2025
pdf
bib
abs
MossNet: Mixture of State-Space Experts is a Multi-Head Attention
Shikhar Tuli
|
James Seale Smith
|
Haris Jeelani
|
Chi-Heng Lin
|
Abhishek Patel
|
Vasili Ramanishka
|
Yen-Chang Hsu
|
Hongxia Jin
Proceedings of the 14th International Joint Conference on Natural Language Processing and the 4th Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics
Large language models (LLMs) have significantly advanced generative applications in natural language processing (NLP). Recent trends in model architectures revolve around efficient variants of transformers or state-space/gated-recurrent models (SSMs, GRMs). However, prevailing SSM/GRM-based methods often emulate only a single attention head, potentially limiting their expressiveness. In this work, we propose MossNet, a novel mixture-of-state-space-experts architecture that emulates a linear multi-head attention (MHA). MossNet leverages a mixture-of-experts (MoE) implementation not only in channel-mixing multi-layered perceptron (MLP) blocks but also in the time-mixing SSM kernels to realize multiple “attention heads.” Extensive experiments on language modeling and downstream evaluations show that MossNet outperforms both transformer- and SSM-based architectures of similar model size and data budgets. Larger variants of MossNet, trained on trillions of tokens, further confirm its scalability and superior performance. In addition, real-device profiling on a Samsung Galaxy S24 Ultra and an Nvidia A100 GPU demonstrate favorable runtime speed and resource usage compared to similarly sized baselines. Our results suggest that MossNet is a compelling new direction for efficient, high-performing recurrent LLM architectures.
2018
pdf
bib
abs
A New Concept of Deep Reinforcement Learning based Augmented General Tagging System
Yu Wang
|
Abhishek Patel
|
Hongxia Jin
Proceedings of the 27th International Conference on Computational Linguistics
In this paper, a new deep reinforcement learning based augmented general tagging system is proposed. The new system contains two parts: a deep neural network (DNN) based sequence labeling model and a deep reinforcement learning (DRL) based augmented tagger. The augmented tagger helps improve system performance by modeling the data with minority tags. The new system is evaluated on SLU and NLU sequence labeling tasks using ATIS and CoNLL-2003 benchmark datasets, to demonstrate the new system’s outstanding performance on general tagging tasks. Evaluated by F1 scores, it shows that the new system outperforms the current state-of-the-art model on ATIS dataset by 1.9% and that on CoNLL-2003 dataset by 1.4%.
pdf
bib
abs
CRUISE: Cold-Start New Skill Development via Iterative Utterance Generation
Yilin Shen
|
Avik Ray
|
Abhishek Patel
|
Hongxia Jin
Proceedings of ACL 2018, System Demonstrations
We present a system, CRUISE, that guides ordinary software developers to build a high quality natural language understanding (NLU) engine from scratch. This is the fundamental step of building a new skill in personal assistants. Unlike existing solutions that require either developers or crowdsourcing to manually generate and annotate a large number of utterances, we design a hybrid rule-based and data-driven approach with the capability to iteratively generate more and more utterances. Our system only requires light human workload to iteratively prune incorrect utterances. CRUISE outputs a well trained NLU engine and a large scale annotated utterance corpus that third parties can use to develop their custom skills. Using both benchmark dataset and custom datasets we collected in real-world settings, we validate the high quality of CRUISE generated utterances via both competitive NLU performance and human evaluation. We also show the largely reduced human workload in terms of both cognitive load and human pruning time consumption.