2024
pdf
abs
BIDER: Bridging Knowledge Inconsistency for Efficient Retrieval-Augmented LLMs via Key Supporting Evidence
Jiajie Jin
|
Yutao Zhu
|
Yujia Zhou
|
Zhicheng Dou
Findings of the Association for Computational Linguistics ACL 2024
Retrieval-augmented large language models (LLMs) have demonstrated efficacy in knowledge-intensive tasks such as open-domain QA, addressing inherent challenges in knowledge update and factual inadequacy.However, inconsistencies between retrieval knowledge and the necessary knowledge for LLMs, leading to a decline in LLM’s answer quality. This paper introduces BIDER, an approach that refines retrieval documents into Key Supporting Evidence (KSE) through knowledge synthesis, supervised fine-tuning (SFT), and preference alignment. We train BIDER by learning from crafting KSE, while maximizing its output to align with LLM’s information acquisition preferences through reinforcement learning. Evaluations across five datasets show BIDER boosts LLMs’ answer quality by 7% while reducing input content length in retrieval documents by 80%, outperforming existing methods. The proposed KSE simulation effectively equips LLMs with essential information for accurate question answering.
pdf
abs
An Element is Worth a Thousand Words: Enhancing Legal Case Retrieval by Incorporating Legal Elements
Chenlong Deng
|
Zhicheng Dou
|
Yujia Zhou
|
Peitian Zhang
|
Kelong Mao
Findings of the Association for Computational Linguistics ACL 2024
Legal case retrieval plays an important role in promoting judicial justice and fairness. One of its greatest challenges is that the definition of relevance goes far beyond the common semantic relevance as in ad-hoc retrieval. In this paper, we reveal that the legal elements, which typically comprise key facts in a specialized legal context, can largely improve the relevance matching of legal case retrieval. To facilitate the use of legal elements, we construct a Chinese legal element dataset called LeCaRD-Elem based on the widely-used LeCaRD dataset, through a two-stage semi-automatic method with a minimized reliance on human labor. Meanwhile, we introduce two new models to enhance legal search using legal elements. The first, Elem4LCR-E, is a two-stage model that explicitly predicts legal elements from texts and then leverages them for improved ranking. Recognizing the potential benefits of more seamless integration, we further propose an end-to-end model called Elem4LCR-I, which internalizes the legal element knowledge into its model parameters using a tailored teacher-student training framework. Extensive experiments underscore the significant value of legal elements and demonstrate the superiority of our two proposed models in enhancing legal search over existing methods.
pdf
abs
Unsupervised Real-Time Hallucination Detection based on the Internal States of Large Language Models
Weihang Su
|
Changyue Wang
|
Qingyao Ai
|
Yiran Hu
|
Zhijing Wu
|
Yujia Zhou
|
Yiqun Liu
Findings of the Association for Computational Linguistics ACL 2024
Hallucinations in large language models (LLMs) refer to the phenomenon of LLMs producing responses that are coherent yet factually inaccurate. This issue undermines the effectiveness of LLMs in practical applications, necessitating research into detecting and mitigating hallucinations of LLMs. Previous studies have mainly concentrated on post-processing techniques for hallucination detection, which tend to be computationally intensive and limited in effectiveness due to their separation from the LLM’s inference process. To overcome these limitations, we introduce MIND, an unsupervised training framework that leverages the internal states of LLMs for real-time hallucination detection without requiring manual annotations. Additionally, we present HELM, a new benchmark for evaluating hallucination detection across multiple LLMs, featuring diverse LLM outputs and the internal states of LLMs during their inference process. Our experiments demonstrate that MIND outperforms existing state-of-the-art methods in hallucination detection.
pdf
abs
Grounding Language Model with Chunking-Free In-Context Retrieval
Hongjin Qian
|
Zheng Liu
|
Kelong Mao
|
Yujia Zhou
|
Zhicheng Dou
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper presents a novel Chunking-Free In-Context (CFIC) retrieval approach, specifically tailored for Retrieval-Augmented Generation (RAG) systems. Traditional RAG systems often struggle with grounding responses using precise evidence text due to the challenges of processing lengthy documents and filtering out irrelevant content. Commonly employed solutions, such as document chunking and adapting language models to handle longer contexts, have their limitations. These methods either disrupt the semantic coherence of the text or fail to effectively address the issues of noise and inaccuracy in evidence retrieval.The CFIC approach addresses these challenges by circumventing the conventional chunking process. It utilizes the encoded hidden states of documents for in-context retrieval, employing auto-aggressive decoding to accurately identify the specific evidence text required for user queries, eliminating the need for chunking. CFIC is further enhanced by incorporating two innovative decoding strategies, namely Constrained Sentence Prefix Decoding and Skip Decoding. These strategies not only improve the efficiency of the retrieval process but also ensure that the fidelity of the generated grounding text evidence is maintained.Our evaluations of CFIC on a range of open question answering datasets demonstrate its superiority in retrieving relevant and accurate information, offering a significant improvement over traditional methods. By doing away with the need for document chunking, CFIC presents a more streamlined, effective, and efficient retrieval solution, making it a valuable advancement in the field of RAG systems.
2023
pdf
abs
Enhancing Generative Retrieval with Reinforcement Learning from Relevance Feedback
Yujia Zhou
|
Zhicheng Dou
|
Ji-Rong Wen
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
The recent advent of end-to-end generative retrieval marks a significant shift in document retrieval methods, leveraging differentiable search indexes to directly produce relevant document identifiers (docids) in response to a specific query. Nevertheless, this approach faces two fundamental challenges: (i) a discrepancy between the token-level probabilistic optimization and the broader document-level relevance estimation; (ii) an overemphasis on top-1 results at the expense of overall ranking quality. To tackle these challenges, we propose a generative retrieval model with reinforcement learning from relevance feedback, which aims to align token-level docid generation with document-level relevance estimation. The training process incorporates three stages: supervised fine-tuning, relevance reward model training, and reinforced learning-to-rank from relevance feedback. To train a high-quality reward model, we define “relevance” under three progressive scenarios, which collectively offer a comprehensive evaluation of the document relevance. Experiments conducted on two benchmark datasets demonstrate the effectiveness of our proposed approach.