionally generate wrong evidence or predic-
tions. We caution the reader to be aware of such
issues and to not misuse the system.
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Abstract

As part of the AVeriTeC shared task, we de-
veloped a pipelined system comprising robust
and finely tuned models. Our system integrates
advanced techniques for evidence retrieval and
question generation, leveraging cross-encoders
and large language models (LLMs) for opti-
mal performance. With multi-stage process-
ing, the pipeline demonstrates improvements
over baseline models, particularly in handling
complex claims that require nuanced reason-
ing, by improved evidence extraction, question
generation and veracity prediction. Through
detailed experiments and ablation studies, we
provide insights into the strengths and weak-
nesses of our approach, highlighting the critical
role of evidence sufficiency and context depen-
dency in automated fact-checking systems. Our
system secured a competitive rank, 7" on the
development and 12 on the test data, in the
shared task, underscoring the effectiveness of
our methods in addressing the challenges of
real-world claim verification.

1 Introduction

Fact-checking has become an essential tool in the
fight against misinformation, which can have far-
reaching impacts on public opinion and policy.
Manual fact-checking is a resource-intensive pro-
cess, requiring skilled analysts to meticulously
scrutinise claims and verify their authenticity. This
necessity has driven the development of automated
fact-checking (AFC) systems designed to assist hu-
man fact-checkers by efficiently processing large
volumes of information and detecting false claims.
(Nakov et al., 2021; Guo et al., 2022). The effec-
tiveness of AFC systems depends significantly on
the quality of the datasets used to train and evaluate
them. Common datasets, such as FEVER (Thorne
et al., 2018), FEVEROUS (Aly et al., 2021) and
MultiFC (Augenstein et al., 2019), have been in-
strumental in advancing AFC research, but come
with limitations, including the reliance on artifi-

99

cially constructed claims and inadequate evidence
annotations (Schlichtkrull et al., 2023).

In response to these limitations, the 2024
AVeriTeC (Automated VERIfication of TExtual
Claims) task was specifically designed to address
the challenges of real-world claim verification
(Schlichtkrull et al., 2023). AVeriTeC comprises
5,783 claims sourced from 50 fact-checking or-
ganisations, collected via the Google FactCheck
Claim Search API. Each claim in the dataset is
meticulously annotated with question-answer pairs,
supported by online evidence, and accompanied by
textual justifications explaining how the evidence
leads to a verdict. This structured annotation ap-
proach ensures that the dataset supports robust AFC
model training and evaluation (Schlichtkrull et al.,
2023). This advancement aligns the dataset more
closely with real-world scenarios, potentially en-
hancing the generalisation ability of the developed
models and facilitating the creation of more ro-
bust approaches. The diversity of the data presents
unique challenges, necessitating a deeper under-
standing of the data and the development of effec-
tive reasoning strategies. Our method (SK_DU)
achieved the 12" Rank in the AVeriTeC shared
task during the testing phase', providing valuable
insights into the strengths and weaknesses of our
pipeline and highlighting areas for further improve-
ment.

In this paper, we aim to describe the design
of our proposed fact verification pipeline and to
share the insights we gained on the AVeriTeC
dataset (Schlichtkrull et al., 2023) during the work-
shop competition. The paper introduces a com-
prehensive approach to real-world claim verifi-
cation, leveraging the AVeriTeC dataset to de-
velop and evaluate a sophisticated pipeline for
automated fact-checking. The proposed system
incorporates cutting-edge models and techniques,

"https://eval.ai/web/challenges/challenge-
page/2285/leaderboard/5655
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including cross-encoders for precise evidence re-
trieval/reranking (Humeau et al., 2019) and large
language models (LLMs) for effective question
generation (Schlichtkrull et al., 2023), and Cross-
Encoder based natural language inference (NLI) for
veracity prediction (Li et al., 2022). By focusing
on multi-stage processing—ranging from the se-
lection of evidence to nuanced reasoning for claim
validation, the work addresses the complexities of
real-world data, emphasising the importance of
context and evidence sufficiency in fact-checking
processes. Our code is released to the public for
further exploration?.

In short, the contributions of this paper are the
following:

* The paper presents a detailed pipeline that in-
tegrates cross-encoders for evidence retrieval
and LLMs for question generation, improving
the overall accuracy of claim verification.

* Showing a pretrained Cross-Encoder model
performs better than a fine-tuned BERT model
on evidence extraction and reranking tasks.

* The paper provides in-depth ablation studies
and performance analysis, offering insights
into the strengths and weaknesses of the pro-
posed approach.

* The model’s competitive performance in the
AVeriTeC shared task highlights its practical
applicability and potential for real-world de-
ployment in automated fact-checking systems.

2 Dataset Insights

AVeriTeC consists of 5,783 claims sourced from 50
reputable fact-checking organisations, where 4,568
claims’ data were released earlier, while 1,215 were
released during the testing phase of the AVeriTeC
Shared Task®. Each claim is annotated with de-
tailed question-answer (QA) pairs as evidence, a
veracity label, and a textual justification, ensur-
ing a robust foundation for training and evaluating
AFC systems (Schlichtkrull et al., 2023). Addition-
ally, the meta-data information, e.g., speaker, date,
URL, location, etc., provides contextual details to
the claim to support questions, answers, and justifi-
cations. This structured and meticulous approach
aims to bridge the gap between academic research

Zhttps://github.com/skmalviya/AVeriTeC_SKDU
*https://fever.ai/task.html

Property Stats
Avg questions per claim 2.60
Avg answers per question 1.07
Questions with extractive answer  53%
Questions with abstractive answer  26%
Questions with boolean answer 17%
Questions with no answer 4%

Table 1: Dataset statistics.

and practical application in building systems for
misinformation detection.

As the claims in AVeriTeC are also annotated
with date, the dataset is split temporally (ordered
by date) into training, validation, and test sets, hav-
ing 500, 3,068, and 2,215 claims data, respectively.
Table 1 illustrates some properties of the AVeriTeC
dataset. Claims contain an average of 2.60 ques-
tions each, with questions averaging 1.07 answers
each. Most answers are extractive (53%), followed
by abstractive (26%), and boolean (17%), with 4%
being unanswerable. The dataset is somewhat un-
balanced, with the majority of claims being refuted,
reflecting the focus of journalists on false or mis-
leading claims.

Reasoning about evidence is structured through a
question-and-answer format, allowing for multiple
answers to reflect potential disagreements. Multi-
hop reasoning is also allowed by referring to pre-
vious questions, and all answers must be backed
by source URLs. In the AVeriTeC dataset, the ve-
racity of claims is predicted into typical classes:
Supported, Refuted, and Not Enough Evidence.
AVeriTeC also introduces a fourth class: Conflict-
ing evidence/Cherry-picking, which includes con-
flicting evidence and technically true claims that
mislead by omitting crucial context. This addition
addresses real-world scenarios where sources may
legitimately disagree on interpretations.

One of the primary challenges is context depen-
dence. Many claims cannot be accurately verified
without additional context that is not always avail-
able in the fact-checking articles. This lack of con-
text can lead to incorrect or incomplete verification
outcomes. Another major challenge is evidence
sufficiency. Ensuring that the evidence provided is
comprehensive enough to support or refute claims
is crucial, as incomplete evidence can skew the
verification results. Temporal leakage is another
critical challenge, where evidence published af-

100


https://github.com/skmalviya/AVeriTeC_SKDU
https://fever.ai/task.html

ter the claim date may inadvertently influence the
verification process. This can result in biased or
inaccurate conclusions, undermining the integrity
of the dataset. Additionally, the diverse nature of
the data from various sources and the wide range
of claim types introduce complexity in data annota-
tion and processing, making it difficult to maintain
consistency and accuracy across the dataset.

3 System Description

3.1 AVeriTeC Baseline

The baseline model for AVeriTeC employs a so-
phisticated approach to automate the fact-checking
process, leveraging state-of-the-art natural lan-
guage processing (NLP) techniques. Specifically,
it utilises transformer-based models, such as BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2019) and its variants,
which have proven highly effective in understand-
ing and processing natural language. These mod-
els are fine-tuned on the AVeriTeC dataset to op-
timise their performance in various stages of the
fact-checking pipeline, including claim representa-
tion, evidence retrieval, and veracity prediction.

The evidence retrieval component of the baseline
model is designed to efficiently retrieve relevant ev-
idence from a vast pool of sentences scrapped from
Google Search API. The baseline applies BM25
(Robertson and Zaragoza, 2009) as a coarse filter
to select the top 100 sentences to keep relevant ev-
idence pinpointed and presented for evaluation in
further stages in the pipeline.

Further, during the question generation stage,
each evidence is paired with a question gener-
ated by an LLLM based on few-shot prompting,
where the QA pairs as few-shot examples are ex-
tracted from the training data using BM25. Base-
line utilises BLOOM (Workshop et al., 2023) for
this task. It is empirically shown that a 10-shot set-
ting consistently outperforms other configurations,
such as 1, 3, or 5-shot prompting, in generating
accurate and contextually appropriate questions.
To further refine the generated QA pairs, a fine-
tuned BERT-large model (Devlin et al., 2019) is
employed to rerank the outputs, ultimately select-
ing the top N = 3 evidence sets that best support
or refute the claim.

The final stage of the baseline model is veracity
prediction, where the selected evidence as QA pairs
are used to determine the truthfulness of the claim.
This step involves integrating the claim-evidence

pairs into a coherent representation and feeding it
into a classification model that assigns a veracity la-
bel. The labels typically include categories such as
“supported” or “refuted”, “not enough evidence” or
“conflicting evidence/cherry-picking”. The baseline
uses a fine-tuned BERT-large model, fine-tuned
on annotated examples from the AVeriTeC dataset,
learning to weigh the evidence and make informed
decisions about the claim’s veracity (Schlichtkrull
et al., 2023).

3.2 Our Pipeline

Similar to AVeriTeC, our pipeline consists of sev-
eral models integrated into a multi-stage process,
offering a comprehensive solution framework for
real-world claim verification. Figure 1 depicts our
pipeline, showing various components for a spe-
cific task. Each pipeline stage is crucial for ac-
curate claim verification, from retrieving relevant
evidence to predicting the claim’s veracity. Below,
we outline the models utilised in our pipeline. We
make use of the evidence collection (knowledge
store) retrieved through the Google Search API, as
provided in the AVeriTeC shared task.

3.2.1 Evidence Selection

For evidence retrieval, we employ a Cross-Encoder
to extract evidence sentences from the knowledge
store. (Humeau et al., 2019) has shown that
cross-encoders typically outperform bi-encoders
on sentence-scoring tasks by enabling rich inter-
actions between the claim and candidate evidence.
We also compared the retrieval results with those
of BM25, TF-IDF, and Bi-Encoder to evaluate their
effectiveness. Similar to the baseline, we keep only
the top 100 sentences based on the score predicted
by the Cross-Encoder. The Cross-Encoder takes
the pair of claim ¢ and evidence e and processes it
through a transformer model, e.g. ROBERTa (Liu
et al., 2019):

h[CLS} = ROBERTa([C, e]) (1)

where hcg) is the final hidden state correspond-
ing to the special [CLS] token. The score s(c, e)
for the (claim, evidence) pair is then computed
by applying a linear layer followed by a sigmoid
activation function as:

s(c,e) = o(W - hjcLs) +b) (2

where W and b are the linear layer’s weight matrix
and bias term, and o is the sigmoid function.
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Figure 1: Overview of the pipelined Evidence-Retrieval and Verdict Prediction for a given claim.

Evidence:...
Question answered:...

Evidence:...
Question answered:...

Evidence:...
Question answered:

(a) Promptl

Outrageously, example[ ‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

Outrageously, example[ ‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

Outrageously, example[ ‘speaker’] Claim:...
with Evidence:...
as an answer to the Question:...

(b) Prompt2

Figure 2: Prompts used by an LLM for question generation task.

This strategy ensures that the most pertinent evi-
dence is identified (relevance) and made computa-
tionally feasible (top-100) for further stages in the
verification pipeline.

3.2.2 Question Generation

To generate questions for the extracted evidence
sentences from the previous step, we conducted
experiments on two fronts: 1) Prompt Engineer-
ing, and 2) Utilisation of Various Large Language
Models (LLMs).

Prompt Engineering We experimented with
two prompt configurations for few-shot learning:

Promptl: A straightforward pair of evidence and
questions.

Prompt2: A more descriptive prompt that in-
cludes a triplet of claim, answer, and
question.

Figure 2 illustrates the prompt configurations
employed in our study. In “Prompt2", if a sample
lacks a ‘speaker’ field or is set to NULL, we sub-
stitute it with “Speaker” to maintain consistency
across the prompts.

In line with baseline criteria for question gen-
eration, we adopt a 10-shot approach for prompt
construction. Additionally, we explored using the
Bi-Encoder model to identify the 10 most relevant

examples from the training set for prompting. The
Bi-Encoder, based on a transformer architecture,
is effective in retrieving in-context examples, en-
hancing the quality of few-shot prompting. An
ablation study in the results section compares the
effectiveness of these approaches.

Utilisation of Various Large Language Mod-
els (LLMs) With the GPU resources at our dis-
posal, we conducted question-generation experi-
ments using LLMs with up to 8 billion parame-
ters. We evaluated leading open-source models
such as BLOOM (Workshop et al., 2023) and Meta-
Llama-3-8B (Dubey et al., 2024). Additionally, we
tested the recently released Meta-Llama-3.1-8B
for the generation task. For comparison, we also
utilised the ChatGPT API* with the ‘OpenAI-GPT-
40’ model.

3.23

After retrieving the initial set of evidence, we apply
a reranking process to ensure that the most relevant
pieces are selected for the claim verification task.
This reranking is essential for identifying specific
question-answer (QA) pairs that directly support
or refute the claim, thereby sharpening the focus

Question-Answer Reranking

*https://platform.openai.com/docs/api-
reference/introduction
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on the most pertinent information. To achieve this,
we again utilise a Cross-Encoder model, which
is particularly effective in capturing nuanced re-
lationships between the claim and the evidence.
At this stage, the input format changes to (claim,
QA), allowing the model to evaluate the alignment
between the claim and the concatenated question-
answer (QA) pairs as:

hicLs) = RoBERTa([c; q - a]) 3)

the final hidden state hicrg) is then processed
through a linear layer followed by a sigmoid acti-
vation function (as in Equation 2) to obtain a score
s(c, qa) for the (claim, QA) pair.

By carefully selecting the most relevant evi-
dence, the system significantly reduces noise and
enhances the precision of the information used
in the final verification step. This meticulous ap-
proach ensures that the verification process is not
only accurate but also efficient, ultimately lead-
ing to more reliable outcomes in automated fact-
checking.

3.2.4 Veracity Prediction

Veracity prediction is the final and most criti-
cal stage in the automated fact-checking pipeline.
In this stage, the model classifies a claim based
on the evidence retrieved (e.g., Top 3 QA pairs)
and selected in previous stages to predict its ve-
racity into four classes. Unlike the baseline ap-
proach using a BERT-Large model, we fine-tune
a Cross-Encoder—a smaller, transformer-based
model—through supervised natural language infer-
ence (NLI) training. This approach is computation-
ally less expensive and well-suited for entailment
tasks, where it infers the relationship between pairs
of sentences (premise and hypothesis) (Li et al.,
2022)

We use the Cross-Encoder with a text classifica-
tion head for the task. Similar to Equation 3, the
claim c and evidence pair q - a are inputted to the
model to obtain an encoded input representation
hicrs) = RoBERTa([c; q - a]). The hidden state
hjcp g is then passed through a linear layer (clas-
sification head) followed by a softmax activation
function to produce a probability distribution p
over the possible veracity labels (e.g., supported,
refuted, insufficient evidence, conflicting/cherry-
picking) as:

p = softmax(W - hicrg] + 0) 4)

where W is the weight matrix and b is the bias
term of the linear layer. The output p is a vector of
probabilities corresponding to each veracity class.
The model is trained using a cross-entropy loss
function, which measures the difference between
the predicted probability distribution and the true
distribution. If y is the true label (encoded as a
one-hot vector) and p is the predicted probability
distribution, the loss function L is given by:

K
L=—> yklog(pk) (5)
k=1

where K is the number of veracity classes, y;, is
the true label for class k, and py, is the predicted
probability for class k. The model parameters are
optimised to minimise this loss, thereby improving
the accuracy of veracity prediction.

4 Experiments

4.1 Evaluation Metrics

In the evaluation of the AVeriTeC dataset and the
associated automated fact-checking (AFC) systems,
several metrics are employed to assess the perfor-
mance at various stages of the pipeline. These
stages consist of evidence retrieval, evidence se-
lection, and veracity prediction. The metrics are
designed to comprehensively measure the effective-
ness and accuracy of each component, ensuring
robust evaluation and comparison.

Unlike the FEVER dataset and others that
use a closed source of evidence like Wikipedia,
AVeriTeC is designed to retrieve evidence from
the open web. This approach can result in finding
the same evidence across multiple sources, making
exact matching impractical for scoring purposes.
Therefore, a Hungarian algorithm-based pairwise
scoring function f : S x S — R is utilised to
evaluate how well a set of generated sequences,
such as questions or answers, aligns with the ref-
erence sequences of tokens. The Hungarian algo-
rithm provides the solution as a boolean function
X:VYxY — {0, 1}, maximising the assignment
problem between the generated sequences Y and
the reference sequences Y (Crouse, 2016). This
metric, referred to as the Hungarian METEOR (Hu-
METEOR) score s and is then calculated between
Y and Y as:

N 1
Sf(Y, Y) = m max Z Z f(yAa y)X(Q7 y)
gey yeY

(6)
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where f denotes METEOR, a pointwise scoring
function, and X is a boolean function optimised
as a linear sum assignment problem. The Final
Hu-METEOR score is estimated as the mean of
scores between all pairs of generated and reference
sequences. The Hu-METEOR is used twice to eval-
uate questions-only sequences and concatenated
question-answer (QA) pairs.

AVeriTeC Score is an accuracy metric utilised
to compare the overall performance of the system.
The metric considers veracity prediction True for
a given claim if the Hi-METEOR score between
generated and reference evidence is above a certain
threshold (A > 0.25):

. 1
AVeriTeC_Score = ol Z (Cpred_label == Cirue_label,
| | ceC )

flegrey) > (A= 0.25))

where, Cpred_labels Cirue_label denotes predicted and
true labels, respectively, and ¢y and ¢, are the gen-
erated and reference evidence sets of the claim.

4.2 Implementation Details

Table 2 provides a comprehensive overview of the
models used within the various components of our
pipeline, including specific details and the corre-
sponding checkpoints.

In the evidence retrieval step, we extracted sen-
tences from the provided knowledge store using
three models: 1) BM25 (AVeriTeC baseline), 2)
Bi-Encoder, and 3) Cross-Encoder, for compari-
son. For the Bi-Encoder, we employed the standard
BERT model with a hidden size of 768. For the
Cross-Encoder, we utilised a smaller transformer
model with a hidden size of 384, fine-tuned specif-
ically for reranking tasks such as MS-Marco Pas-
sage reranking (Nguyen et al., 2016). We set the
batch size to 32 for both Bi-Encoder and Cross-
Encoder. The average time in scoring 1,000 sen-
tences by BM25, Cross-Encoder, and Bi-Encoder
are 10.9, 31.9, and 80.3 milliseconds, respectively.

For the question generation task, we leverage
several large language models (LLMs), including
BLOOM, Meta-Llama-3-8B, and Meta-Llama-3.1-
8B. For comparison, ChatGPT’s GPT-40 model is
accessed through its API. Due to financial restric-
tions, the questions are generated only for the top
25 evidence with ChatGPT. The average time to
generate a single question varies across the models,
with BLOOM taking 8.9 seconds, Meta-Llama-3-
8B taking 3.1 seconds, and Meta-Llama-3.1-8B

taking 3.6 seconds. This performance data high-
lights the efficiency of the Meta-Llama models,
particularly in resource-constrained environments.
For prompting, BM25 and Bi-Encoder are consid-
ered for selecting the 10 most relevant examples
from the training set for prompting.

For the Question-Answer reranking, Cross-
Encoder with ‘ms-marco-MiniLM-L-12-v2’ check-
point is utilised instead of the baseline’s BERT-
large model. It requires no training and is com-
putationally less expensive due to its smaller size,
leading to 5 times faster performance. For each
claim, it takes approx 40 ms to reorder the QA
pairs.

The final stage verdict prediction involves train-
ing a supervised NLI model as an entailment task.
The model takes a pair of a claim and concatenated
QA as input and predicts a veracity label. With
a cross-encoder setting, we fine-tune a DeBERTa-
NLI model on examples from train/development
data using Adam (Kingma and Ba, 2017) with a
learning rate of 2e-5 and a batch size of 16 for four
epochs.

All the experiments were conducted on an
NVIDIA RTX 6000 Ada 48GB type GPUs.

5 Results

The proposed pipeline’s evaluation involved a com-
prehensive analysis of performance across various
stages, including evidence retrieval, evidence se-
lection, and veracity prediction. The results high-
light the effectiveness of the proposed approach
in handling the complexities of real-world claim
verification and the challenges encountered during
the process.

5.1 Evidence Selection

In the evidence retrieval step, we extract the top-
100 evidence sentences for each claim from a vast
pool of a knowledge store. Table 3 shows the Hu-
METEOR based retrieval score by various meth-
ods, i.e. BM25, TF-IDF, Bi-Encoder and Cross-
Encoder. The Cross-Encoder model demonstrated
strong performance in identifying pieces of evi-
dence that were most relevant to the claims. The
model’s ability to consider both the claim and the
evidence sentence jointly allowed it to capture nu-
anced relationships, leading to improved evidence
selection effectively. Additionally, its lightweight
architecture makes it comparable to Bi-Encoder.
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Models Checkpoint

Hidden Size

#Parameters Task

Cross-Encoder  ms-marco-MiniLM-L-12-v2°

Bi-Encoder bert-base-uncased®
BLOOM bloom-7b17

Meta-3 Meta-Llama-3-8B®
Meta-3.1 Meta-Llama-3.1-8B°
ChatGPT Openai-GPT-40'"

DeBERTa-NLI  deberta-v3-base'!

384 22.7M

768 82M

Evidence-Retr, QA Reranking

768 109.5M Evidence-Retr, 10-Shot Prompt
4096 7B Q-Generation
4096 8B Q-Generation
4096 8B Q-Generation

- Q-Generation
Veracity Prediction

Table 2: The details for models used for various tasks in the pipeline.

Models Aonly @ (3/5/10/50/100)

BM2S5 (baseline) 0.1027 0.1207 0.1452  0.2049 0.2338
TF-IDF 0.1062 0.1237 0.1474 0.2077 0.2382
Bi-Encoder 0.1311 0.1521 0.1787 0.2474 0.2753
Cross-Encoder  0.1413  0.1624 0.1913 0.2614 0.2907

Q only QA only
LLM @ (3/5/10/100) @ (3/5/10/100)
bloom-7b1 026 030 036 049|023 026 029 038
Meta-Llama-3-8B 028 032 037 049|023 026 029 038
Meta-Llama-3.1-8B | 0.28 032 0.37 049 | 023 0.26 0.30 0.38
Openai-GPT-40 041 045 049 - | 025 029 032 -

Table 3: Results of evidence selection in terms of Hu-
METEOR on the development set.

Prompt Few-Shot Q only QA only

Setting | Selection @ (3/5/10/100) @ (3/5/10/100)
Promptl | Bi-Encoder | 0.21 025 030 043]022 025 028 036
Promptl | BM25 023 027 033 046|022 025 028 036
Prompt2 | Bi-Encoder | 0.24 029 034 048|023 026 029 037
Prompt2 | BM25 026 030 036 049|023 026 029 038
Table 4: Influence of Prompt setting on question gen-

eration. bigscience/bloom-7b1 is used as LLM for
generation.

5.2 Question Generation

We consider various LLMs for the question gen-
eration task based on the extracted evidence, i.e.
bloom-7b1, Meta-Llama-3-8B, Meta-Llama-3.1-
8B, and Openai-GPT-40. We also experimented
with sparse, e.g. BM25, and dense, e.g. Bi-
Encoder, methods for selecting few-shot exam-
ples during prompt construction. The result on
prompt construction is shown in Table 4 with both
few-shot selection methods under prompt-setting
Prompt1 and Prompt2. We found that a descriptive
prompt can generate relevant questions in the con-
text of given claims and evidence pairs. This shows
BM25’s superiority to Bi-Encoders for few-shot
example selection in prompting due to its emphasis
on exact term matching and robustness in low data
scenarios.

Shttps://huggingface.co/cross-encoder/ms-marco-
MiniLM-L-12-v2
Shttps://huggingface.co/google-bert/bert-base-uncased
"https://huggingface.co/bigscience/bloom-7b1/tree/main
8https://huggingface.co/meta-llama/Meta-Llama-3-8B
*https://huggingface.co/meta-llama/Meta-Llama-3.1-8B
https://platform.openai.com/docs/models/gpt-4o
"https://huggingface.co/microsoft/deberta-v3-base

Table 5: Influence of using various LLMs on question
generation task. Few-shot selection is done by BM25.
Openai-GPT-40 has been used to generate questions for
only the first 25 sentences.

Reranking Qonly A only QA
Models LM @3 @3 @3
BERT-Dual  Meta-Llama-3-8B 02799 0.1173 0.2032
Encoder Meta-Llama-3.1-8B  0.2832 0.1199 0.2069
(baseline) Openai-GPT-40 0.4023 0.1392 0.2464
c Meta-Llama-3-8B 02991 0.1360 0.2341
Erosz Meta-Llama-3.1-8B  0.3018 0.1323 0.2334
neoder Openai-GPT-40 04122 0.1374 0.2584

Table 6: Results of post-QA reranking Hu-METEOR
score @3 through BERT-Dual Encoder (baseline) and
Cross-Encoder.

Table 5 depicts the influence of using various
LLMs for question generation. It shows Meta mod-
els are better than BLOOM due to their bigger
architecture and being trained on more diverse and
high-quality data (Dubey et al., 2024). ChatGPT-
based Openai-GPT-40 model has shown a 0.13
jump in Hui-METEOR score on Q only @3, achiev-
ing an overall high performance on AVeriTeC task.

5.3 QA Reranking

In the question-answer reranking stage, a pre-
trained Cross-Encoder is utilised to select top QA
pairs achieving higher Hu-METEOR scores than
the baseline’s BERT-large, which requires explicit
fine-tuning on the training data. Table 6 presents
the Hu-METEOR scores for questions only (Q),
answers only (A), and combined question-answer
(QA) across various LLMs, including Meta-Llama-
3-8B, Meta-Llama-3.1-8B, and OpenAI-GPT-4o.
The Cross-Encoder based reranking consistently
outperforms the baseline in question generation.
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LLM Development set Test set

QOnly AOnly QA AS QOnly AOnly QA A.S
Official Baseline 0.24 - 0.19 0.09 0.24 - 0.20 0.11
Meta-Llama-3-8B 0.2992 0.1360 0.2342 0.1780 0.2976 - 0.2409 0.1986
Meta-Llama-3.1-8B  0.3018  0.1323  0.2334 0.1900 0.2978 - 0.2405 0.1937
Openai-GPT-40 0.4122 0.1374 0.2584 0.2240 0.3961 - 0.2613 0.2239

Table 7: Performance on the development set and test set. A.S is the AVeriTeC score, and Q Only, A Only, and QA
are the Hu-METEOR scores of question, answer and question-answer, respectively.

5.4 Overall results: Veracity Prediction

The veracity prediction stage was crucial for deter-
mining the final classification of the claims. We
fine-tuned a transformer-based classification model,
DeBERTa-NLI, on the AVeriTeC dataset, achiev-
ing strong results in classifying claims into the
predefined categories: supported, refuted, insuffi-
cient evidence, and conflicting/cherry-picking. The
model’s performance was evaluated using metrics
Q Only, A Only, QA, and A.S (AVeriTeC Score),
where the Q Only, A Only, QA scores are Hu-
METEOR scores of the retrieved evidence and A.S
is a special metric that considers veracity prediction
true for a given claim if the Hu-METEOR is above
a certain threshold (A = 0.25) as shown in Table 7.
We observe that under the same pipeline models,
Meta LLMs outperform the baseline by 0.9 to 0.10
AVeriTeC score through obtaining improved QA
evidence. Openai-GPT-40 shows a remarkable im-
provement in question generation, which leads to
achieving a higher overall AVeriTec score on both
development and test data.

6 Conclusion

In this paper, we presented a comprehensive
pipeline for real-world claim verification tailored
to the AVeriTeC dataset. Our approach, which in-
tegrates cross-encoders for evidence retrieval and
LLMs for question generation, has shown to be ef-
fective in improving the accuracy of automated fact-
checking systems. We show that the cross-encoder
performs better than the baseline on both evidence
extraction and reranking. The results of our ex-
periments highlight the importance of multi-stage
processing and the careful selection of evidence to
support or refute claims. Our model’s performance
in the AVeriTeC shared task demonstrated its po-
tential in real-world applications, particularly in
scenarios requiring detailed reasoning and context
understanding. Although our system has made sig-

nificant strides in addressing the complexities of
real-world claim verification, further improvements
are necessary, particularly in handling ambiguous
claims and ensuring the completeness of evidence.

7 Limitations

Despite the promising results, our approach has
several limitations. First, we rely on the knowl-
edge store provided by the shared task; therefore,
retrieving evidence from scratch from Google with
better scrapping and parsing methods may provide
a better knowledge space. Secondly, the reliance on
cross-encoders, while effective, is computationally
expensive, which may hinder scalability in real-
time applications. Additionally, advanced rerank-
ing models, such as HLATR (Zhang et al., 2023),
HybRank (Zhang et al., 2022), and M-ReRank
(Malviya and Katsigiannis, 2024) can further en-
hance evidence retrieval. Thirdly, "the performance
of our question generation model, though robust,
can be affected by the quality and diversity of few-
shot examples used for prompting.

Additionally, our system’s ability to handle
claims with insufficient or conflicting evidence re-
mains a challenge, often leading to less accurate
veracity predictions. Finally, the dataset’s tempo-
ral dependency introduces potential biases, as evi-
dence published after the claim date could influence
the verification process. Addressing these limita-
tions will be crucial for enhancing our system’s
robustness and generalisability in future work.
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Abstract

The spread of disinformation poses a global
threat to democratic societies, necessitating ro-
bust and scalable Automated Fact-Checking
(AFC) systems. The AVERITEC Shared Task
Challenge 2024 offers a realistic benchmark
for text-based fact-checking methods. This
paper presents Information-Retrieving Fact-
Checker (INFACT), an LLM-based approach
that breaks down the task of claim verification
into a 6-stage process, including evidence re-
trieval. When using GPT-40 as the backbone,
INFACT achieves an AVERITEC score of 63 %
on the test set, outperforming all other 20 teams
competing in the challenge, and establishing a
new strong baseline for future text-only AFC
systems. Qualitative analysis of mislabeled in-
stances reveals that INFACT often yields a more
accurate conclusion than AVERITEC’s human-
annotated ground truth.

1 Introduction

The weaponization of disinformation poses a crit-
ical threat to global stability. The World Eco-
nomic Forum, in its January report (World Eco-
nomic Forum, 2024), identified mis- and disinfor-
mation as the most significant global risk for the
next 24 months, surpassing even extreme weather
events and military conflicts. As such, the develop-
ment and deployment of Automated Fact-Checking
(AFC) is essential in safeguarding the integrity of
democratic societies worldwide.

Schlichtkrull et al. (2023) introduced the
Automated VERlIfication of TExtual Claims
(AVERITEC) benchmark, consisting of 4, 568 real-
world claims subject to fact-checks by 50 or-
ganizations. AVERITEC classifies each claim
as either @ Supported, @Refuted, @NEI
(Not Enough Information) or &2 C/CP if there is
conflicting evidence or the claim is technically true
but misleading due to the exclusion of important

“These authors contributed equally to this work.

context (cherry-picking). The benchmark expects
the fact-check to be structured as a set of questions
and answers, comparing them against the gold QA
pairs using the Hungarian METEOR metric in
order to ensure that the predicted veracity is suffi-
ciently justified. It further provides a Knowledge
Base (KB), a collection of scraped web pages. Each
claim is associated with the resources used to fact-
check it (gold evidence) and ca. 1,000 unrelated
resources to simulate open web search.

Several early works suggest that LLMs and LLM
prompting techniques such as Chain-of-Thought
could be used for AFC (Geng et al., 2024; Khaliq
et al.,, 2024; Zhang and Gao, 2023; Wei et al.,
2024; Zhou et al., 2024). Following these works,
we present an approach that is customized for the
AVERITEC challenge (Schlichtkrull et al., 2024)
and incorporates intermediate question generation
and evidence retrieval to provide answers.

We propose Information-Augmented Fact-
Checker (INFACT), an AFC system with the ca-
pability of retrieving evidence. INFACT achieves
an AVERITEC score of 62.6% on the test set
and yields an accuracy of 72.4% on the devel-
opment dataset. Qualitative analysis shows that
our method’s retrieval process and reasoning ca-
pabilities provide a powerful baseline for text-
only AFC. Further details will be provided on
https://github.com/multimodal-ai-lab/InFact.

2 The INFACT System

Open-domain, text-only claim verification requires
world and commonsense knowledge and some de-
gree of reasoning. Due to their remarkable success
in both of these skills, we chose to drive the fact-
check by an LLM, supplemented with a custom
evidence retrieval module. While our approach
is agnostic to the choice of the LLM, the LLM’s
abilities influence the quality and accuracy of the re-
sulting fact-check. Since the task of fact-checking

108

Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 108-112
November 15, 2024 ©2024 Association for Computational Linguistics


https://github.com/multimodal-ai-lab/InFact

Claim

0.
Interpretation
(2]
10 Questions

Q Q Q Qq,

J—> Question Q,
Q, (3 )

n Search Queries
QS Q7 QB QQ Q1l)

—> Justification

00O

— 00 Verdict

Search Results

T e A A
<10 Answers % %

AQ AQ A (@] A (] o Oﬁ
1 2 4 5 o
(@] 8 66 6 (@]
5 A, A, A, Answer A,

Figure 1: The INFACT System. (1) Interpret the claim,
(2) pose 10 questions, (3) for each question individually,
generate search queries and retrieve potentially rele-
vant evidence from the AVERITEC Knowledge Base,
(4) answer the corresponding question using the found
evidence, (5) after completing all questions, predict a
verdict and (6) generate a justification.

is broad and complex, we subdivide the process
into six stages, as shown in Figure 1.

In short, INFACT addresses the task with a
static, single-pass pipeline that poses critical ques-
tions which are answered through evidence re-
trieved from the AVERITEC KB. Each of the six
stages corresponds to an engineered prompt, apply-
ing prompting best practices including Chain-of-
Thought (Wei et al., 2022) and In-Context Learn-
ing (Min et al., 2021), whenever applicable.

Stage 1: Interpret the Claim. The pipeline begins
with an augmentation of the claim text with its au-
thor, date, and origin URL. Subsequently the LLM
is prompted to reformulate the claim, considering
the supplied metadata. This step is helpful when
the time frame is unclear as in “Joe Biden’s income
has increased recently.” We also expect the inter-
pretation to help when the claim misses context as
in “Tourism, lockdown key to deep New Zealand
recession.”

Stage 2: Pose Questions. Next, INFACT produces
a list of 10 questions that it deems essential for
fact-checking. To facilitate the question generation,
we provide the LLM with manually selected in-
context examples. Furthermore, the instructions are
inspired by fact-checking best practices from Sil-
verman (2014).

Stage 3: Retrieve Evidence. For each generated
question, INFACT iteratively retrieves a list of evi-
dence resources. INFACT approaches this by letting
the LLM propose one or multiple search queries,
which are submitted to the AVERITEC KB, yield-
ing a list of 5 search results per query.

The AVERITEC KB contains a collection of
about 1,000 resources per claim. A resource is
a scraped URL, ranging from news articles over
social media posts to PDF documents. We decided
to use the AVERITEC KB over open-web search
for two main reasons: First, it guarantees to contain
the gold evidence (possibly erased from the open
web) and, second, it yields reproducible results (in
contrast to open-web search).

To retrieve the most relevant resources from
the KB, we implement a semantic search mecha-
nism. For each resource, we compute its document-
level embedding by employing a text embedding
model. We chose gte-base-en-v1.5 (Alibaba-
NLP, 2024) due to its competitive FEVER score
at time of the challenge given its manageable size.
We compute the query’s text embedding and use
it to perform k-nearest neighbor search w.r.t. the
Euclidean Distance in the document embedding
space. This outputs a list of the semantically clos-
est b resources. We drop resources that were found
in previous searches and end up with a list of < 5n
evidences per question. We found this approach
qualitatively superior to the common BM25 rank-
ing method.

Stage 4: Answer Questions. Taking all the search
results, INFACT iterates from the semantically most
similar to the least similar, instructing the LLM to
either answer the question using the information
from the result or respond with NONE if the result is
deemed unhelpful. If the LLM returned an answer
to the question, INFACT saves the answer along
with the evidence URL, and the Q&A process con-
tinues with the next question. However, if the LLM
returned NONE for all search results, the question is
dropped for the remainder of the fact-check.

Stage 5: Predict a Verdict. Once all the ques-
tions are processed, the LLM judges the claim’s
veracity based on the recorded QA pairs in a single
prompt as follows: First, it summarizes the key
insights from the Q&A. Second, it identifies any
pending, missing information. Third, it writes a
brief conclusion, including the final verdict.

Stage 6: Justify the Verdict. In this last stage, IN-
FACT generates a brief justification for the verdict
through summarization of the previous findings.
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System METEOR AVERITEC
Q-Only Q&A Score
INFACT (Ours) 45 34 63
HERO 48 35 57
AIC 46 32 50
DUN-FACTCHECKER 49 35 50
PAPELO-TEN 44 30 48
Challenge Baseline | 24 20 11

Table 1: Top-5 systems and the baseline on the
AVERITEC challenge test set, ranked by AVERITEC
score (in %) as defined in Schlichtkrull et al. (2023).

The LLM takes the claim, all the QA pairs, the
verdict, and any in-between reasoning (e.g., from
stage 5) and creates a summary, focusing on the
main reasons for the verdict. This stage is not re-
quired by the AVERITEC task and does not affect
any of the metrics.

3 Experimental Results

Experimental Setup. We evaluate INFACT
on the development set which consists of
305 @ Refuted, 122 @ Supported, 35 @NEI
and 38 2 C/CP claims, 500 claims in total. As
our LLM backbone, we test three models: (a)
the open-source LLAMA 3 (70B), (b) the closed-
source GPT-40 MINI, and (c) the more expensive
GPT-40 model. We use the models without any
finetuning and set the temperature to 0.01 and top-
p to 0.9. Additionally, we truncate each resource
to about 8 k tokens, which is the maximum input
length of the embedding model. We compare IN-
FACT with the following baseline and ablations:
The Naive baseline instructs the LLM to predict
the verdict right away in a single prompt, skipping
evidence retrieval entirely and relying solely on the
LLM’s parametric knowledge; the No Interpreta-
tion ablation omits stage 1; No Evidence answers
the questions by leaving out stage 3 (evidence re-
trieval); No Q&A generates search queries based
on the claim instead of a Q&A, gathers 10 results
and proceeds to make a verdict based on those;
No Query Generation skips the step of query gen-
eration by using the question as the search query
directly.

Challenge Results. Table 1 presents the top-5
entries from the challenge leaderboard, sorted by
the AVERITEC score on the test set. INFACT
achieves the best score with a significant margin
to the second-best system. Yet, it is not the best in
terms of the retrieval metrics.

Metric \ LLM \ INFACT Variant

_ =
N
SYT| o = 2 2 3 2
SRRl s o5 S22 &
J00| 2 2 2z 2z 2 Z
v - 424 408 - 404 402
?X)EQ‘ITEC v o| - 482 364 - 416 472
V| - 598 530 - 564 588
v 67.0 632 67.0 529 650 61.8
Accuracy v 36.2 61.6 56.8 54.8 59.6 60.2
/1526 718 710 688 702 72.4
v - 395 418 - 378 396

Q-Only v

- 430 443 - 421 433
METEOR /| - 462 457 - 443 458
v - 296 287 - 284 295
8{8121{?15011 v - 312 291 - 309 315
V| - 335 320 - 328 332

Table 2: Results in % on the AVERITEC development
dataset, showing four metrics for INFACT and the five
ablation variants, all tested with three different LLMs.

Analysis. The ablation comparison is shown in
Table 2. GPT-40 almost consistently outperforms
both other LLLMs. INFACT and No Interpretation
score best in terms of AVERITEC score and ac-
curacy. Their similarity hints at a potential re-
dundancy of the interpretation step in the case of
AVERITEC. While our experiments show that gen-
erating search queries is superior to searching the
literal question, the optimal value for the number
of queries per question n remains unknown. More-
over, and surprisingly, leaving out all evidence
does not lead to a drastic decline of the METEOR
scores, showing its insensitivity to generated (thus
potentially hallucinated) evidence vs. actually re-
trieved evidence.

Judging by the confusion matrices (cf. Fig. 2,
the most distinct confusion for LLAMA 3 and GPT-
40 MINI happens between @ NEI (predicted) and
© Refuted (true), which is less critical than con-
fusion between @ Supported and @ Refuted.
At the same time, GPT-40 predicts much fewer
@O NEI in favor of @ Refuted, which could be
attributed to its stronger reasoning capabilities.

Surprisingly, in the Naive setting, LLAMA 3
outperforms the GPT models by a large mar-
gin. As opposed to the GPT models, LLAMA 3
commits more often to either @ Supported or
© Refuted rather than choosing @ NEI, showing
a “self-confident” behavior despite having little evi-
dence. In the No Evidence variant, the GPT models
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Figure 2: Confusion matrices of INFACT on the AVERITEC development set for three different LLMs.

achieve a higher accuracy and predict @ NEI much
less, while still having no access to any external in-
formation. This indicates that structured reasoning
elevates GPT models’ confidence, regardless of the
knowledge source.

Qualitative analysis of 20 failure cases reveals
that, in more than half of the cases, the ground
truth was at least debatable or INFACT delivered
a valid alternative fact-check. E.g., the ground
truth of “While serving as Town Supervisor on
Grand Island, Nebraska, US Nate McMurray voted
to raise taxes on homeowners” is @ Supported,
however McMurray served on Grand Island, New
York. In two cases, the gold fact-check considered
a different claim than the one presented. E.g., the
claim: “Scientific American magazine warned that
5G technology is not safe” is about the magazine
issuing a warning about 5G. However, the gold
fact-check analyzed the safety of 5G itself.

In only 6 of the analyzed 20 failure cases, the
cause for the mislabeling can be clearly attributed
to INFACT. The cases include the usage of unre-
liable evidence sources, misinterpretations of the
claim, the missing ability to process non-textual
evidence, and the confusion between clearly re-
futed and merely unsupported claims. In a nutshell,
the analysis implies that the model performs better
than the metrics might reflect.

4 Discussion & Conclusion

INFACT establishes a robust baseline for
information-augmented fact-checking without
requiring fine-tuning. Its LLM-agnostic design
ensures that it benefits from advancements in the
reasoning capabilities of LLMs, making it adapt-
able to future developments. Additionally, INFACT
provides justifications, enhancing interpretability
and trust in its outputs. However, INFACT also
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has limitations. The inclusion of closed-source
models limits transparency, reproducibility, and
incurs high cost with about $ 0.46 per claim when
using GPT-40. While GPT-40 MINI is much
cheaper (about $0.01 per claim), it exhibited
lower performance. The open-source alternative
LLAMA 3 resulted in 8 times longer computation
times and reduced effectiveness. Also the number
of retrievals was relatively high (7 searches
per claim). Increasing INFACT’s efficiency by
reducing searches and skipping and/or combining
steps in the pipeline are a great opportunity for
future work. All LLMs evaluated in this study
were pre-trained on datasets that extend into 2023,
likely covering many of AVERITEC’s claims and
evidence available online.

Moreover, the AVERITEC dataset comes with
its own limitations. The wording of the QA pairs is
crucial when using the METEOR score to evaluate
them against gold-standard QA pairs. The auto-
mated comparison method is limited in capturing
semantically similar statements, and it is infeasi-
ble to provide an exhaustive list of all potentially
relevant evidence. Moreover, we found many ques-
tionable ground truth answers, cf. Section 3. We
suspect that these inaccuracies stem from layper-
son annotations. Addressing these limitations and
refining the dataset/metric will benefit measuring
progress in this challenging task.
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Abstract

Automated Fact-Checking (AFC) has recently
gained considerable attention to address the in-
creasing misinformation spreading in the web
and social media. The recently introduced
AVeriTeC dataset alleviates some limitations
of existing AFC benchmarks. In this paper,
we propose to explore Retrieval Augmented
Generation (RAG) and describe the system
(UPS participant) we implemented to solve the
AVeriTeC shared task. Our end-to-end system
integrates retrieval and generation in a joint
training setup to enhance evidence retrieval and
question generation. Our system operates as
follows: First, we conduct dense retrieval of
evidence by encoding candidate evidence sen-
tences from the provided knowledge store doc-
uments. Next, we perform a secondary retrieval
of question-answer pairs from the training set,
encoding these into dense vectors to support
question generation with relevant in-context
examples. During training, the question gener-
ator is optimized to generate questions based
on retrieved or gold evidence. In preliminary
automatic evaluation, our system achieved re-
spectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets.

1 Introduction

With the unprecedented growing of fake news in
the web and on social media, several research ef-
forts have been supported in the recent years to
combat online misinformation. While manual fact-
checking is the most reliable method for verify-
ing information, the large-scale amount of daily
published and shared content has made the devel-
opment of automated fact-checking solutions cru-
cial to assist in the manual fact checking process.
Following such initiatives, the recently introduced
AVeriTeC (Automated VERIfication of TExtual
Claims) dataset (Schlichtkrull et al., 2024) con-
tributes to address the aforementioned challenges,
and serves as a benchmark for the AVeriTeC shared

task. In this paper, we report our findings in ad-
dressing the AVeriTeC shared task and describe the
proposed system which is evaluated on its ability
of verifying real-world claims with evidence from
the Web. In contrast to other fact-checking datasets
such as FEVER (Thorne et al., 2018), VITAM-
INC (Schuster et al., 2021) and FEVEROUS (Aly
et al., 2021), AVeriTeC focuses on realistic scenar-
ios where real-world claims are derived from the
web rather than Wikipedia. In this context, systems
are required to retrieve evidence that either supports
or refutes a given claim, using sources from either
the Web or a document collection scrapped from
the web and provided by the organizers. Based on
this evidence, systems must categorize the claim as
Supported, Refuted, Not Enough Evidence (when
there is insufficient evidence to make a determi-
nation), or Conflicting Evidence/Cherry-picking
(when both supporting and refuting evidence are
present). A response is considered correct only
if it includes both the accurate label and sufficient
supporting evidence. Due to the complexity of eval-
uating evidence retrieval automatically, a manual
evaluation process will be conducted to ensure a
fair assessment of the participant systems.

2 AVeriTeC baseline

The AVeriTeC shared task organizers proposed a
pipeline system which comprises the following
steps: 1) Given a claim c, it is used as a query input
of a search engine (Google API) to obtain relevant
URLSs which are parsed into sentences. The col-
lection of sentences serves for evidence retrieval.
2) For each claim c, only the top 100 sentences
{si }g({ are kept based on the BM25 similarity be-
tween each s; and c. 3) For each of the top 100
sentence s;, BLOOM (Le Scao et al., 2023) allows
to generate QA pairs which are used as evidence
for veracity prediction. To allow more in-context
examples for QA pairs generation, the 10 closest
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claim-QA pairs are retrieved from the training set
using the BM25 similarity between s; and each
answer included in a claim-QA pair of the training
set. 4) The top 3 generated QA pairs are kept as
evidence using a pre-trained BERT-based re-ranker
(Devlin et al., 2019). 5) Finally, a claim c and its 3
generated QA evidence pairs are input in another
pre-trained BERT model to predict the veracity la-
bel.

3 Proposed system

Following the baseline pipeline, we propose a sim-
pler end-to-end integrated system ( see Figure 1)
which relies on the Retrieval Augmented Genera-
tion (RAG) framework to solve the AVeriTeC chal-
lenge where retrieval and generation complement
each other using joint training. At the first stage,
we perform evidence dense retrieval after encod-
ing all potential evidence sentences retrieved from
the provided knowledge store documents. Then,
we perform a second retrieval of question-answer
pairs from the training set (encoder into dense vec-
tors) to support question generation with in-context
examples. During training, the question genera-
tor learns to generate question given retrieved/gold
evidence by jointly updating both generator and ev-
idence/answer encoder using the RAG loss (Lewis
et al., 2020). Finally, a veracity prediction model
is employed to label the retrieved evidence.

3.1 Evidence retrieval

Using the searched documents provided by the
search engine, we similarly keep the top 100 sen-
tences as potential evidence using BM25. We then
encode each sentence s; into dense vector repre-
sentations using a Bert-base encoder Eg(-). We
represent each sentence using the 768-d pooled
vector of the [CLS] special token. Given a dataset
D of N claims, instead of encoding all sentences
into a (/V x 100 x 768) matrix, we rather encode the
top 100 potential sentence evidence of each claim
¢; € D into one (N x 100 x 768) matrix. This
allows to reduce the search space during evidence
retrieval since the relevant evidence sentences of
claim ¢; are likely to be found in its correspond-
ing top-100 retrieved sentence set. Thus, we build
N Faiss indexes (Johnson et al., 2019) for each
¢; € D where each of them, maps evidence sen-
tences to dense vectors. These enable us to perform
fast exact maximum inner product search (MIPS).
Formally, given a claim ¢;, and its top-100 evidence

_ [<.1100 :
sentence set S; = {s;};2, we compute the inner

product between its dense vectors and all s; € S;
as follows :

s(ci, s5) = Es(ci)Es(s;) (D

In this way, given an input claim c;, we retrieve
the top-K most relevant sentence using the highest
relevance scores s(-).

3.2 In-context QA pairs retrieval

Similar to (Schlichtkrull et al., 2024), in order
to provide the generator in-context examples for
question-answer pair generation, we retrieve the
top L QA-pairs from the training set which serve
for building the final prompt. Given a retrieved sen-
tence s; obtained after the first step, we encode it
using the same pre-train BERT-base encoder Eg(-).
Similar to the baseline system, the top L QA-pairs
are selected according to the semantic similarity
between answers in the QA pair training set and the
retrieved evidence sentences. We therefore perform
maximum inner product search for each sentence
s; after encoding and indexing all the answers in
the training set as follows:

5(si,a;) = Es(si)Es(a;) 2)

Similar to the sentence retrieval stage, we select the
top-L QA pairs whose answers achieve the highest
retrieval scores.

3.3 Question generation

In this step, given a claim c¢;, we generate a question
for each sentence retrieved in the first stage. Note
that the top-L retrieved QA pairs (in-context exam-
ples) are used in the same way as in (Schlichtkrull
et al., 2024) to build the prompt. Given a generated
question ¢; and a retrieved sentence s;, we consider
(gi, 5;) as a QA evidence pair for c;.

3.4 Veracity prediction

Given a claim ¢;, its top-K QA generated pairs
as evidence, we followed the baseline system to
predict the veracity label which relies on a pre-
trained BERT sequence classification model.

3.5 Training and inference

During training, given a claim c;, we use its ground-
truth QA evidence pairs provided in the training
set to build the question generation prompt as well
as generation labels. More precisely, given a set of
ground truth QA pairs, we use the question of the
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Figure 1: Our proposed pipeline system overview.

first QA pair as the generation target while the re-
maining pairs are used as in-context QA examples
to build the final prompt. Experiments showed that
using ground-truth QA pairs to build the prompt
during training showed better performance than us-
ing retrieved ones. Thus, evidence retrieval and
in-context QA pairs retrieval are only performed at
inference time. In this setting, the sentence encoder
and the question generator are jointly trained on
the following RAG loss (Lewis et al., 2020):

N
Lrac = — Y (log(s(ci,a*) - pa(q*Ipt(ci), a*)))

i=1

3)
where N is the number of claims in the dataset,
q* is the ground truth question, a* is the ground
truth answer and pg (¢*|pt(c;), a*) is the probabil-
ity distribution of generating the question ¢* given
the built prompt pt(c;) and a*, and ® is the gener-
ator’s parameters. s(c;, a*) is the similarity score
between the claim c¢; and the ground truth answer.
This learning objective allows to condition the gen-
erated questions on the retrieved evidence since
the gradients are propagated through both the sen-
tence encoder and the generator. At inference time,
more relevant evidence sentences are expected to
be retrieved thanks to the generator feedback sig-
nals during training while improved retrieval will
contribute to generate more accurate questions.

4 Experiments

4.1 Evaluation

Systems are evaluated on their ability to retrieve
evidence and to predict veracity labels. Note that
veracity predictions are considered correct only
when correct evidence has been found. The Hun-
garian METEOR metric (Schlichtkrull et al., 2024)
is used to score retrieved questions and retrieved

questions + answers. Furthermore, systems are
ranked according to the Averitec score (METEOR)
conditioned on correct evidence retrieved at a cut-
off value of 0.25.

4.2 Implementation details

We initialized the pre-trained BERT-base model
used for evidence retrieval and in-context QA re-
trieval with an answer encoder trained on Trivi-
aQA (Joshi et al., 2017). For question generation,
we experiment with the T5-large (738M param-
eters) (Raffel et al., 2020) pre-trained generator.
The batch size is set to 2 due to GPU memory limit.
We trained our system using a 2e-5 learning rate
for 20 epochs. At inference time, we decode us-
ing beam-search with 2 beams. We selected the
model checkpoints based on the validation perfor-
mance. All experiments needed only one Nvidia
A100 (80G) GPU. Our implementation is based
on PyTorch (Paszke et al., 2017). Pretrained mod-
els are obtained using Hugginface and Transform-
ers (Wolf et al., 2020). The Faiss library (Johnson
et al., 2019) is used for MIPS search and vector
indexing.

5 Results

Table 1 reports the performance results of our
approach and baseline systems evaluated on the
AVeriTeC shared task for the dev and test splits.
Models are evaluated based on their ability to: 1)
retrieve evidence in two settings: Question only
(Q only), Question and Answer (Q+A). 2) Verify-
ing veracity of claims using the AVeriTeC score
for different cutoff values. Overall, our system
with 955M parameters (BERT encoder + T5-large)
significantly outperforms the AVeriTeC-BLOOM-
7b baseline on both evidence retrieval and verac-
ity checking across all the metrics suggesting that
LLM’s parametric memory is not sufficient to solve
knowledge-intensive tasks such as fact-checking.
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Model split Qonly Q+A Veracity@(.2 Veracity@0.25 Veracity@0.3
AVeriTeC-BLOOM-7b dev  0.240 0.185 0.186 0.092 0.050
AVeriTeC-BLOOM-7b  test  0.248 0.185 0.176 0.109 0.059
Ours (UPS) dev  0.280 0.250 0.280 0.198 0.092
Ours (UPS) test  0.310 0.270 - 0.210 -
Table 1: Averitec shared task results
Claim Type Veracity score more with causal and Quote Verification claims.
- Analysing these results need more investigations in
Event/Property Claim 0.131 future work.
Position Sttatement 0.168 Table 3 shows the F1 scores for each veracity
Causal -Clalm . 0.118 label. We employed the provided checkpoint for
Numerlcal. Clagn 0.144 veracity prediction which failed to predict the Con-
Quote Verification 0.123

Table 2: Averitec scores by type @0.25 of our best
performing system for dev set.

Veracity Label F1

Supported 0.292
Refuted 0.653
Not Enough Evidence 0.160

Conflicting Evidence/Cherrypicking 0.166

Table 3: Veracity prediction dev set F1 results for each
veracity label.

At inference time, we achieved the best perfor-
mance with the number of retrieved evidence K=10,
while higher values decreases both evidence re-
trieval and veracity checking. Regarding the num-
ber of retrieved in-context examples L, we found
that building the prompt using only L=3 is suffi-
cient for the question generation model to reach our
best performing system. We assume that our BERT-
base retrieval provides more useful in-context ex-
amples in the top retrieved QA pairs and does not
need to re-rank evidence compared to the baseline
model which relies on BM25 to retrieve evidence.
Indeed, while we do not perform evidence retrieval
during training, we still update the BERT retrieval
encoder parameters using the claim-evidence simi-
larity scores with the RAG loss. This latter allows
to learn retrieving more relevant evidence for the
target question using the feedback from the ques-
tion generator.

We reports in Table 2 the veracity scores of our
best performing system for each claim type. We
note that there is no substantial performance gap
between claim types, even if our system struggles

flicting Evidence/Cherrypicking label even with
gold evidence (Schlichtkrull et al., 2024). Verac-
ity prediction performs better on this label using
our system however predictions are worse for the
Supported label which suggests that improving evi-
dence retrieval plays an important role to achieve
the best fact-checking performance.

6 Conclusion

We presented in this paper our participant system
(UPS) at the AVeriTeC shared task on verifying real-
world claims with evidence from the Web. In pre-
liminary automatic evaluation, our system achieved
respectively 0.198 and 0.210 AVeriTeC scores on
the dev and test sets, and was ranked 13 out of 23
participant teams. In terms of limitations, our pro-
posed system relies solely on the AVeriTeC train-
ing set which is relatively small size. We believe
that our RAG approach would benefit from more
training data. Moreover, experimenting with larger
generator models may improve the quality of gen-
erated questions and thus the overall fact-checking
performance.
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Abstract

In the information era, the vast proliferation
of online content poses significant challenges,
particularly concerning the trustworthiness of
these digital statements, which can have pro-
found societal implications. Although it is pos-
sible to manually annotate and verify the au-
thenticity of such content, the sheer volume
and rapid pace of information generation ren-
der this approach impractical, both in terms
of time and cost. Therefore, it is impera-
tive to develop automated systems capable of
validating online claims, ensuring that users
can use the wealth of information available
on the Internet effectively and reliably. Us-
ing primarily ChatGPT and the Google search
API, GProofT fact checking framework gener-
ates question-answer pairs to systematically ex-
tract and verify the facts within claims. Based
on the outcomes of these QA pairs, claims
are subsequently labeled as Supported, Con-
flicted Evidence/Cherry-Picking, or Refuted.
Shown by extensive experiments, GProofT Re-
trieval generally performs effectively in fact-
checking and makes a substantial contribution
to the task. Our code is released on https:
//github.com/HKUST-KnowComp/GProofT.

1 Introduction

With the chaotic nature of information on the Inter-
net, it appears to be challenging to determine the
credibility of claims on the web. This poses diffi-
culties on Large Language Models (LLMs) such as
ChatGPT (OpenAl, 2023) to conduct fact checking
as the hallucination (Huang et al., 2023; Ji et al.,
2022; Chan et al., 2024a) of them can produce
seemingly feasible but fake information. Though
time-consuming and tedious when performed man-
ually, fact-checking is rather crucial to ensure the
trustworthiness of information, especially for the
fact-sensitive industry such as journalism and sci-
ence. In the explosion of information, it’s far from

“First three authors make equal contribution to this paper.

adequate to solely rely on manual check to elimi-
nate the rumor and misinformation, while remain
difficult to be detected simply with commonsense
knowledge (Fang et al., 2021b,a; Shi et al., 2023;
Lu et al., 2024). Therefore, it’s pivotal to develop
a trustworthy automatic process to complete fact-
checking efficiently and accurately. Recent ad-
vancements in LLMs have showcased remarkable
performance in tasks involving text comprehension
and generation (OpenAl et al., 2024; Wang et al.,
2023b; He et al., 2023). However, the application
of LLMs in automatic fact-checking has remained
a persistent challenge, undergoing continuous ex-
ploration and development (Hang et al., 2024; Kim
et al., 2024). Current LLMs can only memorize the
knowledge embedded in their pretrain data, which
makes them struggle with fact-checking when the
event is out of their pretrain corpus, namely, out
of their knowledge domain. Under this circum-
stance, it is necessary and crucial to incorporate
real-time online search engine to provide LLMs
with real-time facts information to assist its reason-
ing. However, the chaotic nature of internet could
imply that the knowledge provided from the search
engine could result in misinformation to the LLMs,
hindering its reasoning process. Hence, a consis-
tent framework for multi-dimension, multi-round
fact checking needs to be proposed to generate sta-
ble and trustworthy fact checking result.

To solve the limitation, we propose GProofT fact
checking framework to crawl and analyze web evi-
dence based on Google Search API and ChatGPT.
As demonstrated in Figure 1, For each given textual
claim, we incorporate three stages to retrieve the
pertinent evidence from the Internet and a final step
to attribute a label based on the retrieved evidence.
As suggested in the shared task, our retrieved ev-
idence is in the format of QA pair. The retrieval
procedure includes Claim Split, Question Gener-
ation, Answer Generation and Expansion. More
information could be found in Section 3.1. Overall,
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AVeriTeC

]

Claim: The United States of America
and its Western allies have been
using their media outlets to publish
articles based on fabricated
information under allegations of non-
compliance with the Chemical
Weapons Convention. :

GProofT

Q: Have the United
States of America and
its Western allies been

using their media
outlets to publish
articles based on
fabricated information?
A: No, because the text
does not provide
evidence of fabricated
information being
published by the United
States of America and
its Western allies.

Q: Did allegations of non-
compliance with the
Chemical Weapons
Convention occur?

A: Yes, because the text
contains mentions of

- | ) WY

investigations regarding
possible non-compliance
with the Chemical
Weapons Convention.

Figure 1: An overview structure of GProofT retrieval

our framework could be decomposed into 3 stages:

1. Claim Split: It focuses on the decomposition
of the claim for the following question generation.

2. Question Generation: Based on the resulted
subclaims in Claim Split, binary questions are gen-
erated respectively to validate the claim.

3. Answer Generation: Google Search API is
employed to search for the questions in Question
Generation and 9 relevant snippets are saved in
the search results. ChatGPT is then adopted to
determine whether they are supporting or refuting
the original claim and generate the rationale.

After the retrieved evidence is obtained through
our GProofT framework, we adopt LLLMs to pre-
dict the label and benchmark our system based
on the evaluation metrics proposed in AVeriTeC
(Schlichtkrull et al., 2023). In-Context Learn-
ing (Agrawal et al., 2023; Hu et al., 2022b; Levy
et al., 2023) and fine-tuning (Hu et al., 2022a; Xu
et al., 2024b) are employed for gpt-3.5-turbo and
Llama-3 (Huang et al., 2024) respectively to im-
prove the accuracy of prediction. Subsequently,
extensive experiments are conducted to further in-
vestigate both the strengths and weaknesses of our
framework. As our Question-answer score is lower
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than the Question-only score, we suspect that our
binary answer with a subsequent rationale is not
sufficient for language models to make more accu-
rate predictions. In this case, future study could
focus on instructing LLMs to generate more infor-
mative responses based on the retrieved snippets,
which could subsequently assist the fact checking
process of LLMs. Overall, our work could be sum-
marized in three main aspects:

* We design claim fact extraction to divide
claims into informative subclaims which
could be beneficial for its downstream fact
checking.

* We propose GProofT framework, a multi-
dimension, multi-round fact checking frame-
work which can conduct fact checking without
heavy human intervention.

* We benchmark a series of LLMs with differ-
ent techiniques incorporated to demonstrate
a comprehensive LLLMs evaluation on fact
checking task.
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Figure 2: A comprehensive example of the GProofT retrieval process is provided by analyzing the claim, “In a letter
to Steve Jobs, Sean Connery refused to appear in an Apple commercial.” This example traces the progression from
the original claim through to the final question-answer (QA) pair.

2 Problem Definition

2.1 Dataset Description

We leverage the dataset proposed by Schlichtkrull
et al. (2023) for training and benchmarking. The
training set includes 3068 claims, while the devel-
opment set and test set include 500 and 2215 claims
respectively. The dataset contains claims accom-
panied by their gold evidence and labels prepared
by a hired annotator as well as their metadata in-
cluding speaker, publisher, date, and location. The
claims are collected from 6661 fact-checking ar-
ticles with duplicated and dead articles removed.
The extraction of claims and metadata, question
and answer generation, verdict prediction are com-
pleted by annotators. For each instance, the label,
either Supported, Refuted, Not Enough Evidence
or Conflicted Evidence/CherryPicking is assigned
based on retrieved evidence. Specifically, Sup-
ported and Refuted indicate that the authenticity of
the claim can be identified based on the evidence
recovered. In case of insufficient evidence or con-
flicted retrieved evidence, Not Enough Evidence
or Conflicted Evidence/CherryPicking will be at-
tributed to the specific claim.

2.2 Task Definition

We follow the task definition formulated by
Schlichtkrull et al. (2023). Formally, for each claim
C, one or multiple QA pairs {Q;, A}} (i=1, 2, ...,
n) are served as evidence, in which (); is a fact-
checking question, and A; is its complete answer.
The objective is to predict the validity of the fact by
leveraging the evidence retrieved. Specifically, we
utilize LLMs to label each QA pair as supported,
refuted, or irrelevant. Then we predict the label
with the label of each QA pair.

3 System Overview

In this section, we would introduce the GProofT
fact checking framework and elaborate our bench-
mark setup.

3.1 GProofT Fact Checking Framework

The GProofT fact-checking framework is a multi-
dimension, multi-round fact checking framework.
It decompose the original claims into several sub-
claims, enabling a comprehensive evaluation from
various dimensions and multiple rounds. The
GProofT fact-checking framework consist of three
stages: Claim Decomposition, Question Genera-
tion and Answer Generation. The overall frame-
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work pipeline is exhibited in Figure 2. We would
like to explain them in detail in the following para-
graphs.

3.1.1 Claim Decomposition

By examining the instances, we observe that claims
could be consisted of multiple opinions. Address-
ing these complex claims as singular entities can
pose significant challenges for LLMs. Conse-
quently, we decompose each claim C' into several
subclaims C1, Cs, ..., Cp, ensuring that each resul-
tant subclaim encompasses 1 to 2 facts.

To conduct decomposition, we employ a set of
heuristic rules designed to guide ChatGPT (Ope-
nAl, 2023) in effectively implementing this ap-
proach. The following rules outline this methodol-

ogy:

* The overall mission involves instructing the
LLMs to divide a claim into multiple sub-
claims based on the number of distinct facts it
contains.

* Return only the subclaims, separated by peri-
ods rather than numbers.

* Avoid generating duplicated subclaims.

* The response from ChatGPT should be spe-
cific and avoid unnecessary pronouns to main-
tain clarity and conciseness.

* Limit subclaims to 15 words or less, ensuring
they are shorter than the original claim.

 Capture the opinions or facts already present
within it.

» Extract multiple subclaims, unless the claim
is confined to a single fact.

Upon receiving the response from ChatGPT, we
utilize SpaCy (Honnibal and Montani, 2017) to
systematically split the subclaims. This process
ensures that each subclaim is individually extracted,
thereby deriving the subclaims from the original
claim.

3.1.2 Question Generation

Subsequently, we proceed to generate the question
of the QA pairs. We utilize ChatGPT to trans-
form the subclaims into binary questions, which
are structured to elicit yes or no responses. The
heuristic rules adopted in this stage are as followed:

* Recognize the factual statement within the
claim and formulate a binary question that
can be used to verify this fact.

* Output the question directly without any ratio-
nales.

* Answers should be specific and avoid unnec-
essary pronouns to maintain clarity and con-
ciseness.

3.1.3 Answer Generation

After preparing the binary questions, we employ
the Google API to retrieve relevant evidence from
online sources. For each question, 9 relevant snip-
pets from 9 different websites are returned in the
search results. Note that the default numbers of
returned results for Google search API is 10, in
order to avoid ties in latter majority voting, we set
the hyperparameter to be 9 to maintain the max-
imum completeness. Our pipeline then prompts
ChatGPT to determine the binary answer for each
search result, given both the question and the cor-
responding snippet (Yu et al., 2023; Chan et al.,
2024b). Following the resulted answers, we ap-
ply majority voting to determine the final binary
response to the question. To give more insight
on the rationale between the claim and each ques-
tion, we expand the binary answer into a complete
sentence that includes the binary response and the
rationale derived from the snippet. Formally, given
the question @);, the complete answer A; is formu-
lated as {Binary answer, Rationale}. The follow-
ing heuristic rules are employed in this approach:

* Extend the initial binary answer into a com-
prehensive sentence.

¢ The answer should be formatted as “Yes, be-
cause ...” or “No, because ...”.

* Answer the question directly without addi-
tional information.

The prompt for GProof T Fact Checking Framework
is in appendix B.

3.2 Label Prediction

3.2.1 Zero-shot learning

We benchmark the performance of different models
under zero-shot setting. The evidence generated
in previous stages is cohesively incorporated into
the input-prompted sentence. For each claim, we
obtain {C, {Q;, A;}} from the retrieval process.
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Gold evidence

Baseline evidence GProofT evidence

Q only score 1.000 0.241 0.331
Q+A score 1.000 0.185 0.204

\ macro F1 ~ AVeriTeC score macro F1 =~ AVeriTeC score macro F1 ~ AVeriTeC score
Baseline Model | - - 0.321 0.092 - -
Zero-shot model
GPT-3.5-turbo 0.387 0.472 0.166 0.076 0.180 0.096
Llama-3-8B-Instruct 0.341 0.640 0.263 0.108 0.288 0.166
Llama-3.1-8B-Instruct 0.404 0.730 0.327 0.114 0.288 0.174
falcon-7b-instruct 0.335 0.550 0.290 0.096 0.299 0.172
Gemma-2-2b-it 0.324 0.528 0.303 0.098 0.266 0.146
Gemma-2-9b-it 0.453 0.694 0.351 0.092 0.332 0.170
Mistral-7B-Instruct-v0.3 0.365 0.642 0.301 0.106 0.295 0.174
Mistral-Nemo-Instruct 0.383 0.632 0.297 0.086 0.333 0.172
Qwen2-7B-Instruct 0.417 0.654 0.317 0.090 0.311 0.166
Finetuned model
GPT-3.5-turbo (one-shot) 0.532 0.656 0.243 0.080 0.347 0.166
Llama3-8B 0.607 0.806 0.361 0.112 0.347 0.186
Llama-3-8B-Instruct 0.629 0.786 0.332 0.114 0.321 0.162
Llama-3.1-8B 0.627 0.782 0.342 0.122 0.329 0.180
Llama-3.1-8B-Instruct 0.684 0.800 0.320 0.108 0.330 0.186
Mistral-7B-Instruct-v0.1 0.639 0.748 0.332 0.106 0.332 0.184
Mistral-7B-Instruct-v0.2 0.675 0.770 0.337 0.110 0.334 0.185
Mistral-7B-Instruct-v0.3 0.623 0.780 0.357 0.114 0.339 0.178
Qwen2-7B-Instruct 0.653 0.758 0.345 0.106 0.338 0.170

Table 1: Evaluation results on development set of AVeriTeC. The best performances are bold-faced. “Q only” and
“Q+A” refer to Hungarian METEOR score (Schlichtkrull et al., 2023). “AVeriTeC” indicates using accuracy at
A = 0.25. We present the results of three distinct versions: utilizing gold evidence (Gold evidence), employing
evidence from baseline (Baseline search), and utilizing evidence procured through GProofT (GProofT evidence).

To instruct the model to predict the label based
on given evidence, we formulated the prompt as
follows: Determine one most possible verdict for
the claim "{C'}", based on the given question and
answer pairs Q: {Q;} A: {4;} (i=1, 2, ..., n).

3.3 Fine-tuning

To assess the effectiveness of GProofT across vari-
ous settings, we fine-tune LLMs and evaluate them
on the development set. Formally, for each instance
{C, {Qi, A;}}, we integrate the claim with all QA
pairs and fine-tune the model to predict the final
label using the cross-entropy loss. Detailed settings
and implementation of the fine-tuning process are
discussed in 4.2.2.

4 Experiments

In this section, we will elaborate the data process-
ing flow and the evaluation setting we adopted in
the experiments.

4.1 Data processing

To construct comprehensive experiments, we pre-

process three versions of the development set:
Gold Evidence: Gold evidence provided by the

organizer is annotated manually. This evidence

is considered highly reliable and has been meticu-
lously curated for accuracy.

Baseline Evidence: The second type of evi-
dence is retrieved by the organizer using a baseline
model. This evidence serves as a comparison point
to evaluate the performance of different systems.

GProofT Evidence: The last type of evidence
is retrieved using our GProofT framework. This
system has been optimized to improve the accuracy
and relevance of the retrieved evidence.

We employ different LLMs to make verdicts on
claims based on these different types of evidence,
allowing us to assess system performance under
various conditions.

4.2 Evaluation

We will introduce the evaluation experiments setup
and analyze the experiment results in the following
paragraphs.

4.2.1 Zero-shot

For the evaluation under zero-shot setting, we em-
ploy COT (Wei et al., 2022) and COT with self-
consistency (Wang et al., 2023c) prompting to gen-
erate the label for combined QA pairs of each claim.
For ChatGPT, the temperature 7 is set to 0.1 for
non-Self-Consistency decoding and 0.7 otherwise.
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Specifically, for claims whose content is blocked
by OpenAl filtering regulation, we set the label
as Not Answerable. For other models under zero-
shot setting, we adhere to the default configurations
provided by HuggingFace. We benchmark differ-
ent versions of LLAMA-3 (Huang et al., 2024),
Mistral (Jiang et al., 2023), Falcon (Almazrouei
et al., 2023), Gemma (Team et al., 2024), and
Qwen2 (Yang et al., 2024).

4.2.2 Fine-tuning

We fine-tune the model using the label of claim in
training set. Specifically, we input all QA pairs of
one claim simultaneously into the LLMs and fine-
tune it using the final label. During the evaluation
phases, we maintain consistency with the training
settings, distinguishing our approach from zero-
shot learning.

For fine-tuning LLMs, we use the open-sourced
library LLaMA-Factory (Zheng et al., 2024; Xu
et al., 2024a; Ding et al., 2024) to train all models
with cross-entropy loss. All hyperparameters fol-
low the default settings, and a LoRA rank (Hu et al.,
2022a) of o = 64 is used. We fine-tune different
versions of LLAMA-3, Mistral, and Qwen2. We
conduct all experiments on a Linux machine with
eight NVIDIA V100 GPUs.

4.3 Experiment results

The main results are demonstrated in Table 1. The
evaluation metrics are consistent with the setting
in Schlichtkrull et al. (2023), where we involve
the Hungarian METEOR score, macro F1, and
AVeriTeC at A = 0.25. The evaluation results
are obtained with the script. Our GProofT ap-
pendix checking framework achieves a Question
Hu-meteor score(Banerjee and Lavie, 2005) of
0.331 and a Question+Answer Hu-meteor score
of 0.204 on the development set of this shared
task, encompassing the baseline. We observed that
performance on our GProofT evidence generally
surpasses that of the baseline evidence, and fine-
tuning significantly enhances model performance.
The fine-tuned Llama3-8B model demonstrates the
most outstanding performance on GProofT evi-
dence, achieving the AVeriTeC score of 0.186, out-
performing the baseline model. In the zero-shot set-
ting, the Gemma-2-9b model consistently outper-
forms other models across three distinct datasets.

5 Analysis

In this section, we conduct error analysis and case
study to further investigate the strengths and po-
tential drawbacks of our framework. Furthermore,
a imbalance prediction analysis is attached in ap-
pendix A to serve as a analysis on prediction distri-
bution of our framework.

5.1 Error Analysis

The section analyzes the failure cases arise with
GProofT framework. The issues could be cate-
gorized into two types: duplicated subclaims and
biased claim split.

5.1.1 Duplicated Subclaims

When we processed the claim “Tanzania has not
been affected by COVID-19.” using our pipeline
for subclaim generation, GPT initially produced
two identical subclaims: “Tanzania was not af-
fected by COVID-19.” This occurred despite ex-
plicit instructions in the prompt to avoid generat-
ing duplicate subclaims. Similar problems have
been observed with claims containing fewer than
15 words, as demonstrated in Table 2. We hypothe-
size that the phrasing of our prompt might incline
GPT to generate more than one subclaim, leading
to instances where the claim is unnecessarily split
into multiple subclaims that are highly similar or
identical.

5.1.2 Biased Claim Split

Occasionally, splitting claims may introduce inac-
curate or irrelevant subclaims. For instance, in the
development dataset, there is a claim that states
“Over thirty million people... in the last several
months had to file for unemployment.” When pro-
cessed by our pipeline, this claim was split into
a subclaim stating “The last several months have
passed.” This subclaim clearly originates from the
phrase “in the last several months” within the origi-
nal claim. However, it represents a trivial fact rather
than a meaningful assertion relevant to the original
context. More examples are shown in Table 2.

5.2 Case Study

Generally, our framework is proved to be success-
ful in most cases. In Table 3, We present sev-
eral successful examples of the claim split process,
which effectively avoided issues such as duplicate
subclaims or biased splits. These instances cor-
rectly identified the key facts within the claims and
generated corresponding subclaims. For instance,
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Error Type Claim Subclaims one Subclaims two
Duplicated sub-  Viral video purportedly shows Pakistani opposition MPs Pakistani opposition MPs
claims Pakistani  opposition MPs chanted 'Modi, Modi’ inside chanted 'Modi, Modi’ inside
chanted 2018Modi, Modi2019 the Pakistani Parliament. the Pakistani Parliament.
(India’s PM) inside the Pakistani
Parliament.
Duplicated sub-  All USA Ballots Arriving After ~ All USA ballots arriving after  Ballots arriving after Election
claims Election Day Will Be Thrown Election Day will be thrown out.  Day will be thrown out.
Out.
Duplicated sub-  Olive Garden prohibits its em- Olive Garden prohibits its em- Olive Garden prohibits employ-
claims ployees from wearing face ployees from wearing face ees from wearing face masks
masks depicting the American  masks depicting the American ~ with American flag.
flag. flag.
Biased claim  Over thirty million people... in  The last several months have  Over thirty million people filed
split the last several months had to  passed. for unemployment.
file for unemployment.
Biased claim Edo State in Nigeria has a 19% The unemployment rate in Edlo  Unemployment rate is a signifi-
split unemployment rate. State is 19%. cant issue in Edo State.

Table 2: Failure examples of claim split part in GProof T Framework. The table categorizes two types of issues
encountered in claim splitting: duplicated subclaims and biased claim splits.

Claim

Subclaim One

Subclaim Two

Congress MP Rahul Gandhi has been
listed as the seventh most educated
leader by Forbes.

Rahul Gandhi has been listed as the
seventh most educated leader.

It is Forbes that has listed Rahul
Gandhi as the seventh most educated
leader.

Ulysses S. Grant, commander of the
Union Army during the American Civil
‘War, was a slave owner.

Ulysses S. Grant was the comman-
der of the Union Army during Amer-
ican Civil War.

Ulysses S. Grant owned slaves.

Joe Biden proposed a US wide 2% prop-

Joe Biden proposed a 2% property

The tax increase that Joe Biden pro-

erty tax increase. tax increase.

posed apply to the entire US.

Table 3: Successful examples of claim split in GProof T Framework.In the majority of cases, GProofT Framework
effectively identifies the facts within claims and splits them appropriately.

in the case of “Congress MP Rahul Gandhi has
been listed as the seventh most educated leader by
Forbes”, the process not only accurately extracted
the primary facts that Gandhi was listed as the sev-
enth most educated leader and was featured by
Forbes, but also leveraged the emphatic sentence
structure to underscore these facts within the sub-
claims. This approach enhanced the effectiveness
of the subsequent claim split process.

6 Conclusion

In this paper, we introduced GProofT, a multi-
dimension, multi-round fact-checking framework
designed to improve the efficacy and accuracy of
validating online claims by leveraging LL.Ms and
web evidence retrieval. Through extensive experi-

ments, our approach demonstrated superior perfor-
mance compared to baseline models, particularly
in the critical task of evidence retrieval. More-
over, our framework requires less human labor in-
volved in evidence checking which means it could
be easily scale up when there is a huge amount of
fact checking workload, improving the efficiency.
Apart from such advantages, our framework also
encounter challenges such as duplicated subclaims
and biased claim splits, indicating areas for further
improvement. Furthermore, refining the claim de-
composition process and enhancing the handling of
conflicting evidence will be crucial steps in advanc-
ing automated fact-checking systems. Our work
contributes to the ongoing efforts to develop reli-
able, scalable, and automated tools for ensuring the
trustworthiness of online information.
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Limitation

In our research pipeline, we employed GProofT
Retrieval, incorporating the Google Search API
and ChatGPT to generate question-answer (QA)
pairs, which were subsequently utilized to inform
predictions in conjunction with the Llama model
for the labeling of numerous claims. Throughout
this process, the API of Large Language Models
was invoked multiple times. On average, the pro-
cessing of each claim necessitated approximately
30 API calls to ChatGPT, leading to considerable
computational overhead. Moreover, the heightened
frequency of API calls led to a reduction in pro-
gram execution speed, thereby impeding the ef-
ficient processing of large-scale datasets. Future
research could concentrate on improving the claim
decomposition stage, as this upstream task signif-
icantly influences the final outcome. Conceptual-
ization(Wang et al., 2023b,a, 2024b,c,a; Wang and
Song, 2024; He et al., 2024; Bai et al., 2023) could
serve as an additional tool to improve the quality
of claim decomposition, and manual annotations
could be done to enhance the performance.
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A Imbalanced Prediction

Model ‘ S R C N | Macro
baseline 41 .69 .10 .16 23
gpt-3.5 turbo | .57 .59 .08 .16 34
llama3 54 74 .04 .06 .35
mistral S5 74 .00 .11 35

Table 4: Performance of models on different categories
of claim.

As demonstrated in Table 4, our model exhibits
better performance on the "Supported" (S) and
"Refuted" (R) labels but struggles with "Con-
flicting Evidence/Cherrypicking" (C) and "Not
Enough Evidence" (N) labels. This performance
discrepancy suggests a few potential reasons:

1. Evidence Retrieval Challenges: For Supported
and Refuted labels, the evidence is clear and
directly relevant, making it easier for the model
to make accurate predictions. For Conflicting
Evidence/Cherrypicking, the model struggles
with retrieving or interpreting evidence that is
contradictory or only partially relevant. If the
model fails to retrieve diverse or contradictory
evidence, it default to classifying the claim as
either supported or refuted, missing the nuance
required for the conflicting/cherrypicking evidence
label.

2. Training Data Imbalance: The training
data had more examples of claims with verdict
supported or refuted, leading the model to be
better at these tasks. Fewer examples of conflicting
evidence or cherrypicking cases leads the model
not have learned to handle these as effectively.
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B Prompt

B.1 Claim Decomposition

Prompt: Now I have a mission, and please help
me deal with it: I have a claim: {claim}, and I
need to split it into different subclaims according
to THE FACT it contains. For example, if I have a
claim: "Trump is a student born in 2005", then I
want to split it into two parts (since there are two
facts in it):"Trump is a student" and "Trump was
born in 2005". For this special case, I need the re-
sponse to be: "Trump is a student. Trump was born
in 2005.". There are several RULES for the split-
ing process: (1)VERY IMPORTANT!!! PLEASE
RETURN THE SUBCLAIMS ONLY (DO NOT IN-
CLUDE ANYTHING ELSE!!!) and please sepa-
rate the subclaims ONLY BY PERIOD instead of
numbers. (2)VERY IMPORTANT: DO NOT GEN-

TO BE MORE SPECIFIC and CLEAR(for example,
if you want to generate "the orgarnization”, try to
generate the orgarnization’s name), and AVOID
USING PRONOUNS. (4)In most cases, the length
of subclaims should be LESS THAN the length
of the original claim. And in most cases, each
subclaims SHOULD NOT BE LONGER THAN 10
words. (5)Do not expand the meaning of the origi-
nal claim or generate subclaims that do not exist
in the original claim. (6)DO NOT generate a sub-
claim that is totally the same as the original claim
UNLESS there is only one fact to check in the origi-
nal claim. (7)For example: for the claim "BJP MP
Sushil Modi claims first five Indian education min-
isters were Muslims", You should recognize that
there is ONLY ONE FACT in the claim, which is
whether BJP MP Sushil Modi really states the fol-
lowing claim , so the subclaim should be itself.
At the same time, if there are several facts in the
claim, you should split the claim into same amount
of subclaim, each representing a fact. (8)If the
claim is more that 30 words, try to generate at
least 3 subclaims. (9)Here are some EXAMPLES:
If the claim is "Lionel Messi is 36-year-old football
player who has a long career.”, then according to
the claim, there are three facts introducing Lionel
Messi, which are: Lionel Messi is 36-year-old, Li-
onel Messi is a football player, LionelMessi has
a long career. So what you should generate is:
"Lionel Messi is 36-year-old. Lionel Messi is a
football player. Lionel Messi has a long career.".

Note that the variable claim is the original input
statement.

B.2 Question Generation

Prompt: According to the claim below, generate
a binary question to CHECK THE FACTS in the
claim: {subclaim_text]. Note that (1)ONLY RE-
PLY THE QUESTION ITSELF!!! DO NOT IN-
CLUDE ANYTHING ELSE!!! (2)Try to be more
SPECIFIC, for example, if the claim is "Trump
was a student.”, then you should AVOID GENER-
ATING QUESTIONS CONTAINING PRONOUNS
like "Was he a student?" and instead generate "Was
Trump a student?" (3)Try to NOTICE THE FACT
in the claim and generate the binary question to
CHECK THE FACT. For example: for a claim:
"BJP MP Sushil Modi claims first five Indian ed-
ucation ministers were Muslims", the fact to be
checked will be whether BJP MP Sushil really
states the claim, instead of whether the first five
Indian education ministers are Muslims. Thus, you
should generate "Did BJP MP Sushil Modi claim
that the first five Indian education ministers were
Muslims?" (4)Here are some EXAMPLES: If the
claim is "Lionel Messi is loyal to FC Barcelona',
then the binary question should be "Is Lionel Messi
loyal to FC Barcelona?". If the claim is "Biden has
been to Beijing twice.", then the binary question
should be "Has Biden been to Beijing twice?".

Note that the variable subclaim_text is a single
subclaim obtained from the Claim Decomposition
stage.

B.3 Answer Generation

Prompt: According to the question: {query} and
the approximate answer: {item/’snippet’]}, give
me a yes or no answer.(only a word is needed)

Note that the variable guery is the binary ques-
tion obtained from the Question Generation stage
and item/[ ’snippet’] is an attribute acquired from
the Google search API.
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Abstract

To tackle the AVeriTeC shared task hosted by
the FEVER-24, we introduce a system that only
employs publicly available large language mod-
els (LLMs) for each step of automated fact-
checking, dubbed the Herd of Open LLMs for
verifying real-world claims (HerQO). For evi-
dence retrieval, a language model is used to en-
hance a query by generating hypothetical fact-
checking documents. We prompt pretrained and
fine-tuned LLMs for question generation and
veracity prediction by crafting prompts with re-
trieved in-context samples. HerO achieved 2nd
place on the leaderboard with the AVeriTeC
score of 0.57, suggesting the potential of open
LLMs for verifying real-world claims. For fu-
ture research, we make our code publicly avail-
able at https://github.com/ssu-humane/
HerO.

1 Introduction

Automated fact-checking is a task that predicts
a claim’s veracity by referring to pieces of evi-
dence (Guo et al., 2022). Claim verification re-
quires the retrieval of relevant information from
a reliable document collection and the decision
on whether the claim is supported by the known
relevant information. Early research attempted to
automate the fact-checking process by generat-
ing synthetic claims based on Wikipedia docu-
ments (Thorne et al., 2018; Aly et al., 2021) or
collecting manually verified claims by human ex-
perts (Wang, 2017; Augenstein et al., 2019). How-
ever, most datasets suffer from critical issues such
as context dependence, evidence insufficiency, and
temporal leaks; these limitations made the result-
ing systems less applicable to the verification of
real-world claims. In light of this, a recent study
proposed a dataset called AVeriTeC (Schlichtkrull
et al., 2023). They addressed the limitations by con-
ducting fine-grained crowdsourced annotations for
the fact-checking process.

This paper describes our system for the
AVeriTeC shared task hosted by the FEVER-24
workshop (Schlichtkrull et al., 2024). Motivated by
the recent advancements in large language models,
we introduce a fact-checking system that utilizes
LLMs for each step of evidence-based fact verifi-
cation: evidence retrieval, question generation, and
veracity prediction. Our system, the Herd of Open
LLMs for verifying real-world claims (HerQO), em-
ploys publicly available LLMs without using pro-
prietary LLMs, to ensure the transparency of the
system. HerO achieved 2nd place in the shared task
with an AVeriTeC score of 0.57. Given that the
winning system used gpt-4o (Schlichtkrull et al.,
2024), HerO’s competitive performance imply the
potential of open LLMs for verifying real-world
claims.

2 Related Work

LLMs have achieved remarkable success in natu-
ral language understanding and generation (Brown
et al., 2020; Thoppilan et al., 2022; Achiam et al.,
2023). While major tech companies primarily
drove the initial success, they only provided limited
access to the model through an API. On the other
hand, some research groups have attempted to de-
velop open LLMs to facilitate open research. While
the performance of the initial models was unsatis-
factory (Zhang et al., 2022; Le Scao et al., 2023),
recent models are on par with closed models and
even outperform them in certain categories (Jiang
et al., 2023; Dubey et al., 2024).

3 Task Definition

The AVeriTeC shared task aims to develop a fact-
checking system that verifies real-world claims by
retrieving evidence from the web. To verify a given
claim, the system first needs to retrieve relevant
information from the web documents (evidence
retrieval). For each of the collected evidence, the
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(1) Evidence retrieval freezed
> I fine-tuned
Web
collections
| S
; Llama 3.1 Hypothetical Top-10000 SFR- _
Claim (70B) documents é sentences Embedding_2R Top-10
| Query
(2) Question generation (3) Veracity prediction
Claim Claim
Llama 3 ) Justification: Trump never
> Questions | Generated
Retrieved Top-10 (8B) questions gave a speech on Sep 3rd.
sentence Query Q-A pairs Retrieved Verdict: ‘Refuted’
< sentences
Labeled Q-A
pairs

Figure 1: Inference

pipeline of our system

Evidence Retrieval

System Query Model Question Generation = Reranking  Veracity Prediction
Baseline Claim BM25 Bloom-7b BERT-base BERT-base
HerO HyDE-FC BM25 Llama-3-8b - Llama-3.1-70b

(Llama-3.1-70b)  w/ SFR-embedding-2

Table 1: Model configurations

system may generate questions that can help verify
the claim (question generation) or choose not to.
The last step of the fact-checking is to verify the
claim by referring to the collected information (ve-
racity prediction). The final verdict is a four-class
variable: supported, refuted, not enough evidence,
or conflicting evidence/cherry-picking. Each sys-
tem is evaluated using three metrics, where a higher
value indicates a better score. Two metrics are the
Hungarian METEOR score' to assess the quality
of questions (Q score) and question-answer pairs
(Q+A score), respectively. The overall accuracy is
measured by the AVeriTeC score. Details about the
task, dataset, and evaluation metrics can be found
in Schlichtkrull et al. (2023) and Schlichtkrull et al.
(2024).

4 Our System

This section describes our fact-checking system,
the Herd of Open LLMs for verifying real-world
claims (HerO). Inspired by the recent progress of
open LLMs (Jiang et al., 2023; Dubey et al., 2024),

'The score uses the Hungarian algorithm (Kuhn, 1955)
to find optimal matching pairs and evaluates them with the
METEOR score (Banerjee and Lavie, 2005).

we only employ open LLMs for our system with-
out using proprietary LLMs, such as gpt (Brown
et al., 2020) and gemini (Team et al., 2023). Table 1
presents HerO’s model configurations in compar-
ison to the baseline system (Schlichtkrull et al.,
2023). The inference pipeline of our system is illus-
trated in Figure 1. We use web documents provided
along with the dataset as the knowledge store.

4.1 Evidence Retrieval

The first step aims to retrieve relevant sentences
from the knowledge store to verify a given claim.
Inspired by previous research on generative re-
trieval methods (Gao et al., 2023; Wang et al.,
2023), we utilize an instruction-following LM to
generate hypothetical fact-checking documents to
augment a retrieval query. For the rest of this pa-
per, we call this approach HyDE-FC, which stands
for Hypothetical Document Embedding for Fact-
Checking.

Given a claim ¢, we generate a set of hypothet-
ical fact-checking documents D = {d;,...,dn}
by prompting an instruction-following language
model f(-) using ¢ as an in-context sample. The
used prompt for HyDE-FC is shown in Figure 2.
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Please write a fact-checking article passage to
support, refute, indicate not enough evidence, or
present conflicting evidence regarding the claim.
Claim: Hunter Biden had no experience in Ukraine
or in the energy sector when he joined the board of
Burisma.

Passage: While Hunter Biden did not have direct
experience in the energy sector or Ukraine before
joining the board of Burisma, he did have ...

Figure 2: An example of the instruction prompt used for
HyDE-FC and its output. The bold text is the instruction,
the italic text is a claim, and the blue text indicates the
model output.

We repeat the sampling process until obtaining N
different documents.

Using the claim and generated documents, our
retrieval pipeline employs a two-step hybrid ap-
proach that incorporates spare and dense retrieval
methods. The first step is to retrieve relevant docu-
ments by BM25 (Robertson and Zaragoza, 2009).
We concatenate the claim ¢ and each document in
D for building the query document g. The sparse
vector for g is used to retrieve the top 10,000 rele-
vant sentences from the knowledge store. The sec-
ond step is to re-rank the 10,000 sentences by the
dense retrieval method to decide the top-10 evi-
dence candidates. The query vector v, is obtained
by averaging the embedding vectors for the claim
c and every document in D by the equation 1,

. X
Vg = J\/*Jrl[;g(dk) + g(c)] )

where g is an embedding method.

Our best model uses llama-3.1-70b (Dubey et al.,
2024) for f and SFR-embedding-2 (Meng et al.,
2024) for g. N is set as 8.

4.2 Question Generation

The next step is to generate verifying questions,
each of which the corresponding answer could be
a retrieved sentence. We employ an instruction-
following LM to generate questions for each piece
of evidence. The used prompt is shown in Figure 3.
We improve the baseline prompt (Schlichtkrull
et al., 2023), which takes each evidence and rel-
evant question-answer pairs from the labeled set
by BM25 as in-context examples, by including a
corresponding claim.

Your task is to generate a question based on the
given claim and evidence. The question should
clarify the relationship between the evidence and
the claim

Example 1:

Claim: U.S. aid dollars sent to Ukraine under
Biden’s supervision went toward Burisma, where
Biden’s son Hunter was a board member.

Evidence: Hunter Biden was appointed to the board
of Burisma.

Question: Was Hunter Biden a board member of
Ukrainian energy company ’'Burisma’?

Example 10:

Claim: Hunter Biden was paid
3millionplus183,000 a month to be a board
member of a company that a lot of people said was
corrupt.

Evidence: Burisma Holdings, Ukraine’s largest
private gas producer, has expanded its Board of
Directors by bringing on Mr. R Hunter Biden as a
new director.

Question: What company is Hunter Biden a member
of the board?

Now, generate a question that links the fol-
lowing claim and evidence:

Claim: Hunter Biden had no experience in
Ukraine or in the energy sector when he joined the
board of Burisma.

Evidence: In 2014, Hunter Biden was appointed to
the board of Burisma Holdings, a Ukrainian energy
company. He was reportedly paid $50,000 a month
to work in an industry in which he had no previous
experience.

Question: What was Hunter Biden’s background or
experience in the energy sector before joining the
board of Burisma Holdings in 20147

Figure 3: An example of instruction prompt and its
output for question generation. The bold text indicates
the instruction, the italic text is a claim, the gray text is
retrieved in-context samples, and the blue text indicates
the model output.

4.3 Veracity Prediction

We employ an instruction-following LM for verac-
ity prediction. Inspired by a previous study (Wei
et al., 2022), we devise a prompt that incorporates
an annotator’s rationale into the veracity prediction.
Our best model uses the fine-tuned llama-3.1-70b-
it that predicts the veracity label after generating
the explanation. The top 10 question-and-answer
pairs from the earlier steps are given as in-context
samples along with the claim to verify.
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Your task is to predict the verdict of a claim
based on the provided question-answer pair
evidence. The possible labels are: Supported’,
’Refuted’, ’Not Enough Evidence’, ’Conflicting
Evidence/Cherrypicking’. Justify your answer
using the provided evidence and select the correct
label.

Claim: Hunter Biden had no experience in
Ukraine or in the energy sector when he joined the
board of Burisma.

Q1: What was Hunter Biden’s background or
experience in the energy sector before joining the
board of Burisma Holdings in 20147

Al: In 2014, Hunter Biden was appointed to the
board of Burisma Holdings, a Ukrainian energy

company. He was reportedly paid $50,000 a month
to work in an industry in which he had no previous
experience.

Q10: Did Hunter Biden have any relevant experience
in Ukraine or the energy sector before joining the
board of Burisma?

A10: What this is all about: From the start of the
inquiry, Republicans have pointed out that Hunter
Biden did not have any experience in corporate
governance or in the energy sector before taking the
job at Burisma.

Justification: No former experience stated.
Verdict: Supported

Figure 4: An example of instruction prompt and its
output for veracity prediction. The bold text indicates
the instruction, the italic text is a claim, the gray text
is retrieved QA pairs, and the blue text is the model
output.

5 Evaluation Experiments

In this section, we present experimental results to
decide the system configuration.

5.1 Experimental Setups

In the comparison experiments, we used the de-
velopment set to evaluate model performance. In
addition to the Q score and Q+A score, we em-
ployed the Hungarian METEOR score to evaluate
the answer quality, denoted as A score. For the
comparison experiments, we used the training set
for training our models and the development set for
the evaluation. The training and development set
were used to train our system for the submission.
We used the Adam optimizer with a learning rate
2e-5, batch size 128, and 2 epochs. For LoRA, we
set the rank to 128 and alpha to 256.

All the language models used in the experiments
are the instruction-tuned version (e.g., llama-3.1-

Query Retrieval model A score
BM25 0.187
Claim BM25 026
w/ SFR-embedding-2 ’
HyDE-FC
(Llama-3-8b) 0.2745
HyDE-FC
(Llama-3-70b) 0.2757
HyDE-FC BM25 0.2751
(Llama-3.1-8b)  w/ SFR-embedding-2 )
HyDE-FC
(Llama-3.1-70b) 0.2801
HyDE-FC 0.2773

(GPT-40-mini)

Table 2: Performance of evidence retrieval methods

Context Model Q score
Baseline 0.2404

Llama-3-8b 0.4210

Retrieved sentences Llama-3-70b 0.4175
Llama-3.1-8b 0.4212

Llama-3.1-70b  0.4259

GPT-40-mini 0.4054

Llama-3-8b 0.4938

Retrieved sentences Llama-3-70b 0.4789
w/ Claim Llama-3.1-8b 0.4855
Llama-3.1-70b  0.4881

Table 3: Performance of question generation methods

70b-it). For brevity, we omitted ‘it’ in the model
identifier for the rest of the paper. For HyDE-FC,
we set the LM hyperparameters as follows: maxi-
mum number of tokens as 512, temperature as 0.7,
and top_p as 1.0. We used the labeled QA pairs
from the training set as a data store to retrieve in-
context samples for question generation. We used
greedy decoding with a maximum length of 512.
When an LM does not produce the verdict label, we
repeated the generation with the top-2 sampling.

We ran experiments using three machines. The
first has two H100 GPUs (80GB per GPU) and
480GB RAM. The second has eight H100 GPUs
with 2TB RAM,; the third has four NVIDIA A6000
GPUs (48GB per GPU) and 256GB RAM. The
experiments were conducted in a computing envi-
ronment with the following configuration: Python
3.11.9, PyTorch 2.3.1, Transformers 4.43.4, Ax-
olotl 0.4.1, vLLM 0.5.3, and SentenceTransform-
ers 3.0.1. HerO took approximately 6.6 hours to
make 500 predictions for the development set with
two H100 GPUs. It took six hours for the evidence
retrieval, 25 minutes for the question generation,
and 12 minutes to complete the veracity prediction.
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5.2 Experimental Results

Evidence Retrieval We present evidence re-
trieval results on the AVeriTeC development set
in Table 2. We relied on the A score as the primary
metric to identify a model that can retrieve sen-
tences that are similar to the annotated evidence.
We made three observations. First, when a claim
was used as a query verbatim, applying SFR-
embedding-2 to the re-ranking step boosted the
performance by the A score of 0.073. Second, aug-
menting a query by the hypothetical document
generation increased the performance. The best
model, HyDE-FC with 1lama-3.1-70b, achieved an
A score of 0.2801, 0.02 greater than the claim-
only approach. Third, gpt-40-mini was close to but
slightly worse than the best open model when be-
ing used for HyDE-FC. Accordingly, HerO uses
the two-step approach where SFR-embedding-2 re-
ranks the top 10,000 sentences obtained by BM25;
Ilama-3.1-70b is used to generate hypothetical fact-
checking documents to augment the query.

Question Generation We present evaluation re-
sults of question generation methods in Table 3.
We fixed the evidence retrieval method as the best
approach to assess the effects of question genera-
tion methods. The Q score was used as a primary
evaluation metric for question generation.

We made three observations. First, all the llama
models achieved better Q scores than the baseline
and gpt-4o-mini. Second, using the claim as an
additional in-context sample boosted the gener-
ation performance significantly. The llama-3-8b
model with the claim achieved a Q score of 0.4938,
0.0728 greater than its counterpart. Third, among
the llama models that only use retrieved sentences
as in-context samples, the latest and largest model
(llama-3.1-70b) achieved the best score. However,
Ilama-3-8b achieved the best score with the claim.
Accordingly, HerO uses llama-3-8b to generate
questions.

Veracity Prediction We compared veracity pre-
diction methods using the best evidence retrieval
and question generation pipelines. We evaluated
three LLM-based methods: in-context learning
with ten examples, instruction fine-tuning by
LoRA (Hu et al., 2021), and fine-tuning the whole
parameters. Table 4 shows the results. When in-
context learning was used without parameter up-
dates, the llama models outperformed gpt-4o0-mini.
The most significant performance gap was an ac-

Method Model Accuracy  AVeriTeC score
Incontex 11ama-3-70b 0.628 0.494
loart Llama-3.1-70b  0.54 0.422
& Gpt-4o-mini 0.488 0.382
Llama-3-70b 0.724 0.556
LoRA [ lama-3.1-706 0704 0.55
Finetunine L1ama-3-70b 0.746 0.57
€ Llama-3.1-70b  0.752 0.578

Table 4: Performance of veracity prediction methods

System Qscore  Q+Ascore  AVeriTeC score
TUDA_MAI_0 0.45 0.34 0.63
HerO 0.48 0.35 0.57
CTU AIC 0.46 0.32 0.5
Baseline 0.24 0.2 0.11

Table 5: Test set results

curacy of 0.14 and an AVeriTeC score of 0.112.
Furthermore, the performance was boosted by in-
struction fine-tuning approaches. The llama-3.1-
70b with the full fine-tuning approach achieved
the highest AVeriTeC score of 0.578, which is the
veracity prediction module for HerO.

5.3 Test Set Results

Table 5 shows how HerO performs in the test set
in comparison to the baseline and other compet-
itive models. TUDA_MAI 0O achieved the best
AVeriTeC score of 0.63, followed by HerO (0.57)
and CTU AIC (0.5). Their performance gap
with the existing baseline was significant. HerO
achieved the best Q and Q+A scores among the top
3 models, suggesting that our question-generation
approach is strong. Since HerO’s performance gap
with the winning system was smaller for the Q+A
score than for the Q score, we suspected that our re-
trieval system is on par with but slightly worse than
theirs. The answer score employed in our experi-
ment could help better understand what is attributed
to the performance, either retrieval or question gen-
eration.

6 Conclusion

To tackle the AVeriTeC shared task hosted by the
FEVER-24, we developed HerO, a fact-checking
system that employs publicly available large lan-
guage models for each step of automated fact-
checking: evidence retrieval, question generation,
and veracity prediction. Our system achieved 2nd
place in the shared task, supporting the effective-
ness of open LLMs for verifying real-world claims.
We release our code publicly for future research.
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Abstract

This paper describes our 3"¢ place submis-
sion in the AVeriTeC shared task in which
we attempted to address the challenge of fact-
checking with evidence retrieved in the wild
using a simple scheme of Retrieval-Augmented
Generation (RAG) designed for the task, lever-
aging the predictive power of Large Language
Models. We release our codebase’, and ex-
plain its two modules — the Retriever and the
Evidence & Label generator — in detail, justify-
ing their features such as MMR-reranking and
Likert-scale confidence estimation. We evalu-
ate our solution on AVeriTeC dev and test set
and interpret the results, picking the GPT-40 as
the most appropriate model for our pipeline at
the time of our publication, with Llama 3.1 70B
being a promising open-source alternative. We
perform an empirical error analysis to see that
faults in our predictions often coincide with
noise in the data or ambiguous fact-checks, pro-
voking further research and data augmentation.

1 Introduction

We release a pipeline for fact-checking claims us-
ing evidence retrieved from the web consisting
of two modules — a retriever, which picks the
most relevant sources among the available knowl-
edge store’ and an evidence & label generator
which generates evidence for the claim using these
sources, as well as its veracity label.

Our pipeline is a variant of the popular Retrieval-
augmented Generation (RAG) scheme (Lewis et al.,
2020), making it easy to re-implement using estab-
lished frameworks such as Langchain, Haystack, or
our attached Python codebase for future research
or to use as a baseline.

1https ://github.com/aic-factcheck/aic_
averitec

2Due to the pre-retrieval step that was used to generate
knowledge stores, our “retriever” module could more conven-
tionally be referred to as a “reranker”, which we refrain from,
to avoid confusion with reranking steps it uses as a subroutine.
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This paper describes our pipeline and the de-
cisions taken at each module, achieving a simple
yet efficient RAG scheme that improves dramat-
ically across the board over the baseline system
from (Schlichtkrull et al., 2024), and scores third in
the AVeriTeC leaderboard as of August 2024, with
an AVeriTeC test set score of 50.4%.
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"

Documents
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Refuted [l

Not Enough Evidence NN
Conflicting Evidence/Cherrypicking [
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Figure 1: Our pipeline

2 Related work

1. AVeriTeC shared task (Schlichtkrull et al.,
2024) releases the dataset of real-world fact-
checked claims, annotated with evidence avail-
able at the date the claim was made.

It proposes the AVeriTeC Score — a method
of unsupervised scoring of fact-checking
pipeline against this gold data using Hungar-
ian METEOR score, matching the evidence
questions (Q) or the whole evidence (Q+A).
The score is then calculated as the proportion
of claims with accurate label and sound ev-

137

Proceedings of the Seventh Fact Extraction and VERification Workshop (FEVER), pages 137-150
November 15, 2024 ©2024 Association for Computational Linguistics


https://github.com/aic-factcheck/aic_averitec
https://github.com/aic-factcheck/aic_averitec

idence (using a threshold for Hu-METEOR
such as 0.25) among all claims in the dataset,
giving an estimate on “how often the whole
fact-checking pipeline succeeds end to end”.

The provided baseline is a pipeline of
search query generation, API search (pro-
ducing a knowledge store), sentence re-
trieval, Question-and-answer (QA) generation,
QA reranking, QA-wise claim classification
and label aggregation, achieving an overall
AVeriTeC test set score of 11%.

2. FEVER Shared Task (Thorne et al., 2018b),
a predecessor to the AVeriTeC, worked with
a similar dataset engineered on top of the
enclosed domain Wikipedic data rather than
real-world fact-checks. Its top-ranking solu-
tions used a simpler pipeline of Document
Retrieval, Sentence Reranking and Natural
Language Inference, improving its modules
in a decoupled manner and scoring well
above 60% in a similarly computed FEVER
score (Thorne et al., 2018a) on this data.

3. Our previous research on fact-checking
pipelines (Ullrich et al., 2023; Drchal et al.,
2023) using data similar to FEVER and
AVeriTeC shows significant superiority of fact-
checking pipelines that retrieve the whole
documents for the inference step, rather than
retrieving out-of-context sentences.

4. Retrieval-Augmented Generation (RAG)
for Knowledge-Intensive Tasks (Lewis et al.,
2020) takes this a step further, leveraging
Large Language Model (LLM) for the task,
providing it the whole text of retrieved docu-
ments (each a chunk of Wikipedia) and simply
instructing it to predict the evidence and la-
bel on top of it, achieving results within 4.3%
from the FEVER state of the art by the time
of its publication (December 2020) without
engineering a custom pipeline for the task.

3 System description

Our system design prioritizes simplicity, and its
core idea is using a straightforward RAG pipeline
without engineering extra steps, customizing only
the retrieval step and LLM prompting (Listing 1 in
Appendix A). Despite that, this section describes
and justifies our decisions taken at each step, our
additions to the naive version of RAG modules to

tune them for the specific task of fact-checking,
and their impact on the system performance.

3.1 Retrieval module

To ease comparison with the baseline and other
systems designed for the task, our system does not
use direct internet/search-engine access for its re-
trieval, but an AVeriTeC knowledge store provided
alongside each claim.

To use our pipeline in the wild, our retrieval mod-
ule is decoupled from the rest of the pipeline and
can be swapped out in favour of an internet search
module such as SerpApi® as a whole, or it can be
used on top of a knowledge store emulated using
large crawled corpora such as CommonCrawl* and
a pre-retrieval module.

3.1.1 Knowledge stores

Each claim’s knowledge store contains pre-scraped
results for various search queries that can be de-
rived from the claim using human annotation or
generative models. The knowledge stores used
with ours as well as the baseline system can be
downloaded from the AVeriTeC dataset page’, con-
taining about 1000 pre-scraped documents®, each
consisting of 28 sentences at median®, albeit vary-
ing wildly between documents. The methods used
for generating the knowledge stores are explained
in more detail by Schlichtkrull et al. (2024).

Our retrieval module then focuses on picking
a set of k£ (k = 10 in the examples below, as
well as in our submitted system) most appropri-
ate document chunks to fact-check the provided
claim within this knowledge store.

3.1.2 Angle-optimized embedding search

Despite each article in any knowledge store only
needing to be compared once with its one specific
claim, which should be the use-case for CrossEn-
coder reranking (Déjean et al., 2024), our empirical
preliminary experiments made us favour a cosine-
similarity search based on vector embeddings in-
stead. It takes less time to embed the whole knowl-
edge store into vectors than to match each docu-
ment against a claim using crossencoder, and the
produced embeddings can be re-used across exper-
iments.

3https: //serpapi.com/

4https: //commoncrawl.org/

5https: //fever.ai/dataset/averitec.html

®The numbers are orientational and were computed on
knowledge stores provided for the AVeriTeC dev set.
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For our proof of concept, we explore the
MTEB (Muennighoff et al., 2023) benchmark
leaderboard, looking for a reasonably-sized open-
source embedding model, ultimately picking
Mixedbread’s mxbai-large-v1 (Li and Li, 2024;
Lee et al., 2024) optimized for the cosine objec-
tive fitting our inteded use.

To reduce querying time at a reasonable exact-
ness tradeoff, we use Faiss index (Douze et al.,
2024; Johnson et al., 2019) to store our vectors, al-
lowing us to only precompute semantical represen-
tation once, making the retriever respond rapidly
in empirical experiments, allowing a very agile
prototyping of novel methods to be used.

3.1.3 Chunking with added context

Our initial experiments with the whole AVeriTeC
documents for the Document Retrieval step have
revealed a significant weakness — while most doc-
uments fit within the input size of the embedding
model, outliers are common, often with hundreds
of thousands characters, exceeding the 512 input
tokens with little to no coverage of their content.

Upon further examination, these are typically
PDF documents of legislature, documentation and
communication transcription — highly relevant
sources real fact-checker would scroll through to
find the relevant part to refer.

This workflow inspires the use of document
chunk retrieval as used in (Lewis et al., 2020),
commonly paired with RAG. We partition each
document into sets of its sentences of combined
length of N characters at most. To take advan-
tage of the full input size of the vector embedding
model we use for semantical search, we arbitrarily
set our bound N = 512 x 4 = 2048, where 512 is
the input dimension of common embedding mod-
els, 4 often being used as a rule-of-thumb number
of characters per token for US English in modern
tokenizers (OpenAl, 2023).

Importantly, each chunk is assigned metadata
— the source URL, as well as the full text of the
next and previous chunk within the same document.
This way, chunks can be presented to the LLM
along with their original context in the generation
module, where the length constraint is much less
of an issue than in vector embedding. As shown
in (Drchal et al., 2023), fact-checking models bene-
fit from being exposed to larger pieces of text such
as paragraphs or entire documents rather than out-
of-context sentences. Splitting our data into the
maximum chunks that fit our retrieval model and

providing them with additional context may help
down the line, preventing the RAG sources from
being semantically incomplete.

3.1.4 Pruning the chunks

While the chunking of long articles prevents their
information from getting lost to retriever, it makes
its search domain too large to embed on demand.
As each of the thousands of claims has its own
knowledge store, each of possibly tens of thousands
of chunks, we seek to omit the chunks having little
to no common tokens with our claim using an effi-
cient BM25 (Robertson et al., 1995) search for the
nearest w chunks, setting the w to 6000 for dev and
2000 for test claims. This yields a reasonably-sized
document store for embedding each chunk into a
vector, taking an average of 40 s to compute and
store using the method described in Section 3.1.2
for each dev-claim using our Tesla V100 GPU.

This allows a quick and agile production of vec-
torstores for further querying and experimentation,
motivated by the AVeriTeC test data being pub-
lished just several days before the announced sub-
mission deadline. The pruning also keeps the re-
source intensity moderate for real-world applica-
tions. However, if time is not of the essence, the
step can be omitted.

3.1.5 Diversifying sources: MMR

Our choice of embedding search based on the entire
claim rather than generating “search queries” intro-
duces less noise and captures the semantics of the
whole claim. It is, however, prone to redundancy
among search results, which we address using a
reranking by the results’ Maximal Marginal Rele-
vance (MMR) (Carbonell and Goldstein, 1998), a
metric popular for the RAG task, which maximizes
the search results’ score computed as (for D; € P)

A-Sim(D;, Q) — (1 —A) - g;%)é Sim(D;, Dj)

Sim denoting the cosine-similarity between em-
beddings, () being the search query, and P the pre-
fetched set of documents (by a search which simply
maximizes their Sim to Q)), forming S as the final
search result, by adding each D; as MMR-argmax
one by one, until reaching its desired size.

In our system, we set A = 0.75 to favour rele-
vancy rather than diversity, |.S| = 10 and | P| = 40,
obtaining a set of diverse sources relevant to each
claim at a fraction of cost and complexity of a
query-generation driven retrieval, such as that used
in (Schlichtkrull et al., 2024).
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3.2 Evidence & label generator

The second and the last module on our proposed
pipeline for automated fact checking is the Evi-
dence & Label Generator, which receives a claim
and k sources (document chunks), and returns [
(in our case, [ = 10) question-answer pairs of evi-
dence abstracted from the sources, along with the
veracity verdict —in AVeriTeC dataset, a claim may
be classified as Supported, Refuted, Not Enough
Evidence, or Conflicting Evidence/Cherrypicking
with respect to its evidence.

Our approach leverages a Large Language
Model (LLM), instructing it to output both evi-
dence and the label in a single step, as a chain of
thought. We rely on JSON-structured output gen-
eration with source referencing using a numeric
identifier, we estimate the label confidences using
Likert-scale ratings. The full system prompt can
be examined in Listing 1 in Appendix A, and this
section further explains the choices behind it.

3.2.1 JSON generation

To be able to collect LLM’s results programmati-
cally, we exploit their capability to produce struc-
tured outputs, which is on the rise, with datasets
available for tuning (Tang et al., 2024) and by the
time of writing of this paper (August 2024), sys-
tems for strictly structured prediction are beginning
to be launched by major providers (OpenAl, 2024).

Despite not having access to such structured-
prediction API by the time of AVeriTeC shared
task, the current generation of models examined
for the task (section 3.2.6) rarely strays from the
desired format if properly explained within a sys-
tem prompt — we instruct our models to output a
JSON of pre-defined properties (see prompt List-
ing 1 in Appendix A) featuring both evidence and
the veracity verdict for a given claims.

Although we implement fallbacks, less than
0.5% of our predictions threw a parsing exception
throughout experimentation, and could be easily
recovered using the same prompting again, exploit-
ing the intrinsic randomness of LLM predictions.

3.2.2 Chain-of-thought prompting

While JSON dictionary should be order-invariant,
we can actually exploit the order of outputs in our
output structure to make LLMS like GPT-40 output
better results (Wei et al., 2024). This is commonly
referred to as the “chain-of-thought” prompting —
if we instruct the autoregressive LLM to first out-
put the evidence (question, then answer), then a

set of all labels with their confidence ratings (see
section 3.2.5) and only then the final verdict, its pre-
diction is both cheaper as opposed to implementing
an extra module, as well as more reliable, as it must
attend to all of the intermediate steps as well.

3.2.3 Source referring

To be able to backtrack the generated evidence to
the urls of the used sources, we simply augment
each question-answer pair with a source field. We
assign a 1-based index’ to each of the sources to
facilitate tokenization and prompt the LLM to refer
it as the source ID with each evidence it generates.
While hallucination can not be fully prevented, it is
less common than it may appear — with RAG gain-
ing popularity, the models are being trained to cite
their sources using special citation tokens (Menick
et al., 2022), not dissimilarly to our proposal.

3.2.4 Dynamic few-shot learning

To utilise the few-shot learning framework (Brown
et al., 2020) shown to increase quality of model
output, we provide our LLMs with examples of
what we expect the model to do. To obtain such
examples, our evidence generator looks up the
AVeriTeC train set using BM25 to get the 10 most
similar claims, providing them as the few-shot ex-
amples, along their gold evidence and veracity ver-
dicts. Experimentally, we also few-shot our models
to output an answer type (Extractive, Abstractive,
Boolean,. ..) as the answer type is listed with each
sample anyways, and we have observed its integra-
tion into the generation task to slightly boost our
model performance.

3.2.5 Likert-scale label confidences

Despite modern LLMs being well capable of pre-
dicting the label in a “pick one” fashion, research
applications such as ours may prefer them to out-
put a probability distribution over all labels for two
reasons.

Firstly, it measures the confidence in each la-
bel, pinpointing the edge-cases, secondly, it allows
ensembling the LLM classification with any other
model, such as Encoders with classification head
finetuned on the task of Natural Language Infer-
ence (NLI) (see section 4.3).

As the LLMs and other token prediction schemes
struggle with the prediction of continuous numbers

"We chose the 1-based source indexing to exploit the
source-referring data in LLM train set such as Wikipedia,
where source numbers start with 1. The improvement in qual-
ity over O-based indexing was not experimentally tested.
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which are notoriously hard to tokenize appropri-
ately (Golkar et al., 2023), we come up with a sim-
ple alternative: instructing the model to print each
of the 4 possible labels, along with their Likert-
scale rating: 1 for “strongly disagree”, 2 for “dis-
agree”, 3 for “neutral”, 4 for “agree” and 5 for
“strongly agree” (Likert, 1932).

On top of the ease of tokenization, Likert scale’s
popularity in psychology and other fields such as
software testing (Joshi et al., 2015) adds another
benefit — both the scale itself and its appropriate us-
age were likely demonstrated many times to LLMs
during their unsupervised training phase.

To convert the ratings such as {“Supported”: 2,
“Refuted”:5, “Cherrypicking”:4, “NEE”:2}
to a probability distribution, we simply use soft-
max (Bridle, 1989). While the label probabilities
are only emulated (and may only take a limited,
discrete set of values) and the system may produce
ties, it gets the job done until further research is
carried out.

3.2.6 Choosing LLM

In our experiments, we have tested the full set of
techniques introduced in this section, computing
the text completion requests with:

1. GPT-40 (version 2024-05-13)

2. Claude-3.5-Sonnet (2024-06-20), using the
Google’s Vertex API

3. LLaMA 3.1 70B, in the final experimets to
see if the pipeline can be re-produced using
open-source models

Their comparison can be seen in tables 1 and 2;
for our submission in the AVeriTeC shared task,
GPT-40 was used.

4 Other examined approaches

In this section, we also describe a third, optional
module we call the veracity classifier, which takes
the claim and its evidence generated by our evi-
dence & label generator (section 3.2) and predicts
the veracity label independently, based on the sug-
gested evidence, using a fine-tuned NLI model. We
also describe the options of its ensembling with
veracity labels predicted in the generative step (sec-
tion 3.2.5).

The absence of a dedicated veracity classifier has
not been shown to decrease the performance of our
pipeline significantly (as shown, e.g., in tables 2

and 1) so we suggest to omit this step altogether and
we proceed to participate in the AVeriTeC shared
task without it, proposing a clean and simple RAG
pipeline without the extra step (Figure 1) for the
fact-checking task.

4.1 Single-evidence classification with label
aggregation

In the earliest stages of experimenting, we utilized
the baseline classifier provided by AVeriTeC au-
thors® (Schlichtkrull et al., 2024). It is based on the
BERT (Devlin et al., 2019) and was further fine-
tuned on the AVeriTeC dataset (Schlichtkrull et al.,
2024). It takes one claim and one question-answer
evidence as input — each claim therefore has mul-
tiple classifications, one for each evidence. The
classifications are then aggregated using a heuristic
of several if-clauses to determine the final label.

We experiment with altering this heuristic (e.g.
by making not enough evidence the final label only
when no other labels are present at any evidence),
and training NLI models that could work better
with it, such as 3-way DeBERTaV3 (He et al.,,
2023) without a breakthrough result, motivating
a radically different approach.

4.2 Multi-evidence classification

The multi-evidence approach is to fine-tune a 4-
way Natural Language Inference (NLI) classifier,
using the full scope of evidence directly at once,
without heuristics. For that, we concatenate all of
the evidence together using a separator [SEP] to-
ken. This allows the model to know exact question-
answer borders, albeit using a space has turned out
to be just as accurate as the experiments went on.
As the veracity verdict should be independent of
the evidence ordering, we also experiment with
sampling different permutations in the fine-tuning
step to increase the size of our data.

We carry out the fine-tuning using the AVeriTeC
train split with gold evidence and labels on
DeBERTaV3 (He et al., 2023) in two variants: the
original large one” and one pre-finetuned on NLI
tasks'Y, and also Mistral-7B-v0.3 model'! with a
classification head (MistralForSequenceClassifica-
tion) provided by the Huggingface Transformers

8https://huggingface.co/chenxwh/AVeriTeC
9https://huggingface.co/microsoft/
deberta-v3-large
Ohttps://huggingface.co/cross-encoder/
nli-deberta-v3-large
"https://huggingface.co/mistralai/
Mistral-7B-v@.3
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library (Wolf et al., 2020) that utilizes the last to-
ken. In the preliminary testing phase, the original
DeBERTaV3 Large performed the best and was
used in all other experimental settings.

From the approaches described above, we
achieved the best results for the development split
with gold evidence and labels with a model without
permuting the evidence, achieving 0.71 macro F}
score using a space-separation. The [SEP] model
achieved a comparable 0.70 macro F} score, and
the random order model performed worse with a
0.67 macro F} score, all improving significantly
upon baseline, yet falling behind the capabilities of
generating the labels alongside evidence in a single
chain-of-thought. We provide our best DeBER-
TaV3 finetuned model publicly in a Huggingface
repository 2.

4.3 Ensembling classifiers

Encouraged by the promising results of our multi-
evidence classifiers, we go on to try to ensemble the
models with LLM predictions from section 3.2.5,
using a weighted average of the class probabilities
of our models. We have experimented with multi-
ple weight settings: 0.5:0.5 for even votes, 0.3:0.7
in favour of the LLM to exploit its accuracy while
tipping its scales in cases of a more spread-out la-
bel probability distribution, as well as 0.1:0.9 to
use the fine-tuned classifier only for tie-breaking,
listing the results in Table 1.

We also tried tuning our ensemble weights based
on a subset of the dev split, without a breakthrough
in accuracy on the rest of dev samples.

The last method we tried was stacking using lo-
gistic regression. However, this setup classified no
labels from Not Enough Evidence and Conflicting
Evidence/Cherrypicking, and we could not achieve
reasonable results. For logistic regression, we used
the scikit-learn library (Pedregosa et al., 2011).

We conclude that the augmentation of the
pipeline from Figure 1 with a classification mod-
ule using a single NLI model or an ensemble with
LLM is unneccessary, as it adds complexity and
computational cost without paying off on the full
pipeline performance (Table 2).

4.4 Conflicting Evidence/Cherrypicking
detection

During the experiments, we discovered that classi-
fying the Conflicting Evidence/Cherrypicking class

Zhttps://huggingface.co/ctu-aic/
deberta-v3-large-AVeriTeC-nli

is the most challenging task, achieving a near-zero
F-score across our various prototype pipelines. To
overcome this problem, we tried to build a binary
classifier with cherrypicking as positive class. We
tried to use the DeBERTaV3 Large model with both
basic and weighted cross-entropy loss (other exper-
imental settings were the same as in section 4.2),
but it could not pick up the training task due to the
Conflicting Evidence/Cherrypicking underrepresen-
tation in train set — less than 7% of the samples
carry the label.

Even after exploring various other methods, we
did not get a reliable detection scheme for this
task, perhaps motivating a future collection of data
that represents the class better. While writing this
system description paper, we found an interesting
research by Jaradat et al. (2024) that uses a radi-
cally different approach to detect cherrypicking in
newspaper articles.

5 Results and analysis

We examine our pipeline results using two sets of
metrics — firstly, we measure the prediction accu-
racy and Fj over predict labels without any abla-
tion, that is obtaining predicted labels using the
predicted evidence generated on top the predicted
retrieval results. While the retrieval module is fixed
throughout the experiment (a full scheme described
in section 3.1), various Evidence & Label genera-
tors and classifiers are compared in Table 1, show-
casing their performance on the same sources. The
results show that if we disregard the quality of ev-
idence, models are more or less interchangeable,
without a clear winner across the board — an ensem-
ble of DeBERTA and Claude-3.5-Sonnet gives the
best F score, while GPT-40 scores 72% accuracy.

In real world, however, the evidence quality is
critical for the fact-checking task. We therefore
proceed to estimate it using the hu-METEOR ev-
idence question score, QA score and AVeriTeC
score benchmarks briefly explained in Section 2
and in greater detail in (Schlichtkrull et al., 2024).
We use the provided AVeriTeC scoring script to
calculate the values for Table 2, using its EvalAl
blackbox to obtain the test scores without seeing
the gold test data.

The latter experiments shown in Table 2 suggests
the superiority of GPT-4o to predict the results for
our pipeline with a margin. Even if we simplify the
evidence & label generation step by omitting the
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Ace Fj

0.72 0.46
0.64 0.49

Recall

0.47
0.52
0.41
0.44
0.45
0.49
0.46
0.53
0.43
0.54

0.46

Prec.

0.48
0.50
0.40
0.41
0.41
0.50
0.45
0.51
0.46
0.50

0.43

Classifier

GPT4o0

Claude 3.5 Sonnet
DeBERTa 0.63 0.39
DeBERTa - random@ 10 0.65 0.41
0.5 - DeBERTa + 0.5 - GPT40 0.70 0.43
0.5 - DeBERTa + 0.5 - Claude 0.68 0.47
0.3 - DeBERTa + 0.7 - GPT40 0.72 0.45
0.3 - DeBERTa + 0.7 - Claude 0.66 0.50
0.1 - DeBERTa + 0.9 - GPT40 0.72 0.39
0.1 - DeBERTa + 0.9 - Claude 0.64 0.49

Llama 3.1 0.73 0.44

Table 1: Evalution of the label generators, classifier
models and their ensembles on the AVeriTeCdevelop-
ment set. Fp, Precision and Recall are computed as
macro-averages. The random@ 10 suffix indicates that
the classifier used average of 10 different random or-
ders of QA pairs for each claim. GPT4o stands for the
Likert classifier based on GPT-40, Claude 3.5 Sonnet
is the Likert classifier based on Claude 3.5 Sonnet, and
DeBERTa is classifier based on DeBERTaV3 Large fine-
tuned on AVeriTeC gold evidence and labels.

dynamic few-shot learning (section 3.2), answer-
type tuning and Likert-scale confidence emulation,
it still scores above others, also showing that our
pipeline can be further simplified when needed.
Regardless of the LLM in use, the results of our
pipeline improve upon the AVeriTeC baseline dra-
matically.

Posterior to the original experiments and to the
AVeriTeC submission deadline, we also compute
the pipeline results using an open-source model —
the Llama 3.1 70B'? (Dubey et al., 2024) obtaining
encouraging scores, signifying our pipeline being
adaptable to work well without the need to use a
blackboxed proprietary LLM.

5.1 API costs

During our experimentation July 2024, we
have made around 9000 requests to OpenAl’s
gpt-40-2024-05-13 batch API, at a total cost of
$363. This gives a mean cost estimate of $0.04 per
a single fact-check (or $0.08 using the API without
the batch discount) that can be further reduced us-
ing cheaper models, such as gpt-40-2024-08-06.

We argue that such costs make our model suit-
able for further experiments alongside human fact-
checkers, whose time spent reading through each
source and proposing each evidence by themselves

Bhttps://huggingface.co/hugging-quants/
Meta-Llama-3.1-70B-Instruct-AWQ-INT4

would certainly come at a higher price.

Our successive experiments with Llama
3.1 (Dubey et al., 2024) show promising results as
well, nearly achieving parity with GPT. The use
of open-source models such as LLL.aMa or Mistral
allows running our pipeline on premise, without
leaking data to a third party and billing anything
else than the computational resources. For further
experiments, we are looking to integrate them into
the attached Python library using VLLM (Kwon
et al., 2023).

5.2 Error analysis

In this section, we provide the results of an explo-
rative analysis of 20 randomly selected samples
from the development set. We divide our descrip-
tion of the analysis into the pipeline and dataset
erTors.

5.2.1 Pipeline errors

Our pipeline tends to rely on unofficial (often
newspaper) sources rather than official government
sources, e.g., with a domain ending or containing
gov. On the other hand, it seems that the annotators
prefer those sources. This could be remedied by
implementing a different source selection strategy,
preferring those official sources. For an example,
see Listing 2 in Appendix B.

Another thing that could be recognised as an
error is that our pipeline usually generates all
ten allowed questions (upper bound given by the
task (Schlichtkrull et al., 2024)). The analysis of
the samples shows that the last questions are often
unrelated or redundant to the claim and do not con-
tribute directly to better veracity evaluation. How-
ever, since the classification step of our pipeline is
not dependent on the number of question-answer
pairs, this is not a critical error. Listing 3 in Ap-
pendix B shows an example of a data point with
some unrelated questions.

When the pipeline generates extractive answers,
it sometimes happens that the answer is not pre-
cisely extracted from the source text but slightly
modified. An example of this error can be seen in
Listing 4 in Appendix B. This error is not critical,
but it could be improved in future works, e.g. using
post-processing via string matching.

Individual errors were also caused by the fact
that we do not use the claim date in our pipeline
and because our pipeline cannot analyse PDFs with
tables properly. The last erroneous behaviour we
have noticed is that the majority of questions and
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Dev Set Scores Test Set Scores

Pipeline Name Qonly Q+A AvVeriTeC | Qonly Q+A AVeriTeC
GPT-40 (full-featured pipeline) 0.46 0.29 0.42 0.46 0.32 0.50
GPT-4o (simplified pipeline) 0.45 0.28 0.38 0.45 0.30 0.47
Claude-3.5-Sonnet (full-featured) 0.43 0.28 0.35 0.42 0.30 0.46
GPT-40 (with DeBERTa classification) | 0.45 0.28 0.36 - - -
AVeriTeC baseline 0.24 0.19 0.09 0.24 0.20 0.11
Llama 3.1 70B (full-featured) 0.46 0.27 0.36 0.47 0.29 0.42

Table 2: Comparison of Pipeline Scores on Dev and Test Sets. Q, Q+A are Hu-METEOR scores against gold data,
AVeriTeC scores are calculated as referred in section 2 thresholded at 0.25. “Full-featured” pipelines use the all the
improvement techniques introduced in section 3, while the simplified pipeline omits the dynamic few-shot learning,
answer-type-tuning and Likert-scale confidence emulation described in section 3.2

answers are often generated from a single source.
This should not be viewed as an error, but by in-
troducing diversity into the sources, the pipeline
would be more reliable when deployed in real-
world scenarios.

5.2.2 Dataset errors

During the error analysis of our pipeline, we also
found some errors in the AVeriTeC dataset that
we would like to mention. In some cases, there
is a leakage of PolitiFact or Factcheck.org fact-
checking articles where the claim is already fact-
checked. This leads to a situation where our
pipeline gives a correct verdict using the leaked
evidence. However, annotators gave a different la-
bel (often Not Enough Evidence). An example of
this error is shown in Listing 5 in Appendix B.

Another issue we have noticed is the inconsis-
tency in the questions and answers given by annota-
tors. Sometimes, they tend to be longer, including
non-relevant information, while some are much
shorter, as seen in Listing 6 in Appendix B. The
questions are often too general, or the annotators
seem to use outside knowledge. This inconsistency
in the dataset leads to a decreased performance of
any models evaluated on this dataset.

5.2.3 Summary

Despite the abovementioned errors, the explorative
analysis revealed that our pipeline consistently
gives reasonable questions and answers for the
claims. Most misclassified samples in those 20
data points were due to dataset errors.

6 Conclusion

In this paper, we describe the use and development
of a RAG pipeline over real world claims and data
scraped from the web for the AVeriTeC shared task.

Its main advantage are its simplicity, consisting
of just two decoupled modules — Retriever and an
Evidence & Label Generator — and leveraging the
trainable parameters of a LLM rather than on com-
plex pipeline engineering. The LL.Ms capabilities
may further improve in future, making the upgrades
of our system trivial.

In section 3, we describe the process of adding
features to both modules well in an iterative fash-
ion, describing real problems we have encountered
and the justifications of their solution, hoping to
share our experience on how to make such sys-
tems robust and well-performing. We publish our
failed approaches in section 4 and the metrics we
observed to benchmark our systems in section 5.
We release our Python codebase to facilitate further
research and applications of our system, either as a
baseline for future research, or for experimenting
alongside human fact-checkers.

6.1 Future works

1. Integrating a search API for use in real-world
applications

2. Re-examine the Likert-scale rating (sec-
tion 3.2.5) to establish a more appropriate
and fine-grained means of tokenizing the label
probabilities

3. Generating evidence in the form of declarative
sentences rather than Question-Answer pairs
should be explored to see if it leads for better
or worse fact-checking performance

4. RAG-tuned LLMs such as those introduced
in (Menick et al., 2022) could be explored to
see if they offer a more reliable source citing
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Limitations

The evaluation of our fact-checking pipeline is lim-
ited to the English language and the AVeriTeC
dataset (Schlichtkrull et al., 2024). This is a se-
vere limitation as the pipeline when deployed in a
real-world application, would encounter other lan-
guages and forms of claims not covered by the used
dataset.

Another limitation is that we are using a large
language model. Because of that, future usage is
limited to using an API of a provider of LLMs or
having access to a large amount of computational
resources, which comes at significant costs. Using
APIs also brings the disadvantage of sending data
to a third party, which might be a security risk in
some critical applications. LLM usage also has an
undeniable environmental impact because of the
vast amount of electricity and resources used.

The reliability of the generated text is a limita-
tion that is often linked to LLMs. LLMs some-
times hallucinate (in our case, it would mean us-
ing sources other than those given in the system
prompt), and they can be biased based on their ex-
tensive training data. Moreover, because of the
dataset size, it is impossible to validate each output
of the LLM, and thus, we are not able to 100%
guarantee the quality of the results.

Ethics statement

It is essential to note that our pipeline is not a real
fact-checker that could do a human job but rather
a study of future possibilities in automatic fact-
checking and a showcase of the current capabilities
of state-of-the-art language models. The pipeline
in its current state should only be used with human
supervision because of the potential biases and er-
rors that could harm the consumers of the output
information or persons mentioned in the claims.
The pipeline could be misused to spread misinfor-
mation by directly using misinformation sources
or by intentionally modifying the pipeline in a way
that will generate wrong outputs.

Another important statement is that our pipeline
was in its current form explicitly built for the
AVeriTeC shared task, and thus, the evaluation re-
sults reflect the bias of the annotators. For more
information, see the relevant section of the original
paper (Schlichtkrull et al., 2024).

The carbon costs of the training and running of
our pipeline are considerable and should be taken
into account given the urgency of climate change.

At the time of deployment, the pipeline should be
run on the smallest possible model that can still
provide reliable results, and the latest hardware and
software optimisations should be used to minimise
the carbon footprint.
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A System prompt

You are a professional fact checker, formulate up to 10 questions that cover all
the facts needed to validate whether the factual statement (in User message) is
true, false, uncertain or a matter of opinion. Each question has one of four
answer types: Boolean, Extractive, Abstractive and Unanswerable using the
provided sources.

After formulating Your questions and their answers using the provided sources, You
evaluate the possible veracity verdicts (Supported claim, Refuted claim, Not
enough evidence, or Conflicting evidence/Cherrypicking) given your claim and
evidence on a Likert scale (1 - Strongly disagree, 2 - Disagree, 3 - Neutral, 4 -
Agree, 5 - Strongly agree). Ultimately, you note the single likeliest veracity
verdict according to your best knowledge.

The facts must be coming from these sources, please refer them using assigned IDs:

## Source ID: 1 [url]

[context before]

[page content]

[context after]

## Output formatting
Please, you MUST only print the output in the following output format:

json
{
"questions”:
L

{"question": "<Your first question>", "answer"”: "<The answer to the Your
first question>", "source": "<Single numeric source ID backing the
answer for Your first question>", "answer_type":"<The type of first
answer>"},

{"question”: "<Your second question>", "answer": "<The answer to the Your
second question>", "source": "<Single numeric Source ID backing the
answer for Your second question>", "answer_type":"<The type of second
answer >"}

1,
"claim_veracity": {
"Supported”: "<Likert-scale rating of how much You agree with the 'Supported'
veracity classification>",
"Refuted"”: "<Likert-scale rating of how much You agree with the 'Refuted’
veracity classification>",
"Not Enough Evidence”: "<Likert-scale rating of how much You agree with the
"Not Enough Evidence' veracity classification>",
"Conflicting Evidence/Cherrypicking”: "<Likert-scale rating of how much You
agree with the 'Conflicting Evidence/Cherrypicking' veracity classification>"
}’
"veracity_verdict"”: "<The suggested veracity classification for the claim>"

## Few-shot learning
You have access to the following few-shot learning examples for questions and
answers.:

### Question examples for claim "{example["claim"]3}" (verdict
{example["gold_label”]})
"question": "{question}", "answer”: "{answer}", "answer_type"”: "{answer_typel}"”

Listing 1: System prompt for the LLMs, AVeriTeC claim is to be entered into the user prompt. Three dots represent
omitted repeating parts of the prompt.
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B Examples of errors

Claim 479: Donald Trump said "When the
anarchists started ripping down our statues
and monuments, right outside, I signed an
order immediately, 10 years in prison.”

gold evidence example:

question: What was the law signed by Trump
regarding damaging federal property?

answer: Trump signed an executive order that
authorizes a penalty of up to 10 years in
prison for damaging federal property. It
does not say that it will automatically be
a 10 year prison sentence.,

source_url: https://web.archive.org/web
/20210224033536/https://www.whitehouse.gov/
presidential-actions/executive-order-
protecting-american-monuments-memorials-
statues-combating-recent-criminal-violence/

pipeline evidence example:

question: Did Trump sign an order related to
vandalism of statues and monuments?,

answer: Yes, Trump signed an executive order
to prosecute those who damage national
monuments, making it a punishable offense
with up to 10 years in jail.,

url: https://m.economictimes.com/news/
international/world-news/trump-makes-
vandalising-national-monuments-punishable-
offence-with-up-to-10-yrs-jail/articleshow
/76658610.cms

quetion 9: What reason did Biden give for not
releasing a list of potential Supreme Court
nominees?,

question 10: Did Biden pledge to nominate a
Black woman to the Supreme Court?

Listing 3: Example of a claim and questions showing
that the last tends to be unrelated or redundant to fact-
checking of the claim.

Claim #155 - Trump said 'there were fine people
on both side' in far-right protests.

answer: "You had some very bad people in that
group, but you also had people that were very
fine people, on both sides.”,

answer_type: Extractive

url: https://www.theatlantic.com/politics/
archive/2017/08/trump-defends-white-
nationalist-protesters-some-very-fine-people-
on-both-sides/537012/

scraped text: . "You also had some very fine
people on both sides,” he said. The Unite the
Right rally that sparked the violence in
Charlottesville featured several leading names

in the white-nationalist alt-right movement,

and also attracted people displaying Nazi
symbols.

Listing 2: Example of a claim where our pipeline
uses newspaper sources instead of official government
sources.

Claim 295: Trump campaign asked Joe Biden to
release a list of potential Supreme Court
picks only after Ginsburg's passing

question 1: Did Joe Biden claim that the Trump
campaign asked him to release a list of
potential Supreme Court picks only after
Ginsburg's passing?

question 2: Did the Trump campaign ask Joe Biden

to release a list of potential Supreme Court
picks before Ginsburg's passing?

question 3: When did Trump release his latest
list of potential Supreme Court nominees?

question 4: Did Trump personally demand that
Biden release a list of potential Supreme
Court nominees before Ginsburg's death?

question 5: What did Trump say about Biden
releasing a list of potential Supreme Court
nominees during the Republican National
Convention?

question 6: Did the Trump campaign issue a
statement on September 17, 2020, regarding
Biden releasing a list of potential Supreme
Court nominees?

question 7: What did the Trump campaign's
statement on September 9, 2020, say about
Biden releasing a list of potential Supreme
Court nominees?

question 8: Did Biden indicate in June 2020 that

he might release a list of potential Supreme
Court picks?

Listing 4: Example of a claim where our pipeline did
not exactly extract the answer.

Claim #483 - Donald Trump said "We have spent
nearly $2.5 trillion on completely rebuilding
our military, which was very badly depleted
when I took office.”

Gold Label: Not Enough Evidence

Predicted Label: Refuted

pipeline evidence example:

question: What is the total defense budget
for the last four fiscal years under Trump?

url: https://www.politifact.com/factchecks
/2020/jan/10/donald-trump/trump-exaggerates
-spending-us-military-rebuild/

question: Did Trump spend $2.5 trillion
specifically on rebuilding the military?

url: https://www.factcheck.org/2020/07/trumps
-false-military-equipment-claim/

Listing 5: An example of a claim where the evidence
consists mainly of evidence from PolitiFact and
Factcheck.org fact-checking articles leading to different
predicted label than in the gold dataset
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Claim #0 - In a letter to Steve Jobs, Sean
Connery refused to appear in an apple
commercial.

Gold Evidence:

question: Where was the claim first published

answer: It was first published on Sccopertino

question: What kind of website is Scoopertino

answer: Scoopertino is an imaginary news
organization devoted to ferreting out the
most relevant stories in the world of Apple
, whether or not they actually occurred -
says their about page

Claim #315 - The fastest Supreme Court justice
ever confirmed in the U.S. was 47 days.
Gold Evidence:
question: What is the quickest time a Supreme
Court justice nomination has been
confirmed in the United States?
answer: John Paul Stevens waited the fewest
number of days (19)-followed by the most
recent nominee to the Court, Amy Coney
Barrett (27).61
question: What is the average number of days
between a nomination for a Supreme Court
justice and the final Senate vote?
answer: Overall, the average number of days
from nomination to final Senate vote is
68.2 days (or approximately 2.2 months),
while the median is 69.0 days.62 Of the 9
Justices currently serving on the Court,
the average number of days from nomination
to final Senate vote is 72.1 days (or
approximately 2.4 months), while the median
is 73.0 days. Among the current Justices,
Amy Coney Barrett waited the fewest number
of days from nomination to confirmation
(27), while Clarence Thomas waited the
greatest number of days (99).

Listing 6: An example of a claims which differs in
length.
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Abstract

The ability to extract and verify factual infor-
mation from free-form text is critical in an era
where vast amounts of unstructured data are
available, yet unreliable sources abound. This
paper focuses on enhancing causal deductive
reasoning, a key component of factual verifi-
cation, through the lens of accident investiga-
tion, where determining the probable causes of
events is paramount.

Deductive reasoning refers to the task of draw-
ing conclusions based on a premise. While
some deductive reasoning benchmarks exist,
none focus on causal deductive reasoning and
are from real-world applications. Recently,
large language models (LLMs) used with
prompt engineering techniques like retrieval-
augmented generation (RAG) have demon-
strated remarkable performance across various
natural language processing benchmarks. How-
ever, adapting these techniques to handle sce-
narios with no knowledge bases and to different
data structures, such as graphs, remains an on-
going challenge. In our study, we introduce a
novel framework leveraging LLMs’ decent abil-
ity to detect and infer causal relations to con-
struct a causal Knowledge Graph (KG) which
represents knowledge that the LLM recognizes.
Additionally, we propose a RoBERTa-based
Transformer Graph Neural Network (RoTG)
specifically designed to select relevant nodes
within this KG. Integrating RoTG-retrieved
causal chains into prompts effectively enhances
LLM performance, demonstrating usefulness
of our approach in advancing LLMs’ causal
deductive reasoning capabilities.

1 Introduction

Large language models (LLMs) have shown im-
pressive performance on some language tasks, how-
ever, their ability to plan and reason on com-
plex tasks remains an ongoing challenge (Wei
et al.,, 2022; Valmeekam et al., 2023). In Psy-
chology, the standard test for deductive reason-
ing consists of giving people premises and ask-
ing them to draw conclusions (Evans, 2005; Rips,
1994; Johnson-Laird, 2010). In natural language
processing (NLP), RuleTaker (Clark et al., 2020)
and ProofWriter (Tafjord et al., 2021) are datasets
that challenge models to assign True or False la-
bels to statements about a probable implication.
However, there are no NLP benchmarks on causal
deductive reasoning, where the premise are facts
about an outcome and the statement is about a prob-
able cause. Furthermore, Huang and Chang (2023);
Valmeekam et al. (2022) find that current bench-
marks do not truly investigate the reasoning capa-
bilities of LLLMs, because the tasks are not mean-
ingfully applied in the real-world.

Researchers have proposed prompt engineering
techniques to improve few-shot and zero-shot task
performance (Reynolds and McDonell, 2021), like
using role-play (Kong et al., 2023; Wang et al.,
2023), in-context learning (Xie et al., 2022; Min
et al., 2022), and retrieval-augmented generation
(RAG) (Lewis et al., 2020; Shao et al., 2023). Re-
cent work has explored using LLMs to retrieve
a task-relevant knowledge sub-graph to support
reasoning (Li et al., 2024). However, extending
these techniques to handle cases where no explicit
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knowledge base is available, or and how to best use
knowledge graphs (KGs) in a RAG-based LLM
system remains an open area for research.

This paper focuses on the causal deductive rea-
soning task performed by Accident Investigators.
When an accident occurs, investigators conduct
thorough investigations, and come up with a proba-
ble cause for the accident. Our main contributions
can be summarized as follows:

* We present a task (Section 2) and dataset (Sec-
tion 3) comprising 631 reports with 11,422
statements. This dataset is curated from origi-
nal reports written by humans and processed
using rules and Claude 2.1. It will be made
publicly available.

* We introduce a framework (Figure 1) employ-
ing LLMs such as Mistral-Instruct 7B to iden-
tify causal relations for constructing a causal
KG. Additionally, we trained a RoBERTa-
based Transformer Graph Neural Network
(RoTGQG) to select relevant nodes, leveraging
deductive reasoning labels as an auxiliary task.
(Section 4)

* We observe that incorporating causal relations
retrieved from the LLM-constructed KG im-
proves the LLM’s causal deductive reasoning
performance. (Section 5)

2 Causal Deductive Reasoning

Given an input context C, the goal is to identify
the likelihood of a statement s; being a probable
cause of accident a. This likelihood is represented
by y; € (0,1), where y; = 1if s; is a probable
cause and y; = 0 if not. The task is to determine
P(y;|C) for each potential cause s; within a re-
port context C'. Since we have multiple reports
in our dataset, the objective extends to calculating
P(yit|Cy), where t denotes the report ID. We de-
fine Gy = Feptract(Cy) as the set of causal relations
mentioned in context Cy. The function Fiyipact(.)
extracts causal relations from the context. The
aggregated set of all extracted relations from the
dataset is denoted as G, representing the repository
of causal relations of our dataset. Each relation in
G, is represented by a cause and effect pair, de-
noted as (s;, 5;).

If a causal chain Tit =
(SZ', Sjl), (Sjl, sz), e (jk, k‘) ¢ G4, then y; = 0.
However, if x;; € Gy, the rank of y;; relative to

other potential causes y;; must be considered.
Only the top z rank of most important causes can
be the probable cause of an accident a. In the case
where we only consider the top cause (z = 1) as
the probable cause, then the probability of P(y;;)
can be reformulated into:

P(yit = 0) = P(yit|xie ¢ Gy) 0
+P(yi|lzie € Gi, P(yje = 1) > P(yy = 1))

P(yi = 1) = P(yilzie € Gy,
P(yit = 1) > P(y;e = 1))

Since the task is a binary classification task, ev-
ery example s;; is not aware of the other possible
sj¢ for the same report ¢. Therefore, s;; are causes
the model implicit tracks and has to rank against
for the current task. Our causal deductive task can
be re-framed into two sub-challenges: (1) extract-
ing z;; and identifying x;; € G, and (2) implicitly
ranking P(y;; = 1) > P(y;. = 1) or not.

2

Hypothesis 1: Generalizing causal chain to out-
of-context In the first challenge, extracting x;;
and identifying x;; € Gy, restricting the knowl-
edge source to a report results in a high chance for
there to be gaps in the causal chain. All else fixed,
P(yit|zir ¢ Gy) will be overestimated (i.e., model
predicts more Os than 1s). If are willing to relax
our criteria to check if s; € Cy and x;; € GG, then
we are allowing our model to generalize to its own
knowledge base, to recognize more valid causal
chains, and therefore, increase the probability of
predicting P(y;; = 1). When working with LLMs,
therefore, we could inject causal relations outside
of (G; but semantically part of x;; to improve pre-
diction.

Hypothesis 2: Ranking importance of cause
within context If the LLM is exposed to too
many relevant causal relations in the prompt, it
would hallucinate and start to always view s; as the
most important probable cause (over other possible
options in C;). However, we do not know z. In
some reports, there are a few probable causes. One
approach is to explicitly expose the LLM to the
available causes in the report, so that we re-ground
the response, and in some way, a ranking based on
context is encouraged.

3 Dataset & Task Creation

We wish to investigate the LLMs’ ability to per-
form a real-world causal deductive reasoning task.
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Step 1

Construct a causal knowledge
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Figure 1: Overview of our proposed methodology. Detailed infographic is available in Appendix Figure 4.

Given an accident description (KCONTEXT>), the
model must determine if a sentence about the prob-
able cause of the accident (KSTATEMENT>) is True
or False. To facilitate our research, we leverage
on reasoning-rich investigation reports from the
National Transportation Safety Board (NTSB) !.
NTSB publishes Accident Reports that provides de-
tails about an accident, analysis of the factual data,
conclusions and the probable cause of the accident,
and the related safety recommendations. There can
be one or multiple probable cause(s). We down-
loaded reports published after Year 2000, across all
reported categories (Aviation, Hazardous Materials,
Highway, Marine, Pipeline and Railroad).

Report pre-processing Pre-processing was done
to convert the PDF reports to JSON, and subse-
quently, we removed information like headers, page
numbers, and table of contents. We identified the
probable cause of the accident by searching for
the title “Probable Cause”. We discarded reports
where this match was impossible. Any text before
this section is defined as the <CONTEXT>. In our
experiments, we constrained our coverage to 157
reports where the context length is < 2, 000 words.

Extracting True statements Trailing descrip-
tions in the probable cause were removed. > We
used Anthropic’s Claude 2.13 to convert the para-

Thttps://www.ntsb.gov/investigations/
AccidentReports/Pages/Reports.aspx

2E.g. Descriptions unrelated to the cause (E.g. “The Na-
tional Transportation Safety Board determines that the”) were
removed.

3We intentionally used an LLM different from Mistral
when creating our dataset to avoid cases where the LLM rec-

graphs into a list of probable causes. Prompt 1
in Appendix outlines the one-shot prompt tem-
plate that we used. We manually annotated four
examples to measure the extraction performance,
of which we found ROUGEL score of 87.46 and
BLEU4 score of 75.02. When evaluating by seman-
tic match* with a threshold of > 0.7 as a match,
Claude 2.1 scored 100% for Recall, 72.92% for Pre-
cision, and 84.34% for F1. To summarize, the high
scores for the evaluated sample provides us with
the confidence to reliably use the extracted prob-
able causes as True instances for our main causal
deductive task.

CONTEXT

... The P. B. Shah captain erred when he initiated a port-to-port (one whistle) passing on
the radio with the Dewey R captain. He had meant to arrange a starboard-to-starboard
(two-whistle) passing, but the captain was distracted by the many tasks associated
'with preparing for his arrival at the Ingram facility. This included having a cell phone
conversation with the boat store to discuss a grocery delivery and meeting with the mate
to discuss upcoming tasks, both around the same time the passing arrangement was
made with the Dewey R. “Sliding underneath the point” is an action described by pilots ..

STATEMENT The probable cause of the accident was... LABEL
the impact of distraction upon the decision making and recollection of the True
captain of the P. B. Shah.

the distraction of the captain on the Loretta G. Cenac from safety-critical False
navigational functions as a result of his cell phone use.. (Rules)
insufficient communication between the captains after the passing False
arrangement was changed. (LLM)

Figure 2: An example report from our dataset.

Generating False statements False examples
were generated by two methods: (1) rule-based,
and (2) LLM-based methods. For rule-based, each

ognizes its own phrasing or terms.

*We encoded each probable cause item into an embedding
using the princeton-nlp/sup-simcse-roberta-large en-
coder (Gao et al., 2021) that was pre-trained on the Natural
Language Inference task. Link to their repository: https:
//github.com/princeton-nlp/SimCSE.
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Processing | #Docs #Statement | #True #False | True %
Total NTSB 631 11,422 1300 10,122 | 11.38%
< 2000 words | 157 2,523 243 2,280 | 9.63%
Success CRE | 133 1,677 155 1,522 | 9.24%

Table 1: Data sizes at each filtering stage. The last
row represents the working dataset for this paper after
successful causal relation extraction (CRE). Our exper-
iments are conducted using 10-folds CV, and the test
data sizes per fold are provided in Appendix Table 6.

True statement was matched to three similar-but-
not-too-similar statements are generated as nega-
tive examples. The degree of similarity between
the False examples and the True statement was con-
trolled to ensure that false examples are plausible
but distinct from the true statement, with similarity
scores ranging from 0.5 to 0.75. This approach
aims to provide a challenging set of false examples
for participants to evaluate. For LLM-based, we
used Claude 2.1 (See Prompt 2 in the Appendix) to
generate a list of 10 possible causes or contributing
causes investigated within the context that are not
stated as the final true probable cause.

Our task aims to provide a comprehensive eval-
uation of participants’ ability to perform the chal-
lenging causal deductive reasoning task. Table 1°
presents the statistics for our dataset. After keeping
examples that we could extract causal relations de-
scribed in the next section, our main dataset com-
prises of 133 reports and 1,677 statements. Of
which, 155 are True while the remaining 1,522
are False probable cause statements. An example
report is shown in Figure 2.

3.1 Evaluation Metrics

For each experiment, we report Macro F1, Micro
F1 and the accuracy scores for each class label and
label source. Since our dataset is small, we used a
10-fold cross validation (split by report ID) to train
and generate predictions for the full dataset. There-
fore, our evaluation metrics are first computed at
the fold level, then averaged, where both the mean
and standard deviations of each metric are reported.
When making comparisons between two models,
P-values are indicated by: *< 0.15, **< 0.10,
< 0.05.

4 Causal KG RAG with LLM

We mentioned in Section 2 that we wish to help
the LLM recognize generalized (j,,j,) € D by

SWe will release the full dataset of 11,422 statements to
the community.

injecting relevant causal relations outside of Gy.
However, we do not have a knowledge base for
G. We also do not have any annotations for the
intermediate causal chains that might be relevant
given a probable cause ¢ and accident a. To work
around these problems, we constructed our knowl-
edge base using the LLM itself. Afterwhich, we de-
signed a novel graph-based retriever model, trained
on the auxiliary binary classification task, to select
relevant nodes.

4.1 Step 1. Mining LLM’s Latent Causal KG

We wish to investigate properties regarding Equa-
tions 1 and 2. However, we do not have a knowl-
edge base. Therefore, we separately tasked the
LLM to mine the causal relations it recognizes and
understands. Specifically, we mined two types of
causal relations:

Extracted causal relations We tasked the LLM
to extract all causal relations expressed within the
<CONTEXT>. Prompt 3 in the Appendix outlines our
zero-shot prompt, with only instructions about the
desired output format.

Inferred causal relations We tasked the LLM to
infer the chain of causal relations that could possi-
bly link the cause stated within the <STATEMENT> to
the accident stated within the <CONTEXT>. Prompt
4 in the Appendix outlines our zero-shot prompt,
with only instructions about the desired output for-
mat. The causal chains from this step can be viewed
as the LLM’s hallucinated version of x;;.

Causal KG To maximize the size of our knowl-
edge store, we constructed our heterogeneous
causal knowledge based on a slightly larger dataset
of 157 reports and 2,523 statements, which pro-
vided us with 4,128 extracted cause-effect pairs and
22,685 inferred cause-effect pairs. Reports with
contexts longer than 2,000 words did not fit into
our models’ input context, so we did not explore
the full dataset, although it would be an important
future work to extend the size of the knowledge
store further.

Our KG G = (V,E) is a collection of nodes
V = {(v1,v2,...,u,)} and directed edges E =
{(v1,v2), (v2,v3), ...}. The edges are directed, and
comprises of three possible types: extracted, in-
ferred, or similar. For extracted and inferred rela-
tions, a directed edge (v,, v,) represents the pres-
ence of causality between the two nodes, where
v, 1s the cause argument and v, is the effect ar-
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gument. To prevent a sparse graph, prior causal
KG research employ various clustering (Tan et al.,
2023) or generalization (Radinsky et al., 2012)
methods to group semantically similar arguments
together. For us, we opted for a simple (and shown
to be effective in Section 5.1) approach by adding
bidirectional edges between two nodes v, and vy,
weighted by the similarity score ss, for all node
pairs with similarity score ss > 0.7. Overall, our
final G is a collection of 16,675 nodes and 23,493
edges. The distribution of edge types are: 1,822
extracted, 11,399 inferred, and 10,272 similar.

4.2 Step 2. Node Selection over Causal KG

We re-frame our retrieval task as a node classifica-
tion task: Given a causal KG, we wish to extract
the most important and relevant nodes (arguments)
to include in our downstream prompt. Since we
have no labels as to what helps the LLM learn, we
used the the binary classification task (to classify
if a <STATEMENT> is True or False) as an auxiliary
task to train our model. The model is encouraged to
learn from the KG, and at inference, we discard the
classification head and keep top-E nodes with high-
est node weights as pointers to obtain information
for RAG.

Our retriever module uses a RoBERTa-based
Transformer GNN (RoTG) framework. Since a
traditional RoBERTa model (Liu et al., 2019)’s
input token limit of 512 is too small for our reports,
we designed a workaround that does not require the
long <CONTEXT> sequences as inputs. Our model is
trained only by the following inputs: (1) Encoded
<STATEMENT> (r; represents the [CLS] token vector
with e features) and (2) A one-hot encoded vector
(oh) assigned to each node if the span does appear
in the extracted or inferred causal relations (1 if
appear, 0 otherwise).

Node classification module Our initial node fea-
tures were represented by ()1, an attended rep-
resentation of Q). Q] is a concatenation of the
RoBERTa-encoded frozen embeddings for each
node description s (R is a n X e matrix compris-
ing of n nodes, an input that does not change over
training) and the two one-hot vectors (0hextr, Ohint)
indicating if the node was extracted or inferred
based on the context and target statement or not.
The attention mechanism then computes the atten-
tion weights between the node features )} and
the target statement embedding r; to generate the
cross-attended node feature matrix (). Since our

graph is heterogeneous, we require message pass-
ing across edge features. Hence, we employed the
Transformer (Vaswani et al., 2017) Graph Convo-
lutional Network (TransformerGCN) (Shi et al.,
2021), which helps to incorporate edge features
into the multi-head attention for graph learning.
The architecture of TransformerGCN is outlined in
Appendix Section D.1.

r; = RoBERTa(si) (3)
R = RoBERTa(5) 4)
Qll = [R7 Ohexir, Ohinf} )
Q1 = Attention(Q', 4, 7;) (6)

ow; = TransformerGCN(G g, g)) @)

Auxiliary task training We multiplied the local
graph weights ow; onto the global node embed-
dings R, obtaining our node embeddings ()2 that
are now customized for our inputs. We proceeded
with another round of message passing using Trans-
formerGCN over our global graph, and obtained
a vector representing the scores each node con-
tributes (nw;). We incorporated a skip-connection
by concatenating nw; with the original statement
embedding r; and applied dropout and layer nor-
malization layers to get o;. Subsequently, we ran
o0; through multiple rounds of Linear layers, with
LeakyReLU in between. In the last layer, we used
a Linear layer with output dimension of 2 to obtain
logits for our binary classification task.

ow); = topKGating(ow;) ®)
Q2 = ow,R ©)
nw; = TransformerGCN(G (g, k) (10)
0; = LayerNorm(Dropout([r;, nw;])) (11)
0§l+1) _ W(l)ol(l) +p® (12)

Each model was trained for 8 epochs, with an effec-
tive batch size of 8. Since our dataset is extremely
unbalanced (\9% True only), we also balanced
class labels by oversampling True examples, such
that the ratio is 1:2 for True:False, then included the
post-oversampling class weights into the CrossEn-
tropyLoss function. Model specifics are provided
in Appendix Section B.

4.3 Step 3. Prompt Engineering with LLM

During inference, we selected the top-E nodes with
the highest scores based on node weights, ow;.
Subsequently, we obtained the nodes’ original re-
ports’ extracted or inferred causal chains, then kept
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. Accuracy
Macro Fl Micro Fl True False (Rules) False (LLM)
All 55.43(6.09) 83.96 (9.07) 31.01(31.19) 67.44 (34.41) 99.45 (0.86)
Similarity Only | 56.97 (6.05) 82.75(8.39) 34.70 (26.65) 66.77 (25.59) 98.14 (5.22)
Causality Only | 56.90 (6.62) 81.48 (9.35) 39.56 (30.79) 60.62 (30.83) 97.92 (5.63)

Table 2: RoTG classification performance when trained over different edges types in GG. Highest score per column
is in bold. All scores are not statistically significant from the first row.

Relations . Accuracy

Retrieved Macro Fl Micro Fl True False (Rules) False (LLM)
None 70.36 (7.07)  90.30 (1.78)  46.53 (13.21) 92.23 (3.66) 95.69 (1.86)

Semantic | 72.50 (6.37) 91.24 (1.40)  48.72 (11.04) 92.99 (2.48) 96.54 (1.93)
RoTG 73.19 (7.01) 91.65 (1.42)** 49.49 (13.47) 94.31 (3.49) 96.37 (1.37)

Table 3: Mistral Instruct with None, Semantic, and RoTG (Ours) retrieval-augmented relations. Highest score per
column is in bold. P-values against None scores indicated by: *< 0.15, **< 0.10, ***< 0.05.

all chains that contain the node span. We inves-
tigated 9 distinct prompt formats (see Prompts 5
to 13 in the Appendix), incorporating variations
of retrieved, extracted, and inferred causal rela-
tions. Our best-performing prompt format (Prompt
10) consists of retrieved information that were pre-
sented as a multi-turn prompt: Initially, retrieved
relations were introduced to the model. Next, we
set the models’ response to be “Yes I understand.”.
Finally, a description of the task followed in the
subsequent reply. We found that including the re-
trieved information in the same responses as the
task description led to poor performance.

All relations underwent post-processing to re-
move similar causal chains, defined by a Leven-
shtein ratio > 0.8, with duplicates resolved by re-
taining only the first instance. Additionally, we lim-
ited each relation type to the first 10 rows of causal
chains. Subsequent experiments revealed that
such cleaning procedures enhanced the model’s
F1 scores. We categorized a model response as
False if the word “False” appeared in any part of
the response, and True otherwise. Due to the length
of the reports, particularly when utilizing Mistral
as our LLM, in-context learning was not feasible.
Consequently, all experiments were conducted in a
zero-shot manner.

5 Experimental Findings

This paper focuses the investigation on the Mistral-
Instruct 7B LLM (Jiang et al., 2023). We used
Mistral to extract and infer causal relations for our
KG as described in Section 4.1, then trained RoTG
over this KG as described in Section 4.2. Finally,
we tested Mistral on the causal deductive reasoning
task as described by Section 4.3.

5.1 Auxiliary Task Performance

Investigating RoTG’s performance on the causal
deductive task serves as a proxy of how helpful
would the LLM’s latent causal KG be for this task.
From the first row of Table 2, we notice that RoTG
achieves reasonable Macro F1 score of 55.43%.
The model performs very well on identifying LLM-
generated False statements, but struggle with se-
mantically similar False statements. We wish to
understand if our task can be performed without
understanding causality in the first place. To in-
vestigate this, we destroyed all causal edges in G,
and retrained the model on the task. Interestingly,
we find that all scores decline from the initial base-
line, but not by too much. This suggests that while
causal edges are still important to the task, as long
as some understanding of similarity between events
in a KG exists, models can still perform the task.
Conversely, we wish to understand the importance
of our similarity edges. When we destroyed similar-
type edges, we noticed a significant increase in 