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Resumo. O artigo compara modelos de sı́ntese de fala com arquiteturas base-
adas em espectrograma e fim-a-fim, com o objetivo de determinar a capacidade
de clonagem de voz em cenário low-resource. Foram avaliados conjuntos de
treinamento de adaptação com diferentes quantidades de fala para clonagem
de uma voz alvo, e o tempo necessário para realizar o treinamento. O modelo
VITS mostrou-se mais eficiente, alcançando os melhores resultados no teste de
qualidade perceptual no cenário low-resource com dados no idioma português,
e completou o treinamento em menos tempo, quando comparado com o Taco-
tron2.

1. Introdução
A sı́ntese de fala tem sido um campo de intenso estudo e inovação ao longo dos últimos
anos, com avanços significativos impulsionados pelos rápidos progressos na área de inte-
ligência artificial generativa. Dentro deste contexto, diversas abordagens têm sido explo-
radas, incluindo as arquiteturas baseadas em espectrogramas e as abordagens fim-a-fim.

As arquiteturas Tacotron [Wang et al. 2017] e Tacotron2 [Shen et al. 2018] têm
sido amplamente estudadas e aplicadas, demonstrando a capacidade de converter texto
em fala natural por meio da geração de espectrogramas intermediários, que são posteri-
ormente transformados em sinais de fala através de vocoders, como as arquiteturas Wa-
veNet [van den Oord et al. 2016] e HiFi-GAN [Kong et al. 2020]. Apesar dos resultados
promissores, esses modelos frequentemente requerem grandes quantidades de dados e
longos perı́odos de treinamento para atingir um nı́vel satisfatório de qualidade e naturali-
dade na fala.

As abordagens mais recentes de sı́ntese de fala, como o modelo VITS (do inglês,
Variational Inference Text-to-Speech) [Kim et al. 2021], propõem uma estratégia fim-a-
fim que elimina a necessidade de um estágio intermediário explı́cito de geração do es-
pectrograma, combinando de forma eficaz a geração e a codificação do sinal de fala em
um único fluxo de trabalho. Este método tem mostrado potencial em reduzir significati-
vamente a quantidade de dados necessários para o treinamento, bem como o tempo total
para alcançar resultados de alta qualidade.

A eficiência da sı́ntese de fala em cenários com recursos limitados (low-resource)
é uma área de interesse crescente, especialmente para idiomas com menor disponibili-
dade de dados anotados, como o caso do português. Trabalhos recentes têm investigado a
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eficácia de diferentes modelos em condições low-resource, abordando desafios especı́ficos
como a qualidade da fala sintetizada, a adaptabilidade de modelos pré-treinados para no-
vos falantes e a eficiência computacional do processo de treinamento [Lux et al. 2022].

O objetivo deste artigo é comparar as arquiteturas baseadas em espectrogramas e
fim-a-fim no contexto de clonagem de voz em português, com ênfase no desempenho do
VITS versus o Tacotron2. O objetivo é comparar os modelos em cenários low-resource
e quantificar o número mı́nimo de dados e tempo de treinamento necessários para atingir
resultados de alta qualidade. Os resultados baseiam-se em métricas de qualidade objetiva
e subjetiva, e na análise do tempo de treinamento. Esperamos fornecer insights práticos
para a escolha e implementação de modelos de sı́ntese de fala com voz personalizada em
condições de dados restritos, contribuindo para a eficiência e a acessibilidade da tecno-
logia de sı́ntese de fala em uma ampla gama de aplicações para o idioma português do
Brasil.

2. Metodologia

O treinamento dos modelos foi realizado utilizando duas bases de fala no idioma Por-
tuguês Brasileiro: (i) o TTS-Portuguese Corpus [Casanova et al. 2022], composto por
textos de domı́nio público provenientes tanto da Wikipédia quanto do Chatterbot-corpus
(um corpus criado originalmente para a construção de chatbots), contendo aproximada-
mente 10 horas e 28 minutos de fala de um único locutor masculino, gravada com taxa
de amostragem de 48 kHz e 16 bits, tendo 3.632 áudios no formato WAV linear, com um
range de duração de 0,67 a 50,08 segundos (todos os clipes de áudio com duração supe-
rior a 20 segundos foram removidos do treinamento); (ii) uma base de fala proprietária
do CPQD composta por um locutor masculino contendo 20 minutos de fala, gravada com
taxa de amostragem de 48kHz, 16 bits e formato PCM linear, contendo os arquivos de
áudio e as transcrições ortográficas correspondentes.

O treinamento foi realizado a partir do repositório do VITS1, que foi adaptado
para a inclusão de fonemas do idioma português do Brasil, realizado através do uso do
módulo Phonemizer2 em conjunto com a pipeline de preparação de dados.

O treinamento dos modelos base ocorreram ao longo de 80 horas e 2.000 épocas
no dataset TTS-Portuguese Corpus. A partir do último checkpoint gerado pelo modelo
base, foram realizados fine-tunings trocando os dados de treinamento pela base pro-
prietária com a voz do locutor masculino, usando conjuntos de treinamento com 20, 15,
10 e 5 minutos de fala visando avaliar a quantidade mı́nima de dados necessários para
obter sı́ntese de boa qualidade. O objetivo do fine-tuning é adaptar o modelo base para
as caracterı́sticas da voz alvo, ou seja, realizar a clonagem de voz. Após apenas 1 hora
de treinamento de fine-tuning usando 20 minutos de fala, foram observados resultados
de alta qualidade tanto no VITS como no Tacotron2. A qualidade melhorou ainda mais
após 20 horas de treinamento. Ambos utilizaram o vocoder HiFi-GAN, sendo que no
caso do Tacotron2 o vocoder foi treinado de forma independente. Para os conjuntos de
treinamento menores, a seção 3 apresenta os resultados obtidos.

1https://github.com/jaywalnut310/vits/
2https://pypi.org/project/phonemizer/3.0.1/

267



3. Resultados

Para avaliar a qualidade da fala sintetizada resultante foram utilizadas medidas objetivas
e subjetivas. As métricas objetivas foram o MCD (do inglês, Mel-Cepstral Distortion)
e o F0 RMSE (do inglês, Log-F0 Root Mean Square Error) [Hayashi et al. 2021]. Para
a avaliação subjetiva foi utilizada a métrica MOS (Mean Opinion Score), em um experi-
mento que contou com 15 avaliadores não especialistas.

A métrica MCD, calculada por meio do repositório TTS Objective Metrics3, quan-
tifica a distância entre dois sinais de fala. Quanto menor o valor MCD, mais semelhantes
são as vozes. A qualidade da voz sintetizada foi avaliada com base no conjunto de teste,
com frases separadas para validação. Ao comparar a voz sintetizada resultante do modelo
de fine-tuning obtido com 20 minutos, com a voz original gravada, obteve-se valores de
MCD entre 1.6 e 1.78. A métrica MCD mostra valores próximos de 0, indicando que
o modelo é capaz de gerar fala sintetizada próxima da fala gravada. Para o F0 RMSE,
aplicada nas mesmas sentenças, foram obtidos valores entre 0.18 e 0.34. Os resultados
reforçam a alta qualidade da fala sintetizada.

3.1. Avaliação Subjetiva

Para a avaliação subjetiva foi utilizado o servidor webMUSHRA4. Um grupo de 15 avali-
adores não especialistas ouviram um conjunto de amostras e atribuiram notas de 0 a 100
com base na naturalidade da voz, sendo 0 nada natural e 100 muito natural. Esse processo
permitiu realizar uma análise subjetiva da qualidade do áudio sintetizado, proporcionando
uma análise mais fidedigna da percepção humana em relação ao desempenho dos mode-
los. As avaliações mostram uma melhor qualidade do VITS em relação ao Tacotron2. A
Figura 1 mostra o boxplot com os dados do teste subjetivo, utilizando áudios sintetizados
por modelos obtidos através do fine-tuning com diferentes conjuntos de treinamento da
voz alvo. Na legenda, 400 representa o conjunto com 20 minutos de fala, 300 indica 15
minutos, 200 indica 10 minutos e 100 indica o conjunto com 5 minutos de fala.

Os resultados indicam que o VITS (C1) consistentemente recebeu avaliações mais
altas em comparação ao Tacotron2 (C2). O desvio padrão menor do VITS em comparação
ao Tacotron2 em todos os conjuntos de treinamento indica que as opiniões dos usuários
sobre a qualidade do áudio gerado pelo VITS são mais consistentes e robustas.

No teste realizado com o conjunto contendo 5 minutos de fala de treinamento,
o VITS teve uma média de 71,49 enquanto o Tacotron2 teve 67,49. Essa diferença foi
consistente em todos os conjuntos de treinamento (20, 15, 10 e 5 minutos). No entanto,
a diferença aumenta com um volume maior de dados, sugerindo que o VITS não apenas
produz áudio de melhor qualidade, mas também que melhora mais conforme a quantidade
de dados de treinamento aumenta.

4. Conclusão

O objetivo principal deste trabalho foi comparar as arquiteturas de sı́ntese de fala ge-
nerativa com abordagens de espectrograma (Tacatron2) e fim-a-fim (VITS) em cenários

3https://github.com/AI-Unicamp/TTS-Objective-Metrics
4https://github.com/audiolabs/webMUSHRA/
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Figura 1. Boxplot da distribuição das pontuações por estı́mulo. C1 representa o
VITS, e C2 representa o Tacotron2.

low-resource, com uso de até 5 minutos de fala no treinamento de fine-tuning, para clo-
nagem de voz; ou seja, avaliar a capacidade de adaptação dos modelos base pré-treinados
fazendo uso de dados limitados de uma nova voz personalizada.

O modelo VITS, quando treinado com 20 minutos, mostrou resultados com alta
qualidade após apenas 1 hora de treinamento. Por outro lado, o Tacotron2, sob as mesmas
condições, apresentou maior variabilidade e menor consistência na qualidade do áudio
sintetizado. Mesmo quando treinado com 5 minutos o VITS apresentou boa qualidade e
baixa variância. Ao comparar o tempo de treinamento, o modelo VITS mostrou-se mais
eficiente, alcançando bons resultados em menos tempo e com menos dados em relação ao
Tacotron2.

Os resultados indicam que o VITS não só oferece uma sı́ntese de fala de melhor
qualidade, com maior similaridade à voz original e menor variância entre as amostras sin-
tetizadas, mas também é mais eficiente em termos de tempo de treinamento em cenários
low-resource.
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