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Abstract. In this work, we explore text segmentation for Portuguese using the
BERTimbau model, with datasets derived from machine translation and online
news sources. We obtained P, = 6.89 for an in-domain evaluation, but worse
results in out-of-domain evaluations, highlighting the importance of a diverse
training set to improve generalization across multiple domains.

Resumo. Neste trabalho, exploramos a segmentacdo textual para o portugués
utilizando o modelo BERTimbau, com bases de dados construidas usando
tradugdo automdtica e a partir de noticias online. Obtivemos P, = 6,89 para
uma avaliagcdo dentro do dominio, mas resultados piores em avaliacoes fora do
dominio, destacando a importancia de uma base de treinamento diversificada
para melhorar a generalizacdo em miiltiplos dominios.

1. Introducao

Com o aumento na geracdo de conteddo textual ndo estruturado, como transcricoes au-
tomaticas de noticias, aulas e reunides, ha também um crescente interesse em extrair
de forma eficiente informagdes relevantes desse material [Retkowski and Waibel 2024,
Gklezakos et al. 2024]. Por exemplo, pode ser desafiador encontrar o inicio de um
determinado tdpico discutido na transcricdo de uma longa reunido, a menos que essa
transcrigdo esteja devidamente estruturada. A segmentacao textual baseada em topicos é
uma tarefa de Processamento de Linguagem Natural (PLN) que divide um texto longo em
segmentos ndo sobrepostos, de acordo com as mudangas de topico [Hearst 1997]. Essa
ferramenta permite estruturar e compreender melhor grandes volumes de dados, facili-
tando a busca e a extracdo de informacdes.

H4 poucos trabalhos recentes sobre segmentacdo textual em portugués
[Cardoso et al. 2017, Francisco 2018]. Neste artigo, exploramos a segmentacdo tex-
tual baseada em tépicos para o portugués, aplicando a abordagem proposta em
[Yu et al. 2023], utilizando o modelo BERTimbau [Souza et al. 2023]. Construimos os
conjuntos de dados de treinamento e teste por meio de traducdo automdtica para o por-
tugués, e utilizando noticias extraidas da internet.

2. Metodologia

Neste trabalho, utilizamos a abordagem proposta por [Yu etal. 2023] que trata a
segmentacdo textual como um problema de classificagdo de uma sequéncia de sentencas,
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em que se deseja identificar a dltima sentenca de cada tépico, ou seja, identificar as fron-
teiras dos segmentos. O componente principal € um modelo de linguagem pré-treinado do
tipo Transformer encoder [Vaswani et al. 2023], que produz a representacdo contextual
das sentencas do texto de entrada. Cada representacao de sentenca € usada na classificagao
de fronteira do segmento, conforme mostrado na Figura 1.
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Figura 1. Estrutura do modelo de segmentacao proposto por [Yu et al. 2023]

Em [Yu et al. 2023], além da tarefa principal de segmentacao baseada em topicos,
sdo definidas duas tarefas auxiliares adicionais, Topic-aware Sentence Structure Predic-
tion (TSSP) e Contrastive Semantic Similarity Learning (CSSL), com o objetivo de mode-
lar a coeréncia textual e obter melhores resultados na segmentacdo. O modelo € treinado
de forma supervisionada, otimizando a soma das perdas das trés tarefas definidas, sobre
um conjunto de treinamento devidamente anotado.

Neste trabalho, utilizamos datasets para o treinamento e a avaliacdo obtidos por
meio de tradu¢do automatica para portugués ou construidos a partir de noticias em por-
tugués extraidas da internet. Os datasets WikiSection e WIKI-50 foram usados por
[Yu et al. 2023] e passaram pelo processo de tradu¢do automadtica usando a API de
traducdo da Google. O dataset WikiSection [Arnold et al. 2019] foi usado para trei-
namento e avaliagdo, e consiste num conjunto de 38K artigos em inglés e alemao,
nos dominios de doencas e cidades. ApOs a tradugdo, restaram 3.590 documentos no
dominio de doencgas e 19.539 documentos no dominio de cidades. O dataset WIKI-50
[Koshorek et al. 2018] foi usado apenas para avaliacdo, e consiste originalmente em um
conjunto de 50 amostras em inglés, provenientes da Wikipedia.

Para a avaliacdo dos modelos, utilizamos também datasets em portugués cons-
truidos a partir de noticias extraidas com webscrapping do portal G1' (portal de noticias
do Grupo Globo de Comunicagio), e do canal de noticias do IBGE? (Instituto Brasileiro
de Geografia e Estatistica). Os documentos de texto foram formados pela concatenagcao
aleatdria de noticias, sendo cada noticia considerada um segmento de tépico diferente.
No caso do dataset G1, foram gerados 454 documentos a partir de 1.300 noticias. Para o
dataset IBGE, foram gerados 1.517 documentos a partir de 3.376 noticias.

Thttps://g1.globo.com/tecnologia/noticia/2012/11/siga-0-g1-por-rss.html
Zhttps://servicodados.ibge.gov.br/api/docs/noticias?versao=3
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Como o nosso objetivo € aplicar a segmentacdo para o portugués, substituimos
o modelo usado em [Yu et al. 2023] pelo modelo BERTimbau [Souza et al. 2023], pré-
treinado para o portugués do Brasil. Utilizamos as versdes BERTimbau Base (110M de
parametros) e BERTimbau Large (335M de parametros)>.

O treinamento foi realizado em uma GPU NVIDIA T4, usando BERTimbau Base
e Large, com 70% do dataset WikiSection em portugués, por 5 épocas, com learning rate
de 5 x 1072, batch size de 2 e gradiente acumulado de 2. Criamos sempre um modelo
treinado com WiKiSection/cidades e o outro modelo treinado com WiKiSection/doengas.
No caso do BERTimbau Large, o treinamento durou aproximadamente 2 dias e 5 horas
para o conjunto de cidades e pouco mais de 11 horas para o conjunto de doengas.

A avaliagdo dos modelos seguiu a mesma linha de [Yu et al. 2023]. Usamos trés
métricas usuais para avaliacdo de segmentagdo textual: F}, P [Beeferman et al. 1999], e
WindowDiff [Pevzner and Hearst 2002]. No caso das métricas P e WindowDiff, quanto
menor o valor, melhor o desempenho. No caso da métrica Fy, quanto maior o valor,
melhor o desempenho. A avalia¢do dentro do dominio de treinamento foi realizada com
20% do dataset WikiSection em portugués. Os datasets WIKI-50, G1 e IBGE sao usados
apenas para avaliacdo fora do dominio de treinamento.

3. Resultados

As Tabelas 1 e 2 apresentam os resultados de avaliacdo dos modelos usando BERTim-
bau, criados e avaliados para o portugués, dentro do mesmo dominio, com os datasets
WikiSection/cidades e WikiSection/doengas. Também sdo apresentados os resultados
para o inglés correspondentes ao modelo BERT Base [Devlin et al. 2018], obtidos por
[Yu et al. 2023].

Modelo F P, WD
(en) BERT Base [Yu et al. 2023] | 80,16 | 8,22 | 10,19
(pt) BERTimbau Base 87,41 | 7,07 | 8,55
(pt) BERTimbau Large 87,59 | 6,89 | 8,37

Tabela 1. Resultados dos modelos criados e avaliados com o dataset WikiSec-
tion / cidades. BERT Base avaliado em inglés, BERTimbau em portugués.

Modelo 3 P, WD

(en) BERT Base [Yu et al. 2023] | 68,26 | 18,29 | 22,06
(pt) BERTimbau Base 76,91 | 17,16 | 19,45
(pt) BERTimbau Large 77,77 | 16,55 | 18,76

Tabela 2. Resultados dos modelos criados e avaliados com o dataset WikiSec-
tion / doencas. BERT Base avaliado em inglés, BERTimbau em portugués.

As métricas de avaliacdo obtidas com os modelos BERTimbau para o portugués
sao melhores e proximas aquelas apresentadas por [ Yu et al. 2023] em inglés. Neste caso,
devemos considerar também que o modelo criado para o portugués usando BERTimbau
Large € maior que o modelo usado em [Yu et al. 2023].

3https://huggingface.co/neuralmind/bert-base-portuguese-cased
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A Tabela 3 apresenta os resultados da avaliacdo de dois modelos criados para o
portugués nos dominios de cidades e doengas, usando o BERTimbau Large, e avaliados
fora do dominio de treinamento, nos datasets WIKI-50, G1 e IBGE.

Dataset Modelo / cidades Modelo / doencas
Fy Py WD Fy Py WD
Wiki50 | 15,43 | 35,01 | 35,36 || 12,97 | 35,98 | 36,02
Gl 64,66 | 13,62 | 17,28 | 54,81 | 25,61 | 32,42
IBGE 43,12 | 20,12 | 21,06 | 43,36 | 23,40 | 26,55

Tabela 3. Avaliacao fora do dominio de treinamento. Modelos com o BERTimbau
Large criados com o dataset WikiSection/cidades e WikiSection/doencas.

O desempenho do modelo fora do dominio de treinamento foi inferior ao desempe-
nho dentro do dominio. Os resultados foram melhores para o modelo treinado com o da-
taset WiKiSection/cidades. De fato, segundo [Arnold et al. 2019], o conteddo do dataset
WikiSection apresenta caracteristicas distintas para cada dominio: WiKiSection/doencas
¢ de dominio cientifico restrito com linguagem especifica, enquanto WiKiSection/cidades
¢ de dominio geral mais diverso, mais proximo de um conteido de noticias. Isso su-
gere que a composi¢do de dados de treinamento pode ajudar a obter um modelo para
segmentacao textual que generalize melhor para multiplos dominios.

4. Conclusao

Neste trabalho, exploramos a segmentacdo textual para o portugués, seguindo a aborda-
gem de [Yu et al. 2023], mas utilizando o modelo pré-treinado para o portugués BERTim-
bau [Souza et al. 2023]. Empregamos bases de treinamento e teste construidas usando
a traducdo automdtica de bases existentes, além de bases de teste construidas a par-
tir de noticias em portugués recuperadas da internet. Obtivemos 6timos resultados na
segmentacdo de texto dentro do mesmo dominio para o portugués, semelhante ao que foi
obtido por [Yu et al. 2023] para o ingl€s. Nossos resultados sugerem a eficicia do método
empregado para a criacdo do modelo em portugués e a importancia de usar uma base de
treinamento de dominio diversificado para obter um modelo que generalize melhor para
multiplos dominios.

Para trabalhos futuros, pretendemos explorar modelos diferentes e buscar uma
composi¢do mais variada de dados de treinamento para obter um modelo que generalize
melhor para varios dominios. Além disso, desejamos estudar a segmentacao textual de
transcricoes automaticas obtidas com reconhecimento de fala, e explorar a segmentacao
de textos muito longos, considerando a tipica limitacdo do contexto de entrada de modelos
baseados em Transformer [Vaswani et al. 2023].
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