This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we generate only three BibTeX files per volume, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
Building automatic extraction models for visually rich documents like invoices, receipts, bills, tax forms, etc. has received significant attention lately. A key bottleneck in developing extraction models for new document types is the cost of acquiring the several thousand high-quality labeled documents that are needed to train a model with acceptable accuracy. In this paper, we propose selective labeling as a solution to this problem. The key insight is to simplify the labeling task to provide “yes/no” labels for candidate extractions predicted by a model trained on partially labeled documents. We combine this with a custom active learning strategy to find the predictions that the model is most uncertain about. We show through experiments on document types drawn from 3 different domains that selective labeling can reduce the cost of acquiring labeled data by 10× with a negligible loss in accuracy.
Humor plays an important role in human languages and it is essential to model humor when building intelligence systems. Among different forms of humor, puns perform wordplay for humorous effects by employing words with double entendre and high phonetic similarity. However, identifying and modeling puns are challenging as puns usually involved implicit semantic or phonological tricks. In this paper, we propose Pronunciation-attentive Contextualized Pun Recognition (PCPR) to perceive human humor, detect if a sentence contains puns and locate them in the sentence. PCPR derives contextualized representation for each word in a sentence by capturing the association between the surrounding context and its corresponding phonetic symbols. Extensive experiments are conducted on two benchmark datasets. Results demonstrate that the proposed approach significantly outperforms the state-of-the-art methods in pun detection and location tasks. In-depth analyses verify the effectiveness and robustness of PCPR.
Extracting event temporal relations is a critical task for information extraction and plays an important role in natural language understanding. Prior systems leverage deep learning and pre-trained language models to improve the performance of the task. However, these systems often suffer from two shortcomings: 1) when performing maximum a posteriori (MAP) inference based on neural models, previous systems only used structured knowledge that is assumed to be absolutely correct, i.e., hard constraints; 2) biased predictions on dominant temporal relations when training with a limited amount of data. To address these issues, we propose a framework that enhances deep neural network with distributional constraints constructed by probabilistic domain knowledge. We solve the constrained inference problem via Lagrangian Relaxation and apply it to end-to-end event temporal relation extraction tasks. Experimental results show our framework is able to improve the baseline neural network models with strong statistical significance on two widely used datasets in news and clinical domains.
Adversarial attacks against machine learning models have threatened various real-world applications such as spam filtering and sentiment analysis. In this paper, we propose a novel framework, learning to discriminate perturbations (DISP), to identify and adjust malicious perturbations, thereby blocking adversarial attacks for text classification models. To identify adversarial attacks, a perturbation discriminator validates how likely a token in the text is perturbed and provides a set of potential perturbations. For each potential perturbation, an embedding estimator learns to restore the embedding of the original word based on the context and a replacement token is chosen based on approximate kNN search. DISP can block adversarial attacks for any NLP model without modifying the model structure or training procedure. Extensive experiments on two benchmark datasets demonstrate that DISP significantly outperforms baseline methods in blocking adversarial attacks for text classification. In addition, in-depth analysis shows the robustness of DISP across different situations.
Word embedding models have become a fundamental component in a wide range of Natural Language Processing (NLP) applications. However, embeddings trained on human-generated corpora have been demonstrated to inherit strong gender stereotypes that reflect social constructs. To address this concern, in this paper, we propose a novel training procedure for learning gender-neutral word embeddings. Our approach aims to preserve gender information in certain dimensions of word vectors while compelling other dimensions to be free of gender influence. Based on the proposed method, we generate a Gender-Neutral variant of GloVe (GN-GloVe). Quantitative and qualitative experiments demonstrate that GN-GloVe successfully isolates gender information without sacrificing the functionality of the embedding model.