Modular Training of Deep Neural Networks for Text Classification in Guarani

José Luis Vázquez Noguera, Carlos U. Valdez, Julio César Mello-Román, Marvin M. Aguero, José D. Colbes, Sebastián A. Grillo


Abstract
We present a modular training approach for deep text classification in Guarani, where networks are split into sectors trained independently and later combined. This sector-wise backpropagation improves stability, reduces training time, and adapts to standard architectures like CNNs, LSTMs, and Transformers. Evaluated on three Guarani datasets—emotion, humor, and offensive language—our method outperforms traditional Bayesian-optimized training in both accuracy and efficiency.
Anthology ID:
2025.lowresnlp-1.8
Volume:
Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages
Month:
September
Year:
2025
Address:
Varna, Bulgaria
Editors:
Ernesto Luis Estevanell-Valladares, Alicia Picazo-Izquierdo, Tharindu Ranasinghe, Besik Mikaberidze, Simon Ostermann, Daniil Gurgurov, Philipp Mueller, Claudia Borg, Marián Šimko
Venues:
LowResNLP | WS
SIG:
Publisher:
INCOMA Ltd., Shoumen, Bulgaria
Note:
Pages:
76–81
Language:
URL:
https://preview.aclanthology.org/old-master/2025.lowresnlp-1.8/
DOI:
Bibkey:
Cite (ACL):
José Luis Vázquez Noguera, Carlos U. Valdez, Julio César Mello-Román, Marvin M. Aguero, José D. Colbes, and Sebastián A. Grillo. 2025. Modular Training of Deep Neural Networks for Text Classification in Guarani. In Proceedings of the First Workshop on Advancing NLP for Low-Resource Languages, pages 76–81, Varna, Bulgaria. INCOMA Ltd., Shoumen, Bulgaria.
Cite (Informal):
Modular Training of Deep Neural Networks for Text Classification in Guarani (Vázquez Noguera et al., LowResNLP 2025)
Copy Citation:
PDF:
https://preview.aclanthology.org/old-master/2025.lowresnlp-1.8.pdf