2024
pdf
abs
Reasoning Like a Doctor: Improving Medical Dialogue Systems via Diagnostic Reasoning Process Alignment
Kaishuai Xu
|
Yi Cheng
|
Wenjun Hou
|
Qiaoyu Tan
|
Wenjie Li
Findings of the Association for Computational Linguistics ACL 2024
Medical dialogue systems have attracted significant attention for their potential to act as medical assistants. Enabling these medical systems to emulate clinicians’ diagnostic reasoning process has been the long-standing research focus. Previous studies rudimentarily realized the simulation of clinicians’ diagnostic process by fine-tuning language models on high-quality dialogue datasets. Nonetheless, they overly focus on the outcomes of the clinician’s reasoning process while ignoring their internal thought processes and alignment with clinician preferences. Our work aims to build a medical dialogue system that aligns with clinicians’ diagnostic reasoning processes. We propose a novel framework, Emulation, designed to generate an appropriate response that relies on abductive and deductive diagnostic reasoning analyses and aligns with clinician preferences through thought process modeling. Experimental results on two datasets confirm the efficacy of Emulation. Crucially, our framework furnishes clear explanations for the generated responses, enhancing its transparency in medical consultations.
2023
pdf
abs
Medical Dialogue Generation via Dual Flow Modeling
Kaishuai Xu
|
Wenjun Hou
|
Yi Cheng
|
Jian Wang
|
Wenjie Li
Findings of the Association for Computational Linguistics: ACL 2023
Medical dialogue systems (MDS) aim to provide patients with medical services, such as diagnosis and prescription. Since most patients cannot precisely describe their symptoms, dialogue understanding is challenging for MDS. Previous studies mainly addressed this by extracting the mentioned medical entities as critical dialogue history information. In this work, we argue that it is also essential to capture the transitions of the medical entities and the doctor’s dialogue acts in each turn, as they help the understanding of how the dialogue flows and enhance the prediction of the entities and dialogue acts to be adopted in the following turn. Correspondingly, we propose a Dual Flow enhanced Medical (DFMed) dialogue generation framework. It extracts the medical entities and dialogue acts used in the dialogue history and models their transitions with an entity-centric graph flow and a sequential act flow, respectively. We employ two sequential models to encode them and devise an interweaving component to enhance their interactions. Experiments on two datasets demonstrate that our method exceeds baselines in both automatic and manual evaluations.
pdf
abs
RECAP: Towards Precise Radiology Report Generation via Dynamic Disease Progression Reasoning
Wenjun Hou
|
Yi Cheng
|
Kaishuai Xu
|
Wenjie Li
|
Jiang Liu
Findings of the Association for Computational Linguistics: EMNLP 2023
Automating radiology report generation can significantly alleviate radiologists’ workloads. Previous research has primarily focused on realizing highly concise observations while neglecting the precise attributes that determine the severity of diseases (e.g., small pleural effusion). Since incorrect attributes will lead to imprecise radiology reports, strengthening the generation process with precise attribute modeling becomes necessary. Additionally, the temporal information contained in the historical records, which is crucial in evaluating a patient’s current condition (e.g., heart size is unchanged), has also been largely disregarded. To address these issues, we propose RECAP, which generates precise and accurate radiology reports via dynamic disease progression reasoning. Specifically, RECAP first predicts the observations and progressions (i.e., spatiotemporal information) given two consecutive radiographs. It then combines the historical records, spatiotemporal information, and radiographs for report generation, where a disease progression graph and dynamic progression reasoning mechanism are devised to accurately select the attributes of each observation and progression. Extensive experiments on two publicly available datasets demonstrate the effectiveness of our model.
pdf
abs
Target-oriented Proactive Dialogue Systems with Personalization: Problem Formulation and Dataset Curation
Jian Wang
|
Yi Cheng
|
Dongding Lin
|
Chak Leong
|
Wenjie Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Target-oriented dialogue systems, designed to proactively steer conversations toward predefined targets or accomplish specific system-side goals, are an exciting area in conversational AI. In this work, by formulating a <dialogue act, topic> pair as the conversation target, we explore a novel problem of personalized target-oriented dialogue by considering personalization during the target accomplishment process. However, there remains an emergent need for high-quality datasets, and building one from scratch requires tremendous human effort. To address this, we propose an automatic dataset curation framework using a role-playing approach. Based on this framework, we construct a large-scale personalized target-oriented dialogue dataset, TopDial, which comprises about 18K multi-turn dialogues. The experimental results show that this dataset is of high quality and could contribute to exploring personalized target-oriented dialogue.
pdf
abs
Self-Detoxifying Language Models via Toxification Reversal
Chak Tou Leong
|
Yi Cheng
|
Jiashuo Wang
|
Jian Wang
|
Wenjie Li
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing
Language model detoxification aims to minimize the risk of generating offensive or harmful content in pretrained language models (PLMs) for safer deployment. Existing methods can be roughly categorized as finetuning-based and decoding-based. However, the former is often resource-intensive, while the latter relies on additional components and potentially compromises the generation fluency. In this paper, we propose a more lightweight approach that enables the PLM itself to achieve “self-detoxification”. Our method is built upon the observation that prepending a negative steering prompt can effectively induce PLMs to generate toxic content. At the same time, we are inspired by the recent research in the interpretability field, which formulates the evolving contextualized representations within the PLM as an information stream facilitated by the attention layers. Drawing on this idea, we devise a method to identify the toxification direction from the normal generation process to the one prompted with the negative prefix, and then steer the generation to the reversed direction by manipulating the information movement within the attention layers. Experimental results show that our approach, without any fine-tuning or extra components, can achieve comparable performance with state-of-the-art methods.
pdf
abs
ORGAN: Observation-Guided Radiology Report Generation via Tree Reasoning
Wenjun Hou
|
Kaishuai Xu
|
Yi Cheng
|
Wenjie Li
|
Jiang Liu
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
This paper explores the task of radiology report generation, which aims at generating free-text descriptions for a set of radiographs. One significant challenge of this task is how to correctly maintain the consistency between the images and the lengthy report. Previous research explored solving this issue through planning-based methods, which generate reports only based on high-level plans. However, these plans usually only contain the major observations from the radiographs (e.g., lung opacity), lacking much necessary information, such as the observation characteristics and preliminary clinical diagnoses. To address this problem, the system should also take the image information into account together with the textual plan and perform stronger reasoning during the generation process. In this paper, we propose an Observation-guided radiology Report Generation framework (ORGan). It first produces an observation plan and then feeds both the plan and radiographs for report generation, where an observation graph and a tree reasoning mechanism are adopted to precisely enrich the plan information by capturing the multi-formats of each observation. Experimental results demonstrate that our framework outperforms previous state-of-the-art methods regarding text quality and clinical efficacy.
2022
pdf
abs
Improving Multi-turn Emotional Support Dialogue Generation with Lookahead Strategy Planning
Yi Cheng
|
Wenge Liu
|
Wenjie Li
|
Jiashuo Wang
|
Ruihui Zhao
|
Bang Liu
|
Xiaodan Liang
|
Yefeng Zheng
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing
Providing Emotional Support (ES) to soothe people in emotional distress is an essential capability in social interactions. Most existing researches on building ES conversation systems only considered single-turn interactions with users, which was over-simplified. In comparison, multi-turn ES conversation systems can provide ES more effectively, but face several new technical challenges, including: (1) how to adopt appropriate support strategies to achieve the long-term dialogue goal of comforting the user’s emotion; (2) how to dynamically model the user’s state. In this paper, we propose a novel system MultiESC to address these issues. For strategy planning, drawing inspiration from the A* search algorithm, we propose lookahead heuristics to estimate the future user feedback after using particular strategies, which helps to select strategies that can lead to the best long-term effects. For user state modeling, MultiESC focuses on capturing users’ subtle emotional expressions and understanding their emotion causes. Extensive experiments show that MultiESC significantly outperforms competitive baselines in both dialogue generation and strategy planning.
pdf
abs
CARE: Causality Reasoning for Empathetic Responses by Conditional Graph Generation
Jiashuo Wang
|
Yi Cheng
|
Wenjie Li
Findings of the Association for Computational Linguistics: EMNLP 2022
Recent approaches to empathetic response generation incorporate emotion causalities to enhance comprehension of both the user’s feelings and experiences. However, these approaches suffer from two critical issues. First, they only consider causalities between the user’s emotion and the user’s experiences, and ignore those between the user’s experiences. Second, they neglect interdependence among causalities and reason them independently. To solve the above problems, we expect to reason all plausible causalities interdependently and simultaneously, given the user’s emotion, dialogue history, and future dialogue content. Then, we infuse these causalities into response generation for empathetic responses. Specifically, we design a new model, i.e., the Conditional Variational Graph Auto-Encoder (CVGAE), for the causality reasoning, and adopt a multi-source attention mechanism in the decoder for the causality infusion. We name the whole framework as CARE, abbreviated for CAusality Reasoning for Empathetic conversation. Experimental results indicate that our method achieves state-of-the-art performance.
2021
pdf
abs
Guiding the Growth: Difficulty-Controllable Question Generation through Step-by-Step Rewriting
Yi Cheng
|
Siyao Li
|
Bang Liu
|
Ruihui Zhao
|
Sujian Li
|
Chenghua Lin
|
Yefeng Zheng
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)
This paper explores the task of Difficulty-Controllable Question Generation (DCQG), which aims at generating questions with required difficulty levels. Previous research on this task mainly defines the difficulty of a question as whether it can be correctly answered by a Question Answering (QA) system, lacking interpretability and controllability. In our work, we redefine question difficulty as the number of inference steps required to answer it and argue that Question Generation (QG) systems should have stronger control over the logic of generated questions. To this end, we propose a novel framework that progressively increases question difficulty through step-by-step rewriting under the guidance of an extracted reasoning chain. A dataset is automatically constructed to facilitate the research, on which extensive experiments are conducted to test the performance of our method.
2019
pdf
abs
Zero-shot Chinese Discourse Dependency Parsing via Cross-lingual Mapping
Yi Cheng
|
Sujian Li
Proceedings of the 1st Workshop on Discourse Structure in Neural NLG
Due to the absence of labeled data, discourse parsing still remains challenging in some languages. In this paper, we present a simple and efficient method to conduct zero-shot Chinese text-level dependency parsing by leveraging English discourse labeled data and parsing techniques. We first construct the Chinese-English mapping from the level of sentence and elementary discourse unit (EDU), and then exploit the parsing results of the corresponding English translations to obtain the discourse trees for the Chinese text. This method can automatically conduct Chinese discourse parsing, with no need of a large scale of Chinese labeled data.