Ze Yang


2022

pdf
TANet: Thread-Aware Pretraining for Abstractive Conversational Summarization
Ze Yang | Christian Wang | Zhoujin Tian | Wei Wu | Zhoujun Li
Findings of the Association for Computational Linguistics: NAACL 2022

Although pre-trained language models (PLMs) have achieved great success and become a milestone in NLP, abstractive conversational summarization remains a challenging but less studied task. The difficulty lies in two aspects. One is the lack of large-scale conversational summary data. Another is that applying the existing pre-trained models to this task is tricky because of the structural dependence within the conversation and its informal expression, etc. In this work, we first build a large-scale (11M) pretraining dataset called RCSum, based on the multi-person discussions in the Reddit community. We then present TANet, a thread-aware Transformer-based network. Unlike the existing pre-trained models that treat a conversation as a sequence of sentences, we argue that the inherent contextual dependency among the utterances plays an essential role in understanding the entire conversation and thus propose two new techniques to incorporate the structural information into our model. The first is thread-aware attention which is computed by taking into account the contextual dependency within utterances. Second, we apply thread prediction loss to predict the relations between utterances. We evaluate our model on four datasets of real conversations, covering types of meeting transcripts, customer-service records, and forum threads. Experimental results demonstrate that TANet achieves a new state-of-the-art in terms of both automatic evaluation and human judgment.

2020

pdf
StyleDGPT: Stylized Response Generation with Pre-trained Language Models
Ze Yang | Wei Wu | Can Xu | Xinnian Liang | Jiaqi Bai | Liran Wang | Wei Wang | Zhoujun Li
Findings of the Association for Computational Linguistics: EMNLP 2020

Generating responses following a desired style has great potentials to extend applications of open-domain dialogue systems, yet is refrained by lacking of parallel data for training. In this work, we explore the challenging task with pre-trained language models that have brought breakthrough to various natural language tasks. To this end, we introduce a KL loss and a style classifier to the fine-tuning step in order to steer response generation towards the target style in both a word-level and a sentence-level. Comprehensive empirical studies with two public datasets indicate that our model can significantly outperform state-of-the-art methods in terms of both style consistency and contextual coherence.

2019

pdf
Low-Resource Response Generation with Template Prior
Ze Yang | Wei Wu | Jian Yang | Can Xu | Zhoujun Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

We study open domain response generation with limited message-response pairs. The problem exists in real-world applications but is less explored by the existing work. Since the paired data now is no longer enough to train a neural generation model, we consider leveraging the large scale of unpaired data that are much easier to obtain, and propose response generation with both paired and unpaired data. The generation model is defined by an encoder-decoder architecture with templates as prior, where the templates are estimated from the unpaired data as a neural hidden semi-markov model. By this means, response generation learned from the small paired data can be aided by the semantic and syntactic knowledge in the large unpaired data. To balance the effect of the prior and the input message to response generation, we propose learning the whole generation model with an adversarial approach. Empirical studies on question response generation and sentiment response generation indicate that when only a few pairs are available, our model can significantly outperform several state-of-the-art response generation models in terms of both automatic and human evaluation.

pdf
Read, Attend and Comment: A Deep Architecture for Automatic News Comment Generation
Ze Yang | Can Xu | Wei Wu | Zhoujun Li
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP)

Automatic news comment generation is beneficial for real applications but has not attracted enough attention from the research community. In this paper, we propose a “read-attend-comment” procedure for news comment generation and formalize the procedure with a reading network and a generation network. The reading network comprehends a news article and distills some important points from it, then the generation network creates a comment by attending to the extracted discrete points and the news title. We optimize the model in an end-to-end manner by maximizing a variational lower bound of the true objective using the back-propagation algorithm. Experimental results on two public datasets indicate that our model can significantly outperform existing methods in terms of both automatic evaluation and human judgment.

pdf
NeuronBlocks: Building Your NLP DNN Models Like Playing Lego
Ming Gong | Linjun Shou | Wutao Lin | Zhijie Sang | Quanjia Yan | Ze Yang | Feixiang Cheng | Daxin Jiang
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations

Deep Neural Networks (DNN) have been widely employed in industry to address various Natural Language Processing (NLP) tasks. However, many engineers find it a big overhead when they have to choose from multiple frameworks, compare different types of models, and understand various optimization mechanisms. An NLP toolkit for DNN models with both generality and flexibility can greatly improve the productivity of engineers by saving their learning cost and guiding them to find optimal solutions to their tasks. In this paper, we introduce NeuronBlocks, a toolkit encapsulating a suite of neural network modules as building blocks to construct various DNN models with complex architecture. This toolkit empowers engineers to build, train, and test various NLP models through simple configuration of JSON files. The experiments on several NLP datasets such as GLUE, WikiQA and CoNLL-2003 demonstrate the effectiveness of NeuronBlocks. Code: https://github.com/Microsoft/NeuronBlocks Demo: https://youtu.be/x6cOpVSZcdo