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Abstract. Language Models have established new performance standards in
text-based tasks. Yet, these models require substantial amounts of data and
computational power. This article investigates Parameter Efficient Fine-Tuning
(PEFT) techniques, specifically LoRA and GreenTrainer, on Portuguese speci-
alized models OPT-PTBR and PTT5. We aim to evaluate whether PEFT main-
tains model performance while reducing the financial and environmental costs
associated with intensive resource consumption, even in small-scale models.
Our results show that GreenTrainer, in particular, delivers performance compa-
rable to full Fine-Tuning while significantly reducing computational demands.

Resumo. Modelos de Lı́ngua têm estabelecido novos padrões de desempenho
em tarefas textuais. Porém, tais modelos exigem grandes volumes de dados
e recursos computacionalis intensivos. Este estudo explora o uso de técnicas
de Ajuste Fino Eficiente de Parâmetros (PEFT), especificamente LoRA e Gre-
enTrainer, aplicadas a modelos especializados para o português, OPT-PTBR e
PTT5. Almeja-se avaliar se as técnicas de PEFT mantêm o desempenho dos mo-
delos enquanto mitigam os impactos financeiros e ambientais do uso intensivo
de recursos, mesmo em modelos menores. Os resultados mostram que o Green-
Trainer, particularmente, oferece desempenho competitivo em relação ao Ajuste
Fino completo, enquanto reduz significativamente demandas computacionais.

1. Introdução
Modelos de Lı́ngua (MLs) Computacionais têm como objetivo representar componen-
tes da lı́ngua humana de forma simplificada usando representações numéricas, mas ten-
tando preservar seus fundamentos léxicos, sintáticos e semânticos [Paes et al. 2024].
No contexto atual do Processamento de Linguagem Natural (PLN), MLs Neu-
rais — baseados em redes neurais — que empregam a arquitetura Transfor-
mer [Vaswani et al. 2017] destacam-se por alcançarem resultados no estado-da-arte em
diversas tarefas [Wolf et al. 2020]. Particularmente, MLs de larga escala (Large Lan-
guage Models, LLMs) [Zhao et al. 2023, Paes et al. 2024] estabeleceram novos padrões
para tarefas generativas, como a sumarização [Fu et al. 2024]. Tais modelos se carac-
terizam pelo seu vasto número de parâmetros que possibilitam a observação de habili-
dades emergentes, ao resolverem tarefas para as quais não foram explicitamente treina-
dos [Paes et al. 2024]. Como consequência, LLMs passaram a ser integrados como com-
ponentes de software e partes essenciais de agentes de conversação, expandindo seu uso
para além dos ambientes acadêmicos e corporativos e tornando-os acessı́veis por qualquer
indivı́duo com um computador.
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Dessa forma, aumentou-se a demanda pelo desenvolvimento e acesso de LLMs,
acompanhados por um crescimento expressivo no número de parâmetros desses mode-
los [Maslej et al. 2024]. Contudo, o aumento em larga escala de parâmetros apresenta
desafios notáveis, incluindo a necessidade de vastos volumes de dados e um intenso con-
sumo de recursos computacionais [Zhao et al. 2023]. Neste cenário, a Inteligência Arti-
ficial Verde (IA Verde) desponta como uma área dedicada a elucidar e reduzir os impac-
tos computacionais — tanto ambientais, como socioeconômicos — do desenvolvimento
de soluções em IA [Schwartz et al. 2020]. Atualmente, o desenvolvimento e a pesquisa
em modelos de lı́ngua são dominados por entidades privadas, e com uma concentração
significativa nos Estados Unidos, União Europeia e China [Maslej et al. 2024]. Essa
concentração representa um entrave, pois limita a diversificação de pesquisa em outras
regiões, como o Brasil, que enfrentam restrições de recursos. Além disso, a sustentabili-
dade ambiental emerge como uma questão crı́tica, dado, por exemplo, o alto uso de tempo
em GPUs para treinamento e operação de MLs, que tem como consequências um elevado
consumo energético e seu equivalente em emissões de dióxido de carbono (CO2eq) e uso
de água potável [Li et al. 2023].

No contexto de adaptação de MLs, técnicas como o Ajuste Fino (Fine-Tuning)
e, mais ainda, o Ajuste Fino Eficiente de Parâmetros (Parameter Efficient Fine-Tuning,
PEFT) [Xu et al. 2023] emergem como abordagens para adaptar LLMs de forma a aliviar
essas limitações. Ambas as abordagens aproveitam o conhecimento previamente codifi-
cado em MLs Pré-Treinados (Pre-trained Language Models, PLMs) [Ding et al. 2023] e
os adaptam para domı́nios ou tarefas especı́ficas. Entretanto, enquanto a primeira abor-
dagem pode alterar todos os parâmetros do modelo pré-treinado, a segunda abordagem
foca na adaptação considerando explicitamente a limitação de recursos. Todavia, diver-
sos métodos de PEFT dependem da seleção de parâmetros a serem alterados, o que pode
acarretar em degradação de desempenho [Yang et al. 2024].

Os métodos de PEFT são tipicamente avaliados em LLMs com bilhões
de parâmetros, sob a premissa de que esses modelos são superparametriza-
dos [Ding et al. 2023]. Embora haja uma motivação natural para reduzir o consumo de
recursos por parte desses modelos, sua aplicação em grande escala, mesmo que de forma
mais eficiente, não elimina completamente as barreiras impostas ao uso de MLs dessa
magnitude. Surge, então, uma questão relevante: quais seriam os impactos da aplicação
de técnicas de PEFT em modelos de menor escala em relação a sua capacidade de re-
alizar tarefas especı́ficas? Adicionalmente, o português destaca-se como uma lı́ngua di-
versificada, apresentando particularidades estruturais significativas, como a relação de
ordem das palavras e as variações nas desinências, que podem alterar o significado de
uma frase [Kato et al. 2023]. Nesse contexto, outra questão importante se apresenta: a
aplicação de técnicas de PEFT em modelos de menor escala para o português afetaria
negativamente o desempenho e a representação do idioma?

Para responder tais questões, este artigo contribui com uma avaliação entre a abor-
dagem de ajuste fino completo e técnicas de PEFT, especificamente Low-Rank Adap-
tation (LoRA) [Hu et al. 2022] e GreenTrainer [Huang et al. 2024], em dois PLMs es-
pecı́ficos para o português: OPT-PTBR1, com 125 milhões de parâmetros, e PTT5-
base [Carmo et al. 2020], com 223 milhões de parâmetros. Nossos resultados demons-

1https://huggingface.co/monilouise/opt125M_portuguese
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tram que as técnicas eficientes produzem desempenhos competitivos em relação ao ajuste
fino completo, mesmo em modelos de menor escala. Notavelmente, a técnica GreenTrai-
ner apresentou resultados com menor degradação e, em alguns casos, até superiores ao
ajuste fino completo. Com essa análise, buscamos contribuir para a atenuação dos impac-
tos socioeconômicos e ambientais do treinamento de MLs, sem deixar de considerar as
particularidades do idioma português.

2. Fundamentação Teórica
Esta seção visa elucidar conceitos fundamentais tratados no trabalho e essenciais no con-
texto de ajuste de MLs, especificamente acerca de PLMs e métodos de PEFT.

2.1. Ajuste de Modelos de Lı́ngua Pré-treinados

Os PLMs são modelos que passam por uma etapa chamada de pré-treinamento, cujo ob-
jetivo é incorporar informações linguı́sticas relevantes a partir de um grande volume de
corpora. Todavia, esses modelos podem não representar adequadamente informações es-
pecı́ficas de certos domı́nios ou tarefas não abordadas durante o pré-treinamento. Para
tratar dessa questão, adota-se amplamente o ajuste fino dos PLMs, no qual os pesos dos
modelos são atualizados para tarefas ou domı́nios particulares por meio do treinamento
sobre um novo conjunto de dados especı́fico, tipicamente na tarefa final pretendida. Dessa
forma, é possı́vel aproveitar o conhecimento previamente codificado sem a necessidade
de repetir a etapa de pré-treinamento, realizando um processo direcionado e geralmente
menos oneroso [Paes et al. 2024].

2.2. Ajuste Fino Eficiente de Parâmetros

O conjunto de técnicas de PEFT reduz a demanda por recursos computacionais para
ajuste de PLMs. Esses métodos são divididos por [Xu et al. 2023] em aditivo, parcial,
reparametrizado, unificado e hı́brido. O ajuste aditivo introduz uma quantidade me-
nor de parâmetros adicionais ajustáveis, evitando o ajuste dos parâmetros próprios do
modelo pré-treinado. O ajuste parcial atualiza apenas um subconjunto dos parâmetros
pré-treinados. A reparametrização utiliza transformações de baixo posto da Álgebra Li-
near para reduzir o número de parâmetros treináveis. O método unificado propõe um
framework coeso que simplifica a integração de técnicas de ajuste fino, garantindo con-
sistência e eficiência na adaptação dos modelos. Por fim, o método hı́brido combina
diversas técnicas de PEFT. Em comum, todos os métodos ajustam um número reduzido
de parâmetros dos MLs.

Dentre todas essas técnicas, o método do tipo reparametrizado
LoRA [Hu et al. 2022] se destaca como um dos métodos de PEFT mais utilizados
para o ajuste de modelos em diferentes tarefas ao proporcionar consistentemente a
redução no número de parâmetros treináveis e consequente redução na demanda de
memória [Zhao et al. 2024a, Yang et al. 2024]. Essa estratégia utiliza matrizes adicionais
de baixo posto A e B, que substituem a matriz de pesos original W. A computação final
dos modelos é realizada por meio da expressão W +A×B, permitindo a adaptação dos
pesos com uma quantidade significativamente menor de recursos computacionais.

Embora eficaz, a LoRA ainda requer a computação dos gradientes de ativação
durante a etapa de backpropagation no treinamento de modelos, o que limita seu potencial
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máximo de redução de recursos. A estratégia GreenTrainer [Huang et al. 2024] surge
como uma alternativa que visa reduzir diretamente as operações necessárias para ajustes
dos modelos, sem desconsiderar a backpropagation. Ela seleciona tensores especı́ficos
para ajuste a cada época de treinamento, com base na importância de cada tensor para a
diminuição da loss, caracterizando-se assim como uma técnica de ajuste parcial. Além
disso, ela permite a configuração do hiperparâmetro ρ, que determina a porcentagem de
operações mantidas em relação ao ajuste fino completo.

Desse modo, ao considerar uma técnica consolidada e amplamente reconhecida
como a LoRA, e uma abordagem emergente e competitiva, como o GreenTrainer, este
estudo visa realizar uma avaliação inicial acerca do impacto dessas abordagens no de-
sempenho de PLMs de menor escala em tarefas finais, bem como na redução de seus
custos e impactos computacionais.

3. Trabalhos Relacionados
Trabalhos recentes têm desenvolvido MLs especı́ficos para o português utilizando
métodos eficientes. Como ilustração, [Carmo et al. 2020] realizaram tanto o ajuste com-
pleto de parâmetros quanto o ajuste restrito aos embeddings do vocabulário — um método
parcial — no treinamento de um ML voltado para o português. Os resultados indicam
que, embora competitivo, o ajuste restrito aos embeddings é inferior ao ajuste com-
pleto. Além disso, os estudos de [Garcia et al. 2024] e [Cabral et al. 2024] introduzi-
ram LLMs ajustados especificamente para tarefas em português baseados na arquitetura
Llama [Touvron et al. 2023], empregando a técnica de reparametrização LoRA.

Outros trabalhos avaliam o impacto de técnicas de PEFT sobre o desempenho
de PLMs. [Yang et al. 2024] comparam o ajuste fino completo a técnicas como LoRA,
Prefix-tuning [Li and Liang 2021] e o uso de adaptadores [Houlsby et al. 2019] em mo-
delos de menor escala da arquitetura BERT [Devlin et al. 2019] em tarefas não genera-
tivas, destacando o desempenho da estratégia LoRA e a competitividade das demais es-
tratégias de PEFT em relação ao ajuste completo nesse contexto. Contudo, tratando-se da
avaliação realizada sobre modelos generativos da arquitetura Llama, as técnicas baseadas
em LoRA se sobressaem. Resultados similares são reportados em [Huang et al. 2024],
que, ao proporem a estratégia GreenTrainer, realizaram uma avaliação comparativa com
outras técnicas de PEFT, concluindo por sua competitividade. O estudo avaliou PLMs
multilı́ngues ou predominantemente voltados ao inglês, com parâmetros variando entre
350 milhões e 7 bilhões, revelando o potencial da aplicação de técnicas eficientes até
mesmo nos modelos com menor número de parâmetros.

No melhor de nosso conhecimento, não há, ainda, trabalho que avalie o uso da
abordagem GreenTrainer para MLs em português. Adicionalmente, nenhum dos trabalhos
mencionados apresenta uma análise comparativa que considere a relação do desempenho
de MLs de menor escala no idioma e o impacto de seu consumo em termos de tempo e
CO2eq. Desse modo, este estudo visa oferecer novas perspectivas que abordem tanto a
eficácia preditiva de modelos, quanto os custos associados a sua etapa de ajuste.

4. Avaliação de Técnicas de Ajuste Eficiente
Esta seção detalha os MLs avaliados, a tarefa de PLN selecionada e as métricas de
avaliação adotadas para investigar o impacto das técnicas LoRA e GreenTrainer tanto
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no desempenho textual quanto no consumo computacional. Destaca-se que o ajuste fino
completo dos parâmetros dos modelos foi adotado como baseline.

4.1. Modelos de Lı́ngua Selecionados
A seleção de MLs para tarefas especı́ficas é influenciada pelo número de parâmetros
e pelo corpus de pré-treinamento, fatores cruciais para a viabilidade de execução em
diferentes plataformas de hardware e para as capacidades de geração de texto do mo-
delo. Modelos maiores geralmente demandam mais recursos computacionais, enquanto
o corpus de pré-treinamento determina a adequação do modelo às necessidades da ta-
refa [Freitas 2024]. No contexto de recursos limitados, foram escolhidos dois mode-
los: o OPT-PTBR2, com 125 milhões de parâmetros, baseado na arquitetura Open Pre-
trained Transformer (OPT) [Zhang et al. 2022] e adaptado para o português do Brasil, e
o PTT5-base [Carmo et al. 2020], com 223 milhões de parâmetros, utilizando a arquite-
tura T5 [Raffel et al. 2020] e pré-treinado com um corpus de páginas web em português
do Brasil. A escolha de modelos menores alinha-se com a necessidade de operar em am-
bientes com recursos limitados, mantendo a avaliação da qualidade da geração de textos
em português.

4.2. A Tarefa de PLN Aplicada: Sumarização
Para garantir a compatibilidade com a implementação pública do GreenTrainer3, a ta-
refa de sumarização textual foi selecionada. A sumarização por meio de MLs con-
siste em condensar as informações de um texto, gerando uma nova versão que
preserva de forma concisa o conteúdo essencial do original. Essa tarefa é ampla-
mente estudada em PLN, incluindo no contexto do português brasileiro [Paiola 2022,
Pontes et al. 2022, Feltrin et al. 2023], com LLMs recentemente estabelecendo novos
padrões de geração [Souza et al. 2024]. Fatores como a coocorrência de termos relevantes
e a fidelidade entre texto original e gerado são importantes para determinar a qualidade
de um resumo. Igualmente relevantes são aspectos como a aderência a formalidade e pre-
cisão gramatical pretendidos. Por exemplo, no contexto jornalı́stico, resumos de notı́cias
polı́ticas podem exigir um nı́vel de formalidade distinto daquele necessário para resumos
de eventos recentes em um reality show popular, embora, em ambos os casos, a correção
gramatical seja tipicamente fundamental. Assim, a tarefa de sumarização posiciona-se
apropriadamente para a avaliação da aplicação de técnicas de ajuste de modelos, uma
vez que a adequação a contextos e domı́nios especı́ficos é fundamental para garantir a
qualidade das gerações textuais [Paes et al. 2024].

4.3. Métricas de Avaliação
Com o objetivo de avaliar de forma integrada a qualidade do desempenho generativo e
os custos e impactos computacionais, três grupos de métricas foram usados na análise
de geração de sumários. O primeiro grupo visa medir a aderência dos resumos gerados
em relação aos textos de referência e é composto pelas métricas ROUGE [Lin 2004] e
BERTScore [Zhang et al. 2020]. A métrica ROUGE, amplamente utilizada nesse con-
texto, compara a sobreposição de n-gramas entre o sumário automático e a referência, en-
quanto o BERTScore utiliza modelos de lı́ngua baseados em BERT para avaliar a similari-
dade semântica entre os textos. Neste estudo, a métrica ROUGE é apresentada pela média

2https://huggingface.co/monilouise/opt125M_portuguese
3https://github.com/pittisl/GreenTrainer/
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de suas variantes, ROUGE-1, ROUGE-2, ROUGE-L e ROUGE-S [Souza et al. 2024],
que se diferenciam na forma de computar os n-gramas, sendo os resultados expressos em
valores percentuais. O BERTScore, por sua vez, é expresso em termos da sua compo-
nente F1. O segundo grupo de métricas visa mensurar explicitamente o impacto e o con-
sumo de recursos associados ao ajuste dos modelos, incluindo a contagem do número de
(peta) operações de ponto flutuante por segundo (PFLOPS), que quantifica as operações
aritméticas necessárias para o ajuste, o tempo de treinamento dos modelos e a quantidade
equivalente de CO2 emitida durante o processo, estimada pela ferramenta disponı́vel por
[Lacoste et al. 2019]. Por fim, o terceiro grupo aproveita do extenso conjunto de métricas
fornecidas pelo portal NILC-metrix [Leal et al. 2023]4 para avaliar a qualidade de escrita
dos textos gerados. Essas métricas extraem valores de diversos indicadores linguı́sticos
para avaliar informações sobre morfossintaxe, coesão e coerência.

5. Experimentos
Esta seção apresenta os experimentos conduzidos, detalhando as configurações utilizadas
e os resultados obtidos.

5.1. Configurações Experimentais
Hiperparâmetros Considerando a premissa de recursos limitados, os modelos foram
treinados por apenas uma época, com uma taxa de aprendizado de 2 · 10−5 e um tamanho
de lote de 4. Para a tarefa de sumarização, foram definidos: max input length de 512,
max output length de 128, repetition penalty de 2,5 e length penalty de 1,0. No
que se refere aos parâmetros do LoRA, utilizou-se r = 8, lora alpha = 32 e uma taxa
de dropout de 0,1. O GreenTrainer foi testado com ρ de 0,5 e 0,7, e implementado
conforme [Huang et al. 2024]. Também ao encontro desse trabalho, o modelo OPT-PTBR
foi configurado com a estrutura “TL;DR” para sumarização, enquanto o modelo PTT5
usou o prefixo “sumarize: [sequência de entrada]”. Por fim, o BERTScore foi computado
utilizando o modelo BERT multilingual5, dada a incompatibilidade da métrica com um
modelo próprio para o português.

Conjunto de Dados A tarefa de sumarização ocorreu com a base Recogna-
Summ [Paiola et al. 2024]. Esse conjunto possui origem diversificada, sendo composto
por notı́cias de diferentes fontes de informação. Tal diversidade resulta em uma coleção
de documentos que abrangem uma variedade de tópicos e estilos jornalı́sticos. Ademais,
o RecognaSumm contém cerca de 135 mil instâncias em que, para os propósitos deste tra-
balho, foram selecionadas apenas as colunas referentes ao texto da notı́cia e ao sumário,
esse último servindo como referência padrão nas métricas de avaliação. Adota-se a sub-
divisão pré-estabelecida do conjunto de dados, de 81,2 mil instâncias para treinamento e
27,1 mil para validação e teste cada.

5.2. Resultados Experimentais
A Tabela 1 combina os resultados do primeiro e do segundo grupo de métricas avaliados.
A porcentagem indica a variação positiva ou negativa em relação ao ajuste fino completo,
com resultados com diferença percentual inferior a 1% marcados com 0%. Por fins de
simplificação, as configurações de ρ para o GreenTrainer são denotadas GT-ρ.

4http://fw.nilc.icmc.usp.br:23380/metrixdoc
5https://huggingface.co/google-bert/bert-base-multilingual-cased
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Tabela 1. Comparação de eficiência, impacto ambiental e métricas textuais.

Modelo Estratégia PFLOPS Tempo (h) CO2eq (kg) ROUGE BERTScore

OPT-PTBR
(125M params)

Ajuste fino 16,59 3,00 0,24 7,48 0,652
GT-0.5 8,18 (51%↓) 1,45 (52%↓) 0,12 (50↓%) 4,60 (39%↓) 0,662 (2%↑)
GT-0.7 11,61 (30%↓) 2,17 (28%↓) 0,17 (29↓%) 7,94 (6%↑) 0,682 (5%↑)
LoRA 11,06 (33%↓) 2,28 (24%↓) 0,18 (25↓%) 7,23 (3%↓) 0,672 (3%↑)

PTT5
(220M params)

Ajuste fino 15,67 3,73 0,30 27,82 0,742
GT-0.5 8,76 (44%↓) 2,38 (36%↓) 0,19 (37↓%) 27,16 (2%↓) 0,739 (0%↓)
GT-0.7 11,50 (27%↓) 2,87 (23%↓) 0,23 (23↓%) 27,56 (1%↓) 0,741 (0%↓)
LoRA 10,45 (33%↓) 2,61 (30%↓) 0,21 (30↓%) 26,20 (6%↓) 0,734 (1%↓)

Os resultados indicam que a estratégia GT-0.7 apresentou ou a menor degradação,
ou uma melhora no desempenho textual em comparação com o ajuste fino em todos os
casos avaliados. Em termos de desempenho computacional, seus resultados são próximos
aos da LoRA, embora ligeiramente inferiores. Observa-se que a configuração GT-0.5, a
mais eficiente em termos de consumo, apresentou uma queda significativa nos resultados
generativos para o OPT-PTBR na métrica ROUGE. No entanto, essa mesma configuração
não resultou em grandes quedas para o modelo PTT5, indicando que a robustez inerente
do modelo deve ser considerada ao aplicar estratégias de eficiência drástica. Na verdade,
essa configuração foi superior à estratégia LoRA para esse modelo.
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Figura 1. Comparativo entre os desempenhos computacionais e textuais.

A Figura 1 contrasta as métricas textuais com as medidas de desempenho. Essa
comparação reforça a estratégia GT-0.7 como a que gera resultados mais próximos do
ajuste fino, seguida pela estratégia LoRA. Fica evidente também a leve superioridade da
economia da estratégia LoRA em relação à GT-0.7. Em termos de economia computa-
cional, a estratégia LoRA se posiciona consistentemente entre as configurações de GT,
embora, em termos de resultados generativos, seja inferior à GT-0.5 para o modelo PTT5.
Além disso, particularmente para o modelo OPT-PTBR, os resultados de BERTScore obti-
dos pelo ajuste eficiente foram superiores ao ajuste completo. Por fim, a Figura 1 também
demonstra a superioridade geral do modelo PTT5 na execução da tarefa, ressaltando o
impacto que a escolha adequada do PLM pode implicar.

A Tabela 2 apresenta a distância euclidiana média, calculada com base em cinco
conjuntos de métricas do NILC-metrix, entre uma amostra de 100 sumários gerados para
cada configuração avaliada e suas respectivas referências. Antes do cálculo, os valores
foram normalizados para o intervalo de 0 a 1. Os melhores resultados estão destacados
em negrito, enquanto os segundos melhores estão sublinhados. De modo geral, os valo-
res semelhantes observados dentro do mesmo modelo, independentemente da estratégia
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Tabela 2. Métricas em sintaxe, morfologia e semântica do conjunto NILC-metrix.

Modelo Estratégia Coesão
Referencial

Coesão
Semântica

Informações
Semânticas

Complexidade
Sintática

Informações
Morfossintáticas

OPT-PTBR
(125M params)

Ajuste fino 0,259 0,667 0,587 0,276 1,150
GT-0.5 0,269 0,679 0,595 0,255 1,143
GT-0.7 0,252 0,652 0,560 0,281 1,058
LoRA 0,279 0,760 0,600 0,264 1,158

PTT5
(220M params)

Ajuste fino 0,340 0,491 0,513 0,253 0,838
GT-0.5 0,310 0,505 0,481 0,237 0,853
GT-0.7 0,326 0,446 0,492 0,267 0,851
LoRA 0,247 0,692 0,560 0,258 0,962

de ajuste, indicam que as técnicas de PEFT não comprometem significativamente a ca-
pacidade de escrita dos modelos de lı́ngua quando comparadas ao ajuste fino. Notavel-
mente, as configurações do GT obtiveram os melhores resultados em várias ocorrências.
No entanto, uma avaliação comparativa entre os modelos revela que o PTT5 consistente-
mente apresenta desempenho superior, especialmente na avaliação de Informações Mor-
fossintáticas. Esse resultado pode estar relacionado à etapa de pré-treinamento, mais ro-
busta nesse modelo, sugerindo que uma execução adequada dessa fase possibilita uma
estratégia de ajuste mais eficiente. No entanto, uma dualidade surge, pois uma etapa de
pré-treinamento mais robusta pode resultar em custos mais elevados. De maneira geral,
esses resultados corroboram os anteriormente descritos, indicando que, além da escolha
da estratégia de ajuste, a seleção do modelo mostra-se crucial.

6. Considerações Finais
Este trabalho conduziu experimentos com estratégias de ajuste fino eficiente, empregando
dois modelos de menor escala treinados em português para a tarefa de sumarização tex-
tual. Os resultados indicam que a estratégia do GreenTrainer é competitiva em relação
à estratégia já estabelecida LoRA. Dependendo da escolha do parâmetro ρ, a estratégia
pode, inclusive, alcançar um equilı́brio superior entre a degradação de desempenho e o
ganho de eficiência computacional. Além disso, os resultados revelam que a aplicação
de estratégias eficientes pode implicar degradações significativas, dependendo da escolha
do modelo. Trabalhos futuros incluem avaliar essas estratégias em outros modelos e tare-
fas, visando obter melhores indicativos sobre a generalização, além de considerar novas
estratégias como LoRETTA [Yang et al. 2024] e GaLore [Zhao et al. 2024b].

Por fim, visando à transparência, explicitamos os custos totais desta pesquisa,
totalizando R$1.642,48 em uso de recursos em nuvem. Os experimentos, realizados
na Google Cloud Platform na região us-central1, resultaram em emissões estimadas de
14,52 kgCO2eq, com 364 horas de computação em duas GPUs T4 (TDP de 70W) e uma
eficiência de carbono de 0,57 kgCO2eq/kWh.
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