Zhang Huaping


2024

pdf
Context Length Extension via Generalized Extrapolation Scale
Linhan Li | Zhang Huaping
Findings of the Association for Computational Linguistics ACL 2024

Context length expansion of transformer models is considered a key challenge, especially when handling context beyond the training length during inference stage. In this paper, we propose Geeneralized extrapolatioN scalE (GeNE), a set of parameterized extrapolation functions applied to each layer and attention head to adaptively adjust its extrapolation scales. Experimental results show that GeNE provides a significant improvement on long context language modeling. By randomly scaling the extrapolation ratio during the finetuning, GeNE achieves stable extrapolation on 64k contexts by training on 16k length text. Further, the instruction following Llama2 model based on GeNE achieved competitive results compared with other open-source models of the same parameter scale.

2023

pdf
PsyAttention: Psychological Attention Model for Personality Detection
Baohua Zhang | Yongyi Huang | Wenyao Cui | Zhang Huaping | Jianyun Shang
Findings of the Association for Computational Linguistics: EMNLP 2023

Work on personality detection has tended to incorporate psychological features from different personality models, such as BigFive and MBTI. There are more than 900 psychological features, each of which is helpful for personality detection. However, when used in combination, the application of different calculation standards among these features may result in interference between features calculated using distinct systems, thereby introducing noise and reducing performance. This paper adapts different psychological models in the proposed PsyAttention for personality detection, which can effectively encode psychological features, reducing their number by 85%. In experiments on the BigFive and MBTI models, PysAttention achieved average accuracy of 65.66% and 86.30%, respectively, outperforming state-of-the-art methods, indicating that it is effective at encoding psychological features.