Ziqian Peng


2024

pdf
Translate your Own: a Post-Editing Experiment in the NLP domain
Rachel Bawden | Ziqian Peng | Maud Bénard | Éric Clergerie | Raphaël Esamotunu | Mathilde Huguin | Natalie Kübler | Alexandra Mestivier | Mona Michelot | Laurent Romary | Lichao Zhu | François Yvon
Proceedings of the 25th Annual Conference of the European Association for Machine Translation (Volume 1)

The improvements in neural machine translation make translation and post-editing pipelines ever more effective for a wider range of applications. In this paper, we evaluate the effectiveness of such a pipeline for the translation of scientific documents (limited here to article abstracts). Using a dedicated interface, we collect, then analyse the post-edits of approximately 350 abstracts (English→French) in the Natural Language Processing domain for two groups of post-editors: domain experts (academics encouraged to post-edit their own articles) on the one hand and trained translators on the other. Our results confirm that such pipelines can be effective, at least for high-resource language pairs. They also highlight the difference in the post-editing strategy of the two subgroups. Finally, they suggest that working on term translation is the most pressing issue to improve fully automatic translations, but that in a post-editing setup, other error types can be equally annoying for post-editors.

pdf bib
À propos des difficultés de traduire automatiquement de longs documents
Ziqian Peng | Rachel Bawden | François Yvon
Actes de la 31ème Conférence sur le Traitement Automatique des Langues Naturelles, volume 1 : articles longs et prises de position

Les nouvelles architectures de traduction automatique sont capables de traiter des segments longs et de surpasser la traduction de phrases isolées, laissant entrevoir la possibilité de traduire des documents complets. Pour y parvenir, il est nécessaire de surmonter un certain nombre de difficultés liées à la longueur des documents à traduire. Dans cette étude, nous discutons de la traduction des documents sous l’angle de l’évaluation, en essayant de répondre à une question simple: comment mesurer s’il existe une dégradation des performances de traduction avec la longueur des documents ? Nos analyses, qui évaluent des systèmes encodeur-décodeur et un grand modèle de langue à l’aune de plusieurs métriques sur une tâche de traduction de documents scientifiques suggèrent que traduire les documents longs d’un bloc reste un problème difficile.

2023

pdf
Word order flexibility: a typometric study
Sylvain Kahane | Ziqian Peng | Kim Gerdes
Proceedings of the Seventh International Conference on Dependency Linguistics (Depling, GURT/SyntaxFest 2023)

This paper introduces a typometric measure of flexibility, which quantifies the variability of head-dependent word order on the whole set of treebanks of a language or on specific constructions. The measure is based on the notion of head-initiality and we show that it can be computed for all of languages of the Universal Dependency treebank set, that it does not require ad-hoc thresholds to categorize languages or constructions, and that it can be applied with any granularity of constructions and languages. We compare our results with Bakker’s (1998) categorical flexibility index. Typometric flexibility is shown to be a good measure for characterizing the language distribution with respect to word order for a given construction, and for estimating whether a construction predicts the global word order behavior of a language.

pdf bib
MaTOS: Traduction automatique pour la science ouverte
Maud Bénard | Alexandra Mestivier | Natalie Kubler | Lichao Zhu | Rachel Bawden | Eric De La Clergerie | Laurent Romary | Mathilde Huguin | Jean-François Nominé | Ziqian Peng | François Yvon
Actes de CORIA-TALN 2023. Actes de l'atelier "Analyse et Recherche de Textes Scientifiques" (ARTS)@TALN 2023

Cette contribution présente le projet MaTOS (Machine Translation for Open Science), qui vise à développer de nouvelles méthodes pour la traduction automatique (TA) intégrale de documents scientifiques entre le français et l’anglais, ainsi que des métriques automatiques pour évaluer la qualité des traductions produites. Pour ce faire, MaTOS s’intéresse (a) au recueil de ressources ouvertes pour la TA spécialisée; (b) à la description des marqueurs de cohérence textuelle pour les articles scientifiques; (c) au développement de nouvelles méthodes de traitement multilingue pour les documents; (d) aux métriques mesurant les progrès de la traduction de documents complets.